Strategies — A Generic Knowledge Representation
Mechanism for Software Development Activities

Maritta Heisel
Technische Universitat Berlin
FB Informatik — FG Softwaretechnik
Franklinstr. 28-29, Sekr. FR 5-6, D-10587 Berlin

email: heisel@cs.tu-berlin.de

Abstract

This paper introduces a knowledge representation called strategy designed to support
the application of formal methods in software engineering. Strategies represent development
knowledge used to perform different software engineering activities. The development of an
artifact is modeled as a problem solving process. An important goal is to guarantee semantic
properties of the developed product. Strategies support stepwise automation of development
tasks. Since the definition of strategies is generic, they can be employed in different phases of
the software lifecycle. The notion of strategy is complemented by a generic system architecture
that serves as a template for the implementation of support tools for strategy-based problem
solving. T'wo different instantiations of the strategy framework and an implemented program
synthesis system are presented.

1 Introduction

All efforts to automate software engineering activities and to reuse previously gained experience
must be based on a representation of the knowledge used by software engineers. This representation
must be easily implementable on machines and be complemented by some process model that
describes how to make use of the represented knowledge.

In this paper, we present such a knowledge representation mechanism, called strategy. Strate-
gies are specifically designed to support the application of formal methods in software engineering.
Formal methods make it possible to guarantee semantic properties of the developed product (this
may be a specification, a design, a program, test cases, or the like). This is in contrast to CASE
tools that usually do not take semantic issues into account. The concept of strategy is independent
of a particular formalism.

Strategies describe possible steps during a development. Examples are how to decompose a
system design to guarantee a particular property, how to conduct a data refinement, or how to
implement a particular class of algorithms. This kind of knowledge is usually described in text
books. In contrast, the ability to decide which strategy may successfully be applied in a particular
situation requires human intuition and a deep understanding of the problem at hand. While these
heuristics are hardly mechanizable, strategies can be implemented.

The basic idea underlying strategies is to conceive software engineering activities as problem
solving processes. For some development problem, an acceptable solution has to be constructed.
The notion of acceptability captures the semantic requirements the developed product has to
fulfill. The notion of strategy is generic in the definition of problems, solutions, and acceptability.
This means that strategies can be used to formalize a variety of software development activities,
two of which are presented in this paper.

In problem solving with strategies, problems are solved by reduction to a number of sub-
problems that are in turn solved by application of strategies. This process terminates when the

generated subproblems are so simple that they can be solved directly.
The use of strategies to support software engineering activities has the following advantages:

e Development methods formalized by strategies can be combined freely and be enhanced,
changed and adapted to special project contexts in a routine way.

e Strategicals provide ways to define more powerful strategies by combination of existing ones.

e The parts of a strategy that are responsible to guarantee acceptability of the developed
solution are well isolated. Only these parts have to be verified to obtain trustworthy support
systems.

As already mentioned, merely representing development knowledge does not suffice. The knowl-
edge representation mechanism must therefore be complemented by concepts for the machine
supported application of this knowledge. For strategies, this is achieved as follows:

e We give a modular representation of strategies that easily maps to encapsulation mechanisms
of modern programming languages.

e An abstract problem solving algorithm describes how development activities with strategies
can be carried out by machine (where appropriate user interaction will be necessary).

e The parts of the algorithm where user interaction can be replaced by automatic procedures
are clearly identified, making stepwise automation possible.

e A generic system architecture provides detailed concepts for the implementation of support
systems for strategy-based problem solving.

We formally define strategies, strategicals, strategy modules and the abstract problem solving
algorithm in the language Z [Spi92b]. This provides precise definitions of these notions and
supports reasoning about strategies.

We describe instances of the strategy framework supporting the development activities of
specification acquisition and program synthesis. The prototype system TOSS (Integrated Open
Synthesis System) is an implementation of the instance for program synthesis. Tts architecture is
an instance of the proposed system architecture.

Different support systems implementing different instantiations of the strategy framework have
a strong potential for successful combination. Such a combination can provide integrated tool
support for different software development activities.

The rest of the paper is organized as follows: After giving examples of the kind of knowledge
that can be expressed by strategies in Section 2, we present a formal definition of strategies in the
specification language 7 in Section 3. Section 4 introduces strategicals that can be used to define
more powerful strategies from simpler ones. Steps toward an implementation of strategies are taken
in Section 5. The system architecture described in Section 6 further elaborates the implementation
concepts. An instantiation of the framework supporting program synthesis is presented in Section
7, together with a description of the implemented system TOSS. Section 8 presents an instantiation
for specification acquisition. We are then able to compare the two instantiations in Section 9, and
to compare strategy-based problem solving with tactical theorem proving and other related work
(Section 10). Finally, we summarize in Section 11.

2 Knowledge Formalizable by Strategies

Strategies describe established ways of procedure that can be used to tackle a given problem. They
give hints how to proceed, but they cannot guarantee that the problem is solved successfully in
every case. Their aim is not to trivialize problems (by solving them fully automatically) but to
give guidance and keep track of what remains to be done to fully solve a problem.

We illustrate the kind of knowledge that can be represented by strategies by way of examples
from specification acquisition and program development.

2.1

Developing Z Specifications

One of the factors that contribute to the relatively good acceptance of Z in industry is the existence
of a methodology [PST91] that gives guidance for its use. This methodology recommends to
proceed in the following way when developing Z specifications:

1.
2.

3.

develop the global definitions
develop the global state and the initial state
develop the system operations:

(a) develop the operations for the normal case
(b) develop the operations for error cases

(c) define total operations, combining the operations for the normal and the error cases

When we view the development of a specification as a problem solving process, then the above
steps constitute subproblems that all have to be solved to obtain the final solution. The following
questions arise:

e Are the subproblems independent of each other?

In our example, they are certainly not, because we can only define the system operations
when we know on which state they operate.

How are the solutions of the subproblems combined to form the solution to the original
problem?

In our example, they are simply concatenated. They next example will show that this is not
always the case.

What conditions must the solutions to the subproblems fulfill; so that the final solution is
acceptable?

In our example, we require that the operations refer to the state defined earlier and that
they do not use any global definitions that are not contained in the global definitions part
of the specification.

In formalizing such ways of procedure as strategies, all these questions will be given precise answers.

2.2

Developing While Loops

Gries’ approach to the development of correct programs [Gri81] mostly deals with the development
of loops. For while loops, the approach can be summarized as follows. Given a precondition P
and a postcondition R,

1.
2.

Ot

develop a loop invariant I by weakening the postcondition R appropriately
develop a loop condition C such that = C AT = R

develop the initialization init of the loop such that it establishes the invariant, starting from
the precondition P

develop a bound function bf on a set with a well-founded ordering such that bf is not minimal

as long as C' holds

develop the loop body body such that the bound function is decreased while the invariant is
maintained

This procedure is also formalizable as a strategy. However, it is not as clear as in the previous
example what the subproblems are. Since, in program synthesis, problems have to do with the
development of programs from specifications, we have only two subproblems here: the development
of the initialization and the development of the loop body.

The conditions / and C' and the function bf are developed “on the side”. We call this infor-
mation external information because 1t is just an input for the problem solving process that is
needed to set up the specifications for the programs init and body. How this input is obtained is
not part of the definition of a strategy to develop while loops. One possibility to obtain the exter-
nal information is to ask the user (of an implemented support system for strategy-based problem
solving). Another possibility is to try to compute it automatically. A (semi-) automatic proce-
dure could implement the heuristics that Gries gives for the development of loop invariants from
postconditions. It is also possible to ask the user in a first version of a system and then gradually
replace user interaction by automatic procedures. Strategies provide the necessary separation of
concerns.

The developed parts are assembled to yield the final solution init; while not C do body od.
The conditions that were given in the problem description, namely that the initialization estab-
lishes the loop invariant, that the loop body decreases the bound function while maintaining the
invariant, and that the loop invariant and the negation of the loop condition entail the postcon-
dition, guarantee that the developed loop is totally correct with respect to the given pre- and
postconditions.

The two examples presented here give an impression of what kind of software development
knowledge can be represented by strategies. Strategies can give no guarantee for success. The
subproblems generated by a strategy need not be independent. The solutions to subproblems
usually must fulfill certain conditions so as to guarantee that the initial problem is solved. For
different application areas, problems and solutions may look different. External information is
used to represent inputs that are needed to define problems or solutions. The process of obtaining
external information can be subject to gradual automation, thus automating the whole problem
solving process.

3 Formal Definition of Strategies

Strategies describe possible steps during a development. A strategy works by problem reduction.
For a given problem, it determines a number of subproblems. From their solutions the strategy
produces a solution to the initial problem. Finally, it tests if that solution is acceptable according
to some notion of acceptability. The solutions to subproblems are naturally obtained by strat-
egy applications as well. In general, the subproblems of a strategy are not independent of each
other and of the solutions to other subproblems. This restricts the order in which the various
subproblems can be set up and solved.

We first define the notion of relation that will be used to define strategies. Second, we introduce
constituting relations, the building blocks of strategies. Finally, strategies are defined as sets of
constituting relations, relating a problem to the subproblems needed so solve it, and the final
solution to the solutions of the subproblems. The formal definition is expressed in the specification
language Z [Spi92b]. A summary of the Z notation used in this paper is given in Appendix B.

3.1 Definition of Database Relations

Since, in the context of strategies, it is convenient to refer to the subproblems and their solutions
by names, our definition of strategies is based on the the notion of relation as used in the theory
of relational databases [Kan90]. In this setting, relations are sets of tuples. A tuple is a mapping
from a set of attributes to domains of these attributes. In this way, each component of a tuple can
be referred to by its attribute name. In order not to confuse these domains with the domain of a
relation as it is frequently used in Z, we introduce the type Value to denote attribute values.

Having introduced Attribute and Value as basic types, we can define tuples as finite partial
functions from attributes to values, where P is the powerset operator:

| tuple : P(Attribute -+ Value)

Relations are sets of tuples that all have the same domain. This domain is called the scheme of
the relation. Note that in Z function applications are written without parentheses.

relation : P(P tuple)
YV r: relation @Yty ty : r @« domt; = dom iy

Domain restriction and domain subtraction as they are used for the usual notion of relation are
also needed for relations of database theory.

(_<r—) == (X attrs : F Attribute; r : relation @ ({t : r e attrs < t}))

(=<ro) == (A attrs : F Attribute; v : relation @ {t : 7 e attrs 9 t})

Here, < restricts the domain of a relation to its left argument, and 4 subtracts its left argument
from the domain of the relation, see Appendix B. The operator F denotes final sets.

A join is a total function combining two relations. The scheme of the joined relation is the
union of the scheme of the given relations. On common elements of the schemes, the values of the
attributes must coincide.

_ X _: relation X relation — relation

YV ri, e, 1 relation e
™ X 9
= {t: tuple | dom t = scheme r; U scheme ry A
schemer, <1t € 1 A schemers <t € ry}

The join operation is associative and commutative. Hence, the join can also be defined for finite
sets of relations. The definition of this operation, denoted p, is straightforward and not presented
here.

3.2 Problems, Solutions, Acceptability

Problems and solutions are generic parameters for the notion of strategy. The sets Problem
and Solution are defined as subsets of Value. Acceptability is a relation between problems and
solutions.

| _acceptable_for_ : Solution <= Problem

The sets ProblemAttribute and SolutionAttribute are subsets of Attribute with an empty intersec-
tion. Both have countably many elements.

We use the distinguished attributes P_init and S_final to refer to the initial problem and its
final solution. Moreover, we assume a bijective correspondence cor between problem and solution
attributes.

P_init : ProblemAttribute
S_final : SolutionAttribute
cor : ProblemAttribute —s SolutionAttribute

cor P_init = S_final

Ot

3.3 Constituting Relations

Each strategy will be defined by as set of constituting relations. These relations represent the
dependencies between the subproblems generated by a strategy. Their schemes consist of arbitrary
attributes for problems and solutions. The schemes are divided into nput attributes and output
attributes. The constituting relations restrict the values of the output attributes, given the values
of the input attributes. Thus, they determine an order on the subproblems that must be respected
in the problem solving process.

const_rel : P relation

Ver: const_rel @Yt :cr;a: schemecre
scheme cr C (Problem Attribute U Solution Attribute) A
(a € ProblemAttribute = t a € Problem) A
(a € SolutionAttribute = t a € Solution)

IA, OA : const_rel — F Attribute

Ver : const_rel @ (IA cr, OA cr) partition scheme cr

It is now possible to define dependency relations on constituting relations. A constituting relation
directly depends on another if one of its input attributes is an output attribute of the other
relation. The depending constituting relation is considered to be “larger”. The transitive closure
of the direct dependency relation with respect to some set of constituting relations yields the
dependency relation.

_[C4—: const_rel < const_rel
C: P const_rel — (const_rel < const_rel)

Y cry, cry : const_rel; crs . P const_rel o
((eriCagcra & OAcriNIA cry # D) A
(C (crs) = {cr, cra : crs | (3 chain : seq crs e head chain = cry A last chain = cra A

(Vi:1..#chain — 1 e chaini "4 chain(i 4+ 1)))}))

Instead of writing (cr, cr’) € (C ers), we write er Cps cr'.
A set of constituting relations that defines a strategy must conform to our intuition of problem
solving, i.e.

1. The original problem to be solved must be known, i.e. P_init must always be an input
attribute.

2. The solution to the original problem is the last item to be determined, i.e. S_final must
always be an output attribute.

3. Each attribute value except the value of P_init must be determined in the problem solv-
ing process, i.e. each attribute except P_init must occur as an output attribute of some
constituting relation.

4. Each attribute value should be determined only once, i.e. the sets of output attributes of all
constituting relations must be disjoint.

5. Each solution to a subproblem is used further, i.e. it occurs as an input attribute of some
constituting relation. (For the subproblems, it is not necessary to state such a requirement
because they are used to generate the solutions to the subproblems.)

6. A solution must directly depend on the corresponding problem, i.e. if a solution attribute
is an output attribute of a constituting relation, then the corresponding problem attribute
must occur in the scheme of this constituting relation. This means that each subproblem
must be set up before it is solved.

7. The dependency relation on the constituting relations must not be cyclic.

Finite sets of constituting relations fulfilling these requirements are called admissible. In the
following formal definition of admissibility, each line of the predicate part of the axiomatic box
formalizes one of the previous requirements. The function partsols yields all solution attributes of
a relation scheme except S_final, and scheme, crs = scheme(p<a crs). The inverse of a relation (or
function) r is denoted r~

admissible_ : P(F const_rel)

Vcrs : F const_rel o

admaissible crs

f=4

(Ver,er' ters|er#cr' e
(P_init € scheme cr = P_init € IA cr) A
(S_final € scheme cr = S_final € OA cr) A
(Va:schemes crs \ {P_init} @ Jcr” : crs e a € OA cr'') A
OAcrNOAcr' =D A
(Va : partsolscr e (Fcr' : crs ea € IAcr') A

(a € OAcr = cor™a € scheme cr)) A

- (CT Coers CT)

From this definition it follows that (i) each attribute a except P_init occurs as an output attribute
of exactly one constituting relation, and (ii) each input attribute of a constituting relation except
P_init must be an output attribute of a smaller relation. This means, there is an order in which
all attribute values can be determined.

Lemma 1

Y ers : F const_rel | admissible crs o
(Va: schemes crs \ {P_init} @ 3, crq : crs @ a € OA cry)
A
(Ver:crse IAcr C (U{cr’ 1 crs | cr’ Cers cr @ OA(cr’)}) U {P_init})
Proof

The first part of the lemma follows from requirements 3 and 4 of the definition of admissibility.
The second part follows from requirements 5 and 7.

3.4 Strategies

It is now possible to define strategies as admissible sets of constituting relations that fulfill certain
conditions. An admissible set strat is a strategy if

1. scheme, strat contains the attributes P_init and S_final.

2. For each problem attribute of scheme, strat, the corresponding solution attribute is a member
of the scheme, and vice versa.

3. If a member of the relation < strat contains acceptable solutions for all problems except
P_init then it also contains an acceptable solution for P_zn:t. This means, if all subproblems
are solved correctly, then the original problem must be solved correctly, too.

-~

The last condition guarantees that a problem that is solved exclusively by application of strategies
is solved correctly. For strategies solving the problem directly, this condition means that they
must produce only acceptable solutions.

Again, each of the requirements corresponds to one conjunct in the formal definition. The
function subprs yields all problem attributes occurring the schemes of a set of relations, except
P_inat.

strategy : P(F const_rel)

V strat : strategy e
admissible strat A
{P_init, S_final} C schemes strat A
(V a : ProblemAttribute @ a € scheme, strat < cor a € scheme; strat) A
(V res :p< strat o
(V a : subprs strat e (res (cor a)) acceptable_for (res a))
= (res S_final) acceptable_for (res P_init))

Figure 1 illustrates the definition of strategies, where arrows denote the propagation of attribute
values.

strat

P_init S fina

Figure 1: Definition of strategies

Note that the values of the output attributes of a constituting relation need not be independent.
Strategies will usually be defined such that a subproblem and its corresponding solution are output
attributes of the same constituting relation, where the solution must fulfill certain requirements
with respect to the problem.

From the definition of strategies, it follows that there is at least one member of a strategy that
has P_init as its only input attribute. This means that the problem solving process can be started
at all. Furthermore, there is exactly one maximal member in a strategy that has S_final as its
only output attribute and that depends on all other members of the strategy.

Lemma 2

Y strat : strategy e
(Ferg : strat @ IA crg = {P_init})
A
(let crmar == (pr @ strat | S_final € OAr) e
({S_final} = OA crpan A (Yer: (strat \ {crmaz}) ® ¢ Cstrat ¢Tmax)))

Proof

The first part of the lemma follows from the fact that ¢ does not contain cycles and Lemma
1. The second part follows from requirements 2, 5 and 7 of the admissibility definition for strat.

Renaming of attributes (except P_init and S_final) does not change the semantic content of
a strategy. Hence, we can define an equivalence relation _equiv_ on strategies, which will be used
in Section 4.1.

The definitions presented in this section constitute the theoretical foundation of our approach.
The next sections show how strategies can be combined and how they can be represented to make
them implementable.

4 Strategicals

Strategicals are functions that take strategies as their arguments and yield strategies as their
result. They are useful to define higher-level strategies by combination of lower-level ones or to
restrict the set of applicable strategies, thus contributing to a larger degree of automation of the
development process.

We define three strategicals that are useful in different contexts. The THEN strategical com-
poses two strategies. Applications of this strategical can be found in program synthesis. The
REPEAT strategical allows for a stepwise repetition of a strategy. The wish for such a strategical
arises in the context of specification acquisition where often several items of the same kind have
to be developed. To make the REPEAT strategical more widely applicable, we also define a LiFT
strategical that transforms a strategy to develop one item into a strategy to develop several items
of the same kind.

4.1 The THEN Strategical

The idea of this strategical is to replace one subproblem p generated by strategy strat; by the
subproblems generated by strategy strats. The effect is the same as when reducing a problem first
with strat; and then reducing p by strat;. The difference is that p and its corresponding solution
cor p are not generated explicitly. This is illustrated in Figure 2.

strat,
THEN(straty, p, strat,)
—= —
P_init C@Q S fina
strat; cor p
P .-
a P_init S final
Pinit| IS fira x w

Figure 2: THEN strategical

In the strategy defined by THEN(strati, p, strats), p plays the role of P_init, and cor p plays
the role of S_final in straty. The attribute values for p and cor p are no longer explicitely set
up. Hence, all those attribute values that are needed to define the value of p must be supplied
to all constituting relations that rely on the value of p. Similarly, all attribute values that are
needed to determine the final solution of strats must be supplied to all constituting relations that
have cor p as an input attribute. Furthermore, we must guarantee that all attribute values are

determined relative to the same values for p and cor p, i.e. there must be unique values for p
and cor p such that the THEN(straty, p, strats) equals straty U straty, except that the attributes p
and cor p are removed from their schemes. This is achieved by joining the members of the two
strategies with all members they depend on. The effect of this definition is that the constituting
relations that make up THEN(straty, p, strats) have more input attributes than the ones in straty
and strats. Independent subproblems, however, remain independent.

The following function defines the transformation of the constituting relations that is necessary
to replace p and cor p. A constituting relation cr is joined with all constituting relations it depends
on, and the attributes p and cor p are removed from its scheme.

transformrhen : const_rel X (P const_rel) x ProblemAttribute 4 const_rel

Yer, cry @ const_rel; crs : P const_rel; p : ProblemAttribute o
(ery = transformoppen (cr, crs, p) <
cr € crs A
p € schemeg crs A
(let lo==pa {r:crs|r Ces cr}e
IA e¢ry = (IA er U scheme lo) \ {p, cor p} A
OAcry = OAcr\ {p,corp} A

cry = scheme cry<r(lo X cr)))

To define THEN(strati, p, straty), we must first guarantee that the names of the subproblems
generated by strat; and straty are different by choosing a strategy strat) that is equivalent to
straty and fulfills this requirement. Then, in straty, P_init is replaced by p and S_final is replaced
by cor p, using the function replace : Attribute x Attribute X relation — relation. Each of the
resulting constituting relations is then transformed using the function transformrpe,.

THEN : strategy x ProblemAttribute x strateqy = strategy

Y straty, straty : strategy; p : ProblemAttribute o
straty strats) € dom L HEN = p € subprs straty
traty, p, straty) € dom T p bprs straty)
A
(3 straty, : strategy | straty equiv straty A subprs straty N subprs straty = & o
et strat}, . == {cr : strat} e replace(S_final, cor p, replace(P_in: cr))} e
let strat; traty e replace(S_final, cor p, replace(P_init, p, cr)]
THEN (straty, p, straty)
= {cr : straty U strat; . e transformppen (cr, straty U strat; ., p)}))

Whenever THEN (straty, p, strats) is defined, it yields a strategy:
Lemma 3

V straty, straty : strategy; p : ProblemAttribute | (straty, p, straty) € dom THEN e
THEN (straty, p, strats) € strategy

The next lemma states that THEN(straty, p, straty) conforms to our intuition: its join contains
exactly those tuples that can also be obtained by joining strat; and stmtéw (where stmtir is
defined as before), and then dropping the values of p and cor p.

Lemma 4

> (THEN (straty, p, straty)) = {p, cor p} <, (> (straty U straty ,))
where stratl | is defined as in the definition of THEN

Finally, Lemma 5 states that THEN does not introduce any new dependencies, i.e. if two consti-
tuting relations of THEN(straty, p, strats) are dependent, also their untransformed versions are.

10

Lemma 5

/ /
Cry ETHEN(stratl,p,stratz) cry = cr I:strahUstr(zté’r cr

where stratl . is defined as in the definition of THEN and
cry = transformrpen (cr, straty U strath ., p) A cr{ = transformppen (cr', straty U straty ., p)

The proofs of these lemmas are given in Appendix A.1. An example of a strategy defined with
THEN is given in Section 7.2.3.

4.2 The REPEAT Strategical

The first argument of this strategical is the strategy strat to be repeated. Repetition here means
that a subproblem p generated by strat should again be reduced by a finite iteration of strat or
another strategy terminate that does not generate new subproblems. The attribute p and the
strategy terminate are the other arguments of REPEAT. A strategy defined with REpPEAT does not
itself perform an iteration but only one step of an iteration. How often strat is iterated is decided
elsewhere, e.g. by the user of an implemented system. The strategy REPEAT(strat, p, terminate)
is distinguished from strat only by restriction of one constituting relation, as shown in Figure 3.

REPEAT (strat, p, terminate)

strat cor p AN cor p
p P \

Pinit| O Sfind P nit| O S findl

Figure 3: REPEAT strategical

The new constituting relation cry.p is a subset of crp,. Problem p is either solved by terminate
or by a finite iteration of strat. The finite iteration is characterized by the fact that there is a finite
sequence of tuples of x strat, such that the subproblem p of tuple 7 1s the initial problem P_inzt
for tuple 7 + 1; for the solutions, the analogous condition holds. The last tuple must contain a
pair that is a member of < terminate.

REPEAT : strateqy X ProblemAttribute x strategy - strategy

Y strat, terminate : strategy; p : ProblemAttribute o
((strat, p, terminate) € dom REPEAT
= p € subprs strat A scheme, terminate = { P_init, S_final})
A
(let cr, == (per : strat | corp € OAcr) e
(let crpep == {t : crp | {P_init — t p, S_final — t(corp)} €< terminate
\%
(In :Ny; ts :seq(p strat) |#ts=n e
(ts1) P_init = t p A (ts 1) S_final = t(cor p) A
(Vi:2..ne(tst)P_init = (ts(1 — 1)) p A
(tsi) S_final = (ts(i — 1)) (corp)) A

IA cryep = TA ey A
REPEAT (strat, p, terminate) = ((strat \ {crp}) U{crep})))

Whenever REPEAT (strat, p, terminate) is defined, it yields a strategy:

11

{P_init — (ts n) p, S_final — (ts n)(cor p)} € terminate)} o

Lemma 6

V strat, terminate : strateqy; p : ProblemAttribute | (strat, p, terminate) € dom REPEAT e
REPEAT (strat, p, terminate) € strategy

Proof

Since REPEAT(strat, p, terminate) is distinguished from strat only by additional requirements on
membership in one of its constituting relations, cr,, it follows immediately that REPEAT(strat, p,
terminate) is a strategy.

4.3 The LiFT Strategical

It is possible that a strategy must be changed to make the REPEAT strategical applicable. In
specification acquisition, for instance, we may have the problem to define a list of Z operations.
We might want to solve this problem by repeated application of a strategy define_schema that
defines one schema. As it is, this strategy cannot serve as an argument to REPEAT, because it
defines only one schema and not a list of schemas. Tt cannot be applied to the subproblems it
generates, namely to define the declaration part and to define the predicate part of the schema.
We first have to “lift” it so that it can generate a list of schemas instead of a single schema.

The “lifted” strategy will generate one problem in addition to the problems generated by its
argument strategy. This new problem can be used for the repetition. Besides a strategy, LiFT
needs the following arguments:

1. a function p_down that converts a “bigger” problem, e.g. to develop a list of schemas, into
a “smaller” one, e.g. to develop one schema,

2. an injective function p_combine that makes a new problem out of the original problem and
a partial solution, and

3. a function s_combine to combine the solutions of a “bigger” and a “smaller” problem.

These functions must be defined in such a way that the correctness of the lifted strategy can be
guaranteed:

Y pr : Problem; sol, sol’ : Solution |
sol’ acceptable_for p_down pr A sol acceptable_for p_combine(pr, sol’) e
s_combine(sol', sol) acceptable_for pr

This strategical is illustrated in Figure 4.

Ping | S findl

LIFT(strat, p_down, p_combine, s_combine)

S final

,,,,,,,,,,,,,,,,, .

p_down p_combine s_combi ne

Figure 4: LIFT strategical

12

TL1FT generates two new attributes, p_rep and s_rep that achieve the lifting. While the ar-
gument strategy strat can solve a “smaller” problem, LirT(strat, p_down, p_combine, s_combine)
is used to solve a “bigger” problem. Hence, the problem P_init given to LIFT(strat, p_down,
p—combine, s_combine) must be transformed into a “smaller” problem by the function p_down.
For p_down(P_init), all the attribute values of strat are determined as required by strat except
the value for S_final. The solution sol that would have been bound to S_final by strategy strat
is now propagated into the new problem p_rep using the function p_combine. Its solution s_rep
is combined with the solution sol of the “smaller” problem using the function s_combine.

Similar to THEN we need to transform the constituting relations of strat. Since LiFT(strat,
p—down, p_combine, s_combine) solves a “bigger” problem, this problem must be transformed by
p_down into a “smaller” one to make strat applicable. This concerns only those constituting
relations whose schema contains P_init.

transformy;p : const_rel x (Problem - Problem) — const_rel

Y cr : const_rel; p_down : Problem — Problem | S_final ¢ scheme cr e
IA(transformpp(cr, p_down)) = IA cr A
OA(transformpip(cr, p_down)) = OA cr A
transformp;p(cr, p_down) =
if P_init ¢ scheme cr then cr
else {t : tuple | t ® {P_init — p_down(t P_init)} € cr}

The constituting relations of LIFT(strat, p_down, p_combine, s_combine) are the transformed con-
stituting relations of strat and two new ones. The first of these, cr_up, defines the attributes p_up
and s_up for the “lifted” problem and its solution, using the function p_combine. The second
one, crpnal, assembles the final solution of the lifted strategy by combining the solution of the
transformed strategy strat with the “bigger” solution s_up.

LIFT : strategy
x (Problem — Problem)
X (Problem x Solution ~+ Problem)
X (Solution x Solution —+ Solution)
—+strateqy

Y strat : strategy; p_down : Problem —+ Problem;
p—_combine : Problem x Solution — Problem;
s_combine : Solution x Solution — Solution |
(W pr : Problem; sol, sol’ : Solution |
sol” acceptable_for p_down pr A sol acceptable_for p_combine(pr, sol') e
s_combine(sol’, sol) acceptable_for pr) e
Ip_up : ProblemAttribute; s_up : SolutionAttribute |
cor p_up = s_up A {p_up, s_up} N subprs strat = & e
(let crpar == (per : strat | OA cr = {S_final}) o
(let crspe,, == {cr @ strat \ {crmar} @ transformpg(cr, p_down)};
1as == IA e¢rmar U {P_init}; oas == {p_up,s_up} e
(let cryp == {t : tuple | domt = ias U oas A
(I sol : Solution | (IA crpmar < t) U{S_final — sol} € crpqr @
¢t p_up = p_combine(t P_init, sol) A
t s_up acceptable_for t p_up)};
crfnat == {t : tuple | domt = {P_init, p_up, s_up, S_final} A
(let sol == (p sol : Solution | t p_up = p_combine(t P_init, sol)) e
t S_final = s_combine(sol, t s_up))} e
IA crup = tas N OA cryp = oas A
IA crfina = {P_init, p_up, s_up} A OA crfinaq = {S—_final} A
LirT(strat, p_down, p_combine, s_combine) = crspew U {crup, cTanar})))

13

The injectivity of the function s_combine guarantees that the tuples of cryp, and crgnq are defined
with respect to the same solution sol.
Whenever LirT(strat, p_down, p_combine, s_combine) is defined, it yields a strategy:

Lemma 7

Y strat : strategy; p_down : Problem — Problem;
p_combine : Problem x Solution — Problem;
s_combine : Solution x Solution - Solution |
(strat, p_down, p_combine, s_combine) € dom LIFT e
LiFT(strat, p_down, p_combine, s_combine) € strategy

The proof of this lemma is given in Appendix A.2. An example of a strategy defined with LirT
and REPEAT is given in Section 8.2.3.

We have now defined strategies formally and given means to define more powerful strategies by
combining simpler ones. So far, strategies are purely declarative. Our goal, however, is to make
strategies applicable for problem solving. To this end, we must take a more procedural perspective
of strategies.

5 Problem Solving With Strategies

Strategies and strategicals as they are defined so far are the conceptual basis for strategy-based
problem solving. To make strategies applicable mechanically, we proceed in two steps: first, we
represent strategies as modules that are implementable, using the encapsulation constructs offered
by modern programming languages. Second, we present an abstract algorithm that defines how
strategy-based problem solving proceeds. This algorithm is expressed as a set of algebraically
defined 7 functions. These functions are meant to denote recursive algorithms that could easily
be implemented in a functional programming language. It can be shown that, if the algorithm
yields a solution to a given problem, then this solution is acceptable.

5.1 Modular Representation of Strategies

To make strategies implementable, we must find a suitable representation for them that is closer
to the constructs provided by programming languages than relations of database theory. Imple-
mentations of strategies should be independent of each other with a uniform interface between
them. In an implemented support system for strategy-based problem solving, the implementation
of a strategy is a module with a clearly defined interface to other strategies and the rest of the
system. A strategy module consists of the following items:

e the set subp of subproblems it produces,
e the dependency relation _depends_ on them and their solutions,

e for each subproblem, a procedure setup that defines it, using the information in the initial
problem and the subproblems and solutions it depends on,

e for each solution to a subproblem, a predicate local_accept that checks if the solution con-
forms to the requirements stated in the constituting relation of which it is an output attribute,

e a procedure assemble describing how to assemble the final solution,

e a test accept of acceptability for the assembled solution.

Optionally, an explain component may be added that explains why a solution is acceptable for
a problem.

14

In the following, we define a number of functions that have a strategy as their argument
and yield one piece of information as described before, i.e. each of these functions defines one
component of a strategy module for its argument strategy.

The function subprs introduced in Section 3.4 yields the subproblems generated by a strategy.
The dependency relation must be defined on pairs of problems instead of pairs of constituting
relations:

Depends : strategy — (Problem Attribute «— ProblemAttribute)

Y strat : strategy; p1, p2 : ProblemAttribute | {p1, p2} C schemes strat o
(let cri == (pr : strat | p1 € OAr);
cro == (pur:strat | po € OAr) e
(p1, p2) € Depends(strat) < cri Cstrat €T2)

It is possible for a combination of values for the input attributes of a constituting relation to
be related to several combinations of values for the output attributes. In these cases, the basic
type FEztinfo is used to select one of the possible values. This external information can be derived
from user input or be computed automatically. By means of external information, relations are
transformed into functions.

[ExtInfo)

A function that sets up a problem depends on the strategy strat and the subproblem p to
be defined. (Setup strat) p is a function that takes a tuple and some external information as its
arguments and yields a problem. Tt is defined with respect to the constituting relation cr, for
which p is an output attribute. Each tuple ¢ for which the function (Setup strat) p is defined
contains at least the values of the input attributes of cr,. If the values of the input attributes
are consistent with crp, then the value yielded by the setup function must also be consistent with
crp. The external information is used to choose among different possible values that satisfy these
conditions.

Setup : strategy — (ProblemAttribute — (tuple x ExtInfo —+ Problem))

Y strat : strategy; p : ProblemAttribute o
dom(Setup(strat)) = subprs strat A
(p € subprs strat =
(3, crp : strat | p€ OAcry @
V't : tuple; i : Extinfo | (t,i) € dom(Setup(strat)(p)) o
domt 2 IAcr, A
((TAcr, < t) € (IAcrp)drery, =
(IAcr, < t)U {p — (Setup(strat)(p))(t, i)} € (IAcry U {p})<rcry)))

For the intermediate solutions, we may have local acceptability conditions that are stated in
the constituting relation crs of which the solution is an output attribute. Each tuple which is in
the domain of (Local_Accept strat) s contains at least the values of the input attributes that are
needed to define the value of s and its corresponding problem cor™s. If the values of the input
attributes and the problem attribute cor™s are consistent with crg, then the value of s must also
be consistent with cry.

Local _Accept : strateqgy — (SolutionAttribute — (tuple <= Solution))

Y strat : strategy; s : SolutionAttribute e
dom(Local_Accept(strat)) = partsols strat A
(s € partsols(r< strat) =
(3, cry i strat | s € OAcrs ®
Yt : tuple; sol : Solution | (t,sol) € Local _Accept(strat)(s) e
(let inp == TA ery U {cor™s} e
domt D mnp A
((inp < t) € inp <y crs = (inp < t) U {s — sol} € (inp U {s}) <y cry))))

15

The conditions for the Assemble function can be expressed in a similar way.
Assemble : strategy — (tuple x ExtInfo -+ Solution)

Y strat : strateqy e
3, crpar @ strat | S_final € OA crpqp @
V¢ : tuple; i : ExtInfo | (t,i) € dom(Assemble strat) o
domt = (scheme cryq5) \ {S—final} A
t € {S_final}<4,crimas =
tU{S_final — Assemble(strat)(t, i)} € crmas

A tuple may only be a member of the set Accept strat if it is a member of > strat. Thus,
Accept strat will usually represent a sufficient condition for membership in a strategy that can be
checked mechanically.

Accept : strategy — (P tuple)
V strat : strategy e Accept(strat) C (< strat)

A 7 specification does not specify what happens if a function is applied to an argument that
does not lie in the domain of the function. An algorithm implementing the function could either
not terminate or report failure. For our problem solving algorithm, we want that a failure is
reported if a problem cannot be set up, a solution cannot be assembled properly, or a partial
solution is found to be not locally acceptable. This is achieved by defining free types into which
problems, solutions, and tuples are embedded and that contain error values to indicate that some
of the previous functions are undefined. Thus, partial functions are totalized by yielding members
the free types instead of problems, solutions, or tuples.

total_P ::= fail_P | ok_P{Problem))
total _S ::= fail _S | ok_S{Solution))
total_t = fail_t | ok_t{(tuple))

Strategy modules are algorithmic descriptions of strategies. They are obtained by application
of the functions subprs, Depends, Setup, Local _Accept, Assemble and Accept to a strategy strat,
and totalizing the results of Setup and Assemble. An error value is returned if and only if the
corresponding function is undefined. Strategy modules are defined as a schema type that resembles
record types in programming languages. The components of schema types are selected with the
dot notation, e.g. for sm : StrategyModule, we write sm.subp to denote the subproblems generated
by the strategy.

__ StrategyModule
subp : P Problem Attribute

_depends_on_ : ProblemAttribute <= Problem Attribute
setup : ProblemAttribute — (tuple x ExtInfo — total_P)
local _accept : SolutionAttribute 4 (tuple < Solution)
assemble : tuple X Ezrtinfo —s total_S

accept : P tuple

Jstrat : strategy o

(subp = subprs strat A

(—depends_on_) = Depends strat A

local_accept = Local_Accept strat A

accept = Accept strat N\

(Vp : ProblemAttribute; t : tuple; i : ExtInfo e
(((t,7) € dom((Setup strat)(p)) < setup(p)(t,i) € ran ok_P) A
((t,1) € dom((Setup strat)(p)) = setup(p)(t,i) = ok_P((Setup strat)(p)(t,i))) A
((t,i) € dom(Assemble strat) < assemble(t, i) € ran ok_S) A
((t,1) € dom(Assemble strat) = assemble(t, 1) = ok_S((Assemble strat)(t,1))))))

16

A function mod_rep : strategy — StrategyModule transforms a strategy into a strategy module.

5.2 An Abstract Problem Solving Algorithm

In this section, we present an abstract algorithm that describes strategy-based development. This
algorithm is expressed as a set of functions in Z.

Problem solving with strategies usually needs user interaction. The basic type Userlnput
comprises all possible user input. User interaction is modeled by giving a sequence of user inputs
to the various functions. If such a sequence is not long enough, the functions are undefined. This
corresponds to the situation where an interactive systems expects user input that is not supplied.

A heuristic function is a function that converts user input, which 1s needed to determine the
value of some attribute of a strategy, into external information. The heuristic function may also
depend on the values of other attributes, which are supplied to it as a tuple. Heuristic functions
are those parts of a strategy implementation that can be implemented with a varying degree of
automation, from interactive to fully automatic. It is also possible to automate them gradually by
replacing interactive parts with semi or fully automatic ones. We cover the case that a heuristic
function is independent of user input by using a dummy value in the sequence of user inputs.

| heuristic_function : StrategyModule x Attribute — (tuple x UserInput + ExtInfo)

The set available_strategies denotes the set of all available strategy modules. The function choice :
Problem x (P StrategyModule) x UserInput — StrategyModule is used to select a strategy to solve
a given problem from the available strategies.

We now can give the top-level problem solving algorithm. Its arguments are a problem and a
list of user inputs. Since solve will be applied recursively, its result is not only a solution but also
a user input list. A strategy to be applied to the problem is selected, and the function apply is
called that applies the strategy to the problem. If the application of this strategy is successful,
the value of S_final of the computed tuple and the input list yielded by apply form the result of
the solve function. Otherwise, another trial is made with the user input list yielded by apply.

solve : Problem x seq UserInput + (Solution x (seq Userlnput))

Y pr : Problem; input_list : seq UserInput e
solve(pr, input_list) =
(let sm == choice(pr, available_strategies, head input_list) e
(let t == apply(pr, sm, tail input_list) e
if first t = fail_t then solve(pr, second t)
else ((ok_t™~ (first t)) S_final, second t)))

The function apply first calls another function solve_subprs to solve the subproblems generated
by the strategy. Tt then sets up the final solution and checks it for acceptability. Each time a
failure can occur, this is checked by the function and propagated into the result if necessary.

apply : Problem x StrategyModule x seq UserInput —+ (total_t x seq UserInput)

Y p : Problem; sm : StrategyModule; input_list : seq UserInput
apply(p, sm, input_list) =
(let s == solve_subprs({ P_init — p}, sm.subp, sm, input_list) e
if first s = fail_t then (fail_t, second s)
else (let tup == ok_t~ (first s);

input_list' == second s ®
(let ext_info == heuristic_function(sm, S_final)(tup, head input_list') o
(let final_solution == sm.assemble(tup, ext_info) e

if final_solution = fail_S then (fail_t, tail input_list")
else (let s’ == tup U {S_final > ok_S~ final_solution} e
if ' ¢ sm.accept then (fail_t, tail input_list’)

17

The function solve_subprs calls solve recursively for all subproblems contained in its second
argument. Its first argument is the tuple generated so far. The function choose_minimal selects a
minimal problem attribute from the set of open problems. The appropriate setup function defines
the corresponding problem. Its solution, generated by solve, is then checked for local acceptability.

solve_subprs : tuple x (P ProblemAttribute) x StrategyModule x seq UserInput
—(total_t x seq UserInput)

YVt tuple; pas : P ProblemAttribute; sm : StrategyModule; input_list : seq UserInput e
solve_subprs(t, pas, sm, input_list) =
if pas = @ then (ok_t(t), input_list)
else (let p == choose_minimal(sm.(_depends_on_), pas, head input_list) e
(let ext_info == heuristic_function(sm, p)(t, head(tail input_list)) e
(let pv == ((sm.setup)(p))(t, ext_info) e
if pv = fail_P then (fail_t, tail(tail input_list))
else (let new_pr == ok_P~pv e
(let s == solve(new_pr, tail(tail input_list)) e
(let sol == first s; input_list’ == second s @
if (tU {p > new_pr}, sol) ¢ sm.local_accept(cor p)
then (fail_t, input_list’)
else solve_subprs((t U {p > new_pr, cor p > sol}),pas \ {p}, sm, input_list')))))))

The following lemmas show that the functions solve, apply and solve_subprs model strategy-based
problem solving in an appropriate way: Whenever solve yields a solution to a problem, this solution
is acceptable.

Lemma 8

Y pr: Problem; sol : Solution; 1y, 1y : seq UserInput | (sol, i5) = solve(pr, i1) o
sol acceptable_for pr

If apply yields a tuple (as opposed to an error value), this tuple belongs to the join of some strategy
and contains acceptable solutions for all subproblems.

Lemma 9

Y pr : Problem; sm : StrategyModule; 11, i3 : seq UserInput; tt : total_t |
(tt, iz) = apply(pr, sm, 1) A tt € ran ok_t e
d strat : strategy | sm = mod_rep strat e
(let t == ok_t~ tt o
t € (< strat) A ¢t P_init = pr A
(V p : subprs strat e t(cor p) acceptable_for(t p)))

Lemma 10 states that, if solve_subprs 1s called with an argument list that satisfies the conditions
stated there, also the arguments of the recursive call fulfill these conditions, i.e. solve_subprs
preserves certain invariants: there is a strategy such that the domain of the tuple generated so
far consists of P_init and those subproblems of the strategy that are not contained in the second
argument of the function, and their corresponding solutions; the attribute values of the tuple are
constistent with all constituting relations of the strategy, whose scheme is a subset of the domain
of the tuple; all generated solutions are acceptable for their corresponding problems.

Lemma 10 For solve_subprs(t, pas, sm, 1), we have the following invariants:

YVt : tuple; pas : P ProblemAttribute; sm : StrategyModule o
INV(t, pas, sm)
-~
(3 strat : strategy | sm = mod_rep strat o
dom t = {P_init} UU{p : (subprs strat \ pas) e {p, corp}} A
(Ver : strat | scheme cr C dom t e scheme cr <t € cr) A
(Vp : ProblemAttribute | p € (dom t \ {P_init}) e t(cor p) acceptable_for t p))

18

Proof

Lemma 8 follows from Lemma 9, using the fact that solve is defined such that the first component
of its result is a tuple ¢ that belongs to the strategy implemented by the chosen strategy module
sm.

O

The first part of Lemma 9 follows from the fact that all valid results yielded by apply (i.e. the
first component of the result is in ran ok_t) satisfy the accept predicate of the strategy module sm.
The definition of StrategyModule entails that for each strategy module there is a corresponding
strategy, and that the accept predicate is sufficient for a tuple to be a member of the join of the
strategy.

The second part follows from Lemma 10 and the fact that the invariants hold for the arguments
supplied to solve_subprs in apply.

O

As already shown, there exists a strategy such that sm is its modular representation. Since
solve_subprs defines the attribute p as well as cor p, the first invariant stated in Lemma 10 holds.

The second invariant holds because the values of all problem attributes are defined using
the function sm.setup, which relies on the global function Setup. The function Setup guaran-
tees consistency with the corresponding constituting relation. The new values for solution at-
tributes are checked for consistency with the corresponding constituting relation by the predicate
sm.local_accept that relies on the global function Local_Accept.

The third invariant follows by an inductive argument on the maximal depth of the recursion,
using Lemma 8 as inductive hypothesis. The base case are strategies that solve the problem
directly. For these strategies, solve_subprs terminates immediately, and the third invariant is
vacuously true.

From Lemma 10, we can deduce that solve_subprs computes all attribute values except S_final
such that they are consistent with the constituting relations of the applied strategy:

pas = & = t €< (strat \ {crmax})
where ¢rpqp, == (pr: strat | S_final € OAr).

In this section, we have transformed purely declarative strategies into a more procedural rep-
resentation. Problem solving functions show how this representation is used to perform strategy-
based development. These functions, however, have been defined to demonstrate that developed
solutions are acceptable. They are very abstract and do not take adequate user support into
account, as is necessary for implemented support systems.

6 System Architecture

We now define a system architecture that describes how to implement support systems for strategy-
based problem solving. In contrast to the functions of the previous section, this system architecture
takes the user into account and allows for much more flexibility in the problem solving process
than the abstract algorithm of Section 5.2.

The definition of strategies is parameterized by the notions of problem, solution, and accept-
ability. Therefore, it is possible to design a generic system architecture to support strategy-based
development processes. Fig. 5 gives a general view of the architecture which is described in more

detail in [HSZ95b].

19

This architecture is a sophisticated implementation of the functions given in the last section.
Introducing data structures that represent the state of the development makes the development
process can be more flexible than with a naive implementation of these functions, where all inter-
mediate results would be buried on the run-time stack. Using the system architecture, it is not
necessary to first solve a subproblem completely before starting to work on another one.

Two global data structures represent the state of development: the development tree and the
control tree. The development tree represents the entire development that has taken place so far.
Nodes contain problems, information about the strategies applied to them, and solutions to the
problems as far as they have been found. Links between siblings represent dependencies on other
problems or solutions.

initial external

proﬁ)lan information strategy selection

O O setup dependencies
//R\ A N
: — SN s

(OO | @00 :

Q)p/y setup dependencies
* 2
development tree control tree ™ 5y

strategy base

Figure 5: General view of the system architecture

The data in the control tree is concerned only with the future development. Tts nodes represent
open tasks. They point to nodes in the development tree that do not yet contain solutions. The
degrees of freedom to choose the next problem to work on are also represented in the control tree.
The third major component of the architecture is the strategy base. It represents knowledge for
strategy-based problem solving by strategy modules.

A development roughly proceeds as follows: the initial problem is the input to the system. Tt
becomes the root node of the development tree. The root of the control tree is set up to point
to this problem. Then a loop of strategy applications is entered until a solution for the initial
problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the leaves of the control
tree. Second, a strategy is selected from the strategy base. Applying the strategy to the problem
means to extend the development tree with nodes for the new subproblems, install the functions
of the strategy module in these nodes, and set up dependency links between them. The control
tree is also extended according to the dependencies between the produced subproblems.

If a strategy immediately produces a solution and does not generate any subproblems, or if
solutions to all subproblems of a node in the development tree have been found, the functions to
assemble and accept a solution are called, and, if successful, the solution is recorded in the respec-
tive node of the development tree. When a solution is produced the control tree shrinks because
it only contains references to unsolved problems. The process terminates when the control tree
vanishes. The result of the process not only the developed solution; it is a development tree where
all nodes contain acceptable solutions. This data structure provides a valuable documentation of

20

the development process that can be kept for later reference.

This architecture guarantees the greatest possible flexibility in strategy-based problem solving.
The user can always obtain an overview of the state of development and the context in which
a certain problem has to be solved. The modular implementation of the strategy base makes it
possible to incorporate new strategies in a routine manner. The architecture is independent of
the kind of development activity that is to be supported and hence can be re-used for different
instantiations of the strategy framework. Two such instantiations are presented in the following.
They support different phases of the software lifecycle and use different formalisms.

7 Instantiation for Program Synthesis

We first present the instantiation of the framework as it is used for the implementation of 10SS, a
system that supports the development of provably correct imperative programs. We instantiate the
generic parameters and then give some example strategies. Finally, we describe the implemented
prototype system 10SS.

7.1 Problems, Solutions, Acceptability and Explanations

For the definition of the generic parameters, we also use a Z-like notation, without formalizing the
syntax and semantics of formulas and programs, however. For syntactic combination of formulas,
we use the subscript “s”, e.g. A; and =. To refer to the semantics of formulas, we use predicates
like valid and satisfiable.

Problems are specifications of programs, expressed as preconditions and postconditions that
are formulas of first-order predicate logic. To aid focusing on the relevant parts of the task, the
postcondition is divided into two parts, invariant and goal. In addition to these we have to specify
which variables may be changed by the program (result variables), which ones may only be read
(input variables), and which variables must not occur in the program (state variables). The state
variables are used to store the value of variables before execution of the program for reference
of this value in its postcondition. The function free yields the free variables of a formula. The
predicate valid refers to the semantics of a formula and expresses its logical validity.

— ProgProblem
pre, goal, inv : First_Order_Formula
res, inp, state : P Variable

disjoint (res, inp, state)
free(pre As goal Ay inv) C res U inp U state
valid(pre = inv)

Solutions are programs in an imperative Pascal-like language. Furthermore, solutions contain
additional pre- and postconditions. If the additional precondition is not equivalent to true, the
developed program can only be guaranteed to work if both the originally specified and the addi-
tional precondition hold. The additional postcondition gives information about the behavior of
the program, i.e. it says how the goal is achieved by the program. To exclude trivial solutions,
the additional precondition is required not to be false.

_ ProgSolution
prog : Program
apr, apo : First_Order_Formula

satisfiable(apr)

A solution is acceptable if and only if the program is totally correct with respect to both the
original and the additional the pre- and postconditions, does not contain state variables (function

21

vars), and does not change input variables (function asg). Checking for acceptability of a solution
amounts to proving verification conditions on the constructed program.

_correct_for_ : ProgSolution <= ProgProblem

Y pr : ProgProblem; sol : ProgSolution e
sol correct_for pr
i=4
(valid(pr.pre As sol.apr =, {sol.prog)(pr.goal As pr.inv A sol.apo)) A
vars(sol.prog) N pr.state = & A
asg(sol.prog) N pr.inp = &)

The formula pre =, (prog)post is a formula of dynamic logic [Gol82], a logic designed to prove
properties of imperative programs. It denotes the total correctness of program prog with respect
to precondition pre and postcondition post.

Fzplanations for solutions are provided as formal proofs in dynamic logic. In T10SS, proofs are
represented as tree structures that can be inspected at any time during development.

7.2 Strategies for Program Synthesis

We present three strategies. With the first one, we can develop compound statements; the second
serves to develop loops. Using the THEN strategical, these can be combined to yield a more
powerful strategy to develop loops together with their initialization, thus implementing Gries’
approach to the development of loops as introduced in Section 2.

The notation we use is semi-formal and resembles Z. The type Value denotes the disjoint
union of the types ProgProblem and ProgSolution. Members of the schema types ProgProblem
and ProgSolution are denoted as bindings. These are lists of pairs component = component_value.

7.2.1 The protection strategy

This strategy is based on the idea that a conjunctive goal can be achieved by a compound state-
ment. The part of the goal achieved by the first statement must be an invariant for the second
one. It produces two subproblems and is defined as follows:

protection = {prot_first, prot_second, prot_sol}
where prot_first is defined by

1A prot_first = { P_init}
OA prot_first = { P_first, S_first}
prot_first = { t : scheme prot_first — Value |
g1, 92 : First_Order_Formula e
(valid(t(P_init).goal &5 g1 As g2) A
t(P_first) = { pre = t(P_init).pre,
goal = g1,
v = true,
res = t(P_init).res N free(g1),
inp = t(P_init).inp U (t(P_init).res \ free(g1)),
state = t(P_init).state)) A
t(S_first) correct_for t(P_first)}

The precondition for the first statement is the same as for the original problem. The invariant may
be invalidated in achieving goal g1, hence the inv component of the value of P_first is true. Only
the variables occurring free in ¢; may be changed; the other result variables of P_init become
input variables for P_first. The state variables remain unchanged.

22

Note the existential quantifier in this definition. It indicates that external information is
necessary to set up the problem for P_first. In the implemented strategy of TOSS, the user is
asked to indicate the goal for the first problem. The constituting relation prot_second is defined
by

IA prot_second = {P_init, P_first, S_first}
OA prot_second = {P_second, S_second}
prot_second = { t : scheme prot_second — Value |
dga : First_Order_Formula e
(valid (t(P_init).goal & t(P_first).goal As g2) A
t(P_second) = (pre = t(P_first).goal As t(S_first).apo,
goal = gz As t(P_init).inv,
inv = t(P_first).goal,
res = t(P_init).res,
inp = t(P_init).inp U (free(t(S_first).apo)
\(¢(P_init).res U t(P_init).state)),
state = t(P_init).state)) A
t(S_second) correct_for t(P_second) A
valid (t(P_first).goal As t(S_first).apo =, t(S_second).apr)}

The goal for P_second can be determined automatically. Tt consists of that part g» of the original
goal that was not achieved by solving the problem P_first, together with the invariant of P_in:t.
The invariant for P_second is the goal of P_first, which is also a precondition for P_second.
Another precondition is the additional postcondition guaranteed by S_first.

The result variables for P_second are the same as for the original problem. Its input variables
are the input variables of P_init plus all variables newly introduced in solving P_first (these occur
in t(S_first).apo). It is necessary to classify these variables because of the integrity condition
free(pre Ay goal Ay inv) C res U inp U state stated in the definition of programming problems.

The state variables again remain unchanged. The solution S_second is not only required to be
acceptable for P_second. Also, the postcondition established by S_first must entail the additional
precondition of S_second.

The constituting relation prot_sol defines how the final solution is assembled from the solutions
of the subproblems, where the final program is the sequential composition of the two programs
developed in solving the subproblems.

IA prot_sol = {S_first, S_second}
OA prot_sol = {S_final}
prot_sol = { t : scheme prot_sol — Value |

t(S_final) = (prog = t(S_first).prog; t(S_second).prog,
apr = t(S_first).apr,
apo = t(S_second).apo) }
7.2.2 The loop strategy

This strategy serves to construct a while loop. It is applicable only when the goal contains no
quantifiers because the goal serves as the termination test of the loop. The strategy generates one
subproblem.

loop = {loop_body, loop_sol }

where loop_body is defined by

23

IA loop_body = {P_init}
OA loop_body = {P_loop, S_loop}
loop_body = { t : scheme loop_body — Value |
boolean_expr(t(P—_init).goal) A
3bf,0: Term; ty : Variable; <: Term < Term;
loop_inv : First_Order_Formula |
well_founded_ordering(0, <) A
to & (t(P—_init).res U t(P_init).inp U t(P_init).state) A
valid(t(P—init).pre =, loop_inv) A
valid (t(P_init).inv A, loop_inv Ay —(t(P—init).goal) =, 0 < bf) e
t(P_loop) = ({ pre = t(P_init).inv A loop_inv Ay —s(¢(P_init).goal) As tg =, bf,
goal = bf < fo,
inv = ¢(P_init).inv A, loop_inv,
res = t(P_init).res,
inp = t(P_ zmt).inp,
state = z‘(P_mzt).state U{te}) A
t(S_loop) acceptable_for t(P_loop)}

To set up the problem P_loop, a bound function bf and a well-founded ordering < on the carrier
set of bf are needed, together with a constant 0 that is minimal with respect to <. The invariant
of the loop to be developed consists of the invariant of the original problem and a formula loop_inv
that usually contains invariant parts of the precondition ¢(P_init).pre, e.g. ranges of variables.
In TOSS, both loop_inv and bf must be given by the user, where for loop_inv the system makes
proposals. The appropriate ordering, however, can often be inferred from the sort of the bound
function, which is integer in many cases.

The goal is then to decrease the bound function, i.e. to make progress towards termination
while maintaining the invariant. To express the decrease of the bound function, a new state
variable t; is introduced. Otherwise, the variable classification remains unchanged.

The overall solution generated by the loop strategy is a loop with the negation of the original
goal t(P_init).goal as the loop condition and the program that results in solving P_loop as the
loop body. Accordingly, loop_sol is defined by

IA loop_sol = {P_init, P_loop, S_loop}
OA loop_sol = {S_final}
loop_sol = { t : scheme prot_sol — Value |
Floop_inv : First_Order_Formula |
valid(t(P_loop).inv & t(P_init).inv A loop_inv) e
t(S_final) = { prog = while not t(P_init).goal do t(S_loop).prog od,
apr = t(P_init).pre =, t(S_loop).apr,
apo = loop_inv) }

The formula loop_inv can be determined automatically: it is the same formula as used in loop_body.

7.2.3 A Combined Strategy

Usually, the development of a loop takes place as described in Section 2. Using strategies, the
steps described there involve strengthening the goal of the original problem using the strengthening
strategy. This strategy replaces the goal of a programming problem by a stronger or equivalent
one. The new goal consists of the loop invariant and the negation of the loop condition. For the
development of the invariant, the heuristics given by Gries [Gri81] can be employed. Second, the
protection strategy is applied. The first statement of the compound is the initialization of the loop
that establishes the invariant. The second part of the compound consists of the loop itself which
is developed with the loop strategy.
We use the THEN strategical to define a new while strategy that encompasses these steps:

24

not 1 = rull
i = fixb8

Current Problem:
pernia, al}

Backirack loqmull, 1}
Automatic Assignment || |geafsegia, i, n), segls null, i)}
Manual Assignment. Le{null, n}

Skip
Strengthening
State Variahle

Lo true N
L pernia, al}

strengthening Disjoint Goal ;2;;?;“ E‘;mi'L “3)

HIECHOn Le(null, i}

Intermediate Assertion | | |le{i, nj

T lgeagsegia, 4, nd, segla, null, i)}
Conditional - o

Disjunctive Conditional

Goals:

prote:

Ls{i, fixs)

manual_assignment

Input: o

Result:|a. i

Slaie:;flx.EBJ al

Je |y

Figure 6: The TOSS interface

while = THEN(strenthening, P_str, THEN(protection, P_second, loop))

where P_str is the only subgoal generated by the strengthening strategy.

Strategies defined with THEN perform larger development steps than their component strate-
gies. Thus, strategies can gradually approximate the complexity of development steps performed
by human developers in practice. More strategies for program synthesis can be found in [Hei94].

7.3 I0SS: An Implemented Program Synthesis System

The program synthesis system 10SS is a research prototype that was built to validate the concept of
strategy and the system architecture developed for the machine-supported application of strategies.
Currently, it supports the application of the methods described in [Gri81] and [Der83]. Due to
the uniform interface of strategy modules, the two approaches can be combined freely.

I0SS is an instantiation of the architecture described in Section 6 and uses the instantiation
given in Section 7.1. The basis for the implementation of TOSS is the Karlsruhe Interactive
Verifier (KIV), a shell for the implementation of proof methods for imperative programs [HRS88].
It provides a functional Proof Programming Language (PPL) with higher-order features and a
backtrack mechanism. Strategies are implemented as collections of PPL functions in separate
modules. New strategies can be incorporated in a routine way. Currently a template file for new
strategies supports this process; for the future, we envision tool support relieving the implementor
of anything but the peculiarities of the newly implemented strategy. The graphical user interface
of IOSS (see Fig. 6) is written in tcl/tk [Ous94] and integrates the graph visualization system
daVinci [FW95] to display the development tree.

Fig. 6 shows the graphical user interface of 10SS. The main window displays the development
task, represented by the development tree on the left-hand side of the window, and the current
programming problem on the right-hand side of the window. The tree visualizes the process and
the state of development. Each node is labeled with the name of the strategy applied to it. The
state of the node is color coded, showing at a glance whether it is reducible, or solved, etc. The
strategy menu is shown in the center of the window. Applications of strategies, inspection of nodes
or the proof tree and graph manipulations like scaling are performed via mouse clicks or pull-down
menus. For a more complete description of 0SS, which also contains example developments, the

reader is referred to [HSZ95a, HSZ95b].

25

8 Instantiation for Specification Acquisition

The instantiation of the previous section presupposes the existence of a formal specification for
the program to be developed. However, developing the specification may be at least as difficult
as transforming it into an executable program. Since formal specification languages often are not
easy to handle, developers need support to use them appropriately. Strategies for specification ac-
quisition not only propose an order in which the different parts of a specification can be developed.
They also provide valuable validation mechanisms for the developed specifications.

The instantiation we present now serves to develop specifications in Z. This fits well with the
instance for TOSS since 7 supports the explicit modeling of states. 7 specifications will usually
be implemented in an imperative language, like the one used in TOSS, and 7 operation schemas
can be easily transformed into programming problems of IOSS [Hei96]. The two instantiations are
compared in Section 9.

8.1 Problems, Solutions, and Acceptability

In contrast to program synthesis where problems and solutions are purely formal objects, speci-
fication acquisition transforms informal requirements into formal specifications. Hence, problems
contain natural language descriptions of the purpose of the specification to be developed.

On the other hand, to develop a specification successively, one must know the parts of the
specification that are already developed. Since problems should contain all information needed to
solve them, problems must contain expressions of the chosen specification language, in our case Z.

Moreover, a problem contains a schematic 7 expression that can be instantiated with an
appropriate concrete Z expression. The schematic Z expression specifies the syntactic class of the
piece of specification to be developed and how it is embedded in its context, see e.g. Section §.2.2.
These considerations lead us to the basic types

[SynZ, Text, SchematicZ)

Semantically valid Z specifications are a subset of the syntactically correct ones. To be able to
state meaningful acceptability conditions that capture the role of a piece of specification in its con-
text, 7Z expressions are associated with syntactic classes, e.g. specification, schema, schema_list.
These syntactic classes are sets of 7 expressions The empty string ¢ is a syntactically correct 7
expression.

SemZ : P SynZ
SyntacticalClass : P(P SynZ)
€:SynZz

Each schematic Z expression is associated with the syntactic class of Z expressions that it
can be instantiated with. The function NL concatenates two Z expressions. In analogy to the Z
reference manual, it can be interpreted to mean “new line”. Since concatenating two arbitrary Z
expressions does not always yield a syntactically correct Z expression, this function is partial.

syn_class : SchematicZ —s SyntacticalClass
instantiate : SchematicZ x SynZ — SynZ
NL: SynZ x SynZ — SynZ

YV schem_exzpr : SchematicZ e Y v : syn_class schem_expr e
(schem_expr, v) € dom instantiate

A specification problem consists of the parts mentioned before, where it is required that each
7, expression belonging to the desired syntactic class can be combined with the 7 part of the
problem.

26

__ SpecProblem
req : Text

context : SynZ
to_develop : SchematicZ

Y exzpr : SynZ | expr € syn_class to_develop
(context, instantiate(to_develop, expr)) € dom(_NL_)

Solutions are 7 expressions:
SpecSolution == Syn”Z

A solution sol is acceptable with respect to a problem pr if and only if it belongs to the
syntactic class of pr.to_develop and the combination of pr.contexrt with the instantiated schematic
expression yields a semantically valid 7 specification.

_spec_acceptable_for_ : SpecSolution < SpecProblem

V sol : SpecSolution; pr : SpecProblem e
sol spec_acceptable_for pr
i=4
sol € syn_class(pr.to_develop) A
pr.context NL instantiate(pr.to_develop, sol) € SemZ

In practice, 1t is useful to define SemZ as those 7 expressions that are accepted by available tools,
such as the fuzz type checker [Spi92a].

8.2 Strategies for Specification Acquisition

We present three strategies: the state_based strategy that captures the top-level methodology
of the specification language Z; the develop_schema strategy to develop a single schema; and a
strategy to develop lists of schemas that is defined using the strategicals LiFT and REPEAT.

Again, we use a semi-formal Z-like notation, neither formalizing the syntax and semantics of
Z, nor giving definitions for all functions and predicates we use.

8.2.1 The State_Based strategy

The 7Z methodology recommends to start with the global definitions, then to define the system
state and the operations on the state. Finally, it may be necessary to make some more definitions
to complete the specification. Since this is a top-level strategy, the given problem must admit to
develop expressions of the syntactic class specification. The type Value again denotes the disjoint
union of SpecProblem and SpecSolution. Hence, we have

state_based = {global_defs, system_state, system_ops, other_defs, state_based_sol }
where global_defs 1s defined by

IA global_defs = {P_init}
OA global_defs = { P_global, S_global’}
global_defs = { t : scheme global_defs — Value |
syn_class(t(P_init).to_develop) = specification A
t(P_global) = { req = t(P_init).req; “specify global definitions”,
context = t(P_init).context
to_develop = sp : specification) A
t(S_global) spec_acceptable_for t(P_global)}

27

Using the concatenation function ; for text, a natural-language description of the problem is added
to the informal requirements. The schematic expression to_develop is denoted by sp : specification.
This means that a 7 expression belonging to the syntactic class specification must be developed,
and the instantiation function is the identity. The constituting relation system_state is defined by

IA system_state = { P_init, S_global}
OA system_state = { P_state, S_state}
system_state = { t : scheme system_state — Value |
t(P_state) = (req = t(P_init).req; “specify global system state”,
context = (t(P_init).context) NL t(S_global)
to_develop = state_def : schema_list) A
t(S_state) spec_acceptable_for t(P_state) A
t(S_state) # ¢}

To define P_state, the global definitions S_global are added to the context. The system state must
be defined as a non-empty list of schemas. The constituting relation system_ops is defined by

1A system_ops = { P_init, P_state, S_state}
OA system_ops = {P_ops, S_ops}
system_ops = { t : scheme system_ops — Value |
t(P_ops) = { req = t(P_init).req; “specify system operations”
context = (t(P_state).contexrt) NL t(S_state)
to_develop = ops_def : schema_list) A
t(S_ops) spec_acceptable_for t(P_ops) A
t(S_ops) # ¢}

Like the system state, the operations are defined by schemas. The empty list of operations is not
permitted. The constituting relation other_defs is defined by

IA other_def = {P_init, P_ops, S_ops}
OA other_def = {P_other, S_other}
other_defs = { t : scheme other_defs — Value |
t(P_other) = (req = t(P_init).req; “other definitions”,
context = (t(P_ops).contex) NL t(S_ops)
to_develop = others : specification) A
t(S_other) spec_acceptable_for t(P_other)}

No assumptions can be made on the other necessary definitions.
The constituting relation state_based_sol assembles the final solution and states acceptability
conditions that can be checked only when all partial solutions are known.

IA state_based_sol = {S_global, S_state, S_ops, S_other}

OA state_based_sol = {S_final}

state_based_sol = { t : scheme state_based_sol — Value |
t(S_final) = t(S_global) NL t(S_state) NL ¢(S_ops) NL t(S_other) A
t(S_global) does not contain state or operation schemas A
t(S_state) contains a state schema S that is not imported by any

other schema in ¢(S_state) and an initial schema for S A

t(S_ops) contains at least one operation schema A
none of the operations defined in ¢(S_ops) has precondition false}

A schema S is a state schema if it has neither inputs nor outputs and there are other schemas
importing it. There must not be declarations of the kind z : S. Note that this can be checked
only in context with the other parts of the specification. A schema is an operation schema if it
imports a state schema with the /, A or Z notation.

28

Applying the state_based strategy guarantees that the developed specification roughly conforms
to the recommended 7 methodology. Its acceptability conditions not only refer to the syntax of
the developed specification, e.g. a list of schemas being non-empty, but also to its semantics, e.g.
in distinguishing state and operation schemas. More detailed conditions can be stated in the
strategies that are used to solve the subproblems generated by the state_based strategy.

8.2.2 The define_schema Strategy

This is a simple strategy, where a schema is defined in two parts: first the declaration part and then
the predicate part. The strategy requires that solutions of syntactic class schema are permitted.

define_schema = {define_decls, define_pred, schema_sol }
where define_decls is defined by

IA define_decls = {P_init}
OA define_decls = { P_decls, S_decls}
define_decls = { t : scheme define_decls — Value |
syn_class(t(P_init).to_develop) D schema
t(P_decls) = { req = t(P_init).req; “specify declaration part of schema”,
context = t(P_init).context
to_develop = make_schema(decls : declaration_list, true)) A
t(S_decls) spec_acceptable_for t(P_decls)}

Here, we have used the function make_schema instead of the graphical schema notation. The
schematic expression t(P_decls).to_develop says that a 7 expression that belongs to the syntactic
class declaration_list must be developed, and that the instantiation function is make_schema,
with the developed expression and the predicate true as arguments. This trivial predicate must
be used as long as the predicate part of the schema is not developed. The constituting relation

define_pred is defined by:

IA define_pred = {P_init, S_decls}
OA define_pred = {P_pred, S_pred}
define_pred = { t : scheme define_pred — Value |
t(P_pred) = { req = t(P_decls).req; “specify predicate part of schema”,
contert = t(P_init).context
to_develop = make_schema(t(S_decls), pred : predicate)) A
t(S_pred) spec_acceptable_for t(P_pred)}

Acceptability of the solution t(S_pred) requires that the developed predicate refers only to the
declarations made in ¢(S_decls) and the global definitions of the context t(P_init).context. The
constituting relation schema_sol combines the two parts of the schema.

TA state_based_sol = {S_decls, S_pred}

OA state_based_sol = {S_final}

state_based_sol = { t : scheme state_based_sol — Value |
t(S_final) = make_schema(t(S_decls), t(S_pred))}

8.2.3 An Iterative Strategy

The second and third subproblems generated by the state_based strategy can be solved by repeated
application of define_schema. For this purpose, a new strategy must be defined that generates
lists of schemas instead of just one schema. According to the definitions of Section 4, we can define

define_schema_list =
RePEAT (LIFT(define_schema, p_down, p_combine, s_combine), p_rep, empty)

29

where p_rep is a problem attribute newly introduced by LiFT and empty is the terminating strategy
that generates the empty specification €. The other arguments of LIFT are defined as follows:

p—down == (A pr : SpecProblem | pr.to_develop D schema_list e
(req = pr.req, context = pr.context, to_develop = sch : schemay))

p_combine == (A pr : SpecProblem; sol : SpecSolution |
pr.to_develop O schema_list A sol € schema e
(req = pr.req, context = pr.context NL sol, to_develop = pr.to_develop))

s_combine == _NL_

where p_down converts a problem to define a list of schemas into a problem to define a single
schema; the function p_combine incorporates a developed schema into the context part of a prob-
lem; and the function s_combine concatenates two specifications, thus allowing to concatenate a
schema with a list of schemas.

The function p_combine is injective, and if a list of schemas sl is acceptable for the combined
problem, where the schema sch developed first is added to the context, then the whole schema
list, consisting of concatenation of sch and sl is acceptable for the original problem. Hence, the
requirements for the arguments of LirT are fulfilled.

Defining the strategy define_schema_list with strategicals has the advantage that the existing
strategy define_schema is re-used and that the user does not need to manually select the same
strategy over and over again. The only possibilities left after application of define_schema_list
are to develop one more schema or to terminate the iteration.

9 Comparison of the Two Instantiations

The two instantiations of the strategy framework presented in Sections 7 and 8 differ in several
important aspects. The differences of program synthesis and specification acquisition are reflected
in the respective instantiations. They show up in the following phenomena:

Instantiation of the generic parameters. Program synthesis leads from a formal specification
to a program. Both are formal objects, and the definition of acceptability can establish a formal
relation between the two, namely correctness.

In specification acquisition, this is impossible because the requirements are described infor-
mally. Specification acquisition leads from informal to formal artifacts in the software engineering
process. Hence, the general definition of acceptability can refer to the formal specification in
isolation only, and not to the requirements. In contrast to program synthesis, where all partial
solutions are statements, the partial solutions in specification acquisition belong to different syn-
tactic classes. Thus the general notion of acceptability is static type correctness. For individual
strategies, stronger acceptability conditions can be stated. These conditions reflect the purpose of
the different parts of the specification in the context of a strategy, e.g. that the global definitions
should not define the system state or that system operations should have a satisfiable precondition.
Also consistency and completeness criteria can be stated in the context of particular strategies.

Independent subproblems. In program synthesis, the subproblems generated by a strategy
are often independent of each other. For example, when developing a conditional, the two branches
can be developed in any order or in parallel.

Specification acquisition, on the other hand, proceeds much more incrementally. Usually, later
parts of the specification refer to the earlier parts. For example, to define the operations of a
system, its state must be known. So far, none of the strategies defined for specification acquisition
contains independent subproblems.

30

Incomplete solutions. The fact that subproblems in specification acquisition strongly depend
on each other influences the way in which strategies are applied. Experience has shown that it is
unrealistic to assume that, if problem Py depends on the solution S7 of problem Py, it is possible
to first solve Py completely and only then start working on Ps. In the state_based strategy, the
definition of the state and the operations will usually make use of the global definitions. But we
cannot assume that a specifier foresees all necessary global definitions in advance. This means
that the process that implements problem solving with strategies must allow specifiers to work
on a problem even if the solution it depends on is not yet completely known. Technically, we
can achieve this by propagating incomplete solutions. When the specifier wants to work on a
“later” subproblem, the assemble functions contained in the strategy modules (see Section 5.1)
are executed, where dummy values are used for solutions that have not yet been developed. As
soon as a change in an earlier problem/solution occurs, the assemble functions must be executed
once more to propagate the results into later problem definitions. When a subproblem is finally
solved, both the assemble and accept functions must be executed.

In program synthesis, such a feature would make the problem solving process more flexible and
comfortable. However, it is not necessary to make strategy-based program synthesis feasible.

Use of repetition. Frequently, in specification acquisition, several items of the same kind must
be developed to solve a problem, like in P_state and P_ops of the state_based strategy. This can
be supported by the strategicals REPEAT and LirT, as described in Section 8.2. If several items
of different syntactic classes have to be developed, like for the global definitions P_global of the
state_based strategy, this can be achieved by a strategy called iterate.

For program synthesis, a repetition of the same strategy is not as useful. To develop a program,
it does not help to consider it as a concatenation of items of the syntactic class statement. This is
due to the fact that programming problems provide much more detailed and semantic information
than specification problems because they are formal. Their syntactic form may already suggest
the strategy to apply. Consequently, strategy selection can rely more on the specific problem in
program synthesis than in specification acquisition.

These considerations show that program synthesis and specification acquisition are fairly dif-
ferent activities. However, strategies are general enough to support them both.

10 Related Work

Our work relates to knowledge representation techniques and process modeling in classical software
engineering, program synthesis and tactical theorem proving.

Knowledge-Based Software Engineering (KBSE). This discipline seeks to support soft-
ware engineering by artificial intelligence techniques. It comprises a variety of approaches to
specification acquisition and program synthesis, see [LD89, LM91]. Our approach could also be
subsumed under this field, because a knowledge representation mechanism is the heart of our
approach.

A prominent example of KBSE, which is close to our aims, is the Programmer’s Apprentice
project [RW88]. There, programming knowledge is represented by clichés. These are prototypical
examples of the artifacts in question, e.g. programs, requirements documents or designs. They
can contain schematic parts. The programming task is performed by “inspection”, i.e. choice
of an appropriate cliché and its customization by combination with other clichés, instantiation
of schematic parts, and structural changes. This is achieved by high-level editing commands.
The assumption underlying the Apprentice approach is that a library of prototypical examples
provides better user support than the representation of general-purpose knowledge. Our position
is to prefer general-purpose knowledge because clichés to a large extent depend on the application
domain. This makes it difficult to set up a sufficiently complete cliché library that does not need
to be extended for each new problem.

31

Representation of Design and Process Knowledge. Wile [Wil83] presents the development
language Paddle. Paddle is similar to conventional programming languages. Its control structures
are called goal structures. Paddle programs are a means to express developments, i.e. procedures
to transform a specification into a program. Since performing the thus specified process consists of
executing the corresponding program, a disadvantage of this procedural representation of process
knowledge is that it enforces a strict depth-first left-to-right processing of the goal structure. This
restriction also applies to more recent approaches to represent software development processes by
process programming languages [Ost87, SSW92].

Potts [Pot89] aims at capturing not only strategic but also heuristic aspects of design methods.
He uses Issue-based Information Systems (IBIS) [CB88] as a representation formalism. IBIS
representing heuristics tend to be specialized for a particular application domain. Qur approach,
in contrast, aims at representing general, domain independent problem solving knowledge.

Souquitres and Lévy [Sou93, SL93] has developed an approach to specification acquisition
whose underlying concepts have much in common with the ones presented here. Specification
acquisition is performed by solving tasks. The agenda of tasks is called a workplan and resembles
our development tree. Tasks can be reduced by development operators similar to strategies. De-
velopment operators, however, do not guarantee semantic properties of the product. Therefore,
incomplete reductions and a variable number of subtasks for the same operator can be admitted.

In the German project KORSO [BJ95], the product of a development is described by a de-
velopment graph. Tts nodes are specification or program modules whose static composition and
refinement relations are expressed by two kinds of vertices. There is no explicit distinction between
“problem nodes” whose contents are not completely known and “solution nodes”. In contrast to
the development tree the KORSO development graph does not reflect single development steps. A
branching in our development tree maps to a subgraph in their development graph where process
information like dependencies between subproblems cannot be represented.

Program Synthesis. The strategy framework in general and 10SS in particular make it possible
to integrate a variety of methods which can be expressed in its basic formalism. The synthesis
systems CIP [CIP87], PROSPECTRA [HKBY93] and LOPS [BH84], in contrast, are all designed
to support specific methods. Their authors did not intend to integrate these methods with other
ones, nor are these systems customizable. Moreover, the support of other activities than program
synthesis was not a design goal for these systems.

The approach underlying KIDS [Smi9(] is to fill in algorithm schemas by constructive proof
of properties of the schematic parts. This is achieved by highly specialized code (design tactics)
for each schema. There i1s no general concept of design tactics or how to incorporate a new one
into the system. Information about the development process is maintained implicitly. Working
with KIDS, it is hard to keep track of “where” one is in a development. There is a logging and
replay facility, but this provides no possibility to browse the state of development. Since design
tactics are linearly programmed, there is no way to change the order of independent design steps
or “interleave” tactics applications.

Tactical Theorem Proving. Tactical theorem proving has first been employed in Edinburgh
LCF [Mil72]. The idea is to conduct interactive, goal-directed proofs by backward chaining from
a goal to sufficient subgoals. Tactics are programs that implement “backward” application of
logical rules. Tactical theorem proving is also used in modern theorem provers, e.g. in the generic
interactive theorem prover Tsabelle [Pau94], in the verification system PVS [Dol95], and in KTV
[HR.S88], the theorem proving shell underlying TOSS.

The goal-directed, top-down approach to problem solving is common to tactics and strategies.
Nevertheless, there are some important differences. First, a tactic is one monolithic piece of code.
All subgoals are set up at its invocation. Dependencies between subgoals can only be expressed by
the use of metavariables. These allow one to leave “holes” in a subgoal that are “filled” during proof
of another subgoal by unification on metavariables. Dependencies not schematically expressible by
metavariables cannot be realized by tactics. Since tactics only perform goal reduction, there is no

32

equivalent to the assemble and accept functions of strategies. They are not necessary for the tactic
approach because problems and solutions are identical except for instantiation of metavariables.
In contrast, problems and solutions of strategies may be expressed in different languages, and the
composition of solutions by assemble may not be expressible schematically.

Another important difference concerns the roles of search and tacticals or strategicals, respec-
tively. In tactical theorem proving, proof search is promising because the theorem is known and
need not be constructed. The purpose of strategy-based development, on the other hand, is to
construct an artifact of the software development process in the first place. This makes search a
hopeless enterprise. Consequently, the OR and FAIL tacticals that are used to program search are
unnecessary in the context of strategy-based development. The REPEAT construct is realized dif-
ferently in the two frameworks. While in search procedures, a proper loop construct is necessary,
the REPEAT strategical performs only one step of a loop; its purpose is to impose restrictions on
the strategies that may be applied. Only the THEN tactical or strategical is useful in both cases
since 1t allows one to perform larger steps in a proof or a development.

We conclude that the two activities — even though based on similar idea — are quite different
in their practical application.

Apart from these conceptual differences, there are differences in the kind of user support tactical
theorem provers provide. Theorem proving systems like Isabelle or PVS usually do not maintain
a data structure equivalent to the development tree. It is the users’ responsibility to record their
proof steps textually outside of the system.

11 Conclusions

The concept of strategy is designed to support the application of formal methods in software
engineering. The kind of knowledge that can be expressed as strategies are established ways
of procedure as they are described in text books. The definition of strategies relies on relations,
because different applications of the same strategy to a problem may lead to different subproblems
and produce different solutions. Strategies do not fully automate a development task but provide
guidance and validation. They leave a considerable degree of freedom in their application. The
most important properties of the strategy framework are:

Methodological Support. When formal methods are used, it is important not to leave devel-
opers alone with a mere formalism. In contrast to other approaches, where tools deal with single
documents and not with the process aspect of a development, the strategy framework aims at
providing methodological support for software engineers. Making explicit not only dependencies
but also independencies of problems in strategies allows for the greatest possible flexibility in the
development process.

Genericity. The definition of strategies and the system architecture have the definitions of
problems, solutions, and acceptability as generic parameters. This generic nature of strategies
makes it possible to support quite different development activities, like specification acquisition
and program synthesis.

Uniformity. The concept of strategy provides a uniform way of representing development knowl-
edge. It is independent of the development activity that is performed and the formal method that
is used. Tt gives rise to a uniform mathematical model of problem solving in the context of software
engineering. Methods are uniformly represented as sets of strategies. Different methods can be
combined freely as long as they rely on the same instantiation of the strategy framework.
Different instantiations of the strategy framework rely on the same principles. When con-
ducting more and more development activities with strategies, software engineers can still use
their previously acquired skills in strategy-based development; they need not learn entirely new

33

ways of procedure. Moreover, when integrated tool support shall be provided, it is more promis-
ing to integrate different implemented instances of the strategy framework than totally unrelated
systems.

Reuse. Strategies make development knowledge explicit. Knowledge represented as strategies
can be communicated to others; it can be enhanced according to new experiences and insights;
and it can be reused in different developments and by different persons.

Machine Support. Our approach provides concepts for machine-supported development pro-
cesses. The uniform modular representation of strategies makes them implementable. The system
architecture derived from the formal strategy framework gives guidelines for the implementation
of support systems for strategy-based development. Representing the state of development by
the data structure of development trees is essential for the practical applicability of the strategy
approach. The practicality of the developed concepts is confirmed by the implemented system
10SS.

Documentation. The development tree does not only support the development process. Is also
useful when the development is finished, because it provides a documentation of how the solution
was developed and can be used as a starting point for later changes.

Semantic Properties. The concept of acceptability of a solution with respect to a problem
captures the semantic properties that must be guaranteed by the developed products. Semantic
constraints are on the one hand expressed in the general definition of acceptability that is part of
every instantiation of the strategy framework. On the other hand, stronger acceptability conditions
that take context information into account can be stated for individual strategies.

In an implementation, the functions local_accept and accept are the only components of a
strategy module that are concerned with semantic properties. This enhances confidence in the
development tool because only these functions have to be verified to ensure that the tool truly
guarantees acceptability of the produced solutions.

Formality. By defining strategies formally, we were able to establish a theory of strategy-based
problem solving. In several lemmas, we proved that strategies and strategicals conform to the
intuition of problem solving, and we defined a problem solving algorithm that was proven to lead
to acceptable solutions.

Stepwise Automation. Introducing the concept of heuristic function and using these functions
in distinguished places in the development process, we have achieved a separation of concerns: the
essence of the strategy, i.e. its semantic content, is carefully isolated from questions of replacing
user interaction by semi or fully automatic procedures. Hence, gradually automating development
processes amounts to local changes of heuristic functions.

Scalability. Using strategicals, more and more elaborate strategies can be defined. In this way,
strategies can gradually approximate the size and kind of development steps as they are performed
by software engineers. In connection with the stepwise automation facilities, this contributes to
the scalability of the approach.

Customizibility. To incorporate a new method into a support system, the strategy base only
has to be extended by the new strategies. This involves only local changes that do not affect
existing components. The same holds for the automation of parts of the development.

More work is necessary if the notions of problem, solution or acceptability have to be changed.
In this case, all strategies have to be revised, but the clear modularization still helps in identifying
the code that has to be changed.

34

A necessary prerequisite for the successful work with strategies is the familiarity with the
involved formalisms. To use the instantiation for specification acquisition, a good knowledge of
the 7 language is necessary. To develop programs with 10SS, the user should be familiar with
Gries’ method to develop correct programs [Gri81]. It is not required, however, to be a researcher
in the area of formal methods to profitably apply strategies.

Currently, we work on two more instantiations of the strategy framework. The first supports
the specification of safety-critical systems. Here, a combination of Z and real-time CSP [Dav93]
will be used. The second is intended to cover the design phase of the software development process
by supporting the development of software architectures following certain architectural styles.

In the future, we want to gain even more experience in expressing methods dealing with the
different phases of the software life cycle as strategies, e.g. requirements engineering or mainte-
nance. This will contribute to the understanding of the requirements for automated support of
almost all phases of the software development process.

For now, different instantiations of the strategy framework lead to different support systems.
We will investigate how different instances of the system architecture can be combined; first ideas
are reported in [Hei96]. This would provide integrated tool support for larger parts of the software
lifecycle.

Acknowledgment. Thanks to Thomas Santen for his untiring willingness to discuss strategies
and his detailed comments on a draft of this paper.

References

[BH84] W. Bibel and K. M. Hornig. LOPS — a system based on a strategical approach to program
synthesis. In A. Biermann, G. Guiho, and Y. Kodratoff, editors, Automatic Program
Construction Techniques, pages 69-89. MacMillan, New York, 1984.

[BJ95] M. Broy and S. Jahnichen, editors. KORSO: Methods, Languages, and Tools to Construct
Correct Software. LNCS 1009. Springer Verlag, 1995.

[CB88] J. Conclin and M. Begeman. gIBIS: a hypertext tool for exploratory policy discussion.
ACM Transactions on Office Informations Systems, 6:303-331, October 1988.

[CIP87] CIP System Group. The Munich Project CIP. Volume II: The Program Transformation
System CIP-S. LNCS 292. Springer-Verlag, 1987.

[Dav93] Jim Davies. Specification and Proof in Real-Time CSP. Cambridge University Press,
1993.

[Der83] Nachum Dershowitz. The Evolution of Programs. Birkhauser, Boston, 1983.

[Dol95] Axel Dold. Representing, verifying and applying software development steps using the
PVS system. In V.S. Alagar and Maurice Nivat, editors, Proc. 4th Int. Conference on
Algebraic Methodology and Software Technology, LNCS 936. Springer-Verlag, 1995.

[FW95] M. Frohlich and M. Werner. Demonstration of the interactive graph-visualization system
daVinci. In Proc. DIMACS Workshop on Graph Drawing, LNCS. Springer Verlag, 1995.

[Gol82] R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130. Springer-
Verlag, 1982.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[Hei94] Maritta Heisel. A formal notion of strategy for software development. Technical Report
94-28, Technical University of Berlin, 1994.

35

[Hei96] Maritta Heisel. An approach to develop provably safe software. High Integrity Systems,
1996. to appear.

[HKB93] B. Hoffmann and B. Krieg-Briickner, editors. PROgram Development by SPECification
and TRAnsformation, the PROSPECTRA Methodology, Language Family and System.
LNCS 680. Springer-Verlag, 1993.

[HRS88] Maritta Heisel, Wolfgang Reif, and Werner Stephan. Implementing verification strategies
in the KIV system. In E. Lusk and R. Overbeek, editors, Proceedings 9th International
Conference on Automated Deduction, LNCS 310, pages 131-140. Springer-Verlag, 1988.

[HSZ95a] Maritta Heisel, Thomas Santen, and Dominik Zimmermann. A generic system architec-
ture for strategy-based software development. Technical Report 95-8, Technical University
of Berlin, 1995.

[HSZ95b] Maritta Heisel, Thomas Santen, and Dominik Zimmermann. Tool support for formal
software development: A generic architecture. In W. Schafer and P. Botella, editors,
Proceedings 5-th FEuropean Software Engineering Conference, LNCS 989, pages 272-293.
Springer-Verlag, 1995.

[Kan90] Paris C. Kanellakis. Elements of relational database theory. In Jan van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, chapter 17, pages 1073-1156.
Elsevier, 1990.

[LD89] Michael Lowry and Raul Duran. Knowledge-based software engineering. In A. Barr, P.R.
Cohen, and E.A. Feigenbaum, editors, The Handbook of Artificial Intelligence, chapter 20,
pages 241-322. Addison-Wesley, Reading, MA, 1989.

[LM91] Michael R. Lowry and Robert D. McCartney, editors. Automating Software Design. AAAI
Press, Menlo Park, 1991.

[Mil72] Robin Milner. Logic for computable functions: description of a machine implementation.

SIGPLAN Notices, 7:1-6, 1972.

[Ost87] Leon Osterweil. Software processes are software too. In 9th International Conference on
Software Engineering, pages 2-13. IEEE Computer Society Press, 1987.

[Ous94] John K. Ousterhout. T¢l and the Tk Toolkit. Addison-Wesley, 1994.
[Pau94] L. C. Paulson. Isabelle. LNCS 828. Springer-Verlag, 1994.

[Pot89] Colin Potts. A generic model for representing design methods. In International Conference
on Software Engineering, pages 217-226. IEEE Computer Society Press, 1989.

[PST91] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and
7. Prentice Hall, 1991.

[RW88] Charles Rich and Richard C. Waters. The programmer’s apprentice: A research overview.
IEEE Computer, pages 10-25, November 1988.

[SL93] Jeanine Souquicres and Nicole Lévy. Description of specification developments. In Proc.
of Requirements Engineering ’93, pages 216-223, 1993.

[Smi90] Douglas R. Smith. KIDS: A semi-automatic program development system. IEEE Trans-
actions on Software Engineering, 16(9):1024-1043, September 1990.

[Sou93] Jeanine Souquieres. Aide au Développement de Specifications. These d’Etat, Université
de Nancy I, 1993.

[Spi92a] J. M. Spivey. The fuzz manual. Computing Science Consultancy, Oxford, 1992.

36

[Spi92b] J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd edition, 1992.

[SSW92] Terry Shepard, Steve Sibbald, and Colin Wortley. A visual software process language.
Communications of the ACM, 35(4):37-44, April 1992.

[Wil83] David S. Wile. Program developments: Formal explanations of implementations. Com-
munications of the ACM, 26(11):902-911, November 1983.

A Proofs of Lemmas

A.1 Proofs of Lemmas 3, 4 and 5

We first prove Lemma 5, where we use the same abbreviations and declarations as introduced
there. By the fact that [is the transitive closure of C4 with respect to some set of constituting
relations, the lemma follows by an inductive argument from

/ /
CT‘tEdCT‘t = cr Estratlunraté N cr

The relation cr:Cgery means OA cry N 1A ery # &. According to the definition of transformrhen,
this is equivalent to

(04 '\ {p, corp})
N ((IA cr U scheme(pa {r : straty U stratéyr | 7 Cstrat,Ustrat] . er})) \{p, corp})

+ O
This condition is equivalent to

da : Attribute | a ¢ {p,corp} e
a€ OAcr' Aa€ (IAcrUscheme(pa {r: straty U straty . | CstratyUstrat] . €T}))

If a € OA cr' N IA cr, we immediately have cr’ 4 cr and hence cr’ Cstrat,ustrat] CT- Otherwise,
Jer: {r: strat; U stmtéyr | r Cstrat,ustrat] cr} @ a € schemecr

Since the sets of all output attributes of strat; U strat . except p,corp are disjoint and a ¢
{p, cor p}, a cannot be an output attribute of €. Hence, a € IA¢F. This yields OA cr'NIATF # O.
It follows

PR _
cr' C4er, where ¢F Cstrat,Ustrat! = CT
which finishes the proof of Lemma 5.
O

We now prove Lemma 3, where we use the same definitions and abbreviations as before. We
have

scheme, (THEN (straty, p, straty))
= (scheme, straty \ {p, cor p}) U (scheme, straty \ { P_init, S_final})

where (schemes strat; \ {p, cor p}) N (scheme, straty \ {P_init, S_final}) = &. Tt follows that the
conditions 1 and 2 of the strategy definition are fulfilled.
The admissibility of THEN (straty, p, strats) is fulfilled, as the following argumentation shows:

e Since transformrpe, does not change the property of P_init or S_final of being an input or
output attribute of some cr € strat; and these two attributes do no longer occur in strat; .,
the requirements 1 and 2 of the admissibility definition are fulfilled.

37

The function transformrpe, removes the attributes p and cor p from the input and output
attributes of the constituting relation supplied as its first argument. Since these attributes
are no longer in the scheme of THEN(straty, p, strats), this does not destroy the requirements
3 and 4. Hence, they also hold for the transformed constituting relations.

Condition 5 holds because it holds for strat; as well as strat), and because the attribute cor p
that replaces S_final in strat} is an input attribute of a constituting relation of strat;.

The condition 6 is also not changed by transformypp., because the attributes p and cor p are
always removed pairwise from the schemes of the constituting relations.

e We show condition 7 by contraposition. If there were cyclic dependencies in THEN (straty, p,
strat), then by Lemma 5, there would also be a cyclic dependency in strat; U strat; .. Since
strat; and strat; , both cannot contain cycles (because strat; and strat; are strategies), a
cycle in strat; U strat; , must contain members of both strat and strat; . 1t follows that
without loss of generality

Jer @ straty @ I chain : seq(straty U strat;) @ head chain = cr A last chain = cr A

(Vj : 1.#chain — 1 e chainj Cq chain(j + 1))

Since the cycle must contain members of stratj ,, there must be a minimal index ¢ and a
maximal index k of chain such that

chain i € straty A chain(i + 1) € stratéﬂ. A
chaink € strat, A chain(k + 1) € straty

Since p and corp are the only common elements of strat; and strat; ,, only these can be
involved in the direct dependencies chain i C g4 chain(i + 1) and chain k Cq chain(k 4 1).

For index i, corp € OA(chain i) N IA(chain(: + 1)) is impossible because in strat; , corp
is always an output attribute (it takes the role of S_final in strat}). For index k, p €
OA(chain k)N IA(chain(k+1)) is impossible because in strat; , p is always an input attribute
(it takes the role of P_init in straty). Tt follows

p € OA(chain 1) N IA(chain(i + 1)) A cor p € OA(chain k) N IA(chain(k + 1))

Since p € OA(chain 1), we get = (¢Teorp Cstrat, chain i), where cre,yp is the unique con-
stituting relation of strat; that contains cor p as an output attribute. Since ¢ was chosen
minimal, ¢r Cgtrar, chain i holds. Tt follows = (¢7corp Castrar, cr). Otherwise, by transitiv-
ity of Cstrat,, we would get creor p Cstrat, ¢ Cstrat, chain .

Since cor p € IA(chain(k+1)), we have creorp Cstrat, chain(k+1). Index k was chosen max-
imal, which yields chain(k+1) Cstrar, cr. By transitivity of Cstrat,, we get ¢reorp Castrat, CT.
This is a contradiction because we had already concluded = (¢rcor p Cstrat, cr). This finishes
the proof that THEN(strati, p, strats) contains no cycles.

It remains to show the correctness of THEN(straty, p, strats), as required by condition 3 of the
strategy definition. This condition follows immediately from Lemma 4, together with the facts that
both strat; and strat} are strategies and that renaming of attributes does not destroy correctness.

O
To prove Lemma 4, we first show that

Ver :straty U straty , | cr # crmag ® cr Cstrat:Ustrat], = CTmar
where crp,q, == (pr: straty | S_final € OAr)

Because of Lemma 2, this holds for cr : straty \ {crmaer}. For cr : strati .\ {crmas 2}, we
bl
have cr Cstrat,, CTmazr,2, where ¢rmaro == (pr : stratf’gyr | corp € OAr). Since corp is an

38

input attribute of some cr : straty, it follows crpar 2 L stratiUstrat) CTmaz, and by transitivity of
,r
Cstrat,ustrat! the previous proposition is shown.
,r
This gives us

transformppen (€rmaz, strat; U stmtéyr, p) ={p, corp}<, a (straty U stmt:ﬁyr)

It follows b (THEN(straty, p, stratz)) C {p, cor p}<, > (strat; U straty).
For the other direction, we consider some t € {p, cor p}<, < (straty U strat!,) and show that
it is also a member of transformyppen(crmaz, strat; U stmtir, p). This follows from

V cry : THEN(straty, p, straty) @ scheme cry < t € cry

This proposition is true because all ¢r, : THEN(straty, p, straty) are defined as {p, corp}<, > crs’
for some crs’ C straty U strat; .. By the definition of X, if a tuple is in the join of set of relations,
its appropriate restriction is in every subset of that set.

This concludes the proof of Lemma 4 (and hence of Lemma 3).

A.2 Proof of Lemma 7

The conditions 1 and 2 of the strategy definition as well as the conditions 1 and 2 of the admissibil-
ity definition are easily verified. The other conditions for the admissibility of LirT(strat, p_down,
p_combine, s_combine) can be verified as follows:

e Condition 3 is fulfilled because it is fulfilled for a : scheme, strat \ {S_final} in crs,e,, for
p—up and s_up in cryp and for S_final in crapa.

e Condition 4 holds because it holds for strat and schemes strat N {p_up,s_up} = &
e Condition 5 holds because it holds for strat and s_rep € 1A crgpar.
e The condition 6 is fulfilled because it is fulfilled for strat and and {p_up, s_up} C scheme cryyp.

e There are no cycles in LiFT(strat, p_down, p_combine, s_combine) because, first, there are
no cycles in strat. Second, it holds

Ver:crspew @ cr L LIFT(strat,...

y CTup

because ¢r Cstrat CTmar for cr @ strat \ {crmar} and IA crpar C IA cryp. Third, we have
Crup Cd CTAnal-
For cr : crspew, crup CLIFT(strat,..) " is impossible because OA cryp N schemes crspew = @.

Finally, c¢rfna does not depend on any other constituting relation because S_final does not
occur in the scheme of any constituting relation except crgpq.

It remains to show the correctness of THEN(straty, p, strats), as required as condition 3 in the
strategy definition. For some ¢t € b (LIFT(strat, p_down, p_combine, s_combine)) that contains
acceptable solutions for all subproblems, i.e. members of the set subprs strat U {p_up}, we must
show t S_final acceptable_for t P_init. From the definition of transformp;; and the fact that strat
is a strategy, it follows that 3 sol : Solution e sol acceptable_for (p_down(t P_init)). Since the

function p_combine is required to be injective, the solution that is used in cry, to define ¢t p_up
and the one that is used in crgpq to define t.S_final is the same. This gives us

sol acceptable_for (p_down(t P_init)) A t s_up acceptable_for p_combine(t P_init, sol)

which, according to the requirements on p_down, p_combine and s_combine suffices to conclude
s_combine(sol, t s_up) = t S_final acceptable_for t P_init.

39

