Treatment of Time Constraints in Z — A Case Study

Maritta Heisel Friederike Nickl
Technische Universitat Berlin Ludwig-Maximilians-Universitat Munchen
FB Informatik — Softwaretechnik Institut fir Informatik
Franklinstr. 28-29, Sekr. FR 5-6 Leopoldstr. 11B
D-10587 Berlin, Germany D-80802 Miinchen, Germany
heisel@cs.tu-berlin.de nickl@informatik.uni-muenchen.de

November 13, 1995

1 Introduction

This is the first version of a specification of the transit node in Z. It is more pragmatic than the
informal specification given in [MPBT89]. Tt basically specifies the transit node as one would
probably implement it. Not each message has its own private timer, but there is a global system
time. Incoming messages are stamped with their arrival time, and if the current time is greater
than the arrival time plus a predefined constant 7', the message will not be sent any more to its
given address but will be marked as faulty and be directed to the control port out.

From time to time, an operation MarkFaults is invoked that checks for each message if 1t is
already too old, and if so, marks it as faulty. This means that the messages cannot get faulty
spontaneously. If we assume a sequential implementation of the transit node, this in turn implies
that it is possible that there are messages in the node that have exceeded the time limit but are
not yet marked as faulty. But even in a parallel implementation this problem would occur because
the operation that marks a message as faulty and the operation that regularly sends a message
out of the node access the same data. Hence, they cannot really operate in parallel. Only if we
would consider very large time grains, so that both operations can be finished within one time
unit could we guarantee that a message is marked as faulty as soon as it exceeds the time limit.

To guarantee that each message that is too old will be marked as faulty within some time
limit, we introduce a tolerance. Each message for which the current time is larger than the arrival
time plus the constant ¢timoeout plus the tolerance must be marked as faulty. The tolerance may
depend on the number of messages present in the node since the complexity of MarkFaults is at
least linear in this number. Moreover, it 1s guaranteed that no message that has exceeded the time
limit will be sent. This is checked by the sending operation.

The present specification states that there is a global system time, and that each operation
needs a positive amount of time. The requirement that the variable ct refers to the internal
clock of the target computer is stated informally because this cannot be expressed in Z. For each
operation, a function is defined that yields the time its needs for completion, depending on the
complexity of the node and the number of messages to be processed.

The papers explores the usability of the specification language 7 to model systems that underly
real-time constraints. It seems that for the present case study the modeling is adequate, or at least
as adequate as it would be possible in other specification languages. In any case, the specification
presented here is more realistic than the one given in [MPB*89].

2 Basic Definitions

It has turned out that there is no necessity to explicitly model the control ports. The control
port in receives messages that change the infrastructure of the transit node. These messages are



treated by changing the Infrastructure component of the transit node. The control port out takes
care of faulty messages when they leave the node. “Leaving the node”, however, just means that
the message 1s no longer present in the node, and this is modeled accordingly. Hence, the following
basic definitions suffice:

[DATA, ROUTE, PORT, OUTPORT, INPORT]
TIME == N,

T : TIME
tolerance : N — TIME

Vn,m:Nen>m= tolerance n > tolerance m

Ports are always bi-directional. The means, each port is associated with an input port and an
output port.

wnport : PORT — INPORT
outport : PORT — OUTPORT

Since the system time (called current time, ct) changes it must be modeled as an operation.

CurrentTime
’7 ct: TIME

Messages that reach the node just consist of a data part and a route that tells the node where
to send them.

EzternalMessage
d: DATA
r: ROUTE

When messages are stored in the node for further treatment, they receive a time stamp.

InternalMessage
d: DATA

r: ROUTE
arr_time : TIME

3 The Global System State

The transit node consists of two parts, the infrastructure and the messages waiting to be passed
on. The infrastructure consists of a number of data ports in and the same number of data ports
out. Moreover, there is a relation routemap that shows which data port out can be used for which
route.

— Infrastructure
ports : F PORT
wports : F INPORT
outports : F OUTPORT
routemap : ROUTE +— OUTPORT

inports = {p : ports e inport p}
outports = {p : ports e outport p}
ran routemap C outports




The messages to be processed are represented by the schema Message Distribution. The waiting
non-faulty messages are associated with a suitable outport, represented by the function dest (for
destination). There is also a set of faulty messages. A message is either faulty because the time
limit is exceeded or because there is no outport corresponding to the message’s route. The second
case causes a problem. Usually, one would state that each faulty message is either timed out or its
corresponding route does not belong to dom routemap. However, this is not possible because the
message’s route can be added to the transit node after the message has arrived and been inserted

into the faulty message set and before the faulty message has been sent out of the node.

MessageDistribution
|7dest . InternalMessage +— OUTPORT

faulty_msgs : F InternalMessage

The integrity constraints holding for the transit node concern the connection between the
infrastructure and the message distribution as well as the time constraints. They can only be
stated in the schema representing the entire transit node.

Before we can state these, however, we must make an auxiliary definition because we must
define a function on transit nodes that is in turn used in the integrity contraint.

TR
CurrentTime
Infrastructure
MessageDistribution

The next two functios model the internal complexity of the node, depending mostly on its
infrastructure, and the load under which the node works, depending mostly on the number of
messages in the node.

complezity - TR — N

load : TR —N
__ TransitNode
TR

V'm : dom dest ¢
m.arr_time + T + tolerance(complezity(f TR) + load(8 TR)) > ct A
m.r — dest m € routemap

You may wonder why the tolerance does not only get #dest as its argument. The reason will
become clear in Section 6 where we will define a control schema that guarantees the state invariant
to be maintained.

Again, we would like to state

VYV m : faulty_msgs e
(m.arr_time
+ T + tolerance(complerity(6 TR) + load (A TR)) < ct V
m.route ¢ dom routemap)

but because of the reason stated above this is not possible. The initial state is as follows:

__InitTransitNode
TransitNode'
ports’ = @
dest' = @
faulty_msgs’ = &




It follows that inports’, outports’ and routemap’ must also be empty. Since dom dest’ is empty,
too, the initial state fulfills the invariant.

Our aim is to define a control schema (see Section 6 that makes sure that the invariant of
the transit node is not violated. If this is the case or not depends on the execution times of the
various operations of the transit node. This execution time, in turn, depends on the complexity
and load of the node, respectively. Since we cannot define a type TransitNodeOperation whose
members are exaclty the operations on TransitNode, we have to define a seperate function yielding
the execution time for each operation we will define in the following sections.

d_add_port,d_add_route : N — TIME
d_mark_faults, d_rec_mess, d_msg_send, d_faulty_send : N — TIME

let fet_set == {d_mark_faults, d_add_port, d_add_route, d_rec_mess,
d_msg_send, d_faulty_send}
(Vf:fet_set;n,m :N e fn+ d_mark_faults n < tolerance n
An>m= fn>fm)

The constraint given here makes sure that it suffices to execute the operation MarkFaults every
second time an operation is executed. Otherwise, we always had to execute MarkFaults in order
to maintain the state invariant, and there would be no time for the operations implementing the
intended purpose of the node.

4 Operations Changing the Infrastructure

When a new pair of ports is added, no routes are associated with the outport. This is done in a
separate operation. These operations are not particularly interesting. They also will not be used
very often in practice.

__AddDataPort
A TransitNode
= MessageDistribution

p?: PORT

p? & ports

ports’ = ports U {p?}

inports’ = inports U {inport p?}

outports’ = outports U {outport p?}

routemap’ = routemap

ct' = et + d_add_port(complexity(6 TransitNode))

_ AddRoute
A TransitNode
= MessageDistribution
r?: ROUTE
ops? : F, OUTPORT

ops? C outports

routemap’ = routemap U {op : ops? e r? — op}
ports’ = ports

inports’ = inports

outports’ = outports

ct' = ct + d_add_route(complezity (0 TransitNode))




5 Operations Changing the Message Distribution
The next operation checks each message in the node and marks it as faulty if necessary.

_ MarkFaults
A TransitNode
Zinfrastructure

let new_faulty == {m : domdest | m.arr_time + T < ct} o
(dest’ = new_faulty < dest A
faulty_msgs' = faulty_msgs U new_faulty)

ct’ = ct + d_mark_faults(load (6 TransitNode))

The problem here is that doing nothing destroys the global system invariant because time

increases no matter if an operation is executed or not. “Doing nothing” is defined by the following
schema:

__Idle
A TransitNode
ZInfrastructure
= MessageDistribution

ct' >ct+1

In order to maintain the system invariant, the operation MarkFaults must be carried out at
least once in each time interval of length tolerance, where this tolerance increases with the number
of messages in the node. This issue is treated in Section 6.

__ ReceiveMessage
A TransitNode
EInfrastructure
wp?: INPORT
mm? . ExternalMessage

ip? € wnports
Jim : InternalMessage | im.d = im?.d A im.r = im?.r A\ im.arr_time = cl o
((Fop : outports | im.r — op € routemap e
(dest’ = dest U {im — op} A faulty_msgs' = faulty_msgs))
V
(V op : outports e
(im.r — op ¢ routemap A dest’ = dest A faulty_msgs' = faulty_msgs U {im})))
ct’ = et + d_rec_mess(load (0 TransitNode))

Theoretically, it is possible that two messages that are exactly the same arrive at different
in ports at the same time. If these messages were associated with different out ports, then the
property of dest to be a function could be destroyed. This situation, however, seems to be so
improbable that we prefer not to take it into account explicitly.



__DataMessageSending
A TransitNode
HInfrastructure
op?: OUTPORT
om! . ExternalMessage

Jim : InternalMessage | dest im = op? A im.arr_time + T < ct o
(dest’ = dest \ {im — op?} A
faulty_msgs’' = faulty_msgs A
om!.d = im.d A om!.r = im.r)

ct' = ct + d_msg_send(load (6 TransitNode))

This operation takes care not to send a message that is already timed out. Messages leaving
the node are modeled as an output of the respective operation. This output can serve as an input
for those procedures that actually implement the sending process.

— FaultyMessageSending
A TransitNode
EInfrastructure
fm!: ExternalMessage

Fifm : faulty_msgs e
(ifm.d = fm!l.d A ifm.r = fm!l.r A
faulty_msgs’ = faulty_msgs \ {ifm})
dest’ = dest
ct’ = et + d_faulty_send(load (6 TransitNode))

The next version of the specification will associate a timer with each message and will probably
be written in Object-7Z. Perhaps it is possible to find a history invariant that allows us to state
some nice liveness and fairness properties for the node. This specification given here is in my
opinion somewhat more appropriate concerning the modeling of time as the PLUSS specification
given in [MPB*89].

6 Specifying Control

We now want to explore how far we can get in Z in specifying the timing constraints the transit
node must fulfill. Obviously, we take a pragmatic approach: when the load on the node is heavy,
i.e. there are many messages to be handeled, the node may be a bit slower in handling the faulty
messages.

The functions d_add_port and d_add_route depend on the complexity of the node, whereas
the other functions depend on its load. These numbers will usually be independent of each other.
Hence we must make sure that the tolerance will always be computed with the largest possible
number, i.e. the sum of all these numbers, as this is done above.

Flag ::= yes | no

_ ControlState
A TransitNode
last_call_of _MarkFaults : TIME

(last_call_of _MarkFaults = 1V
last_call_of _MarkFaults + d_mark_faults(load(6 TransitNode)) < ct)
Vim : dom dest o im.arr_time + T > last_call_of _MarkFaults




__InitControlState
ControlState’

Init Transit Node
last_call_of _MarkFaults’ = 1

The initial state fulfills the invariant. A schema name in the predicate part of another schema
means that the schema predicate of the imported schema is required to hold.
muss die Definition von flag noch von 7 abhaengen?

__ Control
A ControlState

let margin ==
maz{d_add_port(complexity(0 TransitNode)),
d_add_route(complexity (0 TransitNode)), d_rec_mess(load (0 TransitNode)),

d_faulty_send(load(f TransitNode))} o

(let flag == -
if ¢t 4+ margin + d_mark_faults(load (6 TransitNode))

then yes

else no e
(flag = yes = MarkFaults A last_call_of _MarkFaults' = ct)
A
(flag = no =

((MarkFaults A last_call_of _MarkFaults' = ct)

(((3p? : PORT e AddDataPort)

(3r?: ROUTE; ops? : F, OUTPORT e AddRoute)

(Fip? : INPORT; im? : ExternalMessage o ReceiveMessage)

(Fop? : OUTPORT; om! : ExternalMessage o DataMessageSending)
V (3 fm!: ExternalMessage o FaultyMessageSending)

V Idle)

A last_call_of _MarkFaults' = last_call_of _MarkFaults))))

To define the control operation, we had to existentially quantify over the input and output
variables because the different schemas have different interfaces.

It is now necessary to prove that this control operation guarantees that the state invariant is
never violated.

References

[MPB+89] M. Mauboussin, H. Perdrix, M. Bidoit, M.-C. Gaudel, and J. Hagelstein. From an
ERAE requirements specification to a PLUSS algebraic specification: A case study. In
Proceedings Meteor workshop, Algebraic Methods IT, number 490 in LNCS. Springer-
Verlag, 1989.

> last_call_of _MarkFaults + tolerance(complerity(ﬁ TransitNode) + load (8 TransitNode))



