Six Steps Towards Provably Safe Software

Maritta Heisel

Technische Universitat Berlin
FB Informatik — FG Softwaretechnik
Franklinstr. 28-29, Sekr. FR 5-6
D-10587 Berlin
heisel@cs.tu-berlin.de
fax: (+49-30) 314-73488

Abstract

We present an approach to the specification and implementation of
provably safe software. It uses well-established tools and techniques that
are usually employed to ensure correctness, rather than safety, of soft-
ware. The approach comprises six steps, each of which is complemented
by some proof obligations. For each step, the safety-related aspects are
clearly elaborated. Thus, designers of safety-critical systems are given
guidance that helps to avoid potentially dangerous gaps in the specifica-
tion of the system’s safety properties.

1 The General Setting

The aim of this work is to support the development of provably safe software.
Since a safety proof cannot be obtained by conventional software engineering
techniques, we use formal methods to achieve this goal. Formal methods as they
are used today mostly have the sole purpose of guaranteeing the correctness
of software. This means, the software is to implement a certain functional-
ity. Software safety, on the other hand, is not so much concerned with the
implemented functionality. Instead, it must be guaranteed that certain unde-
sirable states are not entered. Moreover, the interaction of the system with 1ts
environment plays a crucial role.

Our approach covers the specification as well as the implementation of
safety-critical software. As a specification language, we have chosen the model-
based language 7 [Spi92b]. In Z, system states are modeled explicitly. This is
in accordance with the fact that most embedded safety-critical systems have a
state. For the implementation of specifications, the program synthesis system
TOSS (Integrated Open Synthesis System) designed by the author [HSZ95b]
is used. TOSS supports the implementation of imperative programs and thus
matches well with Z.

The choice of these formalisms, however, imposes some limitations on our
approach: distributed systems, parallelism and real-time requirements cannot



be treated in full generality! because 7 has no means to express the correspond-
ing notions.

The approach consists of six steps to be performed, each of which comes
with some proof obligations. For each step, its safety-related aspects are high-
lighted. Their description can serve as a checklist, thus providing guidance for
the designers of safety-critical systems.

In the next section, 7 and TOSS are introduced. Then the steps of our
approach are explained in some detail, followed by an example. Finally, related
work is discussed and an assessment of the approach is given.

2 Z and IOSS

We have chosen the specification language Z because it has gained consider-
able popularity in industry and comes equipped not only with a methodology
[PSTI1] but also with some tool support, e.g. for type checking [Spi92a] and
theorem proving [BG94]. Z is designed to specify state-based systems which is
in good accordance with the reality of safety-critical systems. An undeniable
deficiency of Z is the fact that neither time nor complex control structures can
be specified.

The author’s synthesis system 10SS supports the development of imperative
programs using so-called strategies, [Hei94, HSZ95b]. Strategies describe pos-
sible steps during the synthesis process. Their purpose is to find a suitable
solution to some programming problem. A strategy works by problem reduc-
tion. For a given problem, it determines a number of subproblems. From their
solutions, 1t produces a solution to the initial problem. Finally, it checks if
that solution is acceptable. The solutions to subproblems are also obtained by
applications of strategies. In general, the subproblems produced by a strategy
are not independent of each other or of the solutions to other subproblems.
This restricts the order in which the various subproblems can be set up and
solved. A strategy describes how exactly the subproblems are constructed,
how the final solution is assembled, and how to check whether this solution is
acceptable.

Programming problems are basically specifications, expressed as pre- and
postconditions of first-order predicate logic. A complete definition is given in
Section 4.2.1. Solutions are basically programs in a Pascal-like language. A so-
lution is acceptable if and only if the program is totally correct with respect to
the specification and additionally fulfills some variable conditions (see Section
4.2.1). For each developed program a formal proof in dynamic logic [Gol82]
is constructed. This is a logic designed to prove properties of imperative pro-
grams. The proofs are represented as tree structures that can be inspected at
any time during development.

Program synthesis with TOSS consists of a loop of strategy applications.
The intermediate states of the development are represented by a data structure

ISimple time constraints can be modeled with timers and thus be specified in Z, see Section
4.



5 [ |

Hle Edit View Graph

Dy It Tree: Current Problem:
= o
= ot =, il A
i = fix58
it pern{a, al}
I sorted{a, 1, n}
heapia, null, i}
Backtrack le{null, i}
TS le{i, n}
Automatic Assignment gea{seq(a, i, n), segla, null, i)}
Manual Assignment le{null, n} B
Skip |
Strengthening
State Variable
Lo true A
|| feeemia, ey
F ioint Goal sorted{a, 1, n}
strengthening Disji IM-_ hosp (o) Wil 4
Protaction leqrmnll, i}
Intermediata Assertion Lle{i, n}
e o e gealsegfa, i, n), segla, mull, i)} T
Conditional i o
Disjunctive Conditional
e Goals:
" Ts(i, £ixgs) X
manual_assignment |

Vanahles:

Input: n

Result: |2, 1
‘State:|£ix58, al

1 el

Figure 1: The TOSS interface

called development tree. Its nodes contain a problem and its solution (once it
has been found). Representing the state of development as a data structure
makes it possible to obtain an overview of the development at any time. Each
new strategy application causes the development tree to be extended, if the
strategy reduces the problem to a number of subproblems. Otherwise, the
problem is solved immediately, and the solution is recorded in the respective
node. When all subproblems of a problem have been solved, its solution can be
assembled from the solutions to the subproblems. The development is finished
when all problems have been solved. The result of the development process is
the final development tree.

The strategy base of IOSS contains formalized development knowledge in
form of strategy modules. A number of interactive, semi-automatic and fully
automatic strategies have been implemented. In the current version, they are
oriented on programming language constructs. In the near future, higher level
strategies, e.g. for the development of divide-and-conquer algorithms or re-
usable procedures, will be built in. A complete description of the available
strategies can be found in [Hei94].

Figure 1 shows the general interface of 10SS. The main window displays
the development task, represented by the development tree — on the left-hand
side of the window — and the specification of the current problem — on the
right-hand side of the window. The tree visualizes the process and the state
of development. Each node is labeled with the name of the strategy applied



to it. The state of the node is color coded, showing at a glance whether it
is reducible, or solved, etc. The strategy menu is shown in the center of the
window. Applications of strategies, inspection of nodes or the proof tree and
graph manipulations like scaling are performed via mouse clicks or pull-down
menus. For a more complete description of 10SS, the reader is referred to

[HSZ95a, HSZ95b].

The combination of Z and TOSS can be achieved easily: since both formalisms
allow for states and have concepts to deal with changing values of variables,
7, specifications can mechanically be translated into TOSS programming prob-
lems. The translation mechanism as well as the synthesis process resembles the
approach of the refinement calculus [Woo91b] and are described in more detail
in Section 4.2.

3 The Six Steps in Detail

Table 1 gives an overview of the proposed procedure. The first three steps give
a guideline how to set up the specification of a system, where special attention
is devoted to the safety requirements. In general it will not be possible to carry
out these steps independently of each other and without iteration. Instead, a
process resembling the spiral model of software development will have to be
employed. The last three steps describe how to perform the transition from a
mere specification to a correct (and thus safe) program.

Step 1 The definition of the legal states must comprise the safety require-
ments as well as other properties of the legal states. We do not deal with the
question how this specification is obtained. It can be set up by one party, treat-
ing functional as well as safety requirements. Another possibility is to set up two
specifications, a functional and a safety specification, by different parties and
then show that the safety requirements are entailed by the functional specifica-
tion. The latter approach can be used to double-check the safety requirements,
or it may be enforced by certification procedures or safety standards.

Once the legal states are defined, an initial state should be given. This is not
only in accordance with the recommended Z methodology but also with other
formalisms like finite state machines or statecharts where one has to define
start states or default states. In showing that the initial state is legal, we also
demonstrate that the requirements for legal states are satisfiable.

Step 2 The actions of the system can be triggered either by outside events or
by the system itself. In Z, they are defined by operations that may change the
system state. The analysis of the conditions under which the actions transform
legal states into legal states is done by precondition analysis. This analysis
yields the condition that must hold if the state reached after execution of the
operation is legal, provided the state before execution of the operation is. If
the precondition is not trivial, it must be taken care that the operation is only
executed when its precondition holds.



No.| Step Proof Obligations

1 Define the legal states of the | Show that the initial state is legal.

system.
2 Define the actions the system can | Analyze the conditions under which
perform. the actions transform legal states

into legal states.

3 Define the interface of the system | Show that the internal system oper-
to the outside world. ations are only invoked if their pre-
conditions are satisfied.

Show that for each combination of
sensor values exactly one internal
operation is invoked.

Show that — if the sensors work cor-
rectly — the system faithfully repre-
sents the state of its environment.

4 Refine the data and operations of | Show the correctness of the
the specification until data and | refinements.

control structures of the target
programming language can be
used.

5 Transform the specification ob- | Show the correctness of the algo-
tained in Step 5 into a form suit- | rithm performing this task.

able for the program synthesis
system.

6 Use the synthesis system to ob- | Proof obligations are generated by
tain a proven correct implemen- | the synthesis system.
tation of the specified system.

Table 1: Steps and Proof Obligations

Analyzing preconditions also helps to detect design errors. If the precondi-
tion of an operation turns out to be false, the operation cannot be executed at
all (or it would lead to an illegal state). This clearly shows that something is
wrong with the design of the operation or even the whole system.

So far, we have applied standard 7Z methodology. The next step deals with the
peculiarities of safe software. For software safety, the environment in which the
software operates has to be taken into account. This is achieved by modeling
the environment using sensors and by performing consistency checks on sensor
values.

Step 3 In order to define the interface between the system and the outside
world, sensors must be modeled that enable the system to detect situations
to which 1t must react. It must also be specified how the system reacts to
possible sensor values and/or failures. We advocate to model the system so
as to provide exactly one internal operation for each combination of sensor
values. This guarantees that each situation is taken care of and yields a clear




and comprehensible interface. It is not strictly necessary to show that for each
combination of sensor values exactly one internal operation is invoked. We
introduce this proof obligation to encourage developers to design their systems
as clear and simple as possible. The other two proof obligations, however, are
necessary to ensure the system’s safety.

Once step 3 is performed, it is guaranteed that the state internally main-
tained by the software always fulfills the safety requirements and that this state
is consistent with the state of the environment, under the condition that fail-
ure of sensors can be detected. It follows that (under the same condition) also
the “real” system state is safe, provided the implementation of the software is
correct.

Remark concerning proof obligations. The proofs that have to be carried
out are standard and fairly simple. However, there are a lot of them to do.
Until now, specialized tool support for this purpose with a sufficient degree of
automation is not yet available. Full-fledged first-order theorem provers are
not necessary because the proof obligations often have the form of existentially
quantified statements, with equations for the existentially quantified variables.
We believe that the construction of mostly automatic, specialized provers for
the proof obligations occurring in this context poses no severe problems.

The steps presented so far only dealt with the specification of safe software. A
model of the system has been defined, and it has been shown that this model
behaves safely. The following steps are concerned with the correct implemen-
tation of this model. They are not presented in so much detail because they
follow a methodology that is common for the application of formal methods.

Step 4 What refinement means and how it is performed is described in the
literature, e.g. [Woo9la]. This step is not necessary if the data structures
involved are available in the target programming language. On the other hand,
it is also possible that several refinement steps are necessary.

Step 5 The Z specifications are transformed into IOSS programming prob-
lems, as described in Section 4.2.

Step 6 The program synthesis guarantees that the concrete states of the
implementation are always safe, provided the abstract states of the system
model are.

4 Example: A Microwave Oven

We exemplify our approach with a simple microwave oven. The description of
the oven (which is taken from [SM92]) is as follows:

1. There 1s a single control button available for the user of the oven. If the
oven door is closed and you push the button, the oven will cook (that is,
energize the power tube) for 1 minute.



4.1

If you push the button at any time when the oven is cooking, you get an
additional minute of cooking time.

Pushing the button when the door is open has no effect.

There is a light inside the oven. Any time the oven is cooking, the light
must be turned on. Any time the door is open, the light must be on.
You can stop the cooking by opening the door.

If you close the door, the light goes out. This is the normal configuration
when someone has just placed food inside the oven but has not yet pushed
the control button.

If the oven times out (cooks until the desired preset time), it turns off
both the power tube and the light. It then emits a warning beep to tell
you that the food is ready.

Specification

Two hazardous situations can be identified for the microwave oven. (i) If the
power tube is on while the door is open, there is a severe risk of human injury.
(i1) If the light is off while the power tube is on, a boiling over of food may
remain unnoticed and can cause a damage of the oven or even set it on fire.
Requirement (i) is certainly more important than (ii). We will come back to
this in Section 5.3.

Step 1: Define the legal states of the system. The interesting compo-
nents of the microwave oven can take on two possible states.

MICROWAVE_STATE ::= energized | de_energized
LIGHT_STATE ::= on | off

DOOR_STATE ::= open | closed

TIMER_STATE ::= running | halted
BEEPER_STATE ::= silent | beeping

The global state of the oven must reflect the safety requirements which are
expressed in the first two lines of the state invariant. The other predicates of
the following state schema reflect the natural language description given above.

_ MicrowaveOven
power_tube : MICROWAVE_STATE
light - LIGHT_STATE
door : DOOR_STATE
timer : TIMER_STATE
ttmer_value : N

beeper : BEEPFR_STATE

door = open = power_tube = de_energized

power_tube = energized = light = on

door = open = light = on

door = closed A\ power_tube = de_energized = light = off
power_tube = energized & timer = running

timer_value # 0 = beeper = silent




The initial state describes the microwave oven as you can buy it in a store.
Tt fulfills the state invariant. The decoration “/” of variable names means that
they describe the state after an operation is completed. Plain variables describe
the state in which an operation is started.

_ MicrowaveQOuenlinit
. 1
Microwave Quven

power_tube’ = de_energized
light' = off

door’ = closed

timer' = halted
timer_value’ = 0

beeper’ = silent

Step 2: Define the actions the system can perform. As a user of the
oven, you can open and close its door and push the control button. Moreover,
there are state-changing operations that are only indirectly invoked by the user.
These have to do with the behavior of the timer.

— OpenlDoor

A Microwave Quen

door = closed

power_tube’ = de_energized
light' = on

door’ = open

timer' = halted

. 1
timer_value’ = 0

beeper’ = silent

This operation may only be invoked when the door is closed (precondition
door = closed). Tt then leads to a legal state?. “AMicrowaveQuven” means
that the state of the oven may change. The operation CloseDoor is defined
analogously, with precondition door = open.

For the control button, we have to distinguish whether it is pushed when
the door 1s open or when the door is closed.

2This holds for the other operations, too. Therefore, we will not mention this any more
in the following.



_ PressButtonDoorClosed

A MicrowaveOven

door =tclzsleci vized —_ PressButtonDoorOpen
p'owelr_ ube = energize =Microwave Qven
light' = on

door' = door door = open

timer’ = running
timer_value' = timer_value + 60
beeper’ = silent

The schema on the right-hand side specifies that the state of the oven does
not change when the button is pushed while the door is open. When the button
is pressed, one of the two above operations will be invoked:

PressButton = PressButtonDoorClosed V PressButtonDoorOpen

The combined operation has the precondition true, because the door must
be either closed or open, according to the definition of DOOR_STATE.

The timer can either be running or halted or get a timeout. In the first
case, just the time value is decreased (precondition: timer = running A
timer_value > 0). In the second case, nothing happens (precondition: timer =
halted). The third case occurs when the timer is running and reaches the value
0 (precondition: timer = running A timer_value = 0).

_ TimerRuns __ TimeOut

A Microwave OQven A Microwave OQven

timer = running
timer_value = 0

timer = running
timer_value > 0

beeper’ = beeper

power_tube’ = power_tube power_tube’ = de_energized
light' = light light' = off

door’ = door door’ = closed

timer’ = timer timer' = halted
timer_value' = timer_value — 1 timer_value' = timer_value

beeper’ = beeping

__TimerHalted

ZMicrowave OQven

timmer = halted

When the timer is timed out, the beeper starts beeping. In the natural
language description, nothing was said about how long the beeper should beep.
For simplicity, we decide not to define an extra operation that switches off the
beeper but make use of the fact that opening the door does the job.



Again, these cases are combined to form the operation Timer with precon-
dition true.

Timer = TimerRuns V TimeQut V TimerHalted

The next operation is only needed because not only the correct functioning
but also the safety of the microwave oven are of interest: when something
unforeseen happens, the oven must enter a safe state. Of course, this operation
has no precondition.

_ EmergencyShutdown
A MicrowaveOven

power_tube’ = de_energized
light' = off

door’ = door

timer' = halted
timer_value’ = 0

beeper’ = silent

Step 3: Define the interface of the system to the outside world. The
connection of the internal system state and the environment is modeled by
sensors telling if the door is open or closed and if the button is pressed or not.
We assume that a failure of the door sensor is detectable.

DOOR_SENSOR ::= door_open | door_closed | failed
BUTTON_SENSOR ::= pressed | released

The sensor values are connected to internal operations via the following
schema that has the sensor values as input parameters:

__ FExternalFvents
A Microwave Quen
ds?: DOOR_SENSOR
bs?: BUTTON_SENSOR

ds? = failed = EmergencyShutdown
ds? = door_open A door = closed = OpenDoor
ds? = door_closed N door = open = CloseDoor
bs? = pressed A (ds? = door_open A door = open
V ds? = door_closed A door = closed) = PressButton
bs? = released A (ds? = door_open A door = open
V ds? = door_closed A door = closed) = Timer

This means that a pressed button is ignored if at the same time the door
is moved. A door movement is sensed by comparing the sensor value with the
internal variable storing the door state. Only if those two are equal the internal



operation PressButton is invoked. If neither the door is moved nor the button is
pressed, the Timer operation is invoked. This operation is deterministic since
the preconditions of the disjuncts exclude each other. Hence FEzternalFvents
is also deterministic. For each constellation of the sensors exactly one internal
operation is invoked.

4.2 Implementation

Step 4 is not necessary for the microwave oven because the specification does
not make use of any non-trivial data structures.

4.2.1 Step 5: Translation into 105S Format.

Problems to be solved with 10SS are specifications of programs, expressed as
pre- and postconditions that are formulas of first-order predicate logic. To
aid focusing on the relevant parts of the task, the postcondition is divided
into two parts, invartant and goal. In addition to these it has to be specified
which variables may be changed by the program (result variables), which ones
may only be read (input variables), and which variables must not occur in the
program (state variables). The latter are used to store the value of variables
before execution of the program for reference of this value in its postcondition.

The translation of a 7Z schema into an TOSS programming problem proceeds
as follows:

e Each input variable (decorated with “?”) of the Z schema becomes an
input variable of the corresponding problem.

e Bach output variable (decorated with “”) of the Z schema becomes a
result variable.

e Each variable z of the Z state schema becomes an input variable if the
schema predicate entails z = z’.

e Otherwise z becomes a result variable, and a new state variable zy is
generated for z if z occurs in the schema predicate.

e The precondition of the IOSS problem is the precondition of the Z schema
plus an equation z = z; for each introduced state variable zg.

e The invariant of the TOSS problem is the invariant of the 7 schema defin-
ing the system state.

e The goal of the TOSS problem consists of those conjuncts of the schema
predicate that depend on result variables of the TOSS problem, where
dashed variables have to be replaced by plain variables and plain variables
have to be replaced by their corresponding state variables.

As an example, we consider the implementation of the schema PressButton-
Door Closed. The above algorithm yields:



input variables:  door
result variables:  power_tube, light, timer, timer_value, beeper
state variables: timer_valueg

precondition: door = closed A timer_value = timer_valueg
Invariant: see MicrowaveQuven
goal: power_tube = energized A light = on A timer = running A

timer_value = timer_valuey + 60 A beeper = silent

4.2.2  Step 6: Synthesis of a Sample Program.

We assume that the the light, the timer and the beeper can be switched on
and off by setting the corresponding variables accordingly®. The synthesis of
a procedure press_button_door_closed can then be performed completely
automatically, using the Automatic Assignment strategy shown in Figure 1,
because for each result variable we have an equation in the goal that can be
transformed into an assignment statement. Note that PressButtonDoorClosed
is embedded in the schema PressButton. To implement this schema, one de-
velops a conditional (motivated by the “v”, using the Disjunctive Conditional
strategy): if door = closed then press_button_door_closed else skip fi,

where skip is the program that does nothing.

5 Discussion

Now that our approach is presented in some detail, we can relate it to other
work in the field, compare software safety with correctness and reliability, and
finally discuss its merits as well as its drawbacks.

5.1 Related Work

Our choice of 7 for the specification of safety-critical systems is not completely
out of the way, as a look at the literature shows. Several case studies have
been performed using the specification language VDM [Jon90], e.g. the British
government regulations for storing explosives [MS93], a railway interlocking
system [Han94], and a water-level monitoring system [Wil94]. VDM and Z are
based on similar concepts and have the same expressive power (and weaknesses).
Mukherjee’s and Stavridou’s as well as Hansen’s work, however, place the focus
on the adequate modeling of safety requirements, independently of the fact if
software is employed or not. Consequently, they do not discuss issues specific
to the construction of safe software.
Williams [Wil94] assesses safety specifications. His conclusions are:

1. “Methods used for the development of safety-critical systems should have
well-defined criteria for ensuring the specification’s completeness and con-
sistency.”

31f more sophisticated procedures are needed, the right-hand sides of the assignments can
be replaced by calls to the respective procedures.



2. “The use of theorem proving is not limited to the verification of refinement
steps. ...”

3. “Reviews can be an effective means of detecting errors in formal specifi-
cations.”

4. “A formal statement of the safety requirements should be a part of the
formal system specification. ...”

5. “The use of CASE tools can help eliminate simple syntactic errors in
model-based specifications. ...”

Our approach fulfills most of these requirements. The completeness crite-
rion is expressed in the proof obligation to show that for each combination of
sensor values exactly one internal operation is invoked. Consistency is taken
care of by the first three proof obligations shown in Table 1. The proof obliga-
tions introduced by our approach exceed the ones occurring in refinement steps.
Reviews are not an explicit part of our process model but of course they are en-
couraged. According to Step 1, the fourth requirement is also fulfilled. Finally,
we used the fuzz checker [Spi92a] to check all of the specifications contained in
this paper, in order to eliminate simple syntactic errors.

The goals pursued by Halang and Kramer [HK94] are similar to ours. They
present a development process, from the formalization of requirements to the
testing of the constructed program. Their focus is on programmable logic
controllers. As formalisms they use the specification language Obj and the
Hoare calculus, where their choice 1s motivated by the tool support available.
Both of these formalisms are weaker than the ones we chose. Obj only allows
to state conditional equations, and the Hoare calculus is a proper subset of
dynamic logic.

Like our work, Moser’s and Melliar-Smith’s approach to the formal verifica-
tion of safety-critical systems, [MMS90], comprises the specification, design and
implementation phases. The transition from an abstract top-level specification
to a detailed specification suitable as a basis for program development is done
by stepwise refinement. This activity is covered by Step 4 of our approach.
Moser and Melliar-Smith use a reliability model for the processors that execute
the program. This enables them to take computer failures into account, an
aspect not covered by this work. On the other hand, they do not consider the
validation of the top-level specification, an issue that is of much importance for
us, see the proof obligations of Steps 1-3.

5.2 Relation to Correctness and Reliability

In general, safety, correctness and reliability share the goal to make software
more dependable. In detail, however, they have to be distinguished carefully.

Safety vs. Correctness. One might consider safety a weaker requirement
than correctness. Leveson [Lev86] states “We assume that, by definition, the
correct states are safe.” The example of the microwave oven, however, shows
that safety concerns have an influence on what is considered a correct state.



To ensure its safety, we defined the schema EmergencyShutdown that switches
off the microwave as soon as a failure of the door sensor is detected. This
situation is not taken into account when only the correctness of the software is
of interest because correctness is a relation solely between a specification and
a program. Failures of technical equipment are of no interest in correctness
considerations. Hence, we think that the development of safe software has
to proceed differently: the environment in which the software operates must
explicitly be modeled. This difference is not of a technical, but of a pragmatic
nature.

Safety vs. Reliability. Our example study shows that reliability and safety
can be conflicting goals (see also [Lev86]). Of the safety requirements for the
microwave oven, the requirement that the power tube is de-energized when
the door is open is certainly more important than the requirement that the
light must be on when the power tube is energized. If the light bulb breaks
down, it is a reasonable decision not to invoke the “emergency shutdown” but
to sacrifice the less important safety requirement to increase availability (and
thus reliability) of the oven.

5.3 Assessment of the Approach

We conclude with a summary of the merits and drawbacks of this work.

Limitations. The approach presented here concentrates on the software as-
pects of safety-critical systems. Nothing can be guaranteed about the hardware.
For instance, if the sensors yield false values, the system can enter a non-safe
state because the software controls the system according to the sensor values.
This limitation cannot be overcome by means concerning the software alone.
Instead, fault tolerance methods like redundancy and consistency checks have
to be applied.

Moreover, it is not possible to deal with absolute time measures in the
formalisms we have chosen. If it is, e.g., necessary that a component reacts
within 2 ms, then this cannot be guaranteed with our approach. The maximum
execution time of the specified operations cannot be specified in Z, and we are
not aware of any formal methods that allow one to prove maximum execution
time of programs in higher-level languages*. Finally, our formalisms are not
suitable to develop distributed or parallel systems.

As a result, the kind of safety our approach can guarantee is relative. Since
we can only guarantee that the states before and after execution of an oper-
ation are safe, the execution must be sufficiently fast, because safety cannot
be guaranteed in the intermediate states that occur during execution. It is up
to the system designers and implementors to judge if this is the case. Here,
traditional methods like testing are indispensable.

4This is true even for formalisms designed to deal with time, like temporal logic or the
duration calculus; again, these limitations come from the fact that the formalisms do not
consider the hardware on which the programs are executed.



Enhancing the Applicability of the Approach. In contrast to hardware
or power failure which are beyond our capabilities, the problem of unsafe inter-
mediate states can be treated under the condition that sequences of assignments
are considered as sufficiently fast. In this case, we can require a “safety invari-
ant” to hold before and after each sequence of assignments. Then the system
can be in an unsafe state only for the time that is needed to execute the longest
assignment sequence occurring in the implementation. With little effort, TOSS
can be extended to deal with such safety invariants.

For relatively small systems like a microwave oven, a complete formal treat-
ment certainly can be recommended because the control software is relatively
simple. The cost for a formal safety proof would be much less than potential
damages. For larger systems, however, a complete formal treatment might not
be feasible. In this case, our approach can be applied nevertheless. It is possi-
ble to formalize and prove only selected properties of the system and treat the
other requirements with traditional techniques (partial verification, [Lev9l]).
When this approach is taken, still all of the software modules have to be con-
sidered. To further reduce cost, one might exclude those parts of the software
from the verification process that can be guaranteed to be of no importance for
safety.

Contributions. Our approach provides a process model for the development
of provably safe software. Its contributions are the following:

e A detailed guidance for developers of safe software is provided, comple-
mented by clear and explicit proof obligations.

e The approach can easily be introduced and applied in an organization
because it relies on well established techniques and tools.

e The steps of the approach concerned with safety are clearly identified.

e Not only the specification but also the implementation of safety-critical
systems is covered.

Acknowledgment. Many thanks to Thomas Santen and Jan Peleska for
stimulating discussions on the topic and comments on this work.

References

[BG94] J. Bowen and M. Gordon. Z and HOL. In 7 User Workshop, Work-
shops in Computing, pages 141-167. Springer-Verlag, 1994.

[Gol82] R. Goldblatt. Aziomatising the Logic of Computer Programming.
ILNCS 130. Springer-Verlag, 1982.

[Han94] Kirsten Mark Hansen. Modelling railway interlocking systems. Avail-
able via ftp from ftp.ifad.dk, directory /pub/vdm/examples, 1994.

[Hei94]  Maritta Heisel. A formal notion of strategy for software development.
Technical Report 94-28, TU Berlin, 1994.



[HK94]

[HSZ95a]

[HSZ95b]

[Jon90]

[Lev86]

[Lev9l]

[MMS90]

[MS93]

[PSTY1]

[SM92]

[Spi92a]

[Spi92b]

[Wil94]

[Woo91a]

[Woo91b]

Wolfgang Halang and Bernd Kramer. Safety assurance in process

control. IEEFE Software, 11(1):61-67, January 1994.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. A
generic system architecture of strategy-based software development.
Technical Report 95-8, Technical University of Berlin, 1995.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. Tool
support for formal software development: A generic architecture.
In Proceedings 5-th European Software Engineering Conference,

Springer LNCS, 1995.

Cliff B. Jones. Systematic Software Development using VDM. Pren-
tice Hall, 1990.

Nancy Leveson. Software safety: Why,what, and how. Computing
Surveys, 18(2):125-163, June 1986.

Nancy Leveson. Software safety in embedded computer systems.

Communications of the ACM, 34(2):34-46, February 1991.

Louise E. Moser and P.M. Melliar-Smith.  Formal verification
of safety-critical systems. Software - Practice and Frperience,

20(8):799-821, August 1990.

Paul Mukherjee and Victoria Stavridou. The formal specification of
safety requirements for storing explosives. Formal Aspects of Com-

puting, 5:299-336, 1993.

Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal
Specification and 7. Prentice Hall, 1991.

Sally Shlaer and Stephen J. Mellor. Object Lifecycles — Modeling the
World in States. Yourdon Press, Englewood Cliffs, 1992.

J. M. Spivey. The fuzz manual. Computing Science Consultancy,
Oxford, 1992.

J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall,
2nd edition, 1992.

Lloyd Williams. Assessment of safety-critical specifications. TEEFE
Software, pages 51-60, January 1994.

J.C.P. Woodcock. An introduction to refinement in Z. In S. Prehm
and W.J. Toetenel, editors, Proc. 4-th International Symposium of
VDM Europe, Vol. 2, LNCS 552, pages 96-117. Springer-Verlag,
1991.

J.C.P. Woodcock. The refinement calculus. In S. Prehm and W.J.
Toetenel, editors, Proc. 4-th International Symposium of VDM FEu-
rope, Vol. 2, LNCS 552, pages 80-95. Springer-Verlag, 1991.



