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Abstract

Some of the reasons why forma methods have not been widely accepted in
practice are andyzed. This anaysis provides the basis for a more modest ap-
proach to embedding mathematical and formal techniquesinto the system design
process. identifying placesin traditional design methodol ogieswhere formal rea
soning can be convincingly introduced. The approach is outlined in general and
illustrated by giving overviews of three different research activities.
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1 Formal methods chroniccriss

The quest for abstraction and structuring concepts has been one driving force in the
design of programming languages and design methods. It is generally accepted, that
they increase productivity, reduce the amount of errors, and support maintenance and
reuse. Thelist of advantages could be continued. The recent success of object-oriented
conceptsismerely oneproof for this. However, even though conceptua abstractionand
structuring has also been a mgjor driving force of formal methods, they have not been
embraced by industry to any comparable extent; rather, the state of forma methods
could be characterized (or dramatized if you prefer) as that of chronic crisis, at least
with respect to industrial relevance.

Industry today produces complex software systems that do work properly. Safety
critical systems areinstalled. However, already now, disastrousfailures occur (such as
the Therac-25 accidents [LT93]), and yet the complexity of systems that will be con-
structed in the future is destined to grow, and the areas where safety-critical embedded
systems are installed will undoubtedly grow too. Thus, the problems to control com-
plexity that are involved in the construction of such systems will increase too. That
the construction of reliable systemsis still far from being a mature engineering disci-
plineis being aptly documented in a recent Scientific American article on “ Software's
chronic crisis’ [Gib94]. Despitethelack of widespread applicationthereis continuing
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and even increasing interest in formal methods within the scientific and the industrial
research community. Thereason seemsto bethat, in principle, forma methods promise
to beacornerstonefor software engineering to become amature engineering discipline.

Forma methods have been seriously applied during the past years in various in-
dustrial and academic pilot projects as, for instance, reported in [CGR93]. However,
the breakthrough has not been achieved. Many companies involved in such projects
are scaling down their use of forma methodsto alevel that isin accordance with their
current industrial relevance. For instance, they only have small teams of highly trained
research staff working on selected critical aspects of systems.

What are the reasons for the failure of formal methods to achieve mainstream ac-
ceptance? From our own experience [HWW94] and from our analysis of experience
reports [CGR93, HK91, SOF94, for instance] we believe that one major reason is that
presently forma methods come with too broad agoal. Very often, they aim at a com-
plete and superior methodol ogical framework for the devel opment of correct systems
without compromises. They often presuppose idealized circumstances, and they usu-
ally have been developed in academic environments where such circumstances can be
guaranteed. Also, such amonoalithic approach doesnot |eave much room for it to coex-
ist and to interact with other methodol ogiesthat are in standard use within an industrial
devel opment context. Still, research on such methodsis necessary and has provided us
with many useful techniques and results, but it will most probably not lead to methods
that will be quickly accepted in practice.

Webelievethat amore modest approach to theintegration of formal techniquesinto
the system design processwill lead to amoreimmediate application of such techniques
inthe system design process. Starting out from existing and accepted conventional de-
sign methods which are amenabl e to the integration of mathematical techniques, one
should investigate at which points and places during the design process mathematical
techniques can be smoothly and reasonably integrated. Resorting to formal techniques
at these points and places should be convincing to an experienced engineer. Once ex-
periments and case-studieshave provided evidencethat theformal elementsintroduced
are accepted, one can start to investigate further possible anchor points for mathemat-
ical techniques. Then, one can base thisinvestigation on the experience gained during
thefirst phase and onthe grown formal literacy of thedesignteam. Hence, in principle,
by iterating this process, one obtainsamethod that has more and more formal elements.
Note carefully, that we do not attempt to introduce conventional techniquesto aformal
method but rather the other way around.

Relating back to our opening remarks, we can how present and discuss some im-
plications of our position towards forma methods:

Formal methods' chronic crisiswill continue aslong as. . .

...weareunableto embed mathematical techniques into conventional system de-
sign. Asfor abstraction concepts that found their way into programming languages
and design methods, we believethat apragmatic and liberal embedding of formal tech-
niques into conventional methods bears great potential. In those areas where the use
of mathematics hel psto make underlying abstractionstangibl e, precise, and subject to
mathematical reasoning, their use should be advocated. Convincing evidence in the
form of examples and case-studies should be provided. In other areas, where insisting
on pure formality makes the process cumbersome, it should not be enforced. Asan ex-
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ample, take the use of the mathematical notation Z to specify systems with complex
datarelationships: it is our experience that the result of many discussions about some
aspect of the functionality of such systems could be neatly captured on a blackboard
filled with Z schemas. We think, that it is precisely thiskind of experience, which has
led to the relatively large popularity of the Z notation. On the other hand, Z does not
seem to be quite as appropriateto specify complex control relationships, and onewould
rather prefer a notation such a Statecharts for this activity.

...we understand them as a complete technology. Formal methods are certainly
not the exclusive and superior method for the development of safety-critical systems.
It is highly questionable, judging on the basis of our own and on reported experience,
whether the current monolithical viewpoint of formal methods as a complete technol-
ogy will lead to reasonabl e and accepted practical methods. We think that the compl ex-
ity of future embedded systems will require continuing experimentation with a variety
of new techniques to tackle complexity and enhance safety, including the use of for-
mal methods. It is now generally accepted, that the use of formal methods does not
guaranteethat the designed system performs as expected, even though this myth keeps
popping up every oncein awhile. Furthermore, forma methods as such do not offer
much help in many other important aspects of engineering safety-critical systems. As
an exampl e, takethe problemto design asuitableoveral architecture of asafety-critical
system, which asmuch as possiblelocalizesand simplifiesthetruly safety-critical func-
tionality, following the guideline“keep it simple”’. A simple and transparent architec-
ture can as much contribute to the safety of a system as can the use of a verification
tool for selected critical pieces. Asanother example, take theissue of designing an ad-
equate amount of fault toleranceinto asystem so asto makeit behave predictably under
various catastrophic circumstances.

...we understand them as a mere safety technology. Forma methods are indus-
trially relevant for the engineering of any kind of complex system, not merely safety-
critical ones. With amore liberal approach to what one demands of “formal” methods,
they have the potential to also improve software engineering in general. As an exam-
pletake software and system testing whichiscertainly relevant in any complex system.
Usually, testing involves the activities of test-case definition, test data generation, and
test evaluation. However, if some abstract test cases can be specified in a suitablefor-
mal notation, then test-case evaluation, which in practice often is a labour-intensive
activity, especialy in case of regression testing, could be partialy automated.

...westriveto build monolithical support environments for them. Tool support
is mandatory for formal methods to become accepted in practice. From what we have
said so far, it does not make much sense to attempt to build a monolithic support en-
vironment for a single method. Instead, loosely coupled tools should be constructed.
For them to cooperate smoothly, a common software architecture should be designed.
Toolsthat are needed are primarily mathematical assistantsthat capture knowledge of
notations, formalisms, and mathematical structuresthat are relevant for system design
much in the tradition of, e.g. Mathematica.

Intheremainder of thispaper wewill try to further explain andillustrate our positionby
describing the way we are investigating forma methodsin the context of three ongoing



projectsat the Technical University of Berlin: thedevel opment of asimulation environ-
ment for energy-transducing systems, theformalization of traditional design processes,
and the embedding of mathematical techniquesinto object-oriented system engineer-

ing.

2 Elementsof formal methodsfor dynamic ssmulation

Theam of an ongoing interdisciplinary research project isto design and to implement
an object-oriented simul ationenvironment for dynamical systems. Itisusedtosimulate
complex energy-transducing systems(e.g. acity with energy producers and consumers)
and to answer guestions about performance related, economical, or ecological aspects
of such systems. The environment comprises an object-oriented simulation language,
together with its compiler, run-time system and a family of mathematical solvers, a
graphical user-interface, and alibrary of model componentsfrom which more complex
systems can be constructed. Thisenvironment is being devel oped in close cooperation
with various engineering departments using techniques of modern software engineer-
ing, likecompiler constructiontools, interface builders, and configuration management
tools.

It has not been intended to use formal methodsfor the construction of thisenviron-
ment. We rather propose to introduce elements of formal methods to the devel opment
of dynamic simulations. This processis a specia case of program development and
in practice it shows many of the same deficiencies. On the other hand, the basis from
which one startsto develop asimulation is, at least mathematically, well defined.

A dynamical systemis modeled in principle by a set of differential and algebraic
equations that express the relationshi ps between the observable quantities of the sys-
tem. In order to simulate the system, its mathematical modd is usualy directly trans-
lated into code expressed in a simulation language. The humerical computations are
either directly implemented with the numerical operationsof the language or indirectly
by making use of mathematical solversthat come with the runtime system of the lan-
guage. Various simulations are then carried out. By comparing the results with ex-
pected, estimated or measured values, the model that has been the basis of the simula-
tionisvalidated.

Themathematical model thusserves asa specificationfor thesimulationcode. This
isfine and sufficient, as long as the system is not very complex. However, in the con-
text of large systems — like the above mentioned energy-transducing systems — that
are structured into subsystems and model ed by thousands of equations, the step from
the mathematical model directly to the simulation code is too large and error-prone.
For instance, many local computationsor local optimizationsare needed to get around
certain numerical constraints. What is needed is a computational mode of the system
that takes into account computational aspects of the system, which are ignored by the
mathematics but which are important once the system isto be simulated by a machine.

Our approach to obtain such a computationa model isto design an object-oriented
specification language for hybrid systems. A hybrid system contains discrete and con-
tinuous components (such as a switch and a heater). In this language the hierarchical
structure of a system can be expressed, state variables can be named and typed, while
the rel ationshi ps between these quantities are still expressed in the language of math-



ematics. To be more precise, the specification language we are designing can be seen
as an extension of Object-Z [CDD*90]. A specification consists of a set of classes of
three different types: discrete, continuousand hybrid classes. The discrete classes cor-
respond to the classes of Object-Z. The state of a continuous classis described by con-
tinuous variables which are functions of time. The state invariant is expressed using
Z-predicates and differential and algebraic equations.

A computational model expressed in this specification language is much closer to
the mathematical model than to the simulation program expressed in asimulation lan-
guage. On the other hand, the structure of the system and the interdependence of the
subsystemsis made explicit. Side conditions, that have to hold for a subcomponent to
work properly can be formally expressed. Hence, one of theimmediate uses of such a
specificationisthat it can serve asadocumentationin alibrary of reusable components.

Once a precise semantics for the specification language has been worked out, it
will also serve as the basis for further investigations. First of all, to analyze what is
necessary to automatically generate a simulation program out of such a specification
will involve locating where numerical constraints have to become explicit. Next, it is
worthwhileto study how the notion of refinement in modeling theory isreflected inthe
computational model and how it relates to the notion of refinement from formal soft-
ware development. Thisisimportant in the context of adaptive simulation. Take for
instance abuilding as an energy consumer. It can be modeled either as a single unit by
specifying how much energy it consumes as a function of time. In order to have more
preciseresults, themodel can berefined to takeinto account that the buildingismade up
of roomswith walls and windows, which are modeled in turn and which are composed
toformthebuilding. Finally, the parallelization of simulationson thelevel of modelsis
of great interest if onewantsto simulatelarge systems. Parallelization of simulationin
general isan important research area because simulation in general and the simulation
of large systemsis very computation intensive. We want to investigate ways to make
the independence of subsystemsof alarge system explicit, allowing the subsystemsto
be simulatedin parallel. We believe that this can be much better expressed at the level
of the computational model than at thelevel of the simulation program. Furthermore, at
thislevel, thetradeoff in precision by simulatingin parallel should be easier to anayze.

What we have described in the previousparagraph are very tentativeresearch goals.
But the motivation behind these goals should have become clear: We tried to isolate
areas where formal techniques can be profitably applied. By doing this, we hope on
the one hand to make as much use of the results of formal methods and on the other
hand to experiment with, to adapt, and to extend on these resultsin arestricted field of
system design.

3 Formalizing elementsof traditional methods

The project we describe now has the aim to make the formalization of elements of tra-
ditional software development methods possible. The motivation for such a formal-
ization is the aim to positively guarantee certain semantic properties of the product.
Examples of such properties for programs are correctness or complexity. For specifi-
cations, one might wish to show that one function is the inverse of another, or that the
system —if implemented correctly — cannot enter certain undesirable states.



Thisapproach avoidsto impose a prescribed and unflexibl e style of working on the
users of formal methods. Formal methods are adapted to traditional software devel op-
ment processes, instead of vice versa.

Our contribution mainly consists of two parts: its basisisthe notion of strategy as
a knowledge representation mechanism [Hei94] which makes it possible to formally
describe software development activities. To make strategies practically applicable,
a generic system architecture has been designed [HSZ94] that provides a straightfor-
ward implementation technique for systems supporting strategy-based software devel-
opment.

Formalizing processesasstrategies. Strategies describe possible steps during a de-
velopment. Examples are how to decompose a system design to guarantee a particul ar
property, how to conduct a data refinement, or how to implement a particular class of
algorithms. This kind of knowledge can be found in text books on software engineer-
ing.

Technically, the purpose of astrategy isto find a suitable sol ution to some software
development problem, e.g. to set up aformal specification faithfully reflecting some
given requirements, or to develop a program that meets a given specification.

A strategy works by problem reduction. For agiven problem, it determinesanum-
ber of subproblems. From their solutions the strategy produces a solution to the ini-
tial problem. Finally, it testsif that solution is acceptabl e according to some notion of
acceptability. The solutions to subproblems are naturally obtained by strategy appli-
cationsas well. In general, the subproblems of a strategy are not independent of each
other and of the solutions to other subproblems. This restricts the order in which the
various subproblems can be set up and solved.

A strategy describes how exactly the subproblems are constructed, how the final
solution is assembled, and how to check whether this solution is acceptable or not.

The generic system architecture. The definition of strategies is parameterized by
the notionsof problem, solution, and acceptability. Therefore, itis possibleto designa
generic system architecture to support strategy-based devel opment processes. Thetwo
most important components of the architecture are the strategy base and the devel op-
ment tree.

A development consists of aloop of strategy applications. The intermediate states
of the devel opment are represented by the development tree. Its nodes contain a prob-
lem and its solution (once it has been found), and references to its children and to sib-
lingsit dependson. Each new strategy application causesthe devel opment treeto be ex-
tended, if the strategy reduces the problem to some subproblems. Otherwise, the prob-
lemissolvedimmediately, and the solutionisrecorded in therespectivenode. When all
subproblems of a problem have been solved, its sol ution can be assembled from the so-
lutionsto the subproblems. The development is finished when all problems have been
solved. Representing the state of development as a data structure makes it possibleto
obtain an overview of the development at any time.

Theavailable strategiesare stored in the strategy base. It consists of modules, each
of which implements asingle strategy. Strategy modules are defined in auniform way.
Due to thisfact, new strategies can be incorporated in a routine way. As aresult, the
system becomeswhat one might call locally customizable. Thismeans that aninstance
of the architecture can easily be enhanced to serveits purpose better than before.
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Moreover, the genericity of the system architecture guarantees for its global cus-
tomizability. Changing the definition of problems, solutions, and acceptability means
to obtain a support system for a new activity in software devel opment. This makesthe
architecture agood instrument to support different software engineering activitieswith
different degrees of formality or rigor.

This system architecture has been implemented in a prototype program synthesis
system, called |OSS (Integrated Open Synthesis System) [HSZ94].

We have stressed that a non-monolithic application of formal methods is essentia for
their acceptance in practice. The approach described above follows this philosophy.
Strategies and their application can be embedded into traditional software processes.
These are performed nearly as before, except that some parts are now formalized and
machine-supported. Theformalized partswill require a certain degree of expertise, but
thisistheinevitableprice of being ableto guarantee semantic propertiesof the software
product.

Without machine support, strategy-based software development would be a hope-
less enterprise. But not any system will do: the kind of tool support is crucial. In a
first (and now discarded) version of 0SS, strategies were monolithic functions. As a
result, incomplete parts of the development were only contained in the run-time stack
of the system. Thismade it impossibleto get an overview of the devel opment; incom-
plete devel opments could not be stored. These and other restrictionsmadeit very hard
to develop nontrivia programs.

With the new architecture, not only do different methods within one phase of the
software devel opment processbecome compatible. It isal so conceivableto support dif-
ferent phases with different instantiationsof the architecture. Since these behave simi-
larly, it iseasier for developersto work with different instantiationsof the architecture
than with entirely different tools.

4 Mathematical elementsin object-oriented design

In thisproject wetry to identify areas where mathematical techniques could be embed-
dedinto abject-oriented design. Thereareessentially threereasonsfor concentrating on
object-oriented design: it incorporates the current state of the art with respect to many
well-known problems of complex system design, it is of growing practical relevance,
and we think that mathematical techniques can be embedded particularly well into cer-
tain parts of the object-oriented paradigm. We will try to sketch some of theseareasin
the following discussions.

Themain issue of object-oriented analysis and design isto identify adequate con-
ceptua abstractionsfor a particular application and then to design a class architecture
around them. From a mathematically-abstract viewpoint, each class interface induces
atheory in which the abstract behavior of theclass, i.e., state space, stateinvariant, and
the behavior of its objects, is specified and properties about this behavior are derived.
Another important part of this theory are mathematical descriptions of the behavioral
contractsof theclassoperations, i.e., the preconditionthat clientsof thisoperation have
to ensure when expecting the operation to work properly, and the postcondition that
the operation guarantees to be true after its execution. We think that the formal spec-
ification of key parts of this theory during design can be of significant value for the



clarification of complex behavior. However, we only advocate for a partia and liberal
embedding of such specifications into class interfaces, in particular, we do not want
to enforce the mathematical modeling of low-level aspects such as storage allocation,
exception handling, or process synchronization.

In practice, object-oriented design is often described using various diagrammatic
notations or textual fragments of some object-oriented programming language. The
class architecture is usualy represented in class diagrams [Boo94]. These diagrams
describe various kinds of information, e.g. inheritance rel ationships, constraintson the
state space, naming of classes and operations, visibility relationships, parameters of
aclass, cardinality constraints, and other more general associations between classes.
Roughly speaking, the interface specification of a class induces this information and
can thus be seen asamodel of the class diagram. An interesting problem, however, is
how to deal with relationshipsbetween classes, such as cardinality constrai nts between
attributes of classes. Specifications of classinterfaces |ocalize the modeling of thisin-
formation in specia attributes, or in states and invariants of particular classes. |deally
however, information of thiskind should be expressed with mathematical elementsem-
bedded into class diagrams.

Thereactive behavior of classesis often specified in state transition diagrams, such
as Statecharts. It remains an interesting topic to study the relationship between State-
charts and a mathematical notation such as Z, especialy with respect to stepwise de-
compoasition and the proof of safety properties. Again, the approach would be to em-
bed elements of mathematical specificationsinto Statechartsin order to derive selected
safety properties rather than the other way around.

During analysis and design, it is a common technique to identify and describe a
number of expected working scenarios of the system. Such scenarios are often de-
scribed in so-called object diagram (or the closely-related configuration diagrams or
interaction diagrams). Similar to class diagrams, object diagrams illustrate the col-
lective behavior of several classes rather than a particular individual class. Especialy
during analysis, they are meant to give rigorous but not fully detailed behavioral spec-
ification, so asto indicate a certain strategy or patternin which various objectsinteract
to cooperatively achieve some goal. In some cases, object diagrams overlap with the
mathematical specification of postconditions of operations, i.e., sometimes the post-
conditionisamathematical description of the collective effects of other operations. In
other cases, however, object diagramsrather correspond to implementati onsof abstract
postconditions. Thus, we think that object diagrams could benefit from the incorpora-
tion of mathematical elements.

Data refinement is the stepwise process of refining abstract descriptions of classes
to more concrete ones, in the sensethat the structures and operationsin concrete classes
are closer to an efficient implementation in an object-oriented programming language.
Obj ect-oriented devel opment seemsto deal with datarefinement in two heterogeneous
forms: either within inheritancetrees, in case of true subtyping, or within architectural
level sof abstract machines, each expressed by acluster of classes. Wethink that in both
of them the embedding of mathematical elements, such as the mathematical definition
of arefinement relation, could very much clarify system design.

In summary, we havetried to point out how mathematical €l ementscould be hel pful
when embedded into structures of object-oriented design, in particular classinterfaces,
classdiagrams, Statecharts, object diagrams, and datarefinement relationships. We are
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aware that the above remarks are rather genera, but still we think that they can form
part of abasisfor developing a practicaly interesting approach. We prefer to develop
such an approach withinamixed academic/industrial setting, concentrating on practical
case studies.

5 Conclusion

In the preceding sections, we have presented ongoing research projects of our group.
Even though they are quite heterogenous in their topics and methods they share the
common philosophy that was outlinedin thefirst section. Interaction between thethree
projectsispossibleand is actively pursued. We are convinced that it is not conceivable
to find a wide-spanning method designed to replace traditional processes as a whole.
Weinstead try to identify different areas where forma methods can be helpful and de-
velop approaches to support these with appropriate means. Finally, we would like to
stressthat research on formal methods hasto keep up with the ongoing research in soft-
ware engineering. We should not only try to support established techniques with for-
mal methods. These could be out of datein afew years. Instead, research on formal
methods should concentrate on novel and promising new techniquesin software engi-
neering.
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