Expression of Styles in Formal Specification

Jeanine Souquiéres and Maritta Heisel

CRIN—INRIA-Lorraine* and Technische Universitit Berlin**

Abstract. This paper presents a framework for supporting the acqui-
sition of formal specifications. It is possible to identify certain styles or
orientation approaches according to which the specification process is
performed. These styles are used locally, i.e. even in one development,
one switches between different styles. Therefore, it is not reasonable to
identify styles with specification languages, as is usually the case. We
propose to explicitly represent styles as sets of development operators in
a process oriented way which is independent of the respective specifica-
tion language that is used. Our approach is illustrated by a case study
where of subset of the Unix file system is specified.

1 Introduction

In recent years, much progress has been made in the design of specification
languages. On the other hand, tools for specification development usually support
semi-formal methods. These often use a graphic notation that is particularly
suitable for human readers.

Each formal specification language comes with a semantics that associates
a meaning with each construct offered by the language. Of course, different
languages offer different constructs. Some constructs may be used very elegantly,
others only in a clumsy way. Thus, they implicitly represent certain specification
styles. However, representing a specification style does not mean supporting it.
One of the reasons that formal specification is not widely used in industry is
that the concrete application of specification languages is not supported in a
satisfactory way>. It does clearly not suffice to hand a language description to
specifiers and then expect them to be able to produce formal specifications.

Today, software engineers in industry mostly use semi-formal techniques like
data-flow diagrams, entity-relationship diagrams, finite state machines or deci-
sion tables/trees. These techniques have the advantage that they support the
intuitive understanding of specifications by a graphic representation. Moreover,
sophisticated tool support is widely available. For a survey of semi-formal specifi-
cation techniques and available tools, see [McD91]. The drawback of semi-formal

* B.P. 239 Batiment LORIA, F-54506 Vandceuvre-lés-Nancy Cedex, souquier@loria.fr

** FB Informatik — Softwaretechnik, Franklinstr. 28-29, Sekr. FR 5-6, D-10587 Berlin,
heisel@cs.tu-berlin.de

® Exceptions are Z and VDM [Spi92, Jon90]. This is probably the reason why these
languages receive some recognition by industry, see e.g. [CGR93].

methods is that they do not provide an unambiguous semantics and thus can
be subject to misinterpretations. This makes them an insecure basis for the
development contract.

These observations suggest to combine the usage of formal languages with
satisfactory tool support. Machine support should include

— bookkeeping,

— guidance of the specifier through the specification process by giving hints
what has to be done in which order,

— a graphical representation of the development state,

— recording the particular way the specification has been developed and justi-
fications for the choices made during this process.

A system offering all the above features exists in a prototype version [BS93].

We strongly advocate that the development of a specification be oriented on
the problem, not on the specification language that is used. When developing
a formal specification, we should find out if the system that is to be built will
have a global state that is changed by the operations of the system or if it is
more suitable to abstractly describe the properties of the system and its opera-
tions. It should also be checked if it is possible to combine and adjust existing
specifications to obtain a specification for the new system. Depending on the
answers to these questions, a specifier will follow different paths to develop the
specification. These make up different specification styles. We briefly mentioned
three of them: state-based, algebraic, and re-use. As will be illustrated by an
example in the following sections, it is convenient to make use of different styles
during development of a larger specification.

A specification style describes a certain “spirit” in which a specification is set
up. The aim of the re-use style is to re-use specifications contained in a library
whenever possible. Of course, one cannot expect to set up a new specification
exclusively using existing specifications of a library. Usually, library items will
have to be modified, and certain parts will have to be developed from scratch.
Hence, a style is nothing strict.

We vote for making specification styles exzplicit instead of representing them
implicitly by specification languages. Specification styles can be described and
used independently of the specification language to a large extent. With this
approach, we can support specifiers even when they are forced, e.g. by the com-
pany policy, to use a specification language that is not suited best for a given
problem.

Throughout the paper, we consider the specification of the user’s view of
the Unix file system [BGM89]. The system to be specified is a tree of files and
directories, where the root and the inner nodes of the tree are always directories,
and the leaves of the tree are either files or empty directories. Each node has a
name and can have an arbitrary number of successors. Sibling nodes must have
different names. The user can navigate in this tree, add and remove directories
and files, and access information stored in the system. This specification models
the Unix file system from a different point of view than the one presented in
[MS87] where the “machine view” is considered.

Section 2 briefly describes our framework which forms the basis for the ex-
plicit representation of specification styles. Section 3 demonstrates how the re-use
style can be supported by development operators in a language independent way.
Sections 4 and 5 present the algebraic and state-based styles. The relation to
previous work is described in Section 6. A summary of our approach concludes
the paper.

2 The Development Framework

In the proposed framework [Sou93], [SD95] the specification process is modeled
as a problem solving process in which fasks have to be solved. Initially, a specifier
has the task to develop a specification for some informally described system. This
task is decomposed into smaller ones by application of development operators.
These also establish a precedence relation on the generated subtasks. Successive
application of development operators results in a graph of tasks, called workplan.

Workplan. During the development of the Unix file system specification, a task
of the form Specify Directory may be reduced by a development operator to
the three subtasks Specify generic part, Specify Directory actual parameters and
Achieve Directory specification. This is represented graphically as in Figure 1.

Task

‘ complete
O partial
‘ dead- end

Reduction states

Specify

Directory

Specify Specify Directory Achieve
Directory l— — —»t actual parameters |——p| Directory ——— strong
generic part specification
- = = —p Weak
Task dependencies
\ J

Fig.1. A workplan example

Solving a task corresponds to reducing it, i.e. decomposing it into subtasks.
As in the classical top-down reduction approach to problem solving [Nil71], work-
plans are modeled by and/or-graphs with two kinds of nodes: task nodes and
reduction nodes. The workplan graph is acyclic and has a unique root node. And
links represent the reduction of tasks into subtasks. Orlinks represent alternative
reductions.

To each reduction node, a state is assigned: a reduction is partial if its list of
subtasks can be extended, complete if its list of subtasks cannot be extended or a
dead-end if the decomposition cannot progress towards the objective associated
with the parent task. Reduction states are denoted by different kinds of reduction
nodes. In Figure 4, five complete and one partial reduction are shown.

Moreover, a developer might wish to express that reducing some task requires
some other ones to be reduced first. This point motivates the introduction of
terminated reductions and dependency relations in the framework. Two kinds
of dependency relations have been introduced. Strong precedence means that
one task may not be reduced while another task has a current non-terminated
reduction. Weak precedence means that reduction of one task may start as soon
as the reduction of another task has made sufficient progress. This informal
condition can only be decided by the specifier.

Product. In parallel with the workplan, a formal specification is set up. It is
called product and consists of both formal and informal text. The role of the
informal text is to aid understanding of the formal text. During the develop-
ment of a specification, an incomplete part of the product is represented by a
typed placeholder (denoted by ... in Figure 2%). Placeholders are instantiated
with a product schema or replaced by formal or informal text via application of
development operators.

(N\
draft Directory

Specify
Directory as (X =>A)

Law=="

where A:'EI
-—--—"_--

{* new operations *}
Specify Specify Directory Achieve
Directory = =— =9t actual parameters [~ | Directory [=——— -p
generic part specification
N J

Fig. 2. Workplan—Product links

Workplan—Product Links. The workplan must be related to the product. We
require that each task must be related to at least one placeholder and each
reduction must be related to a product version. Conversely, each placeholder is
associated with a unique task and a unique goal stated in the workplan. Links
are represented in Figure 2 by dotted-dashed arrows between tasks and product
components.

* In this figure, the draft construct of PLUSS is displayed. Drafts are incomplete spec-
ifications in that the sets of denoted values need not be fixed. Sorts and operations
may be defined without knowing the constructor functions. To turn a draft into a
specification, the constructor functions have to be fixed. For details, see [BGM89].

Development operators. They work simultaneously on the workplan and product
to reduce tasks and construct or modify the product text. Their parameters are
obtained interactively from the specifier and from the current development state.
They consist of a language-independent section which describes the action on
the workplan and a part concerning the product definition which has to be
instantiated with a specification language.

The development process consists in reducing some task, either introducing
new subtasks or finishing the work assigned to the task. In the last case, we use
a Terminate operator whose application results in a complete definition of the
placeholders associated to the chosen task without new decomposition.

Specification Styles. In this framework, a style is represented as a collection of
development operators. The workplan part of the operators is language inde-
pendent. For each supported specification language, there is a corresponding
product schema implementing its product part.

3 Re-using Existing Specifications

Re-using existing specifications or parts of specifications is one of the big chal-
lenges of software development. This concept is supported by specification lan-
guages offering genericity and combination of specifications like the use construct
in PLUSS. However, it has turned out that re-use mechanisms should not only
be included in the languages but also in the development process. Re-using a
specification by verbatim inclusion or instantiation of parameters is not realis-
tic. Usually, modifications of re-used specifications are necessary. Two special
operators taking into account the necessary modifications when adding a new
component [SLI3] or an invariant [Lev90] to an existing specification have been
defined. In our Unix example, the task is to specify directories. Suppose we have
a generic definition of trees called NAMED-TREE[X] in our library. A tree has
a name, a content of type X and a list of subtrees. To define a directory by
means of such a tree a mere instantiation of the parameter X does not suffice:
we need the notion of path to make precise the access to nodes via names, and
we have to take into account that inner nodes and leaves have to be treated dif-
ferently. In the following, we perform the steps sketched above by application of
development operators associated with the re-use style. The same development
is performed with PLUSS as well as Z.

Re-use with PLUSS. As shown in Figure 3, the Use-generic-spec development
operator decomposes the initial task into three subtasks. This re-use operator is a
refinement of the one which has been applyied to obtain the workplan presented
in Figure 2 where the first subtask, Specify <name> generic part, has been
refined by two subtasks, namely Identify an existing generic specification and
Extend generic specification.

The first step, when applying this operator to specify directories, consists in
reducing the task Identify an existing generic specification. This is simply done
by selecting the generic specification NAMED-TREE[X] of our library:

draft DIRECTORY as NAMED-TREE(... — X)

. spec < name>
Specify —— -

< name>

Specify e mmmnmea—aa s -

< name>

spec < name>
from
gen ..

\ !
/ \ / draft < name >

< name >

Specify Specify < name> Achieve
< hame> ——— | actual parameters < hame>
generic part specification
. R
...-—?-ﬂ--.'_-_'"" T
_________ ~eee
s "t~ with
Identify an existing Extend | eiemmaemmee—e ——Neyg ”
) - — : - I
generic specification generic specification where E
- J

Fig. 3. The Use-generic-spec workplan operator

To continue with the development, we have to reduce the second subtask.
To extend the generic specification, we have in mind the idea of combining it
with the notion of path. To do this, we apply another operator called Combine
allowing one to put together different specifications. The different specifications
either exist or need to be developed. Here, we combine NAMED-TREE[X] with
PATH. The Combine operator generates two new tasks, Specify intermediates
and Specify new operations as shown in Figure 4. We solve the first one by
application of an operator called Directly-reuse. This operator simply instan-
tiates the parameters of a generic specification. In our case, the predefined type
NONEMPTY-LIST is instantiated with the data type NAME:

spec PATH as NONEMPTY-LIST(NAME)

The next step is to define functions working on the combination of named
trees and paths. In Unix, paths are used to navigate in the file system. For
this purpose, we have to define a predicate is_existing_path_of that decides if
a path is valid for a given tree, and the functions object_ai_in, pruned_at, and
plus_added_under which respectively select an item, prune the tree or add a new

subtree under a given path. For each of these, a new task is generated in the
workplan. For reasons of space, the development of their specifications cannot
be presented here. The corresponding development state is given in Figure 4.

(I
spec Directory
SPECIfY e m m m m m m m m ——m —_—
from pj
Directory Directory
& gen ...
l"
¢ draft Directory
b
4
'/ as NAMED-TREE(
J
Specify | Specify Directory Achieve UNIX-NODE =>X)
Directory ———-»| actua parameters (—-p| Directory
generic part specification with PATH
<
b
.
O] -
Soee where | x: UNIX-NODE
I dentify an existing Extend hd -l
generic specification [~ Pt generic specification
spec UNIX-NODE
‘ ‘ T as FILE U {dir}
O © | Combine |
.
/ \ _____ L spec PATH as
Specify L] Specify new NONEMPTY-LIST (NAME)
intermediates operations
I~ ———— func
‘ ‘ Cteeee—el. | L [object_at_in: PATH X NAME_TREE[X]
. O] > NAME_TREE[X]
\ _/

Fig.4. A development state

The task Specify Directory actual parameters can be reduced with Termi-
nate and giving the following PLUSS expression:

spec UNIX-NODE as FILE U { dir }

where FILF defines files as being either text files or binary files.

Now, in order to Achieve the specification, we need to introduce some con-
straints related to the nodes: (i) a file may only be a leaf node; (ii) all successors
of a node have different names. These constraints on the data type cannot be
added to the parameter or to the generic specification but only to the whole
instantiated generic specification which must then be converted from a draft
module into a spec module.

axioms VYV d: DIRECTORY, n: NAME, i, j: INTEGER
Is-file(Content(d)) = Ts-leaf(d)
(n = Pos(i, Namelist(Subtrees(d))) A
n = Pos(j,Namelist(Subtrees(d)) = i

i)

Re-use with Z. To specify directories using Z, we can follow exactly the same
development process as for PLUSS, but the resulting specification looks some-
what different: here, named trees with parameter type X are defined as finite
partial functions from nonempty sequences of natural numbers to the Cartesian
product NAME x X. The sequence of natural numbers which is the argument
to such a function represents the “address” of a node in the tree. The value of
the function is the content of the node. Of course, these functions must satisfy
some additional constraints in order to represent a tree. For details, see [Hei95].
The solution of the task Eztend generic specification is

UNIX_NODE ::= dir | file{ FILE))
PATH == seq, NAME

where we do not present the additional functions working on trees and paths.
The specification is achieved by

‘ DIRECTORY :PUNIX_NODE

Vd: DIRECTORY; n: NAME; 1,7 - NeVp:domde
(second(d p) € ranfile = p € leafs d) A
(n = namelist(subtrees d)(i) A n = namelist(subtrees d)(j) = i = j)

This finishes the specification of directories. In this example, three different
operators associated with the re-use style have been applied: Directly-reuse
directly re-uses a piece of code by its name, thus completing the task for which it
is applied. The other operators expand the workplan by either combining several
specifications which have to be defined in turn (Combine) or instantiating and
modifying existing specifications (Use-generic-spec).

Of course, these are not the only conceivable re-use operators. Since styles
are just collections of development operators, it is always possible to add new
operators to a given style.

4 The Algebraic Style

Specification styles that are usually identified with certain languages are the
algebraic or property-oriented style where the aim of a specification is to
describe a system in terms of its desired properties and the state-based or
model-oriented style where the aim is to construct an abstract model of the
system. Z and VDM especially support the state-based style, whereas PLUSS or
ASL [AW86] are candidates for the algebraic style. In this and the next section,
we show that these styles are not so closely tied to specification languages as it
might appear.

When specifying algebraically, we define sorts and generators for these sorts.
The operations of the system are defined by giving axioms in terms of the cho-
sen generators. Additionally, constraints between generators can be stated. The

PECIfY | s e e e »| < name >

< name >
Algebraic-with-Pluss
\ 4
(draft < nane >
Specify
< nane > use ..
sort
cons
. -=> < nane >
func
Specify < nane > Specify < name > Achieve axioms
generators functionalities < name >
specification d
“a| spec < Name >
from < name >
gen ..
. /

Fig. 5. The Algebraic development operator with the Pluss Language

corresponding development operator is shown in Figure 5 with the PLUSS spec-
ification language. For the Unix example, we apply this operator to specify the
data type Displacement which is needed to define paths relative to a given work-
ing or home directory. In doing so, we obtain a new development state with new
tasks and their product placeholders as defined in Figure 5. A solution for the
first subtask consists in giving the definition of the generators:

draft DISPLACEMENT

use PATH

sort Displacement

cons
empty_d: — Displacement
d: Path — Displacement
_/ —: Displacement x Name — Displacement
../ : Displacement — Displacement

Not surprisingly, this kind of procedure works well for algebraic languages
like PLUSS. Suppose, however, we want to use a model-based language like Z
and nevertheless follow the algebraic style. In many cases, this can be done
using the free type construct of Z which is very similar to an algebraic data
type definition. Difficulties arise when genericity is needed. If only one instance
of the generic type is needed then the generic parameters can be defined as
basic types. Instantiation is done by giving equations for the basic types. Only
if several instances are needed, the free type construct cannot be used and the
development operator given in Figure 6 cannot be applied. The other functions
defined on the free type are specified with global axiomatic.

Specify | ... o < A

< nanme >

Algebraic-with-Z

-
Specify
< nanme >
Specify < nanme > | Igpecify < name > Adhieve [
generators functionalities ssecri]f?ga?io:
L J

Fig. 6. The Algebraic development operator with the Z Language

In solving the task Specify generators for displacement, we obtain the follow-
ing 7 definition:

DISPLACEMENT ::= empty_d

| a(PATHY

| (-/2){DISPLACEMENT x NAMEY)
| ../{DISPLACEMENTY

We can express uniform product parts of the algebraic development operator
for PLUSS as well as for Z. This shows that the algebraic approach should not
be identified with a class of specification languages [L.S94]. Instead, it can be
characterized by development operators.

5 The State-Based Style

When specifying a state-based system, we first define the set of admissible states
S and an initial state. Then the operations of the system are specified. These op-
erations can take inputs and produce outputs. In addition, they may change the
global state. This style of specification is supported particularly well by model-
based languages like Z or VDM. In Z, the global state of a system is specified by
a schema. This schema consists of a declaration part in which the state compo-
nents are specified, and a predicate part specifying the state invariant, i.e. the
conditions a legal system state must satisfy. Operations are defined as schemas
which import the global state. The workplan part of the corresponding operator
is given in Figure 7.

In our Unix example, it is convenient to consider the tree of files and direc-
tories together with the home and working directories as the system state which

Specify
<nane>
. ecify <name> Achieve
Spemfé te [~ 7 Spo ;alions r- > Shame=
<nane> date P specification
_ J

Fig. 7. Workplan associated to the state-based style

may be changed by the application of Unix commands. We give the correspond-
ing schema for Z:

__OneUserView
root : DIRECTORY
home_dir : PATH
working_dir : PATH

home_dir is_existing_path_of root
second(object_at_in(home_dir, root)({))) = dir
working_dir is_existing_path_of root
second(object_at_in(working_dir, root)({))) = dir

The state invariant says that both the home and the working directory must
be represented by legal paths that lead to directories, not to files.

As an example of a Unix command, we define ¢d which changes the working
directory. Since cd can be called with various parameters, we have to define
several schemas for this operation, due to the strong typing of Z. If no argument
is supplied to ed, the working directory is set to the home directory by default. If
an absolute path is supplied, the working directory is set to this path, provided
the path exists and leads to a directory. Given a displacement, the new working
directory is computed as the absolute path yielded by combining the old working
directory with the given displacement. We give the second (“absolute”) version:

__cd_abs
AOneUserView
p?: PATH

p? is_existing_path_of root
second(object_at_in(p?, root)(())) = dir
root’ = root

home_dir' = home_dir

working_dir' = p?

In contrast, algebraic specification languages are not designed to specify sys-
tems in this manner. However, there is a uniform way of algebraically specifying
state-based systems: we first define a data type S (instead of a schema) modeling
the global state. If the state schema consists of more than one variable, S has
to be defined as the cartesian product of the types of the state variables. The
state invariant is given as an axiom. Each operation in a state-based system
is specified by a function having the state before execution of the operation as
an additional input parameter and the state after execution of the operation
as an additional output parameter. Generally, the axioms for the function are
the conjunction of the axioms for the state definition of the “before”-state, the
“after”-state and the axioms defining the operation. For our Unix example, it is
possible to simplify the specification yielded by this uniform procedure: since the
value of the function cd is directly expressed in terms of the constructor function
< —.—.— >, it suffices to require the state invariant to hold for all values of the
constructor function.

spec ONE_USER_VIEW
use DIRECTORY, RELATIVE_PATH
sort User-view
cons < —. — .— >: Directory x Path x Path — User-view
func

cd: User-view x Path — User-view

precond forall root: Directory, hd,wd, p: Path, dp: Displacement
state: <root.hd.wd> is defined when
hd is an existing path of root
A the object at hd in root is a Directory
A wd is an existing path of root
A the object at wd in root is a Directory
cdl: ed(<root.hd.wd>, p) is defined when
p is an existing path of root
A the object at p in root is a Directory

axioms forall root: Directory, hd,wd, p: Path
cdl: cd(<root.hd.wd>, p) = <root.hd.p>
end ONE_USER_VIEW

In this way, it is possible to apply development operators of the state-based
style even when using an algebraic language. A refinement of this operator is
proposed in [DS93].

6 Related Work

The aim of our work is to provide satisfactory support of the specification pro-
cess. To this end, we developed the notion of style. Styles encompass problem

solving knowledge. Development operators are a means to represent such knowl-
edge. Tool support for our approach makes it applicable in practice. Hence, there
are relations to the following areas of research: (i) approaches to support the
specification process, (ii) representation of problem solving or design knowledge,
and (iii) specification support tools.

Approaches to Support the Specification Process. Johnson and Feather [JF91]
take a transformational approach to specification development. Starting out from
a simple initial specification, so-called evolution transformations are applied.
These may change the semantics of the specification and add more detail to it.
Compared to these, specification styles and development operators are concepts
of a higher level of abstraction and closer to human reasoning.

Hufimann [Hufi93] presents a process model for requirements engineering
which describes steps to obtain a formal requirements specification from an in-
formal requirements description. A large part of the model deals with finding
the appropriate requirements, whereas our approach only comes into play when
the requirements are known.

Representation of Problem Solving/Design Knowledge. Wile [Wil83] presents
the development language Paddle. Its control structures are called goal struc-
tures. Paddle programs are a means to express developments, i.e. procedures
to transform a specification into a program. A disadvantage of this procedu-
ral representation of process knowledge is that it enforces a strict depth-first
left-to-right processing of the goal structure.

Potts [Pot89] uses Issue-based Information Systems (IBIS) [CB88] to repre-
sent design methods. Not only is represented what to do in which order when
a design step is performed. Reasons for design decisions are also recorded: each
design step raises certain issues. Different possibilities to resolve an issue are
called positions. Arguments are in favor or against positions. This rich structure
causes representations of even small examples to become quite complicated.

Declarative representations like IBIS allow for more flexibility in the prob-
lem solving process. The same holds true for the notion of strategy presented in
[Hei94]. There, problem solving knowledge is represented as relations on prob-
lems and solutions. Strategies are similar to development operators. The differ-
ence is that they are designed to enforce the development of correct solutions
to problems, where the notion of correctness can be defined freely. As a conse-
quence, the reduction of a problem to subproblems must always be complete.

Specification Support Tools. The requirements apprentice is a part of the pro-
grammer’s apprentice [RW88]. It uses requirements clichés to support its users
in setting up a requirements document. Clichés describe prototypical systems,
e.g. repositories or information systems. To set up a requirements document, a
dialogue in natural language is performed. The resulting document is “conven-
tional”, i.e. not formal. Apart from this, it is a question of taste if one chooses
to represent knowledge in form of “examples” which can be customized or as
general problem solving knowledge.

In [WL93], several systems — mostly for VDM and Z — are presented. Apart
from some theorem provers, these can be divided into two classes: either, they

perform type-checking or other analyses of a given specification. These systems
cannot be used to set up a specification. Or the systems provide editing facilities
for the language they support. Editors do not provide a process model and cannot
support design decisions.

7 Conclusion

In presenting the Unix case study, we have demonstrated the following:

1. Different approaches for the development of a specification can be identified.
We call these styles and represent them by sets of development operators.
Three such styles have been presented: re-use, algebraic, and state-based.
Another style which was not applied here is the object-oriented style.

2. In one specification, several styles may be needed to specify different com-
ponents. This clearly shows that it is not satisfactory to identify styles with
specification languages.

3. Performing the same steps, i.e. applying the same development operators in
the same order, it is possible to obtain “equivalent” specifications in different
languages. This shows that, to a large extent, the development process can
be driven exclusively by the problem.

Specifiers are supplied with machine support, a graphical representation of
the specification state and guidance throughout the specification process. Not
only the formal specification itself, but also the specification process is repre-
sented. Associating one or more specification styles with each development op-
erator helps structuring the library of development operators. Once a user has
chosen a certain style, a support system need only offer the operators associated
with that style. Thus, the choice of the right operator can be made easier.

In this fashion, the development of formal specifications is supported in a sim-
ilar way as semi-formal methods, and we can also hope for a similar acceptance
of this approach by practitioners. The main activity of the specifier no longer
consists in writing down the specification, but in applying predefined operators
to evolve the specification.

In summary, our approach permits a flexible modeling of the specification
process. General problem solving knowledge is represented in a declarative way.
Tool support for this approach is not limited to a special technique or specifi-
cation language. In this respect, it combines and generalizes ideas presented in
the works mentioned in Section 6.

Acknowledgment. This work was partially supported by the ESPRIT Project
2537 (ICARUS) and the French-German PROCOPE program.
References

[AW86] E. Astesiano and M. Wirsing. An introduction to ASL. In Proc. of the IFIP
WG 2.1 Conf. on Program Specifications and Transformations, 1986.

[BGM89] M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic spec-

[BS93]

[CBss]

ifications more understandable: An experiment with the PLUSS specification
language. Science of Computer Programming, 12:1-38, 1989.

G. Bosch and J. Souquiéres. Development Editor User Manual. FEsprit2
ICARUS Tool Deliverable No D#48, ICARUS, January 1994.

J. Conklin and M. L. Begeman. gIBIS: A hypertext tool for explanatory
policy discussions. ACM Trans. Office Information Systems, 6:303-331, 1988.

[CGRY3] D. Craigan, S. Gerhart, and T. Ralston. An international survey of indus-

[DS93]

[Heio4]

[Heid5]

[HuB93]

[TF91]

[Jon90]
[Lev90]

[LS94]

[McD91]
[MS87]
[Nil71]
[Pots9)]
[RWS3]
[SL93]
[Sou93]

[SD93]

trial applications of formal methods. Technical Report NISTGCR 93/626,
National Institute of Standards and Technology, Computer Systems Labora-
tory, Gaithersburg, MD 20899, 1993.

R. Darimont and J. Souquiéres. A development model: Application to Z spec-
ifications. In Proceedings of the WG 8.1 Conference on Information System
Development Process, 1993.

M. Heisel. A formal notion of strategy for software development. Technical
Report 94-28, TU Berlin, 1994.

M. Heisel. Specification of the unix file system: A comparative case study.
In V.S. Alagar and Maurice Nivat, editors, Proc. 4th Int. Conference on
Algebraic Methodology and Software Technology, volume 936 of LNCS, pages
475-488. Springer-Verlag, 1995.

H. Huffmann. Zur formalen Beschreibung der funktionalen Anforderungen an
ein Informationssystem. Technical Report TUM-19332, TU Miinchen, 1993.
W.L. Johnson and M.S. Feather. Using evolution transformations to con-
struct specifications. In Michael R. Lowry and Robert D. McCartney, edi-
tors, Automating Software Design, pages 65 92. AAAI Press, 1991.

C.B. Jones. Systematic Software Development using VDM. Prentice Hall,
1990.

N. Lévy. Definition of Add_an_Invariant, a specification construction process
operator. Technical Report ForSem-006-R, ICARUS, 1990.

N. Lévy and G. Smith. A Language-Independent Approach to Specification
Construction. Proceedings SIGSOFT’94: Symposium on the Foundations of
Software Engineering, New Orleans, USA., December 1994.

J.A. McDermid, editor. Software Fngineer’s Reference Book. Butterworth-
Heinemann, Oxford, 1991.

C. Morgan and B. Sufrin. Specification of the UNIX Filing System. In Ian
Hayes, editor, Specification Case Studies. Prentice-Hall, 1987.

N.-J. Nilsson. Problem Solving Methods in Artificial Intelligence. Mac Graw-
Hill, Computer Sciences Series, 1971.

C. Potts. A generic model for representing design models. In Proc. ICSF 11.
TEEE, 1989.

C. Rich and R.C. Waters. The programmer’s apprentice: a research overview.
IFEFE Computer, pages 10-25, November 1988.

J. Souquie¢res and N. Lévy. Description of the specification development. In
IEEE, editor, Proc. of RE’93, pages 216 223, San Diego(CA), January 1993.
J. Souquiéres. Aide au Développement de Specifications. Thése d’état, CRIN,
Université de Nancy 1, 1993.

Jeanine Souquiéres et Robert Darimont. La description du développement
de spécifications. Technique et Science Informatiques, 14(9), novembre 1995.
A paraitre.

[Spi92] J. M. Spivey. The Z Notation A Reference Manual. Prentice Hall, 2nd
edition, 1992.

[Wil83] D.S. Wile. Program developments : Formal explanation of implementations.
Communication of the ACM, 26(11):902-911, 1983.

[WL93] J.P.C. Woodcock and P.G. Larsen, editors. FME ’93: Industrial-Strength
Formal Methods, LNCS 670, Springer-Verlag, 1993.

This article was processed using the E'TEX macro package with LLNCS style

