An Approach to Develop Provably Safe Software

Maritta Heisel
Technische Universitat Berlin
FB Informatik — FG Softwaretechnik
Franklinstr. 28-29, Sekr. FR 5-6
D-10587 Berlin
heisel@cs.tu-berlin.de
fax: (+49-30) 314-73488

Abstract

We present a process model for the development of provably safe software. It is based
on well-established tools and techniques to set up formal specifications in the specification
language 7 and a program synthesis system designed by the author. The model provides a
guideline for the specification and implementation of safe software, consisting of a number of
steps that are complemented by proof obligations. The parts of the process specific to software
safety are given special consideration. The approach is exemplified by the specification and
partial implementation of a program controlling the pump of a steam boiler. Finally, we relate
software safety to correctness and reliability.

1 Why, What and How

Our approach aims at developing software for which certain safety conditions can be guaranteed.
For this purpose, formal methods are applied. The idea is to express the safety conditions in a
formal specification language. This makes it possible to treat them like functional requirements,
i.e. methods and tools designed to ensure software correctness become applicable. With this
approach, the specification of the system not only states functional requirements but consists of
two parts, functional and safety requirements, and software safety amounts to correctness with
respect to the safety requirements.

The fact that tool support is available to a large extent led us to choose the specification
language 7 [Spi92b] and a simple imperative programming language as the formalisms we want to
use. For Z, type checkers and theorem provers are available. To actually develop safe software as
specified in Z, the author’s program synthesis system IOSS (Integrated Open Synthesis System)
can be used. With this system, imperative programs can be developed and proven correct.

7 and imperative programs are a good match because both explicitly deal with states. The
same 1s true for the majority of computerized systems that have to fulfill safety requirements.
These facts lead us to believe that our choice is a reasonable one. We are aware that our approach
cannot be applied in all cases. For distributed and parallel systems, it is only useful when the
design has progressed to such detail that single modules are identified that can be treated with our
chosen formalisms. Real-time requirements cannot be treated at all but only be approximated. It
is not our aim to replace, but rather to complement other approaches to the development of safe
software.

In the specification phase, our proposed process model roughly follows the recommended Z
methodology. Differences occur where special safety considerations have to be taken into account.
In contrast to correctness, safety requires to consider the environment in which the software
operates.

Basically, software safety means that certain invariants have to be maintained. These invariants
are partially formal, partially informal. The formal invariants characterize the software states that

are considered safe. They can be guaranteed by proving the system correct with respect to the
safety requirements.

The informal invariants, however, require the internal system state to be a faithful representa-
tion of the state of the environment. The informal invariants can, of course, neither be formally
proven nor be enforced by the software. Nevertheless, they influence the specification and design
of the software. There will be sensors whose failure must be detected if ever possible. This can be
achieved by hardware redundancy and/or consistency checks performed by the software in order
to determine if the sensor values are credible. All these complications do not occur when only
correctness 1s considered. In this case, the sensor values are input to the program, and the program
has to react correctly with respect to this input. Where the input comes from and if it is sensible
is of no interest here.

This means that the process of specifying and developing safe software differs from the process
applied to obtain correct software, even if in the end the same formalisms are applied. It is the
contribution of this work to make these differences explicit and give a guideline how to adequately
deal with safety requirements.

Before we present our approach in more detail (Section 3), we briefly describe Z and TOSS
(Section 2). Sections 4 and 5 are devoted to a case study, the control software of a pump in a
steam boiler. A discussion of the limitations of the approach, its relation to other work and to
software correctness and reliability concludes the paper.

2 Z and IOSS

We have chosen the specification language 7 because it has gained considerable popularity in
industry and comes equipped not only with a methodology [PST91] but also with some tool
support, e.g. for type checking [Spi92a] and theorem proving [BG94]. 7 is designed to specify
state-based systems which is in good accordance with the reality of safety-critical systems. An
undeniable deficiency of Z is the fact that neither time nor complex control structures can be
specified.

The author’s synthesis system I0SS [HSZ95b] supports the development of imperative pro-
grams using so-called strategies, [Hei94]. Strategies describe possible steps during the synthesis
process. Their purpose is to find a suitable solution to some programming problem. A strategy
works by problem reduction. For a given problem, it determines a number of subproblems. From
their solutions, it produces a solution to the initial problem. Finally, it checks whether that solu-
tion is acceptable. The solutions to subproblems are also obtained by applications of strategies.
In general, the subproblems produced by a strategy are not independent of each other or of the
solutions to other subproblems. This restricts the order in which the various subproblems can be
set up and solved. A strategy describes how exactly the subproblems are constructed, how the
final solution is assembled, and how to check whether this solution is acceptable.

Problems are specifications of programs, expressed as pre- and postconditions that are formulas
in first-order predicate logic. To aid focusing on the relevant parts of the task, the postcondition
is divided into two parts, tnvariant and goal. In addition to these it has to be specified which
variables may be changed by the program (result variables), which ones may only be read (input
variables), and which variables must not occur in the program (state variables). The latter are
used to store the value of variables before execution of the program for reference of this value in
its postcondition.

Solutions are programs in an imperative Pascal-like language. Additional components are
additional pre- and postconditions, respectively. If the former is not equivalent to true, the
developed program can only be guaranteed to work if not only the originally specified, but also the
additional precondition holds. The additional postcondition gives information about the behavior
of the program, i.e. it says how the goal is achieved by the program. If, e.g., the specification
requires the value of variable z to be increased, the additional postcondition might contain the
equation z = 2y + 4711 which means that z is increased by 4711. Such information is needed in
the further synthesis process.

A solution is acceptable if and only if the program is totally correct with respect to both the
original and the additional the pre- and postconditions, does not contain state variables, and does
not change input variables. For each developed program a formal proof in dynamic logic [Gol82]
is constructed. This is a logic designed to prove properties of imperative programs.

Program synthesis with 10SS consists of a loop of strategy applications. The intermediate
states of the development are represented by a data structure called development tree. Its nodes
contain a problem and its solution (once it has been found). Each new strategy application
causes the development tree to be extended, if the strategy reduces the problem to a number
of subproblems. Otherwise, the problem is solved immediately, and the solution is recorded in
the respective node. When all subproblems of a problem have been solved, its solution can be
assembled from the solutions to the subproblems. The development is finished when all problems
have been solved. Representing the state of development as a data structure makes it possible to
obtain an overview of the development at any time. More about TIOSS can be found in [HSZ95a].

The combination of Z and TOSS can be achieved easily: since both formalisms allow for states
and have concepts to deal with changing values of variables, 7 specifications can mechanically be
translated into 10SS programming problems. The translation mechanism as well as the synthesis
process resembles the approach of the refinement calculus [Woo91b] and is described in more detail
in Section 5.

3 Six Steps to Safety

globa
definitions
Z
data refinement
‘ translation ‘
program synthesis 10SS

Figure 1: Overview of Approach

In the following, we describe a number of steps that constitute our approach for the development
of safe software. Each step comes with some proof obligations. The first three steps give a
guideline how to set up the specification of a system, where special attention is devoted to the
safety requirements. In general it will not be possible to carry out these steps independently of each

other and without iteration. Instead, a process resembling the spiral model of software development
will have to be employed. The last three steps describe how to perform the transition from a mere
specification to a totally correct program. Figure 1 provides a summary of the procedure.

Step 1 Define the legal states of the system.

This definition must comprise the safety requirements as well as other properties of the legal
states. We do not deal with the question how this specification is derived. It can be set up by
one party, treating functional as well as safety requirements. Another possibility is to set up two
specifications, a functional and a safety specification by different parties and then show that the
safety requirements are entailed by the functional specification. The latter approach can be used
to double-check the safety requirements, or it may be enforced by certification procedures or safety
standards.

Once the legal state is defined, an initial state should be given. This is not only in accordance
with the recommended Z methodology but also with other formalisms like finite state machines
or statecharts where one has to define start states or default states.

Proof Obligation 1 Show that the initial state is legal.
In this way, it is also shown that the requirements for legal states are satisfiable.
Step 2 Define the actions the system can perform.

These can be triggered either by outside events or by the system itself. In Z, they are defined
by operations that may change the system state.

Proof Obligation 2 Analyze the conditions under which the actions transform legal states into
legal states.

Technically, this is done by precondition analysis. This analysis yields the condition that
must hold if the state reached after execution of the operation is legal, provided the state before
execution of the operation is. If the precondition is not trivial, care must be taken that the
operation is only executed when its precondition holds.

Analyzing preconditions also helps to detect design errors. If the precondition of an operation
turns out to be false, the operation cannot be executed at all (or it would lead to an illegal state).
This clearly shows that something is wrong with the design of the operation or even the whole
system.

So far, we have applied standard Z methodology. The next step deals with the peculiarities of
safe software. For software safety, the environment in which the software operates has to be taken
into account. This is achieved by modeling the environment using sensors and by performing
consistency checks on the sensor values.

Step 3 Define the interface between the system and the outside world.

In this step the sensors must be modeled that enable the system to detect situations to which
it must react. It must also be specified how the system reacts to the possible sensor values and/or
failures. We advocate to model the system so as to provide exactly one internal operation for each
combination of sensor values. This guarantees that each situation is taken into account, and it
leads to a clear and comprehensible interface.

Proof Obligation 3 Show that the internal system operations are only invoked if their precon-
ditions are satisfied.

Proof Obligation 4 Show that for each combination of sensor values exactly one internal oper-
ation 1s invoked.

Proof obligation 4 is not necessary to prove the safety of the software. We introduce it to
encourage developers to design their systems as clear and simple as possible. These properties can
contribute as much to the system’s safety as a formal verification can.

Proof Obligation 5 Show that — if the sensors work correctly — the system faithfully represents
the state of its environment.

Once this step is performed, it is guaranteed that the internal state of the system always fulfills
the safety requirements and that the system state is consistent with the state of the environment,
under the condition that failure of sensors can be detected somehow. It follows that (under the
same condition) also the “real” system state is safe, provided the implementation of the system is
correct.

Remark concerning proof obligations. The proofs that have to be carried out are standard
and fairly simple. However, there are a lot of them to do. Until now, specialized tool support for
this purpose with a sufficient degree of automation is not yet available. Full-fledged first-order
theorem provers are not necessary because the proof obligations often have the form of existentially
quantified statements, with equations for the existentially quantified variables. We believe that
the construction of mostly automatic, specialized provers for the proof obligations occurring in
this context poses no severe problems.

The steps presented so far only dealt with the specification of safe software. A model of the
system has been defined and it has been shown that this model behaves safely. The following steps
are concerned with the correct implementation of this model. Since they are not specific to safety
they are presented more briefly than the specification steps.

Step 4 Refine the operations and data of the specification so that data structures of the target
programming language can be used.

What refinement means and how it is performed is described in the literature, e.g. [Woo91a.
This step is not necessary if the data structures involved are available in the target programming
language, as often is the case.

Step 5 Transform the specification obtained in Step 4 into a form suitable for the chosen program
synthesis system.

The Z specifications are transformed into IOSS programming problems, as described in Section
2. The translation process is defined in Section 5.1.

Step 6 Use the chosen synthesis system to obtain a proven correct implementation of the specified
system.

The last step — which can be performed automatically to a large extent — guarantees that the
concrete states of the implementation are always safe, provided the abstract states of the system
model are.

4 Case Study: A Steam Boiler

To illustrate our approach we consider the specification and implementation of software controlling
the pump of a steam boiler. The problem is a simplified version of the problem stated by J.-R.
Abrial [Abr94]. The pump is used to keep the water-level in the steam boiler between a minimum
safe_min and a maximum safe_maz, see Figure 2. This task is safety-critical because the steam
boiler and its environment can be damaged when the water-level is too low or too high. The
program can sense the state of its environment with two sensors: one measures the water-level,
the other one measures the amount of steam leaving the boiler. To improve fault tolerance, we

<—— boiler_contents
I— safe_max
— normal_max

— normal_min
— safe_min
U— 0

Figure 2: Relation between Boiler Entities

assume two additional sensors monitoring whether the measuring sensors work correctly. Finally,
there 1s a button that can be pressed to initialize the system.

The program can operate in three modes: normal, rescue and initializing mode. In nor-
mal mode, the program relies on the measured water-level. If it is below the intervention point
normal_min 1t switches on the pump; if it is above normal_maz it switches off the pump, see
Figure 2. The rescue mode is entered if the water-level sensor fails. In this mode the program tries
to keep the water-level within the safety limits relying on a computation of the water-level based
on the capacity of the pump and the measurement of steam leaving the boiler. When the water-
level sensor is repaired the program can switch back to normal mode. In the initializing mode the
program can either switch on the pump or open a water valve to establish a safe water-level. In
this mode, no steam may be taken from the boiler.

If it happens, however, that the water-level in the boiler is below safe_min or above safe_maz
the program must raise an alarm and stop (emergency mode). It cannot try to take care of the
situation itself because it only controls the pump and not the steam producing device. The safety
limits safe_min and safe_mazr must be defined in such a way that there is enough time for some
backup mechanisms to prevent the boiler (and its environment) from being damaged.

Control Model. We assume that the control operation to be defined in Step 3 (Section 4.3)
is triggered periodically by a control signal, as is not unusual, see e.g. [HK94]. The rest of the
specification relies on this control model in that we assume that the sensor measuring the steam
output of the boiler yields the absolute amount of steam leaving the boiler in one such period of
time. Similarly, we express the capacity of the pump by giving the absolute amount of water it
pumps into the boiler in one interval between two consecutive executions of the control operation.
This interval we will call one time unit in the following.

4.1 Step 1: Global Definitions and Legal States

First we have to define the entities mentioned above and their relations. This amounts to defining
a model of the technical components of the boiler as far as they are relevant for the specification.
A pump, for instance, can be characterized by the fact that it is on or off and by the quantity of
water it pumps into the boiler per time unit when it is on.

Readers not familiar with Z can find some explanations of the notation in Appendix A.

boiler_contents : Ny
safe_min : Ny
safe_maz : Ny
normal_min : N;
normal_maz : Ny
pump_capacity : Nq
steam_capacity : Ny

safe_min < normal_min < normal_maz < safe_mazx < boiler_contents
safe_min + steam_capacity < normal_min

normal_mazr + pump_capacity < safe_max

pump_capacity > steam_capacity

The entity pump_capacity states how much water per time unit the pump sends into the steam
boiler, whereas steam_capacity specifies the maximum amount of steam that can leave the boiler in
one time unit. The exact definitions of safe_min, safe_maz, normal_min and normal_maxz depend
on the technical properties of the pump and on the speed of the backup mechanisms designed to
take over when a hazardous situation occurs. The requirements safe_min + steam_capacity <
normal_min and normal_maz + pump_capacity < safe_maz guarantee that the pump can be
switched on or off in time to prevent the water-level from leaving the safety limits.

As a consistency check for the measured and computed water-levels, we require that the differ-
ence between them must not exceed a certain tolerance. The program always outputs a message,
indicating the mode in which it operates.

| tolerance : N

Safe == safe_min .. safe_maz
Stable == normal_min .. normal_maz
diff == (Az,y:Neif z > y thenz — y else y — 1)
PUMP_STATE ::= on | off
WATER_VALVE_STATE ::= open | closed
BOILER_MODE ::= initializing | normal | rescue | emergency
MESSAGE ::= alarm | normal_mode | initializing_mode | rescue_mode
SENSOR_STATE ::= working | failed
YesNo ::= yes | no
The global system state must be defined in such a way that it is satisfied in all operating

modes. Only in the rescue and normal modes, requirements concerning the water-level can be
stated. The water valve may only be open in the initializing or emergency mode.

__ SteamBoiler
mode : BOILER_MODE
measured_waterlevel : N
computed_waterlevel : N
pump : PUMP_STATE
water_valve : WATER_VALVE_STATE

(mode = normal =

measured_waterlevel € Safe A

diff (measured_waterlevel , computed__waterlevel) < tolerance)
mode = rescue = computed_waterlevel € Safe
water_valve = open = mode € {initializing, emergency}

When the steam boiler is installed it will be empty and in initializing mode. The decoration
“” of variable names means that they describe the state after an operation is completed. Plain

variables describe the state in which an operation is started.

__InitSteamBoiler
SteamBoiler’

mode’ = initializing
measured_waterlevel’ = 0
computed_waterlevel’ = (
pump' = off
water_valve' = closed

The initial state fulfills the state invariant because all of the above implications are vacuously
true.

4.2 Step 2: Operations of the Steam Boiler Software

We define a schema for each operating mode of the control software. The modes are modeled as
internal operations that define what happens in the boiler within one interval between consecutive
executions of the control operation. In other words, in each control cycle, exactly one of the
operations NormalMode, RescueMode or Initialize is performed. This may involve entering the
EmergencyMode. For each of these modes we define a schema, give the necessary explanations
and informally perform a precondition analysis (proof obligation 2).

We start with the emergency mode because this mode is used by the other ones. Tt raises an
alarm and leaves the water valve as it 1s. The other components of the state are not specified
because the emergency mode cannot only be entered by the overall control procedure (see Step
3) but also from the other internal modes. The notation “ASteamBoiler” means that the state of
the boiler may change. For more details, see Appendix A. By Z convention, inputs are decorated
with “?” and outputs are decorated with “!”.

__EmergencyMode
ASteamBoiler
m!: MESSAGE

mode’ = emergency
m! = alarm
water_valve' = water_valve

This schema has precondition true. Tt produces a legal state because in the emergency mode
nothing can be guaranteed anyway.

_ NormalMode
ASteamBoiler
steam_out? : N

water_measure? : N

m!: MESSAGE

measured_waterlevel’ = water_measure?

(pump = on =

computed_waterlevel’ = measured_waterlevel + pump_capacity — steam_out?")
pump = off = computed_waterlevel’ = measured_waterlevel — steam_out?
water_measure? < normal_min = pump’ = on
water_measure? > normal_mazr = pump’ = off
water_measure? € Stable = pump’ = pump
diff (measured_waterlevel’, computed_waterlevel’) > tolerance V

water_measure? ¢ Safe = EmergencyMode
diff (measured_waterlevel’, computed_waterlevel’) < tolerance A

water_measure? € Safe = mode' = normal A m! = normal_mode

The amount of steam taken from the boiler and the measured water-level are inputs to
NormalMode. The internal variable measured_waterlevel is updated accordingly. The new com-
puted water level depends on the state of the pump. It does not use the old computed water-level
because this could lead to a divergence between the computed and the measured water-level on
the long run (the pump and the sensors will work only with a certain tolerance). Hence, the
tolerance is used to detect sudden leakages, a failure of the pump or an undetected failure of the
steam sensor. The new pump state is determined according to the measured water-level. If the
measured water-level is outside the safety limits or the tolerance is exceeded the emergency mode
is entered, i.e. the new mode is emergency, the message alarm is output, and the water valve is
kept as it is. Otherwise, the system stays in normal mode.

Note that in this and the following schema the variable water_valve 1s not mentioned. This
is possible because from the global state invariant it follows that the water valve must be closed
when the system is in normal or rescue mode.

There is no precondition to the NormalMode operation. 1t always leads to a legal state because
the normal mode is only entered or kept (mode’ = normal) when the corresponding conditions of
the state invariant are satisfied. If the emergency mode is entered, every state is legal.

__ RescueMode
ASteamBoiler
steam_out? : N

m!: MESSAGE

(pump = on =

computed_waterlevel’ = computed_waterlevel + pump_capacity — steam_out?)
pump = off = computed_waterlevel’ = computed_waterlevel — steam_out?
measured_waterlevel’ = computed_waterlevel’
computed_waterlevel’ < normal_min = pump’ = on
computed_waterlevel’ > normal_mazr = pump’ = off
computed_waterlevel’ € Stable = pump’ = pump
computed_waterlevel’ € Safe = mode’ = rescue A m! = rescue_mode
computed_waterlevel’ ¢ Safe = EmergencyMode

Since this mode is only entered when the water-level sensor fails there is no corresponding
input, and the value of the variable measured_waterlevel is kept equal to computed_waterlevel. 1t

1This computation of the new water-level is not completely realistic because one liter of water is not equivalent
to one liter of steam and because we assume accumulated values for steam_out? and pump_capacity instead of
using integrals. For a more realistic modeling, an appropriate function should be defined. We refrain from defining
this function because the purpose of this paper is primarily to explain our methodology.

is necessary to keep a reasonable value of measured_waterlevel, because this value is needed when
the water-level sensor is repaired and the system switches back to normal mode.

This operation transforms legal states into legal states because the rescue mode is only en-
tered or kept when the corresponding requirement of the state invariant is fulfilled. Hence, its
precondition is true.

__Initialize
ASteamBoiler

steam_out? : N

water_measure? : N

m!: MESSAGE

steam_out? > 0 = EmergencyMode
(steam_out? = 0 =
(measured_waterlevel’ = water_measure? A
computed_waterlevel’ = water_measure? A
(water_measure? > safe_mazr =
water_valve’ = open A
pump’ = off A
mode’ = initializing A
m! = initializing_mode) A
(water_measure? < safe_min =
water_valve’ = closed A
pump’ = on A
mode’ = initializing A
m! = initializing_mode) A
(water_measure? € Safe =
water_valve’ = closed N
pump’ = pump A
mode’ = normal A
m! = normal_mode)))

Initializing the system only works if no steam leaves the boiler. No computed water-level is
maintained (i.e. computed_waterlevel’ = water_measure?) because it is not specified how much
water leaves the boiler when the water valve is open. We require both sensors to work in initial-
ization mode (see Section 4.3). Thus, it can be guaranteed that computed_waterlevel contains a
reasonable value.

If the water-level is above the safety limit safe_maz the water valve must be opened or kept
open. If the water-level is below the safety limit safe_min the pump must be on. In both cases,
the system stays in the initializing mode. As soon as a safe water-level is reached the normal mode
is entered. The water valve is only open in the initializing mode, and the normal mode is only
entered when the corresponding conditions are fulfilled. Hence, Initialize always produces a legal
state (precondition true).

4.3 Step 3: Interface with the Outside World

The schema Interface specifies the global control function of the system. According to the oper-
ating mode and values of the sensors, the appropriate operation is called. The button that can be
pressed in order to initialize the system 1s modeled by a binary input variable initialize?.

10

__Interface
A SteamBoiler
water_measure? : N
water_sensor_state? : SENSOR_STATE
steam_out? : N
steam_sensor_state? : SENSOR_STATE
wnitialize? : YesNo

m!: MESSAGE

mode # emergency
steam_out? > steam_capacity V steam_sensor_state? = failed = FmergencyMode
(steam_out? < steam_capacity A steam_sensor_state? = working =
(initialize? = yes V mode = initializing =
((water_sensor_state? = failed = EmergencyMode) A
(water_sensor_state? = working = Initialize)) A
(initialize? = no A mode # initializing =
((water_sensor_state? = failed = RescueMode) A
(water_sensor_state? = working = NormalMode)))))

The schema has a precondition: mode # emergency. This reflects the requirement that the
program has to terminate when a hazardous situation occurs.

Proof obligation 3 is trivial: since no operation has a non-trivial precondition, these cannot be
violated by Interface. For proof obligation 4, we inspect the predicate part of the schema and see
that it is a complete case distinction.

Proof obligation 5, however cannot be shown without a further assumption. As stated before,
we must require that Interface 1s called exactly once a time unit. Only then do our water-level
computations make sense. This requirement cannot be expressed in 7Z but must be taken care
of by the implementation. A possibility to approximate it in Z would be to define time using a
constant zero and a function tic and specify that Interface needs exactly one tic.

What we have shown so far is that the program

while mode # emergency do Interface od

maintains the state invariant of SteamBoiler if all schemas are correctly implemented.

5 Synthesizing the Steam Boiler Software

Step 4 is not necessary for the steam boiler because the specification does not make use of any
non-trivial data structures.

5.1 Step 5: Translation into IOSS Format

The translation of a Z schema into an TOSS programming problem (see Section 2) proceeds as
follows:

e Each input variable (decorated with “?”) of the Z schema becomes an input variable of the
corresponding problem.

e Each output variable (decorated with “!”) of the Z schema becomes a result variable.

e Each variable z of the Z state schema becomes an input variable if the schema predicate
entails z = z'.

e Otherwise z becomes a result variable, and a new state variable zy is generated for z if z
occurs in the schema predicate.

11

e The precondition of the 10SS problem is the precondition of the 7 schema plus an equation
r = 1y for each introduced state variable zg.

e The invariant of the IOSS problem is the invariant of the Z schema defining the system state.

e The goal of the IOSS problem consists of those conjuncts of the schema predicate that depend
on result variables of the IOSS problem, where dashed variables have to be replaced by plain
variables and plain variables have to be replaced by their corresponding state variables.

As an example, we sketch this translation for the RescueMode schema:

input variables: steam_out? water_valve
result variables: m!, mode, measured_waterlevel, computed_waterlevel, pump

state variables: modey, measured_waterlevely, computed_waterlevely, pumpq
precondition: mode = modey A measured_waterlevel = measured_waterlevel

A computed_waterlevel = computed_waterlevely A pump = pumpg
invariant: see SteamBoiler
goal: pumpy = on =

computed_waterlevel = computed_waterlevely
+ pump_capacity — steam_out? ...

The goal of the programming problem is obtained from the predicate part of RescueMode, where
each z is replaced by z; and each z’ is replaced by z. Moreover, expressions of the form z &
min .. maz must be replaced by min < z A z < maz, and EmergencyMode must be replaced
by the equations mode’ = emergency A m! = alarm. Since from RescueMode it follows that
the value of water_valve does not change, water_valve is an input variable and an equation like
water_valve = water_valvey does not need to be included in the goal.

5.2 Step 6: Synthesizing a Program for RescueMode

The program implementing the schema RescueMode can be derived semi-automatically. We as-
sume that the pump can be switched on by setting the variable pump to on and switched off by
setting pump to off 2. The basic idea is that the new values of the state variables can be computed
one after another. In this situation, the disjoint goal strategy can be applied. This strategy is
based on the assumption that a conjunctive goal can be achieved by a compound statement, each
part of the compound establishing one conjunct. It can be applied if the goal can be divided into
two independent subgoals, i.e. the result variables that need to be changed to achieve one subgoal
are disjoint from the result variables that need to be changed to achieve the other one.

For the above problem, we can apply the disjoint goal strategy three times, yielding a program
of the form p1; p2; ps; ps. The statement p; determines the new value of computed_waterlevel,
establishing the first three lines of the postcondition (the line numbers refer to the predicate part
of the RescueMode schema). The new value of measured_waterlevel (line 4) is set in ps, and the
new value for pump is determined in p3, establishing lines 5 — 7 of the postcondition. Finally,
pa determines the new value of mode and the output m!, establishing the last two lines of the
postcondition.

To develop p1, ps and pa, we use a strategy called disjunctive conditional. This strategy applies
if the goal is of disjunctive form or equivalent to a digjunction. Each branch of the conditional will
establish one disgjunct of the goal. In our example, the first two conjunctions are equivalent to a
disjunction (pumpg = on A computed_waterlevel = ...) V (pumpg = off A computed_waterlevel =

The disjunctive conditional strategy can automatically propose a test for the conditional, those
parts of the goal consisting solely of variables that cannot be changed by the program and hence
cannot, be enforced but only be tested. In our case, the test is pump = on (for inclusion in the

21f more sophisticated procedures are needed, the assignments to pump can be replaced by procedure calls.

12

program, the state variables are automatically replaced by the corresponding result variables).
Since the conclusions of the implications are equations, the automatic assignment strategy can au-
tomatically generate assignments establishing the equations. This strategy is also used to generate
p2.

The final result of the synthesis process is shown in Figure 3, where the components of the
global state are modeled as global variables, and inputs and outputs are modeled as parameters.

proc rescue_mode(steam_out? : nat; m! : message)
do if pump = on
then computed_waterlevel := computed_waterlevel + pump_capacity - steam_out?
else computed_waterlevel := computed_waterlevel - steam_out?
fi;
measured_waterlevel := computed _waterlevel

if computed _waterlevel < normal_min

then pump := on

else if computed waterlevel > normal_max
then pump := off

fi
fi;
if safe_min <= computed_waterlevel and computed_waterlevel <= safe_max
then mode := rescue;
m! := rescue_mode
else mode := emergency;
m! := alarm
fi
end

Figure 3: Program Synthesized for Rescue Mode

6 Discussion

Now that our approach is presented in some detail, we can relate it to other work in the field,
compare software safety with correctness and reliability, and finally discuss its merits as well as
its drawbacks.

6.1 Related Work

Our choice of Z for the specification of safety-critical systems is not completely out of the way, as
a look at the literature shows. Several case studies have been performed using the specification
language VDM [Jon90], e.g. the British government regulations for storing explosives [MS93],
a railway interlocking system [Han94], and a water-level monitoring system similar to the one
presented in the present paper, see [Wil94]. VDM and Z are based on similar concepts and have
the same expressive power (and weaknesses). Mukherjee’s and Stavridou’s as well as Hansen’s
work, however, place the focus on the adequate modeling of safety requirements, independently
of the fact if software is employed or not. Consequently, they do not discuss issues specific to the
construction of safe software.

Williams [Wil94] uses a problem like the one tackled here to assess safety specifications. His
conclusions are:

13

1. “ Methods used for the development of safety-critical systems should have well-defined cri-
teria for ensuring the specification’s completeness and consistency.”

2. “The use of theorem proving is not limited to the verification of refinement steps. ...”

3. “Reviews can be an effective means of detecting errors in formal specifications.”

4. “A formal statement of the safety requirements should be a part of the formal system spec-
ification. ...”

5. “The use of CASE tools can help eliminate simple syntactic errors in model-based specifica-
tions. ...”

Our approach fulfills most of these requirements. The completeness criterion is expressed in
proof obligation 4, consistency is taken care of by proof obligations 1 — 3. The proof obligations
introduced by our approach exceed the ones occurring in refinement steps. Reviews are not an
explicit part of our process model but of course they are encouraged. According to Step 1, the
fourth requirement is also fulfilled. Finally, we used the fuzz checker [Spi92a] to check all of the
specifications contained in this paper, in order to eliminate simple syntactic errors.

The goals pursued by Halang and Kramer [HK94] are similar to ours. They present a develop-
ment process, starting with the formalization of requirements and ending with the testing of the
constructed program. Their focus is on programmable logic controllers. As formalisms they use
the specification language Obj and the Hoare calculus, where their choice is motivated by the tool
support available. Both of these formalisms are weaker than the ones we chose. Obj only allows
to state conditional equations, and the Hoare calculus is a proper subset of dynamic logic.

Like our work, Moser’s and Melliar-Smith’s approach to the formal verification of safety-critical
systems, [MMS90], comprises the specification, design and implementation phases. The transition
from an abstract top-level specification to a detailed specification suitable as a basis for program
development is done by stepwise refinement. This activity is covered by Step 4 of our approach.
Moser and Melliar-Smith use a reliability model for the processors that execute the program. This
enables them to take computer failures into account, an aspect not covered in our work. On the
other hand, they do not consider the validation of the top-level specification, an issue that is of
much importance for us, see the proof obligations of Steps 1-3.

6.2 Relation to Correctness and Reliability

In general, safety, correctness and reliability share the goal to make software more dependable. In
detail, however, they have to be distinguished carefully.

Safety vs. Correctness. One might consider safety a weaker requirement than correctness.
Leveson [Lev86] states “We assume that, by definition, the correct states are safe.” The example
of the steam boiler, however, shows that this is true only after the legal states have been defined
with safety requirements in mind. The introduction of the tolerance between the measured and
computed water-level or the additional sensors in the Interface schema would not be necessary
if only the correctness of the program were of interest. As already stated in Section 1, in this
case we would only have to guarantee that the input is correctly processed, i.e. that the pump is
switched on or off when an intervention point is reached. Whether the value yielded by the sensor
is credible would not be checked because correctness is a relation solely between a specification
and a program. Hardware failures are of no interest in correctness considerations. Hence, we think
that the development of safe software has to proceed differently: hardware failures must explicitly
be modeled. This difference is not of a technical, but of a pragmatic nature.

Safety vs. Reliability. The case study shows that reliability and safety can be conflicting goals
(see also [Lev86]). Were safety the most important goal for the operation of the steam boiler,

14

something like the rescue mode would not be permitted. The danger that the computed water-
level is not accurate is not to be neglected. The only purpose of the rescue mode is to enhance
reliability, but this certainly results in a compromise concerning safety.

6.3 Assessment of the Approach

We conclude with a summary of the merits and drawbacks or our approach.

Limitations. The approach outlined above concentrates on the software aspects of safety-critical
systems. Nothing can be guaranteed about the hardware. For instance, if the sensors yield false
values, the system can enter a non-safe state because the software controls the system according
to the sensor values. This limitation cannot be overcome by means concerning the software alone.
Instead, fault tolerance methods like redundancy have to be applied.

Moreover, it is not possible to deal with absolute time measures in the formalisms we have
chosen. Ifit is, e.g., necessary that a component reacts within 2 ms, then this cannot be guaranteed
with our approach. The maximum execution time of the specified operations cannot be specified
in Z. Classical complexity analysis and testing should be applied after the program is developed.
Finally, our formalisms are not suitable to develop distributed or parallel systems.

As a result, the kind of safety our approach can guarantee is relative. Since we can only
guarantee that the states before and after execution of an operation are safe, the execution must
be sufficiently fast, because in the intermediate states that occur during execution, safety cannot
be guaranteed. Tt is up to the system designers and implementors to judge if this is the case. Here,
traditional methods like testing are indispensable.

Enhancing the Applicability of the Approach. In contrast to hardware or power failure
which are beyond our capabilities, the problem that safety cannot be guaranteed in intermediate
states can be treated under the condition that sequences of assignments are considered as suffi-
ciently fast. In this case, we can require a “safety invariant” to hold before and after each sequence
of assignments. Then the system can be in an unsafe state only for the time that is needed to
execute the longest assignment sequence occurring in the implementation. With little effort, 10SS
can be extended to deal with such safety invariants.

For relatively small systems, a complete formal treatment certainly can be recommended be-
cause the control software is relatively simple. The cost for a formal safety proof would be much
less than potential damages. For larger systems, however, a complete formal treatment might not
be feasible. In this case, our approach can be applied nevertheless. It is possible to formalize
and prove only selected properties of the system and treat the other requirements with traditional
techniques (partial verification, [Lev91]). When this approach is taken, still all of the software
modules have to be considered. To reduce cost further, one might exclude those parts of the
software from the verification process that can be guaranteed to be of no importance for safety.
Usually, it will be the specifier’s responsibility to decide which parts of the software are safety-
critical and which are not. If, however, some aspect of the system does not occur at all in the
safety invariant developed in Step 1, it can be guaranteed not to be safety-related. An example
can be found in [Hei95].

Contributions. Our approach provides a process model for the development of provably safe
software. Its contributions are the following;:

e A detailed guidance for developers of safe software 1s provided, complemented by clear and
explicit proof obligations.

e The approach can easily be introduced and applied in an organization because it relies on
well established techniques and tools.

e The steps of the approach concerned with safety are clearly identified.

15

e Not only the specification but also the implementation of safety-critical systems is covered.

Acknowledgment Many thanks to Thomas Santen and Carsten Stuhl for stimulating discussions
on the topic and comments on this work.

A Appendix: Explanation of the Z Notation

The notation used in the paper is explained in the order of appearance.

Global declarations are made by so-called axiomatic boxes. Such a box has a vertical line on
the left-hand side. Conditions constraining the values of the declared entities can be stated below
a horizontal line.

The natural numbers are denoted N, the positive natural numbers Ny. The symbol == allows
one to define abbreviations, e.g. for subtypes of the natural numbers (denoted by “..”) or functions,
where the arguments of the function are given after the A symbol. Enumeration types can be
defined using “::=".

Schemas are used to define the global system state as well as the operations changing this
state. The global system state consists of a number of declarations introducing its components
and a global system invariant constraining the components and their relations. Unless indicated
otherwise (by another connective and parentheses), a new line in the predicate part of a schema
or an axiomatic box means that the conjunction of the predicates is required.

Operations start in some state and usually terminate in a different state. Since 7 is a math-
ematical notation and not a programming language, assignments are not possible. The state
components in the state after completion of the operation must have different names than the
components in the state where the operation starts. The convention is that plain variables denote
the “before” state, whereas variables decorated with “” denote the “after” state.

It is part of the Z method to give an initial state. This state is defined exclusively with
decorated variables because only the state after completion of the initialization is defined.

Schemas defining operations usually make use of the delta convention. Writing “A SteamBouler”
means that all variables of the SteamBoiler schema are declared, as well as their decorated versions.
Moreover, the state invariant is required to hold for the plain as well as for the decorated versions
of the state components. This means, the operation must be started in a legal state and must
also end up in a legal state. The delta convention is just an abbreviation for a more complicated
schema.

When a schema is imported in the declaration part of another schema, this means that all its
variables are declared and the predicate part is required to hold. When a schema is imported in
the predicate part of another schema (like e.g. EmergencyMode in NormalMode) this means that
its variables must already be declared in the importing schema and that the predicate part of
the imported schema is required to hold. In this case, the schema is used as a predicate. Again,
importing the schema is just an abbreviation.

References

[Abr94] Jean-Raymond Abrial. Steam-boiler control specification problem. Specification prob-
lem suggested to the participants of the Dagstuhl meeting “Methods for Semantics and
Specification”, June 1995, 1994.

[BG94] J. Bowen and M. Gordon. Z and HOL. In Z User Workshop, Workshops in Computing,
pages 141-167. Springer-Verlag, 1994.

[Gol82] R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130. Springer-
Verlag, 1982.

[Han94] Kirsten Mark Hansen. Modelling railway interlocking systems. Available via ftp from
ftp.ifad.dk, directory /pub/vdm/examples, 1994.

16

[Hei94]

[Hei95]

[HK94]

[HSZ95a]

[HSZ95b]

[Jon90]
[Lev86]

[Lev9l]

[MMS90]

[MS93]

[PSTI1]

[Spi92a]
[Spi92b]
[Wil94]

[Woo91a]

[Woo91b]

Maritta Heisel. A formal notion of strategy for software development. Technical Report

94-28, TU Berlin, 1994.

Maritta Heisel. Six steps towards provably safe software. In G. Rabe, editor, Proceed-
ings of the 14th International Conference on Computer Safety, Reliablity and Security
(SAFECOMP), Belgirate, Italy, pages 191-205, London, 1995. Springer.

Wolfgang Halang and Bernd Kramer. Safety assurance in process control. IFEFE Soft-
ware, 11(1):61-67, January 1994.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. A generic system ar-
chitecture of strategy-based software development. Technical Report 95-8, Technical
University of Berlin, 1995.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. Tool support for formal
software development: A generic architecture. In W. Schafer and P. Botella, editors,
Proceedings 5-th European Software Engineering Conference, number 989 in Springer

LNCS, pages 272-293, 1995.
Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.

Nancy Leveson. Software safety: Why,what, and how. Computing Surveys, 18(2):125—
163, June 1986.

Nancy Leveson. Software safety in embedded computer systems. Communications of

the ACM, 34(2):34-46, February 1991.

Louise E. Moser and P.M. Melliar-Smith. Formal verification of safety-critical systems.
Software — Practice and Ezperience, 20(8):799-821, August 1990.

Paul Mukherjee and Victoria Stavridou. The formal specification of safety requirements
for storing explosives. Formal Aspects of Computing, 5:299-336, 1993.

Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and
7. Prentice Hall, 1991.

J. M. Spivey. The fuzz manual. Computing Science Consultancy, Oxford, 1992.
J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd edition, 1992.

Lloyd Williams. Assessment of safety-critical specifications. IEEE Software, pages 51—
60, January 1994.

J.C.P. Woodcock. An introduction to refinement in Z. In S. Prehm and W.J. Toetenel,
editors, Proc. 4-th International Symposium of VDM Europe, Vol. 2, LNCS 552, pages
96-117. Springer-Verlag, 1991.

J.C.P. Woodcock. The refinement calculus. In S. Prehm and W.J. Toetenel, editors,
Proc. j-th International Symposium of VDM FEurope, Vol. 2, LNCS 552, pages 80-95.
Springer-Verlag, 1991.

17

