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Abstract

Software architecture can be broken down into a collection of architectural styles and services. We seek
to capture a set of criteria to characterize architecture styles. The presence or absence of a criterion may
be reflected in the features or limitations of the realization of an architecture. Our idea is to enumerate a
set of criteria for a given architectural style (e.g. event-action) and try to map it to a formal specification
of an instance of the style. We then map the formal specification to a reverse engineered level of the code.
The goal is to bridge the gap between the architecture and the realization. In addition, the breakup into
criteria and the mappings provides a way to locate functional and non-functional aspects of the architecture
in the code.

1 Introduction

Software architecture is a description of a set of components and relationships among them, how such com-
ponents can be put together to build some class of structures, and implications on the resulting structures’
usability, integrity, overall performance and construction cost. The notion of architectural styles has re-
ceived some attention recently [Dag95]. An architectural style consists of rules, constraints and a collection
of characteristics that are both common to application architectures that are designed to solve a family of
problems and are sufficient to identify such a collection [BCK95]. Architectural styles range in complexity
from simple pipelines, to complex transaction processing and real time applications. For example, the ACID
(atomicity, consistency, isolation, and durability) characteristics [GR93] identify a system in the transaction
processing style, and can be used as a way to partition parts of a larger application.
In this paper we address three steps:

e Refinement of architectural style into a set of criteria
e A bi-directional mapping between criteria and the formal specification

e A bi-directional mapping between the formal specification and a reverse engineered layer of the actual
implementation.

Figure 1 depicts our proposed Bama architecture (bidirectional approach to modeling architectures).
We begin with a set of architectural styles such as pipe/filter, Online Transaction Processing (OLTP),
event-action etc. We consider one of the styles (event-action) and look at its set of criteria (defined below).
The criteria in turn can be mapped onto a formal specification of an instance of the style. The realization
(source code) of the style instance can be reverse engineered to a level above that of the code—the resulting
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Figure 1: Bama architecture.

component is RRE (result of the reverse engineering). The mapping between all these components is
bidirectional since we approach the problem from both directions. The lighter two-way arrow between the
formal specification and the RRE indicates that this link is not as strong as others; i.e. not enough tools
exist as yet to do this.

Before we look at the various components of the Bama architecture, we briefly discuss their temporal
ordering. In the construction of most software we begin with high level architecture and proceed towards
code development. In the presence of legacy code, we work backwards from reverse engineered code apart
from creating a formal specification for the existing realization. We believe that our mappings would be
beneficial independent of the order in which some of the Bama components were created. For example,
future realizations of a particular style can benefit from the criteria that have been enumerated; the mapping
between the formal specification and RRE can help in any modifications to the code. At each step we use
any of the components available to create or improve the other components and mappings.

The criteria are a decomposition of a style into parts that can be treated as logical components of any
realization of the architectural style. We define an architectural style criterion as an inherent property of
the style which would be reflected in most realizations of the architecture. It can reflect a functional or a
non-functional property and can be a combination of them. In the event-action architectural style, a set
of events are matched subject to conditions, and actions are to be triggered as a result of the matching.
In this style, the order of matching of events is a criterion: it may be necessary to match events in order
of occurrence. Other examples of criteria include matching co-occurrence of events (say in a distributed
implementation) and taking contextual information of events into account while matching.

Having a set of criteria permits future realizers of the implementation to have a reasonably comprehensive
working set to consider a priori. Early decisions regarding inclusion or exclusion of a criterion can help



in a modular realization. Second, the set of criteria can be analyzed for degrees of mutual exclusivity in
any realization. Presence of a criterion may have implications on other criteria. Third, the criteria span a
set of possible implementations and if we are able augment the criteria set, it would be of help for future
realizations.

Our second step is to map the set of criteria onto a formal specification of an instance of the architectural
style realization. A formal specification describes what a system should do and is silent on how it should
be done. This would give a firmer grounding of the notion of criteria. The key observation is that we will
be able to identify the precise parts of the formal specification that deal with each of the criteria.

The final step is to map the formal specification of the instance to the implementation via reverse
engineering techniques, assuming a realization already exists. Currently this is the weakest link since most
of the reverse engineering techniques take us only a small step higher than the code itself. Instead of trying
to map the code directly onto the architecture, our goal is to move upto the level of the formal specification
of an instance of the style.

In essence, we are trying to bridge the gap between architectural style and code by working from both
ends. The notion of criteria is informal; thus any persuasion on our part has to be based on arguments that
rely on examples, assertions and appeal to logic. While we do not have an algorithm for a reasonable and
complete enumeration of criteria of an architectural style, a starting point might be the list of its necessary
and sufficient conditions as presented in [BCK95]. Architecture style criteria provide a way to narrow down
the properties that end up being reflected in the code. Interposing the formal specification of the criteria
of an instance gives us a more precise way of comparing different realizations of a particular style.

The rest of the paper is organized as follows: We begin with an example architectural style to describe our
notion of criteria in detail. We then describe a realized instance of this style. We use a formal specification
of the instance in Z to provide a mapping between the criteria and the formal specification. We discuss
the mapping between the formal specification and the reverse engineered level of the implementation. We
discuss details of our choice of reverse engineering tools. We then evaluate our mapping and see if our
approach generalizes to other architectural styles as well as other realizations. We look at related work in
the area and finally conclude with some future directions.

2 Case study

In this section we look at a case study we conducted to examine the notion of architectural style criteria in
depth. We generated a set of criteria for one style (event-action), and examined a realization of the style.
We then came up with a Z specification for that realization and mapped a subset of the criteria to this
specification (not all the criteria were present in the chosen realization). Finally, we look at the use of the
result of the reverse engineering (RRE) component.

2.1 An architectural style example with criteria

A system to watch for patterns of signals from a set of remote computers and take action (such as raising an
alarm) when selected patterns are detected is an example of of an event-action architecture style. Arbitrary
collections of programs (or users) interact in a loose manner via the event broadcast (and matching)
mechanism. Systems that are instances of this architectural style have been built and such systems can be
modeled via a Finite State Machine or a Petri Net. YEAsT [KR95] is one tool that implements an instance
of an event-action style (see Section 2.2).

To understand the notion of criteria associated with the event-action architectural style we formally
specified the behaviour of the system. The patterns of events together with the associated action (called



an event-action specification) can be matched by a matching engine (which may be central or distributed)
in many ways.
‘We enumerate the criteria for the event-action architectural style:

1.

10.

11.

Matching style: The occurrence of an event can be recognized by a matching engine either transiently
or perpetually. For example, temporal events which are based on a monotonically increasing clock
would result in a perpetual match. If event patterns are complex, combinations of events would have
to be matched in parallel if matching style is transient.

Context: Events occur in a context and the elements of the environment of the event constitute its
context. In the domain of events generated in a network environment, the identity of the machine on
which the event was generated, the time at which it was generated, the user or process id responsible
for generating the event are all contextual elements of the event. It is likely that specifications may
want to take advantage of the contextual information of events. The matching engine may permit
constraints on matching based on the context of events.

Constraints beyond context: The matching engine may allow additional constraints such as recent
match history, the number of times a particular event has occurred etc., in constraining further
matches. This would require maintaining additional information about the events.

Event independence: Occurrence of events once known by the engine can be ordered in some
fashion before matching is attempted. Event independence would permit matching in any order while
matching a pattern of events. A serialized event matching application would explicitly require the
absence of this criterion.

Handling unmatchable specifications: It is possible to have event-action specifications whose
event patterns will never match once certain time event descriptors stop matching. Ideally, a system
would detect unmatchable specifications and discard such specifications. Ability to detect unmatchable
specifications and taking remedial action is a criterion that would impact performance and correctness.

Grouping specifications: Logically related sets of specifications should be grouped together and
named so that they can be referred to by the user interface. Being able to interact with an arbitrary
subset of specifications enables coarser grained handling. Specifications should be able to belong to
multiple logical groups.

Privacy/Encapsulation: Specifications should be private by default but permitted to cross access
boundaries based on authenticated requests. By permitting sharing of specifications, applications can
register shared interest and have common actions triggered. For example, a diverse set of people may
want to receive notification when a particular pattern of event occurs.

Extensibility: It should be possible to build new constructs based on the primitives of the event-
action language. New object classes, attributes should be specifiable and, most importantly, the
system should be able to watch for new kinds of events.

Self-modifiability: The ability to add and delete to the internal collection of specifications as a
result of external actions is a useful criterion. It permits applications to dynamically reconfigure their
specifications.

Event attributes: This criterion permits external events to be structured so that matching can
be restricted based on a variety of factors. The event could be broadcast (i.e. match all valid
specifications), narrowcast (i.e. match only specifications that meet a condition; for example belonging
to a particular specification group), time bound (i.e. how long the event should be stored so that it
can match future specifications) etc.

Matching co-occurrence of events: In a distributed implementation of an event-action style
application it would be useful to be able to watch for concurrent events.



2.2 YEAST: A realization of the style

YEAST runs as a daemon on a single machine on a network and accepts client specifications from users.
When these specifications are matched, user-specified actions are triggered by YEAST. Client commands—
such as, add, remove, and suspend specifications—can be issued from any of several machines in the network.
YEAST permits arbitrary actions to be triggered when event patterns of interest are matched. It can match
temporal events and nontemporal events, such as changes of attributes in objects belonging to a variety
of object classes. The event language of YEAST allows one to build more complex event expressions, using
the connectors then (sequencing), and (conjunction) and or (disjunction). The list of predefined attributes
for these object classes can be extended, as can the classes themselves. With the use of external event
notifications (called announcements), YEAST can model a wide range of applications that follow the event-
action paradigm. YEAST is approximately 8400 lines of C code with parts written in Lex and Yacc. YEAST
runs on a variety of hardware and software platforms.

Since YEAST supports an event-action architectural style, several applications can be built on top of
YEAST. The application first decides on the set of events of interest and the manner (both temporal
ordering as well as combination of patterns) in which the events should be detected. Then, a collection of
YEAST specifications is registered with a YEAST daemon. Several applications have been built on top of
YEAST, ranging from automatic coordination of database files from a network of machines to a schedule
maintenance system and are in production use in AT&T.

Several of the criteria of event-action styles discussed in Section 2.1 are reflected in the implementation
of YEAST while some are absent. The criteria that are present in full include matching style, context,
constraints, event independence, handling unmatchable specifications, grouping specifications, and exten-
sibility. Some criteria are partially matched including privacy, self-modifiability, and event attributes.
Criteria not reflected include matching co-occurrence of events.

2.3 The Z specification and its mapping to the criteria

A formal specification of a large subset of YEAST in Z [Spi89] was created by examining the various aspects
of the Yeast implementation and its capabilities. The second author was co-designer and co-implementor
of the Yeast system which simplified the task greatly. Thus, someone knowledgeable with the realization
would come in handy at this stage. If the set of criteria were already available one could just create Z
schemas for each of them. The complete Z specification of Yeast can be found in [HK95].

The three main parts of the formal specification deal with the specification state, matching intrinsics, and
client commands. All the criteria enumerated above have been mapped onto the formal specification. The
mapping was relatively straightforward since the formal specification describes the operational behaviour
of the event-action realization. The inability to map some of the criteria onto the realization showed
that these criteria were not present in the realization (e.g. co-occurrence of events). Thus, the map is
useful both in locating and showing the absence of criteria. Criteria such as grouping and extensibility are
explicitly represented in the formal specification. The ability to add new user-defined events (extensibility)
is captured in the state portion of the formal specification as well as in operations changing the respective
state components. In this section, we present portions of the formal specification that reflect two of the
criteria, namely, grouping of specifications and extensibility.

Events in YEAST can be temporal (TE) or non-temporal (NTE). Non-temporal events can either be
(predefined) object events (OE) or user-defined events (UE). These are the primitive events in YEAST. The
specification of these event sets in Z is straightforward.

Fach YEAST specification consists of an event part and an action part. It belongs to a owner and has
an associated label for easy reference. It can be suspended, i.e. it remains present in the system but is not
considered for matching. The current match status of a specification has to be recorded.



— Spec
e: EVENT_EXP

a: ACTION_EXP

match_status : MATCH_STATUS
own : OWNER

label : LABEL

suspended : YesNo

The internal state of the YEAST system consists of three major parts: the specifications currently present
in the system, the possible events, and the environment in which YEAST operates.

—_ SpecState

specs : F Spec

specMap : LABEL — Spec
groups : GNAME «<— LABEL

specMap = {s : specs ® s.label — s}
ran groups C dom specMap

The invariant of the specification state requires that each label be unique and that each label referred
to by the relation groups belong to an existing specification. Specifications can be grouped together, as
indicated by the component groups. This feature has to be built in explicitly. If groups are to be allowed
the system must keep track of them. We thus see that the grouping specifications criterion is present.
Location of this criterion in legacy code is discussed in Section 2.5.

— PossibleBvents
user—_events : P UE

possible_events : P EVENT

attrs : OBJECT_CLASS +—F ATTRIBUTE
class : NTE -+ OBJECT_CLASS

possible_events = TE U OF U user—_events
dom class = OF U user_events
ran class = {oc : dom atirs | atirs oc # D}

The feature that distinguishes YEAST from other existing event-action systems is the possibility of
user-defined events. Users can define new object classes and attributes, i.e. the system fulfills the criterion
of extensibility. The set of possible events depends on the defined object classes and attributes. There
are client commands for changing the set of possible events.

The predefined temporal and object events are of course possible events. The set of attributes belonging
to a given object class is recorded in the function attrs. The function class yields the object class a given
non-temporal event belongs to. Each predefined object event and each valid user-defined event must have
a corresponding object class. If an object class has a non-empty set of attributes, then there must be some

non-temporal event referring to it.

__ YeastState
SpecState
PossibleBvents

Vs : specs @ events s.e C possible_events




The schema YeastState relates the two sub-states. Each event contained in a specification must be a
possible event.

2.4 Reverse engineering

The last component in Figure 1 is the source and the component to its left is the result of reverse engineering
the code. Our goal is to move the code to a higher level and try to shrink the gap in Figure 1 from both
sides. Towards this end, we have started identifying properties and criteria in the code via various reverse
engineering techniques.

A brief explanation of the various locally developed tools we used is in order now. We used four tools:
cta, a reverse engineering tool, app, an annotation pre-processor, dotty, a graphical editor tool, and zray,
which is a combination of the first three tools. The reverse engineering tool CIA, the C Information
Abstractor [CNR90], extracts entity and relation information between entities in C and C++ programs.
Two databases are generated for the complete collection of code representing a system. The first, the
entity database, consists of files, functions, global variables, types and macros in the code. The second, the
relationship database, contains the closure of the relations between all the entities in the entity database.
Once the program databases are created it is possible to run a variety of query operators to obtain a wide
range of relationships between the entities. For example, the include file relationship can be generated as
can the function call graph. It should be stressed that the information in the database is based on static
analysis and thus only static dependency relationships can be extracted from the code.

The app [Dav95] tool is an annotation preprocessor system that preprocesses programs embedded with
assertions (constraints) to generate instrumented source code. The embedded assertions in the source code
are processed by app to create and run self-checking programs. Dotty [KN94| is a customizable graph
editor with a programmable front end. It uses a graph layout tool dot [GKNV93] as a co-process and a
programming language lefty, which is a graphics editor. With the help of the build tool nmake [Fow95] it is
possible to automatically turn on app instrumentation of a piece of legacy code without touching the source
code.

2.5 Location of a style criterion in the code

We now present an example of locating an architectural style criterion in the reverse engineered portion of
the code. Consider, the specification grouping criterion: One could simply search the code—since YEAST is
relatively small it would be possible to try and locate most of the code dealing with handling of specification
group. This approach would not scale up however. Another approach is to look for meaningful names
(especially if the code was written with proper function and variable naming guidelines). Such information
is not often available and naming guidelines are not often followed.

Our approach is a combination of the static and dynamic information that can be extracted from the
legacy code. To locate the portion of the code that implements specification groups, we ran about a dozen
YEAST client commands that should trigger the code associated with specification grouping. The formal
specification provided us with some hints which client commands to run. From the schema SpecState given
in Section 2.3, we see that the type GNAME denotes group names and that groups are stored in the groups
component of the schema. We then looked for schemas in the Z specification that have either an argument
of type GNAME or change the group component of SpecState. The test cases were generated manually,
although it is conceivable to automate this task. Our approach is feasible, since the Z specification of Yeast
is short enough to search it in its entirety.

Merging the function trace output generated via the tool app with the static function call database
generated from the cia, we were able to pinpoint the set of functions involved in implementing specification



groups. The tool zray [Yih95] makes such location trivially possible. No code had to be written to
accomplish this task.

Figure 2 shows the set of functions that are called to deal with the specification grouping criteria. The
functions are clustered in the files they belong to, providing another level of abstraction. The functions in
green are called once and the functions in red are called at least twice. The figure shown is a significantly
reduced one as compared to the complete function call graph which has 262 nodes and 854 edges. In
contrast, the figure shown has only 54 nodes and 102 edges of which only 22 nodes are red. Eliminating
library functions and other utility functions lets us zoom in on just the handful of functions that implement
the grouping criterion. Our confidence in the coverage of the functions arises from using the test cases
generated with the help of the formal specification, and the fact that we are operating at the function
rather than the line of code level.

3 Evaluation of the case study

Software systems undergo an evolution during their life cycle. If this process is to be supported appropriately,
a truly bi-directional approach like the one presented here is of much advantage. In this section we evaluate
the Bama approach of using the various components to help bridge the gap between architecture and code.

Section 2.5 presents an example of finding parts of the code dealing with a given criterion. Since the
formal specification is short, it can be searched for operations and parts of the state space where the given
criterion is reflected. The map between the criteria and the formal specification tells us where the criterion
in question is located but may not enumerate all the relevant points in the specification. In the grouping
criterion, for each client command we have a version that takes a group name instead of a list of labels
as an input; this criterion is distributed over the whole specification. The mapping will only point to
state space SpecState where the group information is maintained and to those operations that change this
component. Thus, while it is necessary to search the whole specification, the mapping provides us with
the names that have been used for the relevant entities. The syntactic information can then be used to
locate all the relevant user operations. These operations are used to run test cases. The reverse engineering
tools introduced in Section 2.4 can then be used (as described above) to locate the code dealing with the
criterion in question.

We now consider the case of locating criteria in the formal specification. Suppose we have located a
set of functions in the code dealing with a certain criterion. We can use an analysis of the code to rule
out unrelated parts of the specification. Again, since the entire formal specification [HK95] of Yeast is
only about 15 pages long (including comments) this task is doable. Comnsider locating parts of the formal
specification dealing with specification grouping. A look at the functions shows that none of them has
anything to do with matching, and that many of them deal with interacting with the user. This eliminates
half of the formal specification since formalization of matching is the largest chunk. The fact that many
of the located functions can be invoked by the user hints at considering the Z schemas that specify client
commands.

Suppose a new version of a system has to be created that differs from the previous one in important
aspects. Seeing how the old system was realized is important for the new realization. We can see if parts
of the older system can be reused and if parts have to be changed. The changes should be reflected in the
formal specification and the corresponding parts in the code can be located and changed accordingly.

We now see if our case study yielded results that can be generalized to other architectural styles. Clearly,
the notion of criteria is generic since a variety of realizations of each style exist with overlapping sets of
criteria reflected in them. For coming up with the set of criteria for event-action systems, two aspects
turned out to be crucial: the existence of a fairly elaborate instance of the style, and a formal specification
of this instance. An existing system can help generate the characteristic features of the style. However,






the code of an existing system is certainly too detailed, and the system documentation serves purposes
other than exhibiting general features of architectural styles. What is needed is an abstract representation
of the system that clearly documents the design decisions that have been taken. For each such design
decision, possible alternatives can be discussed. This discussion will give rise to the definition of the criteria
characterizing the given architectural style.

A formal specification is an ideal means to obtain such an abstract description of a given instance of the
style. It abstracts away all implementation details and only presents the essence of the system. Kach part
of the formal specification can be analyzed in order to decide if the specified feature is indeed characteristic
of the architectural style or not.

In summary, we propose the following “algorithm” for the elicitation of criteria for architectural styles:
First, select an existing instance of the style that is typical and not too simple. Next, set up a formal spec-
ification for the instance. This exhibits the relevant design decisions. Now analyze the formal specification
to extract those features that are characteristic of the given style. Finally, explore the alternatives that
would be possible and reasonable for other instances of the style and formulate these as criteria. What we
lack is an overall algorithm that would apply to all styles, and tools that would help analyze the formal
specification (to automate the mappings).

4 Related work

In this section we look at work related to components of the Bama approach. Broadly there are two related
areas we have to look at: formal specification of architectural elements and reverse engineering in this
context.

In the area of formal specification of architectural components, Garlan and Notkin [GN91] discuss a
formal specification of event system style. However their notion of an event system is restrictive com-
pared to ours since they focus on implicit invocation mechanisms. Garlan Allan and Ockerbloom [GAO94]
characterize architectural styles as specialization of their object model. Their interest lies in generating
architectural design environments from style descriptions. Ideally, a formal specification of the architectural
style would let us identify the criteria. The cited works have not yet done this. We also believe that it is
easier to move closer to the implementation from the criteria than from the style.

Several tools exist to provide various aspects of reverse engineering: some provide information based
on the source code while others (including CIA) create a program database and permit query operations
on the database. We prefer the latter since it permits modular construction of new query tools and is a
proven approach dealing with very large pieces of code. In the reflexion model [MNS95] approach, a map
between the high-level model and the actual code is specified by an engineer and the system shows points
of agreement and disagreement. Unlike CIA, the reverse engineering technique in the reflexion model does
not seem to have the ability to compute closures.

5 Conclusion and future work

We have discussed a bi-directional approach to modeling architectures. Our approach is significant in the
sense that we try to reduce the gap between high level architecture and low level code from both sides.
While we have presented an example architecture style (that of event-action), our approach will carry over
to other architectural styles as well. Making design knowledge explicit via the criteria should help future
implementations of the various styles.

The map from architectural criteria to formal specification has been carried out for a concrete instance
of an architectural style. We plan to break down other architectural styles into criteria and see if we can
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replicate our results for the event-action style. Consider transaction processing style: The ACID (atomicity,
consistency, isolation, durability) properties characterize current Online Transaction Processing systems.
However, several special purpose transaction systems are built either as extensions to or as relaxations of
the ACID properties. A set of criteria for transaction processing style could include: Atomicity, consistency,
isolation, durability, choice of protocols for deciding if/when to commit, additional criteria (such as pre-
release upon request), control over dynamically backing out from incorrect parts of computation (used in
nested transactions), committing intermediate results while controlling resources (used in chained transac-
tions), early commit of intermediate results at a certain level of abstraction (multilevel transactions), ability
to undo part of a longer transaction (compensating transaction) etc. The above criteria were generated
primarily from [Moh94, GMS87, Jim93].

We also plan to locate non-functional properties such as security and fault tolerance in the code via the
RRE as well.

The mapping between formal specifications and criteria does not only help us to analyze a given instance
of an architecture; it also helps to design and change such instances. For each criterion, location of its
reflection in the formal specification is available. For a new system, the formal specification can serve as a
template that can be changed when other realizations of the criteria are needed. In this situation, and in
the situation where we just want to change the realization of a criterion for a given system, the mapping
tells us where to look in the formal specification and what parts to change accordingly. Moreover, it is
advisable to change the formal specification before attempting to change the code.

Kach step provides additional input to the process due to the inherent feedback nature: presence of
criteria helps create the formal specification which helps in locating the portion of the code dealing with a
criterion and so on. Likewise, the existence of a formal specification of an instance helps in rounding out
the criteria list.

YEAST is being rewritten in Concurrent-ML [Rep95] now and will serve as a vehicle for comparing
this realization with the C version along the architectural style criteria lines discussed in this paper. For
example, co-occurrence of events criterion is likely to be handled in the concurrent version.
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