A Generic System Architecture
for Strategy-Based Software Development

Maritta Heisel
Thomas Santen'

Dominik Zimmermann

Fachgebiet Softwaretechnik

Bericht 95-8

2GMD FIRST, Rudower Chaussee 5, D-12489 Berlin

Abstract

We present a formalism independent approach to the design of tools supporting the application
of formal methods in software development. It consists of a concept to represent problem
solving knowledge, called strategies, and a generic architecture showing how to implement
tools for strategy-based development. A prototype system for program synthesis called TOSS
is described in some detail. It demonstrates the practicality of the approach.

Acknowledgment. We would like to thank Balachander Krishnamurthy for comments on
this work.

Contents

1 Introduction

2 Representing Software Engineering Knowledge by Strategies
2.1 An Example: Synthesis of Divide-And-Conquer Algorithms
2.2 The Structure of Strategies oo L

3 The System Architecture
3.1 Overview of the Architecture
3.2 Example: Mergesort Revisited 0.

4 Strategy Implementation

5 The Structure of Development and Control Trees
5.1 Development Tree
5.2 Control Tree o e

6 Data Flow

7 I0OSS — A Prototypical Implementation
7.1 Problems, Solutions, and Explanations
7.2 The Strategy Base
7.3 The Interface L
7.4 Implementation of IOSS
7.4.1 Software Packages used in IOSS
7.4.2 10SS Start-Up Procedure
7.4.3 Interaction between Interface and Kernel
7.4.4 Interaction with daVinci o oo L

8 Heapsort: An Example Development
9 Related Work

10 Discussion
10.1 Future Improvements e

A Palindrome Test: A Complete Development

D

10
10
11

14

16
16
17

19

22
23
23
24
26
26
28
29
31

33

37

40
41

43

Chapter 1

Introduction

Today, formal methods for software development are at the edge of entering industrial practice.
The theory of formal specification and verification of software is well understood, and an
increasing number of case studies in industrial context are performed to evaluate cost and use
of the application of formal methods [CGR93]. Especially in safety-critical applications they
are recognized as one technique to support development of highly dependable software.

In this situation, an increasing number of non-experts in the field have started to use
formal methods, and thus tool support is of growing importance. Most existing tools are
parsers, type checkers and documentation tools for specifications, or theorem provers for the
underlying logics. Only few provide support for the methodological aspects of formal methods.
But non-experts have to rely on guidance to set up formal specifications, demonstrate their
properties, and develop code from specifications in a provably correct way.

The present paper addresses the problem of how to design tools to support the process
aspect of software development specific to formal methods. We introduce a concept repre-
senting a “method” in a way that allows us to provide machine support for its application.
We also present a system design for the implementation of this concept. A prototype system
for program synthesis demonstrates the practicality of our approach.

We do not see formal methods as a means to replace traditional software engineering. Put
into practice, they will only be one technique among others to enhance software quality. Our
approach therefore focuses on tools specific to support application of formal methods. It is
not intended to replace but to complement existing CASE technology.

Requirements for Formal Methods Specific Tool Support

In general, there are two conflicting goals in the design of tools specifically for formal meth-
ods. In contrast to classical software engineering, such a tool must be designed to guarantee
semantic properties of the resulting product, e.g. correctness with respect to a specification.
Therefore it must enforce certain ways of procedure. On the other hand, it has to provide
as much freedom as possible for the developers and must not hinder creativity. From these
goals, we deduce the following requirements:

Guarantee Semantic Properties. A tool must support the development process in a way
that eases rigorous mathematical reasoning and establishes confidence that the product in-
deed fulfills the required properties. Two aspects contribute to establishing confidence: First,
there must be a clear identification of the steps in the development process that are crucial to

establishing semantic properties. Second, since the development support tool will inevitably
contain errors it must be designed to provide insight into the “semantically relevant” compo-
nents and their interaction.

Balance User Guidance and Flexibility. Formal methods usually consist of some math-
ematical formalism and a variety of more or less explicitly stated techniques how to use it.
Due to syntactic constraints and mathematical rigor, their application tends to be non-trivial.
It is therefore important not to leave the user alone with a mere formalism but to develop
explicit techniques to guide its use and offer the user choice of tried and tested approaches
on how to proceed. In order not to unnecessarily restrict its users, a tool must support the
combination of such techniques. Furthermore, it must also be customizable by informed users
who develop specialized techniques for their project contexts.

With or without formal methods, several attempts are usually needed to solve a problem
in a satisfying way. A tool for formal methods should provide means to ezplore alternative
ways to a solution. It should enable judging the feasibility of an approach as early as possible.

For classical software engineering, support for multiple developers is standard. The main
problem is to maintain consistency of the resulting documents. For formal methods, the
consistency problem appears in a sharper sense: how can work be distributed in a way that
ensures the results can be combined and properties guaranteed with reasonable effort? A
development tool should provide information about “safe” ways to parallelize work.

Provide Overview of Development. Exactness and rigor entail a higher level of detail
that must be handled. It is crucial for developers to have tool support that provides an
overview of the development process and the relations between subtasks. They must avoid
roundabout ways and dead ends in the development that may make proof of properties prac-
tically infeasible if not theoretically impossible. The task here is to design the tool so as to
maintain the necessary information that can be used to provide a supportive user interface.

We wish to identify general concepts that are applicable to a variety of formalisms. The
contribution of the present paper is a formalism independent approach to the design of tools
that support the peculiarities of formal methods.

The results of this work are as follows:

e We introduce the concept of strategy as a knowledge representation mechanism which
makes development knowledge amenable to machine support. Methods are represented
as sets of strategies.

o A uniform interface between strategies facilitates their modular implementation. It
makes the combined application of methods possible and enhances the adaptability of
a support tool to new and improved ways of procedure.

e A generic architecture shows how to implement support tools for strategy-based devel-
opment. This architecture is designed to meet the requirements expressed above.

In the rest of the report, we proceed as follows: In Chapter 2, strategies are introduced.
Chapter 3 presents a general overview of the architecture, followed by a description of its
components: implementation of strategies (Chapter 4), internal data structures (Chapter 5),

and data and control flow (Chapter 6). We describe an implemented program synthesis system
called TOSS (Integrated Open Synthesis System) as an instance of the system architecture
in Chapter 7, followed by an example development in Chapter 8. We look at related work
in Chapter 9. In Chapter 10, we discuss how our approach meets the above requirements
and mention implications to future research. An appendix presents a complete program
development with IOSS.

Chapter 2

Representing Software Engineering
Knowledge by Strategies

Considering what makes up a method or process used for software development, it becomes
apparent that there are two aspects to it: a set of strategies, and heuristics when to apply
them. Strategies describe possible steps during a development. Examples are how to decom-
pose a system design to guarantee a particular property, how to conduct a data refinement, or
how to implement a particular class of algorithms. Strategies are the part of a method that
is usually described in text books. They provide schemas what has to be done in which order
to achieve a certain goal. In contrast, the ability to decide which strategy may successfully
be applied in a particular situation requires human intuition and a deep understanding of the
problem at hand. The rules of thumb that experts develop when working with a formalism,
we call the heuristic part of their method.

While heuristics are hardly mechanizable, strategies can be implemented in interactive
tools. Our system architecture is therefore designed to support problem solving by application
of strategies in an interactive environment that does not hinder experts to use their heuristic
knowledge.

The purpose of a strategy is to find a suitable solution to some software development
problem. Strategies work by problem reduction:

For a given problem, a strategy determines a number of subproblems that are ideally
easier to solve. From the solutions to these subproblems the strategy produces a solution to
the initial problem. Finally, it tests if that solution is acceptable according to some notion
of acceptability of a solution with respect to a problem. The solutions to subproblems are
naturally obtained by strategy applications as well. This process terminates if a problem is
simple enough to be solved without further reduction.

Of course, this description is too general to be of much use. Indeed, it is even inadequate
in its simplicity because it says nothing about interdependencies between the various sub-
problems and solutions. A “strategy” where a subproblem could only be formulated after the
solution to the initial problem was known would certainly contradict intuition. An example
from program synthesis serves us to motivate the more detailed description of strategies given
in Section 2.2.

To develop a divide-and-conquer algorithm

1. construct a simple decomposition operator
2. find the control predicate
3. construct the composition operator

4. construct the primitive operator
Figure 2.1: A Divide-And-Conquer Strategy

2.1 An Example: Synthesis of Divide-And-Conquer Algorithms

If we want to describe concrete strategies for a specific area of software development, we first
have to fix the notions of problem, solution and acceptability. For program synthesis, problems
are specifications of programs. Accordingly, solutions are programs in some programming
language, and a solution is acceptable with respect to a problem only if the program meets
the specification.

In general, we do not need more assumptions on the specification language or on what it
shall mean that a program meets a specification. A specification may encompass functional
requirements as well as constraints on time and space complexity of the resulting algorithm.
For TOSS, the program synthesis system described in Chapter 7, the specification language is
first-order predicate logic augmented with restrictions on the variables that may be changed
by the program.

As an example, we consider an approach from literature to synthesize divide-and-conquer
algorithms [Smi85]. Here, problems are functional requirements. Solutions are programs in
some functional programming language, and a program is acceptable if and only if it is totally
correct with respect to the specification. A divide-and-conquer algorithm can be represented
by a schematic definition of a recursive function:

f(z) = if primitive(z) then directly_solve(z)
else compose o (g x f) o decompose(z)

fi

where g = f or g = id (the identity function).

This schema describes a flow of control that is characteristic of divide-and-conquer algo-
rithms: if some primitive predicate holds, the problem can be solved directly. Otherwise,
the input has to be decomposed into two parts. Depending on the way decompose works, the
function f is either recursively applied to both parts of the input (¢ = f) or to one part and
the other is left unchanged (g = id). Finally, the results yielded by f and g are composed to
form the final result of the algorithm.

In [Smi85], several “strategic” ideas on how to develop divide-and-conquer algorithms by
filling the gaps in the schematic algorithm are described. One is shown in Figure 2.1. The
idea is to develop the decompose-recursion-compose part from front to back, and to find the
algorithm for decompose by searching a library.

Consider the problem of sorting a list of integers.! The first thing to do is to find an
algorithm in a library that reduces the length of the list. One possible solution is listsplit

'We are aware of the fact that to solve a problem like this our framework is not necessary because the

which splits the input list in two halves of approximately equal length. Once we have decided
on the decomposition function, we can determine the test to stop the recursion: listsplit is
applicable only if the input has at least length two. So primitive(z) will become length(z) <
2.

Selecting listsplit also has consequences for the recursive case. Both halves of the input
list have to be sorted, i.e. g becomes f in the schema. Hence, the composition operation has
two sorted lists as input. It must merge them to produce the result of the sorting function.
This problem again leads to a divide-and-conquer algorithm.

If primative holds sorting is easy: a list with at most one element is always sorted, so
directly_solve becomes the identity function. In the end, selecting listsplit has lead us to
developing a mergesort algorithm.

mergesort(z) = if length(z) < 2 then z
else merge o (mergesort X mergesort) o listsplit(x)

fi

The procedure shown in Figure 2.1 is an example of the problem solving knowledge we want
to represent as strategies. It gives guidance on what to do in which order, but nevertheless
cannot be carried out completely automatically.

2.2 The Structure of Strategies

There is a subtle interference between decomposition, composition and direct solution in the
example. The specifications for compose and directly_solve can be set up only after the code
for decompose is known. If we choose a different decomposition then not only the algorithms
but also the specifications for composition and direct solution look different. Assume, for
example, we decided to implement decomposition by cutting off the first element of the list,
i.e. decompose returned the car and the cdr of the list. Then we would get only one recursive
call and the specification for compose would be to produce a sorted list out of a sorted list
(the sorted cdr of z) and a single integer (the car of). We would end up with an insertion
sort algorithm.

In general, the subproblems of a strategy are not independent of each other and of the
solutions to other subproblems. The dependency graph for the divide-and-conquer strategy
is shown in Figure 2.2. Due to the tight relation between the control predicate and the
decomposition algorithm we only get three subproblems. The solution to the decomposition
algorithm contains the control predicate.?

The arrows denote dependencies. Plain arrows are evident dependencies. They reflect
our intuition of problem solving: the subproblems depend on the original problem, and their
solutions depend on the corresponding problem. The final solution depends on the solutions
of the subproblems. The bold dashed arrows are more interesting. They are called distinctive
dependencies and are characteristic for the divide-and-conquer strategy of Figure 2.1. These
dependencies induce a partial ordering on the subproblems: it restricts the order in which
the various subproblems can be set up and solved. The dependency graph of a strategy must

algorithms for this purpose are well known. It should be noted, however, that with a similar approach [Smi90],
a scheduling algorithm has been derived that is 2000 times faster than the ones known before.

2For program synthesis, solutions do not consist of just program code. They contain additional information
about the behavior of the program. See Chapter 7 for more detail.

find d&c
algorithm

N

: - find
find find primitive
decomposition composition solution

- -

compose directly_solve

e

Figure 2.2: Example Dependency Graph

—— evident
---= digtinctive

dé&c agorithm

not contain cycles. Moreover, problems must not depend on solutions, nothing may depend
on the final solution, and the initial problem must not depend on anything.

For a strategy to work, we need to know not only its dependency relation but also exactly
how the subproblems are constructed, how the final solution is assembled from the solutions
to the subproblems, and how to check if this solution is acceptable. A strategy is described
by the following items:

e the number of subproblems it produces,

e the dependency relation on them and their solutions,

for each subproblem, a procedure how to set it up using the information in the initial
problem and the subproblems and solutions it depends on,

e a procedure describing how to assemble the final solution,

a test of acceptability for the assembled solution, and
e optionally a procedure providing an explanation why a particular solution is acceptable.

The last item is not strictly necessary for a strategy to work. Still, one might be interested
in a more detailed documentation of why a particular solution “works” for a given problem.
In case of formal program synthesis, this may be a formal correctness proof. For specification
acquisition this may be informal text; for planning problems, it may be some measure of goal
distance.

The above description of what a strategy consists of is parameterized by the notions of
problem, solution, and acceptability. Problems and solutions provide a common interface

between strategies. It is therefore possible to design a system architecture for strategy-
based problem solving that is generic in the exact definition of problems and solutions. This
architecture is described in the following chapters.

The notion of strategy sketched here can be precisely defined in terms of relational calculus
and partial orders in [Hei94].

Chapter 3

The System Architecture

In this chapter, we give an overview of the central components of the system architecture and
sketch by way of an example how strategy based problem solving proceeds. The following
chapters provide a more detailed description of the components.

3.1 Overview of the Architecture

Figure 3.1 gives a general view of the architecture. There are two global data structures

initial external
problem information strategy selection

O C\) setup L:\\c\i\ependencies
//f\\ A

@- O O O |
/ N
OO~ Q/Q\Q :

é;op/y sup \dependenaes

urdxe

ur|dxe

development tree control tree

strategy base

Figure 3.1: General view of the system architecture

10

that represent the state of development, the development tree and the control tree. The
development tree represents the entire development that has taken place so far. Nodes contain
problems, information about the strategies applied to them, and solutions to the problems as
far as they have been found. Links between siblings represent dependencies on other problems
or solutions.

The data in the control tree is concerned only with the future development. Its nodes
represent open tasks, i.e. they point to nodes in the development tree that do not yet contain
a solution. Leaves in the control tree point to unreduced problems in the development tree.
The degrees of freedom to chose the next problem to work on are also represented in the
control tree.

The third major component of the architecture is the knowledge base that represents
development knowledge for strategy based problem solving. It is a set of modules that im-
plement strategies. Each module consists of a set of functions that implement the tasks
comprising a single strategy. These are to set up subproblems, to assemble a solution, to
check for correctness and acceptability of a solution, and to provide information about the
strategy itself, in particular how many subproblems are generated and how they depend on
other subproblems or solutions.

A development roughly proceeds as follows:

The initial problem is the input to the system. It becomes the root node of the development
tree and the root of the control tree is set up to point to this problem. Then a loop of strategy
applications is entered until a solution to the initial problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the leaves of the
control tree. This may be done automatically by the system, it may propose a problem to
reduce or to choose a problem may be left entirely to the user. Second, a strategy is selected
from the strategy base. Strategy selection will usually be interactive but heuristics to choose
a strategy or to suggest a set of applicable ones are also conceivable. Applying the strategy to
the problem means to extend the development tree with nodes for the produced subproblems,
install the functions of the strategy in these nodes and set up dependency links between
them. The control tree is also extended according to the dependencies between the produced
subproblems. Application of a strategy may also need more information than is provided
by the problem it is applied to. Like strategy selection, this external information may be
supplied interactively.

If a strategy immediately produces a solution and does not generate any subproblems, or if
solutions to all subproblems of a node in the development tree have been found, the functions
to assemble and accept a solution are called and, if successful, the solution is recorded in the
respective node of the development tree. As a consequence, the control tree shrinks, because
it contains only references to unsolved problems.

The process terminates when the control tree vanishes, because then the solution to the
initial problem has been found.

3.2 Example: Mergesort Revisited

To illustrate how the notion of strategy introduced in Chapter 2 is supported by the architec-
ture of Figure 3.1, we reconsider the example of Section 2.1 and sketch how an instance of the
architecture for program synthesis works when developing the mergesort algorithm. Figure
3.2 shows a snapshot of the development. The solution of our development is a mergesort

11

mergesort

c

mergesort-
dir.-solve

merge- merge- merge-
compose decompose dir.-solve

Figure 3.2: Development Tree for a Mergesort Algorithm

-

0

algorithm. To ease understanding the figure, the nodes in the development tree are labeled
with names of the constructed procedures, i.e. the solutions, although these become known
only as the development proceeds.

The initial problem is to sort a list. So the root mergesort of the development tree
initially contains just this problem. We decide to apply the divide-and-conquer strategy to
this problem. “Application” here first of all means to extend the development tree by nodes
for the three subproblems that are produced by the strategy.

Upon invocation of the strategy, we already know the dependencies between the children
of the initial problem: the exact form of both the composition and direct solution prob-
lems depend on the algorithm constructed to decompose the list. So we can record these
dependencies in the development tree (pointed arrows).

The only problem that can be tackled now is the decomposition, because it is the only one
that can exactly be set up. Assume we have found listsplit as a solution of the decomposition
problem (shaded node) by application of some strategy. We are then free to choose which one
of the two remaining problems to tackle, since they are independent of each other. In Figure
3.2, the composition problem is reduced first. How to set up this problem is described in
the divide-and-conquer strategy. The information to which subproblem of which strategy a
node in the development tree belongs has to be associated with that node of the development
tree. Otherwise, the system would not know how to set up the problem in that node from
the information in its sibling and parent nodes.

Since listsplit is known now, we can set up the problem for merge. Had we developed
some other algorithm to decompose the input list, e.g. one that cuts off the first element of
the list, then the problem for composition would look different.

An alternative divide-and-conquer strategy to the one described in Chapter 2 constructs
the algorithm “backward”: first the composition part, then the decomposition, and finally the
primitive solution part [Smi85]. Applying this strategy to the problem for merge produces
the development tree shown in Figure 3.2.

12

Suppose now, the merge and merge-dir.-solve algorithms are found. Then the final step of
the application of the divide-and-conquer strategy to the initial sorting problem is to assemble
the solutions listsplit, merge and merge-dir.-solve. This gives us the mergesort algorithm that
is the solution to the sorting problem.

13

Chapter 4

Strategy Implementation

The information a strategy has to provide and the tasks it has to accomplish are described
in Chapter 2. We now discuss how to implement a strategy within the generic system archi-
tecture of Figure 3.1.

The general view of the architecture has already made clear that implementations of
strategies should be independent of each other with a uniform interface to the rest of the
system. Thus, the implementation of a strategy is some kind of module with a clearly defined
interface to other strategies and the rest of the system. As it is our aim to provide a design
of a system for strategy-based problem solving, we will not be more specific with respect
to the kind of modularization used in an actual implementation. Obviously, modularization
mechanisms as Modula-2 modules, classes in object-oriented languages or ML functors are
conceivable as grouping mechanisms for the elements of a strategy. In the following, we call
an implementation of a strategy a strateqy module.

The development of mergesort in Chapter 3.2 reveals two requirements on strategy mod-
ules within the system architecture. First, it shows that the tasks which make up the “ap-
plication” of a strategy may be carried out with great distances of time between them: the
time between deciding which strategy to reduce the initial problem with and assembling the
solution to that problem encompasses the entire development. Therefore it is hardly possible
to implement a strategy as one monolithic function. Second, the external structure of strategy
modules depends on the implementation of the development tree and vice versa. Information
about the strategy used to reduce a particular problem must be recorded in the corresponding
node of the development tree. How this is accomplished is discussed in Section 5.1.

What is the external structure of a strategy module? The requirements on what makes
up a strategy can be translated into the signature shown in Figure 4.1 where problems are
denoted by P and solutions by S. It provides one constant or function for each item of the
list in Chapter 2. A node of the development tree will eventually contain both a problem
and its solution. One branching in the development tree corresponds to one application of
a strategy. To implement the dependency graph of a strategy amounts to represent the
dependencies between the respective nodes of the development tree. Its structure is coarser
than the one of the dependency graph in Figure 2.2, because the dependencies between nodes
of the development tree do not distinguish between problems and solutions. We label the
nodes of one branching by 0 through subpr which is the number of subproblems generated
by the strategy. Node 0 is the root and contains the problem that is reduced by the strategy
and the solution to that problem (which is produced by the strategy). Nodes 1 through subpr

14

subpr : Nat
dependency : array|[l...subpr,1...subpr]of Bool
setup : array[l...subpr]of (P x list(P x S) = P)
assemble : (P x array[l...subpr]of §) = S
accept : (array|[0...subpr]of (P x 8)) — Bool
explain : (array|[0...subpr]jof (P x8)) — &

Figure 4.1: External Structure of a Strategy Module

each contain a subproblem and its solution (and more which is described in Section 5.1).

The Boolean matrix dependency represents dependencies between the children nodes 1
through subpr.! If dependency[n,m]is true then subproblem n depends on subproblem m or
its solution.

While we can describe dependency as an array, the remaining elements of the module are
proper functions or procedures because they represent the algorithmic content of the strategy.
For each subproblem, we need to know how to set it up. Thus setup is an array of functions.
The function setup[i] produces the i-th subproblem from the initial problem and a list of
problems and solutions. That list contains the sibling problems and their solutions on which
problem 7 depends.

The assemble function computes the solution to the initial problem from the solution to
all subproblems. It should be able to produce a partial solution from partial or unknown
solutions to the subproblems. A partial solution may provide information on the structure
of the final solution while some detail is still unknown. Such information may still suffice to
proceed on other branches of the development. It can be propagated through the development
tree and may contain enough information to set up a problem in some other branch of the
development. Thus maximal flexibility where to continue the development can be provided.

The accept and explain functions are concerned with the final solution that is provided
by assemble when all subproblems have been solved. This solution is checked by accept for
acceptability with respect to the initial problem. In order to check acceptability, it may be
necessary to refer to subproblems and their solutions. Hence, these are parameters of accept,
together with the original problem and its solution. Optionally, explain may provide an
explanation of type £ to further document why the solution is acceptable.

' Non-evident dependencies to node 0 are forbidden (cf. Section 2.2).

15

Chapter 5

The Structure of Development and

Control Trees

We here describe the internal structure of development and control trees, and their interaction

with the strategy base.

5.1 Development Tree

Two strategies are involved in processing one node of the development tree: a creating and a
reducing strategy. Figure 5.1 shows the internal structure of a node of the development tree
and its relation to the creating and reducing strategies. The flow of information is indicated

by pointed arcs. A node obviously contains a problem and its solution and references to its

creating strategy

Ssetup __ dependenmes

u g]dxa;’

assemble

accept /.

‘uedxe

reducing strategy

< dependencies on siblings

setup

N\

problem \

[
\ solution | explanation }
\

- accept explain /

assemble /

children

Figure 5.1: Structure of a Node in the Development Tree

children and to siblings it depends on. Furthermore, it contains the functions needed to set

up the problem and determine its solution. These functions stem from the strategy modules

16

involved (cf. Figure 4.1).

Let a particular node belong to the i-th subproblem of the creating strategy. Then this
strategy provides the set-up function setup[i]. The dependency pointers are obtained from
the projection dependecyl[i] of its dependency matrix.

The reducing strategy produces the children of a development node. It is therefore re-
sponsible to provide the functions that build the solution, check its acceptability and provide
an explanation. The same strategy plays a dual role for the children nodes: for them it is the
creating strategy.

The implementation of the development tree is obvious if the implementation language
has higher-order features as functional languages do. Then it is possible to actually store the
functions of the creating and reducing strategies in the nodes. For programming paradigms
without higher-order features, the nodes of the development tree will probably contain refer-
ences to the two involved strategies.

5.2 Control Tree

The purpose of the control tree is to keep track of unsolved problems and their dependencies.
It provides a basis to choose the next problem to reduce. Figure 5.2 shows how the nodes
of the control tree point to unsolved nodes in the development tree. There are two kinds

merge-
decompose
~ AN ~

Figure 5.2: The Control Tree Tracks Unresolved Problems

of branchings in the control tree that stem from the dependencies between the development
nodes. They tell if siblings have to be solved in fixed left-to-right order or if they may be
solved in arbitrary order. The “normal” branching in the left subtree of the control tree in
Figure 5.2 represents a fixed order in which the problems have to be solved. On the other
hand, the triangle v in the upper branching represents a variable order of solution for the two
children of the root. The leaves of the control tree point to unreduced problems. The shaded
leaves can be set up completely and hence may be tackled in the next step. The control tree

17

thus is a representation of the global dependency relation on the nodes of the development tree
that is induced by combination of the dependencies between siblings. Processing the control
tree amounts to topologically sorting the problems with respect to the global dependency
relation. This sorting process usually is not automated because the developers should be free
to select the next problem to tackle.

Figure 5.2 once again depicts the situation in the development of mergesort after the
composition problem merge has been reduced by application of the alternative divide-and-
conquer strategy (cf. Section 3.2). This strategy requires a fixed order of solution for the
subproblems: find a compose algorithm first, then a matching decompose, and finally a
directly_solve algorithm. The strategy used to reduce the initial problem (cf. Section 2.1)
does not prescribe an order in which merge and mergesort-directly-solve are developed: both
problems only depend on listsplit. The two reducible candidates are shaded gray in the
control tree.

As far as possible, selection of the next problem should be left to the developer. When
selecting a strategy to reduce a particular problem, it is usually not obvious if the strategy
will succeed in producing a solution. Therefore developers might try to tackle the “hardest”
subproblem first and reduce it until they can decide if a solution is possible. Then they might
concentrate on the next “hard” problem in some other branch of the development. In this
way, the architecture makes it possible to focus development on the critical tasks first.

The control tree as a separate data structure is not strictly necessary. All information
it represents is contained in the development tree. Still, for efficiency reasons, it is useful
to maintain control information explicitly. The development tree grows monotonically with
every strategy application while the control tree shrinks whenever a solution is found. The
leaves of the control tree are exactly the unreduced problems and its branching types represent
the global dependency relation. Without an explicit control tree, the set of reducible nodes
would have to be re-computed for each strategy application.

18

Chapter 6

Data Flow

Chapters 4 and 5 have in detail described the global data structures for our system architec-
ture. We now describe the engine that manipulates them with the data flow diagram shown
in Figure 6.1. The global structure of flow is a loop of strategy applications. The initialization

user . strategy user
decision | heuristics base decision
initial initialize refjgfgle curent | select
problem dt and ct node node strategy
strategy
) reduce | ct |assemble ctempty ? output

dt : development tree node dt | solutions dt
ct : control tree

BP: backtrack point S 3

ct non-empty ?

Figure 6.1: Data Flow in the Architecture

creates the root node of the development tree. The initial problem is the input to the system
and entered into this node. The root node of the control tree points to that node.

Upon each entrance of the loop body, a backtrack point is set. The strategy application
cycle consists of selecting a problem and a strategy, reducing that problem by the strategy,
and assembling solutions.

Node Selection. The leaves of the control tree point to unreduced development nodes.
These nodes can be classified as definitely reducible or possibly reducible. Definitely reducible
nodes are the ones that only depend on nodes with already known solutions. The set of
definitely reducible nodes can be determined by considering the control tree’s two kinds of
branchings (cf. Section 5.2). The set of definitely reducible leaves of a tree with normal

19

root branching is the set of definitely reducible leaves of the leftmost subtree. For a triangle
branching, it is the union of the sets of definitely reducible leaves of all subtrees.

A possibly reducible leaf of the development tree depends on other nodes that are not
completely solved yet. Still, there is a chance that the problem of such a leaf can nevertheless
be set up. Since, for the general architecture, no internal structure of problems and solutions
is presupposed, the dependency relation between nodes is quite coarse. To set up a problem,
it may suffice to know some structure of a solution it depends on without knowing the solution
in full detail. To work on such a problem, developers may try and execute setup on a possibly
reducible leaf. The called setup initiates calls to assemble — but not to accept — the solutions
of the nodes the problem to set up depends on. If setup and all assemble functions successfully
terminate the leaf is reducible and may be selected. If one of the functions fails' there is not
enough information to construct the problem of the leaf, and it is no candidate for reduction.

Selection of a node is a user decision by nature. Users may choose from the set of definitely
reducible leaves, or they may try a possibly reducible one and see if constructing the problem
for this node succeeds. There may be heuristics to support this process. The chosen node
becomes the current node.

Strategy Selection. As with problem selection, choosing a strategy is typically a user
decision which may be assisted by heuristics. For example, some strategies are applicable
only to problems of a certain shape or with certain properties. One heuristic might be to
search the strategy base for strategies particularly suited for the current problem.

Node Reduction. Node reduction extends the development tree and the control tree at the
current node according to the selected strategy. The strategy module’s subtr and dependency
fields provide information how many children nodes must be created and which dependency
pointers between them have to be established. The functions setup[i] are entered in the
children nodes, and according to the role as reducing strategy for the current node, the
assemble, accept and explain functions are entered in that node.

Solution Assembly. After node reduction, the extended development and control trees
are searched for solutions to assemble. If the selected strategy creates no subproblems, i.e.
subpr = 0, the solution to the current node can be determined immediately: assemble is
called for the current node. Since the resulting solution must be definite for this node, the
accept test is applied. If the test fails, the most recent cycle of problem selection and strategy
application is undone. The system backtracks to the state of development before selection of
the current node, symbolized by the dashed arrow in Figure 6.1.

If the solution is acceptable, explain fills in the explanation field of the current node
(cf. Figure 5.1). The current node of the control tree is deleted, because the corresponding
development node is now completely solved. If the parent node of the deleted one has no
other children, the process of solution assembly is recursively applied to that node.

Even if it is acceptable for the selected strategy (with subpr = 0), the solution it produces
may be inadequate as part of the solution to a problem higher up in the development tree.
Any failure of accept functions during recursive solution assembly therefore causes a backtrack
where the most recent strategy application is undone.

"We see the need for some failure mechanism in the implementation language.

20

Backtracking may be initiated by the users as well, e.g. if they decide that a strategy
application leads nowhere because the generated subproblems cannot be solved. Therefore,
user driven backtracking is possible during both node and strategy selection.

The loop of strategy applications terminates when the control tree is empty. Then all
nodes of the development tree have successfully been solved. Its root contains the solution
to the initial problem which is the product of the development. The development tree as a
whole documents the design process.

21

Chapter 7

IOSS — A Prototypical

Implementation

Tool support for software development is an area of growing interest, as can be seen by
the flourishing of computer-aided software engineering (CASE). CASE tools are fairly well
understood, and there is a large number of them, see [Fug93]. If, however, one is interested
in developing provably correct software, tool support is hardly available to date.

We consider the following properties as crucial for a system that supports the development
of correct software. They are discussed in more detail in [HWW94].

e The system should be interactive, i.e. the user must be able to control the development
process. This requirement holds at least as long as it is not possible to replace human
creativity, e.g. in finding loop invariants or inductive arguments, by automatic processes.

o When the users control the development process, they will be confronted with system-
generated intermediate states of a development. In this situation, they must be able to
make sensible decisions. Therefore, all information that is important for the develop-
ment process must be represented ezplicitly and not in encoded form.

e A system that imposes severe restrictions on the procedure to be followed in the devel-
opment process will not be accepted. Hence, the system should be flexible and support
different ways of developing a program.

e Opennessis one more requirement to guarantee flexibility. It should be possible to add
new development methods in a routine way, and the evolution of the system should take
place gradually, without invalidation of former work.

e The system should visualize the development process in an appropriate way and provide
an overview of the progress of development. It should be easy to use, making program
synthesis feasible for users who did not invent the formalisms used, and enabling the
programmers to concentrate on the task at hand.

The system presented in this report, 0SS (Integrated Open Synthesis System) is an
instantiation of the described architecture that supports synthesis of provably correct imper-
ative programs by application of strategies. It is a research prototype designed with the above
requirements in mind. We first establish the notions of problem, solution, acceptability, and

22

explanation that are used for [OSS. We then give an overview of its strategy base. Finally,
we describe the implementation of IOSS that integrates several existing software packages.
Examples giving an impression of how it “feels” to work with the system are presented in
Chapter 8 and Appendix A.

7.1 Problems, Solutions, and Explanations

In 10SS, problems are specifications of programs, expressed as pre- and postconditions that
are formulas of first-order predicate logic. To aid focusing on the relevant parts of the task,
the postcondition is divided into two parts, invariant and goal. The invariant follows from the
precondition and needs only to be maintained. The distinction between goals and invariants
helps focussing on the relevant parts of the task. In addition to pre- and postconditions, it
has to be specified which variables may be changed by the program (result variables), which
ones may only be read (input variables), and which variables must not occur in the program
(state variables). The latter are used to store the value of variables before execution of the
program for reference of this value in its postcondition.

Solutions are programs in an imperative Pascal-like language. Additional components are
additional pre- and postconditions, respectively. If the former is not equivalent to true, the
developed program can only be guaranteed to work if not only the originally specified, but
also the additional precondition holds. The additional postcondition gives information about
the behavior of the program, i.e. it says how the goal is achieved by the program. If, e.g.,
the specification requires the value of variable = to be increased, the additional postcondition
might contain the equation z = 2’ + 4711 which means that z is increased by 4711.

A solution is acceptable if and only if the program is totally correct with respect to both
the original and the additional the pre- and postconditions, does not contain state variables,
and does not change input variables.

Fzplanations for solutions are provided as formal proofs in dynamic logic [Gol82, HRS89].
This is a logic designed to prove properties of imperative programs. Proofs are represented
as tree structures that can be inspected at any time during development.

7.2 The Strategy Base

The strategy base of 10SS contains formalized development knowledge in form of strategy
modules. A number of interactive, semi-automatic and fully automatic strategies have been
implemented. In the current version, they are oriented on programming language constructs.
In the near future, higher level strategies, e.g. for the development of divide-and-conquer
algorithms or re-usable procedures, will be built in.

Strategies Solving a Problem Directly. Sometimes the precondition of a problem is
sufficient for its goal, e.g., if a conditional only needs one branch. In this case, the empty
program skip is developed using the skip strategy.

The two assignment strategies are used more frequently since assignments are the basic
building blocks of imperative programs. In the interactive version, the assignment solving
the problem has to be given by the user; for the automatic version, the goal must contain
equations in some of the result variables; these are used to set up an assignment.

23

Strategies Modifying a Problem. The strengthening strategy is needed to use domain-
specific knowledge in the problem solving process. The idea is to replace the goal of the
problem by a stronger one, i.e. a formula which entails the old goal in the model under
consideration.

Sometimes it is necessary to introduce a new state variable for some result variable. This
is accomplished using the state variable strategy.

Strategies for Developing Compound Statements. The intermediate assertion strat-
egy corresponds to the rule for compound statements in the Hoare calculus. There, an in-
termediate assertion is introduced which forms the postcondition of the first part of the
compound and the precondition of the second part.

Two other strategies are based on the assumption that a conjunctive goal can be achieved
by a compound statement, each part of the compound establishing one conjunct (see [Der83]).
The disjoint goal strategy can be applied if the goal can be divided into two independent
subgoals. Two subgoals are independent if the result variables that must be changed to
achieve the one subgoal are disjoint from the result variables that have to be changed to
achieve the other one. The strategy can also be applied if the goal is not of conjunctive
form but there is an invariant which is invalidated by the achievement of the goal. The
additional postcondition of the first statement may be necessary to develop the second part
of the compound. Hence, the first statement must be developed first.

The protection strategy can be applied when a conjunctive goal is to be achieved by a
compound statement but the subgoals are not independent as required for the disjoint goal
strategy. In this case, the goal for the first statement must be an invariant for the second
one. Again, the problem for the second part of the compound depends on the solution for
the first part.

Strategies for Developing Conditionals. The conditional strategy reflects the rule for
conditionals of the Hoare calculus. The disjunctive conditional strategy applies if the goal is
of disjunctive form and each of the branches of the conditional will establish one disjunct of
the goal.

Strategies for Developing Loops. The loop strategy develops a loop for a given problem.
Since it does not consider the initialization of the loop and the development of the invariant, it
is usually applied in combination with the strengthening and protection strategies. In contrast,
the while strategy (which is defined [Hei94] but not yet built into the system) performs the
development of the invariant, the initialization and the loop body in a single reduction step,
according to the heuristics given in [Gri81].

A complete description of these strategies can be found in [Hei94].

7.3 The Interface

In this section we give a brief description of the 10SS interface with its most important
features. We restrain from explaining the trivial ones such as loading or saving a development
(even though they are nevertheless important). The File menu contains basically what you
would expect it to.

24

Figure 7.1 shows the general interface of 1OSS, featuring a snapshot of the program syn-
thesis described in Chapter 8. The main window displays the development task, represented

Hle Edit “iew Graph i|

Development Tree:

| intermediate_assertion |

strengthening

Strengthening .
State Variahle ALY
Lo true
i perm{a. al}
strengthening Disjoint Goal ﬂg;;'{?:{a;mii ni}
Protection le{nuli., i} :
Intermediate Assertion lef{i, n}
T — gea{seg(au 1, n), segia, rmll, 1)} 7

=l
-
-

Current. Problem:
Preconditions:

not 1 = mall

1 = fixEb@
perm{a, al}
gorted{a, i, n}
heap{a, null, 1}

Backirack lefnull, i3}

—————— le{i, n}

But_nm_atlc :_ﬂl_smgnment gea{seg(a, 1, nj, seglz, null, 1)}
Manual Assignment. lefnull, n}

Skip

|

Conditional
Disjunctive Conditional

Goals:
!
protection Lls{i, fixGB}

L

manual_assignment| |Ioup|

E

Varables:

Input: in

Result: (2. 1
State: [fix58, a1

14 v}

Figure 7.1: The 10SS interface

by the development tree — on the left-hand side of the window — and the specification of the
current problem — on the right-hand side of the window. The tree visualizes the process and
the state of development. Each node is labeled with the name of the strategy applied to it.
The state of the node is color coded, showing at a glance whether it is reducible, or solved,
etc.

A node is selected by simply clicking it with the mouse. If that node is reducible, it
becomes the current node and its problem specification is shown on the right-hand side of
the window. Any node can be selected for the purpose of inspecting it, but only reducible
nodes can become the current node. A node can be inspected via the View menu. A separate
window pops up for each node; several nodes can be inspected at the same time.

The explanation (i.e. proof) of the development process is accessible via the View menu,
too. 1OSS combines the explanations for each strategy application to form a coherent proof
that —once the development process is completed — verifies the developed program (see Figure

8.3).

25

The strategy base of 10SS is accessible via the Edit menu. A strategy is applied to the
current node by invoking the respective menu entry. In Figure 7.1 the menu is shown in the
center of the window. It is possible for any menu to be kept on the screen at an arbitrary
position. This allows developers to quickly access frequently used features such as the strategy
base. Whenever a strategy requires user input, the user is prompted for it in a window. 10SS
also provides features to manipulate the graph. The user can, for example, re-scale the tree
or hide subgraphs.

7.4 Implementation of IOSS

Technically speaking, 10OSS is not one single program. It makes use of a number of pro-
grams/software packages to realize what the user perceives as 10SS. This section describes
how these packages are integrated.

We give a brief introduction to each package in Section 7.4.1 to aid understanding the
role of each one in 10SS. Section 7.4.2 describes how these work together during the start-up
of 10SS. We describe the interaction of and communication between the interface and the
IOSS kernel in Section 7.4.3. Finally, Section 7.4.4 explains the interfacing with the graph
visualization package used in 10SS.

7.4.1 Software Packages used in IOSS
Karlsruhe Interactive Verifier (KIV)

The Karlsruhe Interactive Verifier (KIV) is a shell for the implementation of proof methods
for imperative programs [HRS88]. It provides a functional Proof Programming Language
(PPL) with higher-order features and a backtrack mechanism. Assertions about programs
can be formulated in Dynamic Logic [HRS89], an extension of Predicate Logic. The language
for programs itself is a Pascal-like language with while-loops and recursive procedures. KIV
serves for the implementation of the 10SS kernel, its data structures, and strategy modules.

daVinci

daVinci is a generic visualization system for directed graphs [FW94]. It performs the visual-
ization of graphs only, i.e. it is not a graph editor or the like. The visualization of a graph
is not static; daVinci offers a range of functions to manipulate the graph layout such as fine
tuning, abstraction, and scaling. A graph is given to daVinci in a term representation com-
posed of ASClI-characters. Attributes for nodes and edges can be specified that influence the
visualization.

For use by other applications daVinci offers an application interface realized via standard
terminal 1/O (stdin and stdout). An application can connect to daVinci using, for example,
pipe communication. The communication protocol consists of commands and answers. Com-
mands are available for the transmission of a graph and for calling daVinci visualization and
window operations, among others. daVinci reacts to the successful invocation of commands
as well as to events like user selection (with the mouse) of nodes and edges. The system is
used to visualize the development tree of 10SS and to allow users to manipulate it, e.g. to
select nodes for strategy applications.

26

Tecl

Tcl (Tool command language) is a simple scripting language providing generic programming
facilities such as variables, loops, and procedures [Ous94]. Its interpreter is a library of C
procedures. An application can extend the T'cl core by additional commands. Although
applications can be solely programmed in Tecl, this wasn’t its original intention. Quite a
number of extensions already exist, each adding specific commands to the Tcl core. Three of
them (Tk, expect, TkSteal) are used for I0SS. Their existence was the actual reason for using
Tecl at all, and we describe them in the subsequent paragraphs. No new Tcl commands have
been implemented for 10SS. The specialized interpreter that is used in 10SS is illustrated in
Figure 7.2.

Tcl Core

)
Tcl "t
Interpreter

Expect
Built-in commands O O TkSteal

O Tcl command

Figure 7.2: Specialized Tcl interpreter used in 10SS.

Tk

Tk is an extension to Tcl providing a toolkit for the X Window System [Ous94]. It extends
the Tcl core by commands for building user interfaces. It hides much detail C programmers
must address when constructing a user interface. The Tk commands are used for all the
interface elements like menus, scrollbars, and text windows.

expect

expect is an extension to Tcl/Tk designed to control interactive programs using standard
terminal 1/O [Lib91]. For the controlled programs, expect takes over the part of users “typing”
commands and interpreting output.

The program to be controlled is started with the command spawn. expect sets up a
pseudo terminal (pty) connection with this program. With the command expect one can
describe a list of patterns to watch for in the output of the spawned program. Each pattern
is followed by an action that is executed if the pattern is found. The command send_spawn
can be used to send input to the controlled program. expect is capable of controlling several
programs at the same time. In 10SS it is used to control the command-line interface of KIV
and communicate with daVinci’s application interface.

27

TkSteal

TkSteal is an extension to Tk to integrate stand-alone X applications in a Tk-built interface
[Del94]. Windows in the X Window System are arranged in a tree hierarchy, where top-level
application windows are children of the root window and windows in a particular applica-
tion are descendants of the applications top-level window. The visible extent of a window is
normally limited to the extent of the parent window. A special function of the X Window
Toolkit allows TkSteal to re-parent windows after their creation. TkSteal re-parents a speci-
fied top-level window to a Tk window causing the reparented window to appear inside the Tk
window. Sizing the Tk window and placing the reparented window in the Tk window provide
a means, for example, to hide the menu bar of the reparented window from view (and thus
access). TkSteal integrates the daVinci window with the Tk-built user interface.

Figure 7.3 illustrates the integration of the different packages and their roles in 10SS: the
Tcl-Interpreter and daVinci constitute the IOSS interface, KIV constitutes the kernel of 10SS.

0000 (0000 §
9)0]0)0 H davinci Interface

OOOO

Tcl-Interpreter

KIV | Kernel

Figure 7.3: Integrated packages and their roles in 10SS.

7.4.2 10SS Start-Up Procedure

During 10SS start-up the three binaries are started, communication between them is set up,
and the daVinci interface is integrated with the Tk-built interface (Figure 7.4). Invoking 10SS
from the command line starts the Tcl-Interpreter that interprets the Tcl-code for 10SS. First,
the 10SS main window is created. Then KIV and daVinci are started from within the Tcl-
Interpreter by the spawn command. The daVinci application window is incorporated into the
Tk-built interface with the tksteal command (see Figure 7.5). Before the daVinci window
can be “stolen”, it must have been created and displayed. To ensure this, the Tcl-Interpreter
waits for an ok answer from daVinci’s application interface that is sent when daVinci is ready
for communication. Waiting for the window to be displayed would mean that it appears on
the screen before it is incorporated into the T'k-built interface. We avoid this by specifying a
geometry that will cause the daVinci window to be displayed outside the visible area.! The

'First, this is only possible because daVinci supports a -geometry command-line option. Second, this may
or may not work, depending on the window manager. It worked so far with these: fvwm, twm, olvwm.

28

Tcl-Interpreter is synchronized with KIV by watching its output for the prompt of the KIV
shell. The prompt indicates that KIV is ready to receive input. At this point the initialization
is complete and [OSS enters its base state where the user can initiate new developments or
load previously saved ones.

start Tcl-Interpreter

build interface

spawn daVinci

tksteal daVinci

spawn KIV

Figure 7.4: 10SS initialization.

Data flow and interaction between the packages during the development process are de-
scribed in the two following sections and illustrated in Figure 7.6.

7.4.3 Interaction between Interface and Kernel

In interacting with the kernel, the interface has to follow the shell behavior of it. A prompt
in the output of the kernel signals that input is requested. The input requested can be a
command, special input requested by a called command, or general user input requested by a
called strategy. The specific input requested is indicated by a pattern preceding the prompt
and the prompt itself (displaying the PPL machine level). If a command is requested, the
interface usually waits for a user action (e.g., menu selection) and sends the corresponding
string to the kernel. A user action may also result in a sequence of kernel commands. For
example, loading a previously saved development amounts to cancelling the current one, if
there is any, then loading the development and entering the TOSS main loop. In this case
the interface communicates the sequence of commands to the kernel, synchronized with the
shell behavior of the kernel. If specific input is requested, it is either taken from the internal
state of the interface (e.g., currently selected node) or the user is prompted for it in a special
dialog (e.g., file name for saving or loading). For general input the user is given a window
with a simulation of the shell of the kernel. During general user input, the interface displays
all output received from the kernel in this window and in turn sends everything typed by
the user to the kernel. The interface assumes a general input request whenever it reads the
prompt in the kernel output without a recognized preceding pattern.

29

davinei V1 r Fle Edit View Graph
File + View T Layout « Properties ©
J) 2) £ J Develog t Tree:

= =h
£ E Y —
strengthening strengthening g;{

b v
- I k =
(pz
k1)
leq
lef

protection protection
(pz
k) }
leq
leq
strengthening strengthening 1
k-
automatic_assignment autematic_assighment

Inj
Res
= o~ st
AR Y i T Dy] =

Figure 7.5: The daVinci application window stand-alone (left), and incorporated into the
10SS interface (right).

The kernel outputs information about its state and data to present to the user to the
interface. Upon each entrance to the main loop, the interface receives

e the term representation of the development tree,
e the current problem, if there is any,
e the references to the reducible nodes, and
e the set of applicable commands.
Furthermore the kernel outputs
e problem and solution of a node when requested,
e state patterns, and
e patterns to specify input requests (as described above).

The data is enclosed in specific patterns for the interface to parse the output and extract
the data. The term representation of the development tree is passed on to daVinci (see
Section 7.4.4). Other data (e.g., the current problem) is passed to the respective Tk windows
for display. State patterns give further information to the interface about the internal state of
10SS. The interface then takes appropriate action to visualize this state. For example, after a
strategy application there is no current problem until one is selected. In this state, the previous

30

window size
term representation of development tree

! Tcl-Interpreter davinci ' Interface

nok"
selection of nodes

term representation of developement tree
current problem
references to reducible nodes
set of applicable commands
problem and solution of a node
state patterns
patterns to specify input requests

commands
user input

KIv . Kernel

Figure 7.6: Data flow between the packages in 10SS.

problem is still displayed for reference to the user. This requires the respective label of the
graphical user interface to be changed from “Current Problem:” to “Previous Problem:”.
The set of applicable commands provides reference for the interface to disable/enable menu
entries according to the state of the kernel.

7.4.4 Interaction with daVinci

The commands available for communicating with daVinci fall within four groups:

1. sending graphs,

2. application specific menus,

3. user dialogues, and

4. triggering daVinci operations.

In 10SS only commands out of the first and the last group are used.

Whenever the kernel outputs a new term representation of the development tree, it is sent
to daVinci with the new_term command. Since in the currently used version of daVinci (1.3)
the visualization of nodes cannot be manipulated via the application interface, a new term
is sent even if only the state of a node and thus its color in the visualization changed. New
releases of daVinci provide commands for this without sending a completely new term, and
TOSS will make use of this in the future.

When the user initiates a new development or loads a previously saved one, daVinci’s
window has to be cleared of any displayed graph. This is done by sending an empty term to
daVinci.

Resizing of the TOSS window also requires communication with daVinci. Tts size must be
set to fit the size of its parenting Tk window. The required size is computed from the new
size of the Tk window and communicated to daVinci with the set_window_size command.

31

Communication from daVinci to the Tcl-Interpreter regards the selection of nodes and ok
messages after the successful invocation of a command via the application interface. daVinci
reports the selection of nodes with the answer node_selections labels(strings) (multiple
nodes can be selected). The labels of the selected nodes are stored internally. They are needed
in communication with the kernel for the set-up or display of nodes.

We think it is remarkable how little effort it took to build the interface. Only one person-

month was required to build it in its current shape. Only 800 lines of code needed to be
written in Tcl. The PPL code had to be extended by 116 lines of code.

32

Chapter 8

Heapsort: An Example
Development

In this chapter we present a few selected steps from a sample development to show how
development with 0SS proceeds. The task is to sort an array a of integers. To do this we
want to develop a heapsort algorithm. The initial problem is shown in Figure 8.1(a)', where
the goal perm{a,al} requires the sorted array to be a permutation of the original one. The
concept of the heapsort algorithm is to first build a heap?, and then level down the heap
putting the top (maximum) element at the end of the array and restoring the heap for the
remaining unsorted segment of the array.

Since the program section that builds the heap will be almost identical in both parts of
the algorithm, the idea is to develop the second part first and re-use the developed program
section in the first part.

To start with, we apply the intermediate assertion strategy to the initial problem. This
strategy allows us to choose which part of the compound we want to develop first. The
strategy prompts us for an intermediate assertion. For the second part of the compound, we
must ensure that the array a is a heap and that it is a permutation of the original array,
denoted by the state variable ai:

heap{a,null,n} and perm{a,al}

The goals for the second subproblem yielded by the intermediate assertion strategy are
the goals of the initial problem. With two applications of the strengthening strategy we use
the fact that the empty array always is a heap and other domain-specific knowledge to replace
these goals by stronger ones, resulting in the problem shown in Figure 8.1(b), where the last
goal means that all elements in the second segment of the array are greater than or equal to
all elements in the first segment.

Our approach now is to establish all goals but i = null in a first step, and then establish
i = null with a loop, the formerly achieved goals comprising the invariant of the loop. We
select the protection strategy, where the first statement will establish the loop invariant and
the second will be the loop itself. The assignment i := n establishes the goals for the first

11OSS uses a prefix-ASCII notation for functions and predicates. Variables, constants, predicates, and
functions, as well as non-logical axioms about them are defined in a theory file read in by 10SS.

2 A heap is a binary tree of numbers where each node is greater than or equal to both of its successors. Such
a tree can be stored in an array: the successors of node 1 are stored under the addresses 21 + 1 and 21 4 2.

33

Preconditions: Preconditions:
a = al le{rull, n}

le{null, n} ;:iﬁgz, 2§}l, n}

1
B

Invarants: Invariants:
le{rnull, n}

=

s

Goals: Goals:

|sorted{a, nwll, n} perm{a, all

perm{a, al} sorted{a, i, n}

heap{a, null, i}

lefrmll, i}

le{i, n}

i=mll

geaf{seg(a, 1, n), segla, null, 1)}

A

T/

=

Yariables:

Variables:
Input: in Input: in
Result: = Result: |2, 1
State: a1 State: §a1

Figure 8.1: The problems (a) initially and (b) before the initialization of the loop

statement. We enter it using the manual assignment strategy. Since it does not generate any
new problems, I0OSS automatically calls the corresponding assemble and accept functions
to check the solution for its acceptability. In particular, this may involve the invocation of
the built-in theorem prover, proving the correctness of the assignment with respect to its
specification.

After application of the loop strategy to the second subproblem yielded by the protection
strategy, the system automatically selects the negation of the goal as the test for the loop:
not i = null. To ensure termination of the loop, we have to interactively enter a bound
function (i), a predicate for a well founded order (1s), and a least element with respect to
the order (null). We may also supply additional invariants. The goal for the loop body is
constructed from the bound function and the less predicate: it is to reduce the value of the
bound function (while maintaining the invariant). The problem for the loop body is shown
in Figure 8.2(a).

Reducing the value of the bound function will invalidate the invariant; it has to be re-
established afterwards. We first apply the disjoint goal strategy. It automatically determines
the only goal 1s{i,fix12} to be the goal for the first part of the compound. The invariants
of the problem automatically become the goals for the second part. Reducing the value of
the bound function is trivial: i := p(i). Re-establishing the invariant is done in two steps:
swapping the first and last element of the heap,a[0] and a[i], and re-establishing the heap
condition for the unsorted segment a[0...7 — 1] of the array.

Since the unsorted segment is a heap except for the first element (resulting from the
swapping), we let this element “descend down” in the tree. This is again achieved by a

34

Preconditions: ——————————————— Computed Precondition:
not 1 = null ezt
i = fixl2 J
perm{a, al} /
socted{a, 1, n}
heap{a, null, i}
le{null, i} Program:
le{i, n} EEGIN
geafseqgl(a, 1, n), segla, nmll, 1)} 1= diviin) 7
le{null, n} WHILE not i = null
D0 BEGIN
7]t s 1;(%) i
VHILE not ((le(simult(two, K1), n
Invariants: - ge‘g:ﬁ%:i o
e : s(mult(two, kj)iy)
permia, al} and lef{s(s(multitwa, k)}),
sorked{a, i, nj i
heap{z, null, i} - ge‘g:tg:' .
]]:Zgr:ulr];,} i} sJ(a(mu]_t(two, ki
: : D0 BEGIN
%EB{B]EE(B' i, n), seg(a, mll, i3} IF not ls{s(s(multitwo, k))). i} =
e{null, n} wdl THEN m := s(multitwo, k))
ELSE IF griget{a, s(mult(two, k))),
get(a, s{simultitwo, kI1)d}
e THEN m := simult(two, k))
ELSE m := sis{multitwo, k}1) ;
1sfi, FixlZ} A IF griget(a, m), getfa, ki}
THEN @ := swap(a, k. m) ;
ki=m
END
END ;
i:=n;
WHILE not i = null
TN RERTH 4
4 Computed Postcondition:
[trus N
Variahles:
Input: 0
Result:?a.l
State: | fixl2, al 7]

Figure 8.2: Problem for the loop body (a) and solution to the initial problem (b)

loop. It is synthesized with a similar approach as the first one. We first apply the protection
strategy. lIts first subproblem specifies the initialization of the loop, solved by k := null.
Before we can apply the loop strategy to the second subproblem, we need to establish a
goal appropriate for the termination of the loop with the strengthening strategy. Casually
expressed, we're done when the element that descends down is at its proper place in the heap.
The formula expressing this is:

2k+1< = alk]> al2k+ 1)) AN 2k+2< i — alk] > a2k +2])
Its prefix-ASCII notation as used in TOSS is:

(1s{s(mult(two,k)),i} -> ge{get(a,k),get(a,s(mult(two,k)))})
and (1s{s(s(mult(two,k))),i} -> ge{get(a,k),get(a,s(s(mult(two,k))))})

Now we apply the loop strategy that selects the negation of the above formula as the test
for the loop. For the development of the loop body we first need state variables for a and k. We
get them by applications of the state variable strategy. In the loop body we need to determine
the successor with which the descending element has to be exchanged, swap these two, and
reduce the bound function to work towards the termination of the loop. We refrain from
elaborating the development of the loop body in this place. It involves nested applications
of the disjunctive conditional strategy, as well as application of the conditional strategy, the

35

Gperations Uiew ael%

Figure 8.3: Proof tree for the heapsort algorithm.

skip strategy, and several applications of assignment and compound strategies. With the
development of the loop, the second part of the heapsort algorithm has been completed.
Developing the first part proceeds much in the same way as developing the second. Once the
development is completed®, we can inspect the root node of the development tree and have
a look at the solution to the initial problem, shown in Figure 8.2(b). Figure 8.3 shows the
proof tree for the developed program that was built by the system hand in hand with the

development of the program.

9For the curious reader: The development of the heapsort algorithm involves a total of 54 strategy

applications.

36

Chapter 9

Related Work

The work presented in this report relates to several areas of research:

CASE. As stated in the beginning, our general interest is to provide machine support
for the software development process, thus improving the quality of the resulting products.
This is exactly the aim of CASE. The support offered by our architecture is tailored for the
application of formal methods. Hence, it can be seen as a special case of CASE technology.
It complements conventional CASE tools. But not only the general objective, also the more
concrete assessment of goals, problems, and enabling technology as they are stated in [FN92]
coincide to a surprisingly high extent.

According to Forte and Norman, “among the greatest challenges ahead is the need for
tighter integration among tools in a manner that supports openness to a variety of methods,
notations, processes, tools, and platforms.” (emphasis ours). As can be seen (not only) from
the name of our synthesis system, we also consider these as key requirements. We agree with
Forte and Norman that generic processes should be defined, and that the lack of a single
method adequately addressing all application domains makes highly tailorable CASE tools
necessary.

The difference between existing CASE technology and our approach lies in the means
which are applied to reach these goals. Forte and Norman name simulators, dynamic code
analyzers and rapid prototyping environments as second-generation CASE tools. Such “dy-
namic tools” alone can certainly not guarantee semantic properties of software products. In
this respect, our architecture provides an alternative way of achieving the same goals as CASE
for the special case of formal methods application.

Knowledge-Based Software Engineering (KBSE). This discipline seeks to support
software engineering by artificial intelligence techniques. It comprises a variety of approaches
to specification acquisition and program synthesis, see [LD89, LM91]. Our approach could
also be subsumed under this field since a knowledge representation mechanism is the heart of
the architecture.

A prominent example of KBSE which is close to our aims is the Programmer’s Appren-
tice project [RW88]. There, programming knowledge is represented by clichés. These are
prototypical examples of the artifacts in question, e.g. programs, requirements documents or
designs. They can contain schematic parts. The programming task is then performed by
“inspection”, i.e. choice of an appropriate cliché and its customization by combination with
other clichés, instantiation of schematic parts, and structural changes. This is achieved by
high-level editing commands. The assumption underlying the Apprentice approach is that

37

a library of prototypical examples provides better user support than the representation of
general-purpose knowledge. Our position is to prefer general-purpose knowledge because
clichés to a large extent depend on the application domain. This makes it difficult to set up a
sufficiently complete cliché library that does not need to be extended for each new problem.

Representation of Design and Process Knowledge. Wile [Wil83] presents the de-
velopment language Paddle. Paddle is similar to conventional programming languages. Its
control structures are called goal structures. Paddle programs are a means to express de-
velopments, i.e. procedures to transform a specification into a program. Since performing
the thus specified process consists of executing the corresponding program, a disadvantage
of this procedural representation of process knowledge is that it enforces a strict depth-first
left-to-right processing of the goal structure. This restriction also applies to more recent
approaches to represent software development processes by process programming languages
[Ost87, SSW92].

Potts [Pot89] uses Issue-based Information Systems (IBIS) [CB88] to represent design
methods. Not only is represented what to do in which order when a design step is performed.
Reasons for design decisions are also recorded: each design step raises certain issues. Different
possibilities to resolve an issue are called positions. Finally, an IBIS contains arguments in
favor or against positions. This rich structure causes representations of even small examples
to become very complicated and hard to comprehend. Moreover, it is hard to see how to
represent methods of sufficient generality in this framework without reference to the problem
that is to be solved by them: arguments in favor or against a position usually depend on the
application domain that is considered: in the examples of [Pot89], for instance, commands for
elevator motors have to be taken into account. Although we acknowledge the desirability to
record the reasons for design steps, as will be discussed in Section 10.1, we prefer a non-formal
representation in this case because such knowledge lacks uniformity.

Souquieres [Sou93] has developed an approach to specification acquisition whose underly-
ing concepts have much in common with the ones presented here. Specifications acquisition
is performed by solving tasks. The agenda of tasks is called a workplan and resembles our
development tree. Tasks can be reduced by development operators similar to strategies. De-
velopment operators, however, do not guarantee semantic properties of the product. There-
fore, incomplete reductions and a variable number of subtasks for the same operator can be
admitted.

Program Synthesis. We have presented a program synthesis system as an instance of our
system architecture. As such, IOSS is a specialization of the general concepts presented in
Chapters 2 to 6. Compared to other synthesis systems, however, it is more general because it
is not specialized to support a particular method but serves to integrate a variety of methods
which can be expressed in its basic formalism.

The synthesis systems CIP [CIP85, CIP87], PROSPECTRA [HKB93] and LOPS [BH84]
are all designed to support a specific underlying method. These are not intended to integrate
with other methods, nor are these systems customizable. Moreover, the support of other
activities than program synthesis was not a design goal for these systems.

The approach underlying KIDS [Smi85, Smi90] is to fill in algorithm schemas by construc-
tive proof of properties of the schematic parts. This is achieved by highly specialized code
(design tactics) for each schema. Section 2.1 shows how design tactics can be expressed as
strategies. In KIDS however, there is no general concept of design tactics or how to incor-
porate a new one into the system. Information about the development process is maintained
implicitly. Working with KIDS, it is hard to keep track of “where” one is in a development.

38

There is a logging and replay facility, but this provides no possibility to browse the state of
development. Since design tactics are linearly programmed, there is no way to change the
order of independent design steps or “interleave” tactics applications.

Recent work at the Kestrel Institute aims at curing these deficiencies: The classification
approach to design[Smi93a] consists of capturing software design knowledge in a hierarchy
of design theories. A design task is solved by successively classifying the task along the
hierarchy as instances of increasingly specialized design theories. Design theories are basically
parameterized algebraic specifications. Associated with each is a schematic solution. Solutions
lower down in the hierarchy are intended to be “better”, more specialized than solutions for
theories further up. At the end of the classification process, a solution optimal with respect
to the design knowledge represented in the theory hierarchy is obtained by instantiating the
schematic solution associated to the most specialized design theory found for the task.

The aim of this effort is to come to a purely logical, descriptive representation of design
knowledge. This would admit a uniform procedure to constructively show that a task is an
instance of a particular design theory [Smi93b].

Tactical Theorem Proving. Tactical theorem proving has first been employed in Edin-
burgh LCFE [Mil72]. The idea is to conduct interactive, goal-directed proofs by backward
chaining from a goal to sufficient subgoals. Tuactics are programs that implement “backward”
application of logical rules. The functional programming language ML evolved as the tactic
programming language of LCF. Tactical theorem proving is also used in the generic interactive
theorem prover Isabelle [Pau88] and in KIV.

KIV [HRS91], in the version underlying 10SS, is a shell for the implementation of proof
methods for imperative programming. Recently, KIV has been specialized to support the ver-
ification of program modules according to a fixed strategy [Rei92]. The degree of automation
achieved with this strategy is impressive. Since in program verification both the specification
and the program are known, automation is much easier to achieve than in program synthesis.

The goal-directed, top-down approach to problem solving is common to tactics and strate-
gies. Nevertheless, there are some important differences. First, a tactic is one monolithic piece
of code. All subgoals are set up at its invocation. Dependencies between subgoals can only
be expressed by the use of metavariables. These allow one to leave “holes” in a subgoal that
are “filled” during proof of another subgoal by unification on metavariables. Dependencies
not schematically expressible by metavariables are not possible with tactics. Since tactics
only perform goal reduction, there is no equivalent to the assemble and accept functions of
strategies. They are not necessary for the tactic approach because problems and solutions
are identical except for instantiation of metavariables. In contrast, problems and solutions
of strategies may be expressed in different languages, and the composition of solutions by
assemble may not be expressible schematically.

Theorem proving systems like Isabelle usually do not maintain a data structure equivalent
to the development tree. Isabelle only maintains a stack of proof states containing the results
of tactic applications in chronological order. They are discarded upon completion of the proof.
No information is given about the tactics that produced a proof state or the dependencies
between proof states. It is the users’ responsibility to record their proof steps textually outside
of the system.

39

Chapter 10

Discussion

Most of the tools supporting formal methods today deal with single documents and not with
the process aspect of a development. They are used to check static semantics of the documents
or to discard proof obligations obtained without tool support. The few tools we know of that
support the process aspect, e.g. KIDS, enforce one fixed way of procedure on their users and
do not provide an overview of the state of development (see Section 9).

Existing tools often are monolithic systems and hardly modifiable except by their develop-
ers. This prevents incorporation of new problem solving knowledge by local modifications. It
also reduces confidence in the tools, because is it not clear which pieces of code are responsible
to guarantee semantic properties of the products.

Processes and formalisms are orthogonal in that the ideas of what is done during a de-
velopment are often similar, even in different formalisms. Differences usually appear when
carrying out a development step in detail. This fact led us (i) to a uniform notion of strategy
which stresses similarities in methods independently of the underlying formalism, and (ii) to
a generic architecture that allows one to exploit these similarities and customize the system
for the formalism suited best in a given situation.

Let us review the requirements stated in Chapter 1.

Guarantee Semantic Properties. The function accept is the only component of the in-
terface of a strategy module that is concerned with semantic properties. Only this function
determines if a candidate solution is acceptable for the given problem. How the other com-
ponents — and other strategies — contribute to the evolution of a candidate solution has no
influence on this process. Consequently, there is a single point in a strategy implementation
that is responsible for the semantic properties of the produced solution. This enhances confi-
dence in the development tool because only the accept functions have to be verified to ensure
that the tool truly guarantees acceptability of the produced solutions. The development tree
contains explanations for all strategy applications. This improves comprehensibility of the
product and may be used as a basis to conduct inspections by certification authorities.

Balance User Guidance and Flexibility. Methods are uniformly represented as sets of
strategies. Their common interface to the system kernel makes method combination possible:
Strategies of different methods can be interleaved to solve a problem, e.g. the Gries’ method
can be used to solve the subproblems created by Smith’s divide-and-conquer-strategy. To
incorporate a new method into the system, the strategy base only has to be extended by the

40

new strategies. This involves only local changes that do not affect existing components.

More work is necessary if the notions of problem, solution or acceptability have to be
changed. One example is to extend the problems of TOSS by an additional invariant that
must not be destroyed even in intermediate states of the synthesized program. This kind of
invariant is useful for enforcing safety requirements. In this case, all strategies have to be
revised, but the clear modularization still helps in identifying the code that has to be changed.

The development tree allows for multi-developer environments and explorative procedures.
Independent leaves can safely be worked on in parallel while the global context is still acces-
sible by all developers.

Provide Overview of Development. By maintaining the open subproblems and their
dependencies in the development tree we get not only an overview of the state of the devel-
opment but the entire development is mirrored in this data structure. It can be browsed to
find out interrelations between subproblems and thus to get insight into the role a certain
component plays. This possibility is particularly useful where creative design decisions have
to be taken. They do not only depend on the formal requirements as stated in the problem
description, but must consider the net effect a decision may have. Browsing is all the more
essential when using formal methods because of the increased level of detail in formal docu-
ments. In case of a dead end in a development, it supports analysis of the steps that led to the
error. The behavior of most theorem provers that just say “no” without further explanation
why a proof attempt failed is not acceptable in software development.

10.1 Future Improvements

Guaranteeing semantic properties imposes limitations that cannot be overcome. The number
of subproblems is fixed for each strategy. Bottom-up steps are limited to single re-use steps,
e.g. searching a library. Still, there are a number of improvements to widen the architecture’s
range of application.

With the strategies of the current version, program synthesis with T10SS is a time-con-
suming and highly interactive task. This is due to the fact that the current strategies are
quite low-level. Higher-level strategies with a better potential for automation are already
designed [Hei94, Hei92] and can be incorporated in the near future.

Another weakness of the current implementation concerns the proof of predicate logic
formulas. The theorem prover of KIV is not very sophisticated and knows nothing, e.g.,
about ordering relations. It is worthwhile to improve the prover by parameterizing it with
theories and incorporating rewriting techniques. Work on this problem is in progress.

The possibility to work with incomplete solutions will be introduced in the near future.
This will add further flexibility to the development process.

Until now, there is only one version of the development tree. In order to explore other ways
of proceeding, one has to store the different versions explicitly. To switch between these, one
has to load the other version anew. lo support a more explorative style of development, it is
desirable to allow several alternative development (and control) trees in a single development.

In the current version of IOSS, no heuristics are implemented that could provide guidance
in the selection of strategies, because only very general such heuristics are known to date. A
first step towards the elicitation of heuristics is an empirical approach: whenever a strategy
is selected, the reasons for the selection should be recorded. This is also very important if we

41

want to make the development comprehensible for persons who did not perform it, but want
to re-use it.

Re-use is also an important feature that is only realized in form of a strategy for selecting
items of a library. It is our intention to provide better support for re-use in the future. Here,
the problems are of a technical nature: for example, different development trees have to be
merged without identifying different information that by chance is referred to by the same
name.

Despite its customizability for different formalisms, an instance of the architecture sup-
ports only one formalism. It requires some deeper research to come up with a concept that
allows for the integration of different instantiations of the architecture. With such a system,
a wider range of the software life cycle could be supported in an integrated way, not only
different methods to achieve the same purpose.

Last not least, we consider our approach not to be confined to the application of formal
methods. It should be possible to also support informal methods by strategies. A promis-
ing candidate in this respect is specification acquisition. Here, the transition from informal
requirements to formal specifications is made. This means that the problems cannot have a
formal semantics, whereas the solutions have. Acceptable specifications could be required to
possess certain properties.

42

Appendix A

Palindrome Test: A Complete
Development

We now present the complete development of a simple program. The development is illus-
trated by snapshots of the screen after each major step.

The task is to test if a given string is a palindrome. Strings are represented as arrays. A
string is a palindrome if it reads backwards the same as forwards. Formally, this is expressed
as follows:

Vi.0 < i < n= str[i] = str[n — i — 1]

We abbreviate this condition by palindrome(str,0,n), i.e. the upper bound is not included.
We also need to express that a substring of a string is a palindrome:

palindrome(str,i,j) < Yl <1 < j= str[l] = str[j — 1 - 1]
A substring of a string consisting of at most one element is always a palindrome. Hence,
palindrome(str, div2(n),n — div2(n)) (A.1)

holds for any n > 0. The function div2 denotes the integer division by 2. To determine if
the given string is a palindrome, we develop a loop, working from the middle of the string
outwards to both ends (see Figure A.1). For this purpose, we use the index variable k that
is initially set to div2(n). The variable pal records if str can still be a palindrome (pal = 1)
or a non-matching pair of elements has been found (pal = 0). In each execution of the loop
body, k is decreased by one. If pal = 1 the elements str[k] and str[n — k — 1] are compared
(the old value of k is denoted by k’). If these are equal, pal remains unchanged, otherwise it
is set to 0. The loop terminates when k& = 0.

We now realize this development idea in 10SS. The first thing to do is to load a theory file
containing declarations for all variables, constants, functions, and predicates. It also contains
axioms describing properties of the declared constants, functions, and predicates.

43

k’ k = div2(n) n-k’-1

Str

N /]

k equal’? n-k-1

Figure A.1: Development Idea for Palindrome Program

@] 1058
Fle Edit View |
D Tree: Current. Problem:
e Pr it 3
a) - -
-]
) J
@] 7
Loaging Signature
Please enler Flename: Invariants:
homedswirkiv/ DS S/demos/palindrome.pp | ﬁ
Okl Ccancel v
Goals:
j
¥
Variahles:
Input: |
Result: |
o State:
ETE,

After loading the signature, 0SS is ready to accept our programming problem. After we
have typed in its components, the initial problem is displayed on the right hand side of the
10SS window. So far, the development tree on the left hand side contains only the node for
the initial problem.

44

@] 10SS T
Fle Edit View |
D Tree: Current Problem:
o Preci e
- -
gr{n, null} 7
-
Backtrack
I
Manual
Skip T
Strengthening J
State Variahle
Loop]
Disjoint Goal e
Protection | S S =
T T o (pal = one <-» palindrome{str, null, n}} N
Conditional
Disjunctive Conditional
¥
Variables:
Input: str,n
Result: gpal
b State:
14 |»]

As often is the case, we start program development with an application of the strength-
ening strategy. Here, we follow the heuristics to replace a constant (n) by a variable (k) with
suitable bounds. We also use the fact that n — 0 = n.

The input window shows the goal to strengthen and invariants from the precondition that
may be used to show that the formula we type in indeed implies the original goal.

@ 10ss 8

fle Edit View |

D Tree: Previous Problem:
£ ‘ Pr
a S
[
strengthenina ‘ jgrin nally &
[®] KIV - Input]
| 2
|invariants due to warishle conditions
f(gr{n, ll}) =

{enter formula implying
:(pal = one <-» palindrome{str, null, n})
|in context of the inwariants stated sbove

{PPL 2> %'k=null and (pal=one <-> palindrome{str,k, sub(n k)}) =nd le{rull k} and
le{k.n}"
k = null
and (pal = one <-» palindrome{str, k., =sub(n, k}})
jand le{rull, k} and le{k, n}
IPPL 2> |

]

Vanahles:

Input: gstr. n

Result: |pal
State: |

14 1 [

The original goal has been replaced by the stronger one and the development tree has
been extended by a node containing the stronger goal. The new variable k£ that has been
introduced by the strengthening has been classified as a result variable.

45

@] 1083 al

Hile Edit View

Di Tree: Current Problem:
=i Pr litii
= 11} Py
strengthening i
-
Backtrack -
¥
’S":'i'“"’"' Invariants:
B 79
Strengthening J
State Variable
Loop >
Disjoint. Goal Goals:
Protection " o oals: B
> - = .
R R AT (pal = one <-> palindrome{str, k. sub(n,
_— kI p)
Conditional la{null, k}
Disjunctive Conditional | [1={k, =}
| ¥
Input: (atr. n
Result: p=l.k
4 State: |
IEIY,

In order to develop a loop together with its initialization, we apply the protection strategy.
The first part of the compound statement becomes the initialization for the loop. Setting
up the problem for this statement means to select those parts of the goal that have to be
established by the initialization, i.e. that will form the loop invariant.

@ l0ss B]

fle Edit View

D Tree: Previous Problem:
— ‘ Pr
-
strengthenina | | qu(n, all} 7
—[® KIV - Input 3)
:-¥ Please choose goal(s] for first statement ... A

1: k = null

2: i{pal = one <-» palindrome{str, k. sub(n. k)})
3: le{rnull, k}

4: le{k, n}

~||

choose by entering one number or a list of mumbers ...

12l
|

PPL 2> (list 2 3 4)
(2, 3, 4)
PPL 2>

|

Variables:
Input: |str,n
Result: [pal. k
o State: |
RN 1

The new problem is to establish the loop invariant.

46

@ 1055 E]
Hle Edit View
D Tree: Current Problem:
— [11) [X
strengthening ar{n,
-
Backirack [
it R ¥
prote Nl
S;'i"” Invariants:
i Y
Strengthening J
Slate Variable .
Loop
E
Disjoint Goal Goals:
Protection | = Ll =0 5
Intenmediate Asserbon (pal = one <-» palindrome{str. k. subin, S
L3N
— le{null, k}
Conditional T
Disjunctive Conditional
¥
Variables:
Input: |str.n
Result: jpal. k
o State: |
Y

If pal = 1 and k = div2(n), our goal is achieved by (A.1). To make use of this fact, we
apply the strengthening strategy.

[® 1055 ET
File Edit View
D Tree: Current Problem:
il Preci e
a
strengthening qrin, rull} 2]
-
Backtrack
|
protection s
S:,-n : Invariants:
- Y
Strengthening J
State Variahle
Loop ¥
strengthening
Disjoint Goal e
Protection - oals: T
E: . pal = one
tntermediate Assertion | |l "~ dio? (n)
Conditional
Disjunctive Conditional
7

Variables:
Input: éstr, n
Result: gp al,k
1 State:|
PRI 1

Our goals now contain equations for the result variables that can automatically be trans-
formed into assignments by the automatic assignment strategy. The generated assignments
are correct if their weakest precondition with respect to the postcondition follows from the
precondition. This weakest precondition is computed and presented to us by the system be-
cause the built-in theorem prover is in interactive mode. This means that we can decide for
each verification condition whether to attempt a proof or not. In this case, the verification
condition is easy and we decide to prove it.

47

@ 108 aj

Fle Edit View |

D Tree: Current Problem:
-
strenathenina | ‘]qr{n, rull) e
[®] KIV - Input ET]
-V Calling automatic assignment strategy ... _
The following wc appeared during program synthesis 7

E (true, gr{n, null}}
|-

{ one = one and divEZ(n) = div2(n)
and gr{n, null} and one = &
and divZ{n) = divZ{n)}

]

0... do not prove vc
1... try to prove vo
strengther PPL 2>
-—j
7
Variables:
Input: |str, n
Result: [pal, k
. State: |
JEITT Il

The next proof obligation stems from the strengthening applied prior to generating the
assignments. Again, we decide to prove it by machine.

@] 1055 ET]
Fle Edit View |
1 D Tree; Current. Problem:
| ‘ Pr
-
strenathenina | ‘ !gr{n, nully =
(@] KIV - Input ET]
The following wc appeared during program synthesis 71
{gr{n, null} and pal = one and k = divZin)) 7
43 (pal = one and k = div2(n})
-» (it pal = one
<-» palindrome{str, k, sub(n, k)})
and La{null, ky and le{k, n3})) - &
0... do not prove vc J
1... try to prove vo |
PPL 23 7
streng
I |
automatic_ ¥ J;
Variables:
Input: |=tr, n
Result: jpal. k
L State: |
1o Do J

The prover does not have enough knowledge about palindromes. Thus it cannot fully
prove the verification condition but reduce it to a number of sufficient conditions that we are
presented together with the generated proof tree!. In this case, the remaining premise of the
proof is just (A.1).

!We skip the verification conditions for the rest of the development.

48

(@] 1083 =)
Ble Edit View |

: D t Tree: T
—|®] The Sequent

Strengthening

strengthening

Disjunctive Conditional

automatic_assignment

Varj

Input: |str, n
Result: pal. k
State:

For the second part of the compound, we have to establish & = 0 while maintaining the

invariant.

(pal = one <-»> palindrome{str, k, sub(n,

(@] 1085
Hie Edit View
Developrient Trea: ‘Current Problem:
=t Preconditions: ———————————
= EEIL
strengthening :‘ g;]{_n; Eﬁih i
'|' k = divZin)

k)1l
lefrmll, k}

Backtrack 1eik, nt L
protection aurtomatic Assignment
;‘:‘@ﬂl Sl Invariants:
"“_p_ — lg?l = one ¢-> palindrome{str, k, sub(n, |4
e | 1
strengthening i
o Goais:
Intermediate Assertion || [© ~ T ¢
Conditional
automatic_assignment DEInCHYE m“u_mhm?l b
Variables:
Input: str.n
Result: [pal.k
e o State:|

Before we start working on this problem, we decide to have a look at the current proof
tree. Fach of its nodes can be inspected. The root node shows the program developed so far.
For the statement and the additional postcondition not yet known, the sequent contains the
metavariables $program43 and $comp_postd5.

49

Development Tret ; ‘Current Problem:

Preconditions:
strengthening E;{n; Eﬁla'l)
k = diwZin)
(pal = one <-> palindrome{str, k. subin,

I
lefrull, k}
leik, n}

protection

Invariants:
(pal = one <-» palindrome{str, k, subin,

k))
le{rull, k}
leik, n}

===

strengthening

[®@] The Sequent

automatic_assign

Now for the development of the loop: The loop strategy asks us to supply a bound function
to ensure termination of the loop. Since k is to be decreased — the goal being £ = 0 — we
can use just this variable. The goal for the loop body is to decrease the bound function while
maintaining the invariant. Therefore, a new state variable fi224 referring to the value of the
bound function before entering the loop body is automatically introduced. In the precondition
we get k = fiz24 and the new goal is k < fiz24.

@] 10385
Fle Edit |
Deve nt Tree: Current P
- S :
o reconditions
A NOT k = null
strengthening L = Fixod
oo lipal = one ¢-» palindrome{str, k, suhin,

k) 1)
le{rmll, k}
le{k, n}

[

protection

(pal = one <-> palindrome{str, k, subin,

ki }
le{rll, k}
le{k, n}

B

strengthening

Goals:

Disjoint Goal Leik, fintd)
Protection
v T Intermediate Assertion
automatic_assighment e - J
Disjunctive Condit
Input: |=tr.n
Result: [pal, k
i State: |Fix24
J4 Dof

Decreasing k£ by 1 achieves this goal but also destroys the invariant. It has to be re-
established in a second step by updating pal appropriately. Since the variables to be changed
are different for the two steps we may use the disjoint goal strategy.

50

@ 10sS

Fle Edit Miew Backtrack
D Tree: — Current Problem:
Manual Pret ition:
strengthening Skip IROT E = rwll 29
= = e = fix2d
Strengthening |{pal = one <-» palindrome{str., k. subin,
State Variable ki n
Lo leinull, k}
op lefk, n}
Disjoint. Goal ¥
protection Protection
Intenmediate Assertion vt
Conditional o [X
Disjunctive Conditional J
strengthening L4
Goals:
[Lsik, fixzd} A
utomatic_assignment disjoint_goal J
v
Variahles:

E=
=]
el @

Input: str, n, péi

Result:
State: £ix2d

Since we know exactly what to do, we do not bother to massage the goal any further. We
apply the manual assignment strategy and give —in 10SS syntax — the assignment k := k—1.

E]

@ 1055 &
Fle Edit View Backtirack
D Tree: — Current Problem:
Manual Pr ith
strengthening Skip Y
[®] KIV - Input 1w,
[71
|:-¥ Calling marnual assigoment strategy
|:-¥ Enter a {composition of) assigoment(s) to establish
gguals: "ls{k, fix24}" 7
Ear\d invariants: "true"
jwrt. preconditions: * NOT k = nwll AND k = fix24
|BND (pal = one <-» palindrome{str, k, sub{n, ki}) I
{BND le{rull, k} AND le{k. n}". S
PEL 2> %'k:=p(k)}" J
k= plk)
strengther (PL z3 ¥
A
utomatic_ass = J
v
Vanables:

Input: lstr.n, péi
Result: [l
State: [fix2d

We are left with the task to re-establish the invariant by changing only pal.

51

@] 1088 |

Hle Edit Yiew Backtrack |
D Tree: — i i —— Current Problem:
Manual Assi Pr i
strengthening SKip X
AL i pal = one
Strengthening <-» palindrome{str. fix24, sub(n, fix24)})
State Variable Llefrmll, fixBd}
Lo ‘le{fix24, n}
op Ik = pifixgd)
_ Disjoint Goal Ldler “Ean2e) 7
protection Protection
Intermediate Assertion i
Conditional lgrin, rull} JE
Disjunctive Conditional J
ing ¥
Goals:

[tpal = one <-> palindromeistr, k, subin,
5%

le{null, k}

le{k, n}

gnment disjoint_goal

e —

Variahles:

manual_assignment

Flel »

State: fix24

In order to express how pal must be updated, we have to refer to its old value. Once pal
has been set to 0 it must not be set to 1. Therefore, we need a new state variable for pal. We
get it by applying the state variable strategy.

@ 10385
Fle Edit View Backirack |
D Tree: — i j ——————— Current Problem:
Manual i Pr iti
on skip OT £ = rwll &
= { pal = one
Strengthening | <-» palindrome{str, fix24, sub(n, fix2d)})
State Variable le{null, fixZd}
le{fix24, n}
Loop Ik = pifixed)
Disjoint, Goal - 7
Inop Protection
Intermediate Asserlion Crmiinitn
Conditional lgrin, null =
Disjunctive Conditional J
disjoint_goal ¥
Goals:
i(‘pe‘n‘l = one <-» pa‘tlln\:lrume{-;tn k, sd]-:"('m x
3By
1lef{rmll, k}
3 7 le{k,
manual,aSS|gnment| |state,var|ah|e sk
v
Vanables:
Result: |pal
State: [palsd, fix2d
!
J:3

Now we are ready to strengthen the goal: if the old value of pal is 1 and the next elements
to be compared are equal, pal remains unchanged. Otherwise, pal must be set to 0. We
express this case distinction by a disjunction.

52

@ 10ss §

Fle Edit View Backtrack |
Dy Tree: — i i —— Current Problem:
Manual i Pr it
loop skip [NOT £ix24 = rull A
= (pal = one
Strengthening | <-» palindrome{str, fix24, sub(n, fix24)})
State Variable lefrnull, fix24}
o le{fix24, n}
op |k = pifixg4)

lsik. fix24}

=

— Disjoint Goal
disjoint_goal Protection

Intermediate Assertion

Invariants:
Conditional lgrin, null} =
Disjunctive Conditional J
manual_assignment| |state_variah|e ¥
Goals:

pa‘x‘]‘.“: one AND pa]‘.’S‘El‘ = ane
AND get(str, k} = get(str, plsub(n. k})}
1

5 | AND NOT alSd = one
strengthening AN Eeum, k)

= get{str, plsubin, k}}))

Variahles:

Result: ﬁai
State: [palSd, fix2d

=
B4l »

The disjunctive goal allows us to apply the disjunctive conditional strategy. The system
proposes several candidates for the test of the conditional. We choose the first one.

[@ 1085 § aj
fle Edit View Backtrack |
Di Tree: — & - ———————————— Current Problem:
Manual i Pr iti
sKkip o Fid = ruill =
(@] KIV - Input B] xzay 1y
7Y

|:-¥ Calling disjunctiwe conditional strategy
|:-¥ Select gquard for conditional

{1: pal5d = one

BND get(str, k) = get(str, pisubin, k)})

12: NOT palfd = one

| AND getistr, k) = getistr. p(sub(n, k)1})
13: enter own guard

=

disji

{choose one element by entering a mumber

manual, *¥0 2t

BPL 2 exif

‘\l_lfi

LK)

]

23))

Variahles:

The goals of both branches of the conditional contain an equation for pal and can be
solved by the automatic assignment strategy.

53

[@ 1055

Ble Edit Miew Backtrack |
= : Lree: — —— w— Cument Problem:
— Manual Assignment. —— Preconditions: ——————————————
disjoint_goal Skip NOT fiz2d = null X
= { pal = one
Strengthening <-» palindrome{str. fix24, sub(n, fix24)})
State Variable le{omll, fix2d}
Lo 3 R le{fix2d, n}
op k = p(fix2d)
2 Dis]oinﬁ Goal 1s{k, fix24} v
manual,assmnmenﬂ | state_var peioction
Intermediate Assertion Invariants:
Conditional gr{n, rmll} 79
Disjunctive Conditional _I
strengthening ¥
Goals:
pal = one X
palsd = one i
get(str, k) = getistr, pisubin, })))
disjunctive_conditional i::ﬂu]}]}} i |
5 Input: jstr.n. k
@ J Flesu'ltzipal
I = State: palSd, Fixzd
Il 4 v

The program now is fully developed and the solutions are propagated upwards in the
development tree while testing the composed solutions for acceptability. This amounts to
generating and proving verification conditions. One condition that cannot be reduced further
is shown on the next screen dump. It basically states

0< fiz24 A fiz2d<n=>0<n

but the built-in prover cannot yet deal with transitivity of <.

8] 1055 [®] The Tree =
Ble Edit View Back| goorctions U ;

—

disjoint_goal

- - Disjoi
manual_assignment | | state_var Prote)

[®] The Sequent

The final proof tree together with the sequent in its root node — that contains the program
with its pre- and postconditions expressed in dynamic logic — are shown next. The premises
drawn as circles are the verification conditions the built-in prover could not prove. The more
complex proof trees for verification conditions shown above are collapsed to single branchings
in the tree below.

54

[®] The Sequent

This is the final development tree scaled down to fit in the window. The window next to
it shows the solution contained in the root node, i.e. the program we have developed.

@] 10ss Node (12)
= Solution v |
D t Tree: =
1= Computed Precondition: =
i true .&
N
— : % §
EEGIN A
al .= one ;
— k := diwd(n)
VHILE not k = rull
D0 BEGIN
ko= piky
e ([i P S -
and getistr, k) = get(str,
plsubin, k)})
== THEN pal := one
ELSE pal := rmull
END
——— END
1 v
Computed Posteondition: -
|®] daVinei: Scale grin, mlly A
Factor (043, 1 | e J100
V:
ik
Dismiss

The development tree — containing all strategy applications and all proofs — can be saved in

a file for further use.

55

Bibliography

[BCFS9]

[BHS4]

[CBSS]

[CGRY3]

[C1PS85]

[CIP87]

[Del94]
[Der83]

[FN92]

[Fug93]

[FW94]

[Gol82]

Avron Barr, Paul R. Cohen, and Edward A. Feigenbaum, editors. The Handbook
of Artificial Intelligence, volume 4. Addison-Wesley, Reading, MA, 1989.

W. Bibel and K. M. Hérnig. LOPS — a system based on a strategical approach
to program synthesis. In A. Biermann, G. Guiho, and Y. Kodratoff, editors,
Automatic Program Construction Techniques, pages 69-89. MacMillan, New York,
1984.

J. Conclin and M. Begeman. gIBIS: a hypertext tool for exploratory policy dis-
cussion. ACM Transactions on Office Informations Systems, 6:303-331, October
1988.

Dan Craigan, Susan Gerhart, and Ted Ralston. An international survey of in-
dustrial applications of formal methods. Technical Report NISTGCR 93/626,
National Institute of Standards and Technology, Computer Systems Laboratory,
Gaithersburg, MDD 20899, 1993.

CIP Language Group. The Munich Project CIP. Volume I: The Wide Spectrum
Language CIP-L. Number 183 in Lecture Notes in Computer Science. Springer-
Verlag, 1985.

CIP System Group. The Munich Project CIP. Volume II: The Program Trans-
formation System CIP-S. Number 292 in Lecture Notes in Computer Science.
Springer-Verlag, 1987.

Sven Delmas. Kidnapping X Applications. Unpublished Paper, TU Berlin, 1994.
Nachum Dershowitz. The Evolution of Programs. Birkhduser, Boston, 1983.

Gene Forte and Ronald G. Norman. A self-assessment by the software engineering
community. Communications of the ACM, 35(4):28-32, April 1992.

Alfonso Fuggtta. A classification of case technology. Computer, 26(12):25-38,
December 1993.

Michael Frohlich and Mattias Werner. daVinci V1.3 User Manual. Technical
report, Universitdt Bremen, 1994.

R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130.
Springer-Verlag, 1982.

56

[Gri81]
[Hei92]

[Hei04]

[HKB93]

[HRSSS]

[HRS89]

[HRS91]

[HWW94]

[LD89]

[Lib91]

[LMO1]

[Mil72]

[Ost87]

[Ous94]

[Pau8s]

David Gries. The Science of Programming. Springer-Verlag, 1981.

Maritta Heisel. Formale Programmentwicklung mit dynamischer Logik. Deutscher
Universitdtsverlag, Wiesbaden, 1992.

Maritta Heisel. A formal notion of strategy for software development. Technical
Report 94-28, T'U Berlin, 1994.

B. Hoffmann and B. Krieg-Briickner, editors. PROgram Development by SPECifi-
cation and TRAnsformation, the PROSPECTRA Methodology, Language Family
and System. LNCS 680. Springer-Verlag, 1993.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Implementing verification
strategies in the KIV system. In E. Lusk and R. Overbeek, editors, 9th Inter-
national Conference on Automated Deduction, number 310 in Lecture Notes in
Computer Science, pages 131-140. Springer-Verlag, 1988.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. A dynamic logic for program
verification. In A. R. Meyer and M. A. Taitslin, editors, Proceedings Logic at Botik,
number 363 in Lecture Notes in Computer Science, pages 134-145. Springer Verlag,
1989.

Maritta Heisel, Wolfgang Reif, and Werner Stephan. Formal software development
with the KIV system. In Michael R. Lowry and Robert D. Mc Cartney, editors,
Automating Software Design, chapter 21, pages 547-574. AAAI Press, 1991.

Maritta Heisel and Debora Weber-Wulff. Korrekte Software: Nur eine lllusion?
Informatik — Forschung und Entwicklung, 9(4):192-200, October 1994.

Michael Lowry and Raul Duran. Knowledge-based software engineering. In
[BCF89], chapter 20, pages 241-322. Addison-Wesley, Reading, MA, 1989.

Don Libes. expect: Scripts for controlling interactive processes. Computing Sys-
tems, 4(2), November 1991.

Michael R. Lowry and Robert D. McCartney, editors. Automating Software Design.
AAAI Press, Menlo Park, 1991.

Robin Milner. Logic for computable functions: description of a machine imple-
mentation. SIGPLAN Notices, 7:1-6, 1972.

Leon Osterweil. Software processes are software too. In 9th International Confer-
ence on Software Fngineering, pages 2—13. IEEE Computer Society Press, 1987.

John K. Qusterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

Lawrence C. Paulson. Isabelle: The next seven hundred theorem provers. In
E. Losk and R. Overbeek, editors, Ninth International Conference on Automated
Deduction, number 310 in Lecture Notes in Computer Science, pages 772-773.
Springer Verlag, 1988.

57

[Pot89]

[Rei92]

[RWSS]

[Smi85]

[Smi90]

[Smi93a]

[Smi93b]

[Sou93]

[SSW92]

[Wil83]

Colin Potts. A generic model for representing design methods. In International
Conference on Software FEngineering, pages 217-226. IEEE Computer Society
Press, 1989.

Wolfgang Reif. Verification of Large Software Systems. In R. Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Science.
12th Conference. New Delhi, India, December 1992. Proceedings, LNCS 652, pages
241-252. Springer Verlag, 1992.

Charles Rich and Richard C. Waters. The programmer’s apprentice: A research
overview. IEFE Computer, pages 10-25, November 1988.

Douglas R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27:43-96, 1985.

Douglas R. Smith. KIDS: A semi-automatic program development system. /KFEE
Transactions on Software FEngineering, 16(9):1024-1043, September 1990.

Douglas R. Smith. Classification approach to design. Technical Report
KES.U.93.4, Kestrel Institute, November 1993.

Douglas R. Smith. Constructing specification morphisms. Journal of Symbolic
Computation, 15(5-6):571-606, May-June 1993. special issue: Automatic Pro-
gramming.

Jeanine Souquieres. Aide au Développement de Specifications. These d’Etat, Uni-
versité de Nancy 1, 1993.

Terry Shepard, Steve Sibbald, and Colin Wortley. A visual software process lan-
guage. Communications of the ACM, 35(4):37-44, April 1992.

David S. Wile. Program developments: Formal explanations of implementations.
Communications of the ACM, 26(11):902-911, November 1983.

58

