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Abstract

We present a method for the specification and development of safety-critical systems.
It is based on a combination of the formal languages Z and real-time CSP. Different
reference architectures are introduced that represent frequently used designs of safety-
critical systems. For these reference architectures, schematic specifications are given that
can serve as guidelines for specifiers. Once the specification of the system is developed,
it can be validated using a checklist and by demonstrating properties of it. Further steps
consist in the refinement of the specification and its implementation that can partially be
supported by machine.
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1 Introduction

The application of formal methods in software engineering is undeniably more cost-intensive
than working exclusively with informal methods. One important reason to spend extra effort
is that the developed product can be expected to be of a better quality than can be achieved
without using formal methods.

Although every software-based system potentially benefits from the application of formal
methods, their use is particularly advantageous in the development of safety-critical systems.
These are systems whose malfunctioning can lead to accidents with loss of property or danger
for human lives. The potential damage operators and developers of a safety-critical system
have to envisage in case of an accident may be much greater than the additional costs of
applying formal methods in system development. It is therefore worthwhile to develop for-
mal methods tailor-made for the development of safety-critical systems. The present paper
presents such a method.

Before we describe our ideas in more detail, it should be noted that we do not advocate
to replace but to complement traditional methods for software development by formal ones.
As will become apparent in the following, the kind of safety that can be guaranteed by formal
methods is relative. Usually, compilers and operating systems of the target machines are
not part of the system model (and should not be because the models would become far too
complicated). Moreover, relevant properties of an implementation (like speed of execution)
can hardly be established by formal methods. Hence, traditional methods like testing are still
indispensable.



Most safety-critical systems are reactive. This means they do not just perform data
transformations, like payroll systems. Instead, they are not intended to terminate, and their
behavior depends on stimuli coming from the environment and their internal state which
usually is an approximation of the state of the environment. Frequently, they have to fulfill
real-time requirements.

From these characteristics, it follows that two aspects are important for the specification of
safety-critical systems. First, it must be possible to specify behavior, i.e. what happens in the
system in which order, how the system reacts to incoming events, and what signals it sends to
the environment under which conditions. The specified behavior must additionally take place
sufficiently fast. This is a crucial requirement for the system and thus should be expressed
in the specification. Second, complementing the behavior specification, the structure of the
system’s data state and the operations that change this state must be specified.

Both of these parts are of equal importance, and a specification that ignores one of them
would not be satisfactory. On the one hand, process algebras offer appropriate constructs
to specify behavior. With some extensions, also real-time requirements can be expressed.
On the other hand, model-based specification languages are suitable to specify the data-
oriented part of the system. Since they allow the legal states of the system to be explicitely
specified, they are to be preferred over algebraic languages in this context. A combination of
a process algebra and a model-based specification language yields a suitable language for the
specification of software for safety-critical systems.

In our approach, we choose to combine the specification notation 7 [Spi92] with the
process algebra real-time CSP [Dav93] which adds real-time constructs to CSP [Hoa85]. Both
languages are fairly well known and frequently used. Other such combinations, however, (e.g.
VDM and CCS) would also be conceivable. Although with the language LOTOS, a combined
language already exists, we do not use it because the specification language contained in
LOTOS is a simple algebraic language that is less appropriate than 7 for the data-oriented
part of the specification.

A combination of two different specification languages must be given a common seman-
tics; otherwise, combined specifications cannot be regarded as completely formal. Once this
is achieved, we obtain a specification language tailored for the modeling of safety-critical
systems.

A mere language, however, does not suffice to improve product quality in practice. A
methodology for its application that provides specifiers with guidance how to construct spec-
ifications is also indispensable. We provide such a methodology in identifying frequently used
designs of safety-critical systems. These designs are expressed as reference architectures, and
for each architecture we give schematic specifications that only have to be instantiated for
concrete applications.

The validation of a specification is as important as a controlled process for its development.
Therefore, our approach also contains guidelines for this purpose. First, general validation
criteria can be stated that are independent of concrete applications but only refer to the chosen
architecture. Second, we identify two different kinds of properties that are important for
safety-critical systems, namely safety-related and liveness properties. Our method encourages
specifiers to identify and demonstrate such properties.

The main focus of our work is on the development of the specification and its validation.
This is justified because a formal specification is a necessary prerequisite for the usage of
formal methods in the development process. Later phases like design and implementation
can only be supported by formal methods in presence of a formal specification. But formal
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Figure 1: System Model

specifications are not only necessary. Often, it is even sufficient to develop a formal specifi-
cation and perform the subsequent development steps with traditional methods to obtain a
considerable gain in product quality.

Nevertheless, our approach also offers formal support for the later phases of the software
development process. A notion of refinement for specifications in the combined language is
defined, and it is shown how an existing program synthesis system can be used to synthesize
code for the 7 part of a combined specification.

In the following, the approach described above is elaborated. Sections 2 and 3 describe the
specifics of safety-critical systems and their development. Section 4 presents the specification
method that is based on a software model described in Section 4.1. This software model
motivates how to combine the languages 7 and real-time CSP whose common semantic model
is outlined in Section 4.2. Guidelines to develop specifications in the combined language are
provided by identifying frequently used architectures of software systems for safety-critical
applications and by giving schematic specifications for each of these architectures (Section
4.3). An example illustrating the method is given in Section 5. How specifications of the
combined language can be refined and implemented is briefly described in Section 6. A
discussion of the approach and of related work concludes the paper.

2  Underlying System Model

The purpose of the systems we want to consider is to control some technical process, where
the control component is at least partially realized by software, see Figure 1 and [Lev95].
Such a system consists of four parts: the technical process, the control component, sensors
to communicate information about the current state of the technical process to the control
component, and actuators that can be used by the control component to influence the behavior
of the technical process.

A software-based control component affects certain process variables (manipulated vari-
ables) by sending commands to actuators. By evaluating the current state of certain process
variables which are measured by sensors (controlled variables), the control component ap-
proximates the current state of the real process in order to verify the effect of the commands
sent to the actuators (feedback control) and to determine the further commands to be sent.



The behavior of the technical process does not only depend on internal conditions within
the process, e.g. the state of the manipulated variables, but it is also influenced by external
disturbances. The basic objective of process control is to achieve the process control function
in spite of disturbances from the environment.

Safety can be defined as the property of a system to be free from accidents or losses
(cf. [Lev95]). It follows that a software component which is considered in isolation cannot
be unsafe because it is not directly able to cause a loss event. Safety is a property of a
whole system in the context of its environment rather than a property of a separate system
component. A method concerned with software development for safety-critical systems must
aim at system safety and can only be evaluated in this respect.

From these considerations, we can infer the subsystems of a technical process that have
to be modeled to achieve system safety:

e all parts of the process-control component, i.e. software components, mechanical and
electrical components, and interfaces to human operators,

e sensors, determining the projection of the real process state to the internal state of the
control component, and

e actuators, which realize the execution of commands given by the control component
within the real process.

Another desirable property of software systems is correctness. What is the relationship
between safety and correctness? The latter is defined as the property of a software component
to fulfill the relation between inputs and outputs prescribed in the component specification.

One might consider safety a weaker requirement than correctness. Leveson [Lev86] states
“We assume that, by definition, the correct states are safe.” However, safety concerns have
an influence on what is considered a correct state. For example, incorrect measurements of
process variables or the failed realization of given commands by the actuators are normally
not relevant in the context of correctness. To achieve system safety, on the other hand, the
thorough examination of the above situations is a necessary condition.

This leads to differences in the modeling of a system. If correctness in the usual sense of the
word is striven for, the environment in which the system operates, hardware failures, and the
credibility of inputs are of no interest. In contrast, to achieve system safety, the environment
must explicitly be modeled, too. It is necessary to try to detect hardware failures, and not
only the specified relation between input and output values must be guaranteed. It must also
be checked if the input values can represent a possible situation in the real world, e.g. by
consistency checks on different sensors and by redundant arrangements of sensors.

The approaches to achieve correctness on the one hand and safety on the other hand do
not differ in a technical, but in a methodological way: in the end, safety requirements are
expressed as functional requirements, and safety is guaranteed by developing software that is
correct with respect to the safety requirements.

3 Phases of Software Development for Safety-Critical Systems

Although non-software-based components have to be taken into account in the modeling
process, the subject of the development process are exclusively the software-based components
of the control component. The development of these software components is performed in a



number of stages that will be applied with repetitions and in an interleaved manner. These
stages are: hazard analysis, formal specification, validation of the formal specification, design
and program development.

Hazard Analysis. The objective of this stage is to identify hazards, analyze their causes
and consequences, design safeguards for their control or elimination, and assess risks.

After identifying the system-level hazards by using a hazard identification approach, the
system hazards should be traced back to the interface of the intended software components
by applying the technique of fault tree analysis. The subsequent qualitative analysis of the
developed fault tree yields an informal description of the safety constraints for the software
to be developed.

This activity can hardly be supported by formal methods; hence, we do not cover it in
our approach.

Formal Specification. The essential task of this stage is to formally define the safety
constraints related to software components and to show that the defined safety constraints
are logical consequences of the formally specified properties of the software components.

It is often advocated to write constructive, executable specifications because such speci-
fications can be animated which is an important means for validation. We acknowledge the
usefulness of animation. However, executable specifications must usually be more detailed
than non-executable ones. Moreover, a constructive specification can introduce implemen-
tation biases that exclude efficient algorithms. This leads us not to strive for executability.
Instead, we are convinced that the most important properties of a specification — besides
being a faithful representation of the requirements — are simplicity and comprehensibility.

Furthermore, a compromise has to be made between the safety and the availability of the
system (an absolutely safe airplane is one that never leaves the ground). This means that the
specification should also guarantee that the system fulfills its function as long as possible.

Hence, two kinds of properties of the formal specification are of interest: Safety-related
properties that contribute to system safety, and liveness properties that guarantee that the
system fulfills its function. This phase is described in detail in Section 4.

Validation of the Formal Specification. According to historical experience, a major
part of the accidents which were caused by incorrect behavior of software components can
be traced back to incomplete or inconsistent requirements specifications. It is therefore very
important to validate the specification.

Our approach supports validation by use of checklists and demonstration of properties.
Checklists are lists of criteria to check a formal specification developed in compliance with
the proposed approach for completeness and consistency. These criteria are heuristic rules
for identifying general sources of faults rather than formal completeness criteria. A checklist
(consisting of 24 criteria) for our method is presented in [Siih96].

The use of a checklist is complemented by demonstrating safety-related and liveness prop-
erties of the specification. Examples are assertions that the system cannot be longer than a
certain time in a certain state, that the violation of a safety constraint is noticed within some
time bound, that certain conditions exclude each other, or that certain conditions always
occur together. Concrete examples of such properties are given in Section 5.

Although our approach does not necessarily lead to executable specifications, it provides
means to make a specification executable by refinement, as described in Section 6.1. In this
way, also an animation is possible.



Refinement. When the transition from an abstract specification to an executable program
is to be supported by formal methods, it is advisable to perform this transition in several steps.
First, the specification is made more concrete by refinement. Refinement basically consists
of eliminating non-determinism, adding detail and transforming abstract data structures into
data types available in the target programming language. A definition of refinement for our
combined language is given in Section 6.1.

Program Development. When the specification is detailed enough, it forms the basis for
program development. In case formal methods are to be used in this step, it is either possible
to write a program and afterwards verify that it is correct with respect to the specification.
Or the program is synthesized in such a way that it can be guaranteed to be correct. For the
7 part of our specifications, programs can be synthesized semi-automatically as described in
Section 6.2.

4 Formal Specification

In general, the control component of a technical process refers to a reactive system, which is
characterized to be mainly event-triggered. It continuously reacts to events occurring within
the environment by invoking internal operations and subsequently emitting resulting events
into the environment. In accordance with Harel [Har87], we split the specification of a software
component into two parts.

1. In the structural and dynamic part the reactive behavior of the software component is
specified, i.e. its reaction to the occurrence of events within the real process (detected by
sensors) which is realized by invoking internal operations and giving commands to the
actuators. In this part, real-time requirements and the ordering of events are crucial.

2. In the functional part the properties and the structure of the possible system states,
i.e. data structures as well as system operations applied to these states are specified.
System operations are defined by relations between inputs, outputs, and the system
states before and after the execution of the respective operation.

The specification languages 7 and real-time CSP provide constructs to adequately express
both aspects.

4.1 Software Model

To achieve a suitable combination of both parts of the formal specification of a software
component formulated in Z and real-time CSP, we propose the software model shown in
Figure 2.

1. The innermost component which is expressed in 7 specifies the functional aspects, i.e.
the structure and the properties of the valid system states as well as the requirements
for system operations.

2. Around this innermost component, a CSP process specifies the reactive behavior, i.e.
the absorption of values provided by the sensors, the invocation and termination of
internal operations, and the transmission of the operation results to the actuators.
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Figure 2: Software Model

3. The outermost component models the required behavior of the sensors and actuators.
It offers the possibility to specify fault tolerance mechanisms, e.g. the redundant ar-
rangement of sensors and actuators.

Both the 7 specification and the sensors and actuators form the environment of the CSP
process.

Two different styles of specifying the reactive behavior in the CSP part can be distin-
guished. First, a term of the syntax of real-time CSP can be given to model the dynamic
behavior in a constructive manner which is amenable to further refinement. Second, pred-
icates can be used to constrain the set of possible behaviors. This is a more abstract way
of specification. Both approaches are semantically equivalent and can thus be combined
arbitrarily.

Informally, the relation between the elements of the Z part and the CSP part of a formal
specification can be explained as follows, see also Figure 3. For each system operation Op
specified in the 7 part which is intended to be externally available, the CSP part is able to
refer to the events OpInvocation and OpTermination, whose occurrences represent the invoca-
tion of the system operation Op by the software component and its termination, respectively.
The two events mark the execution interval of an operation. This makes it possible to specify
requirements for the maximal duration in terms of assumptions about the environment which
constrain the availability of these events. An example can be found in Section 4.3.1. Alterna-
tively, if the duration of the execution is assessed to be negligible, only one event OpFzecution
is used to represent the execution of the operation Op.

For each input in? : Type of a system operation Op, there is a communication channel in
within the CSP part onto which an input value possibly derived from sensor measurements
is written before operation invocation. The alphabet of this channel is identical to the type
of the operation input.
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Analogously, for each output out! : Type of a system operation, there is a communication
channel out in the CSP part from which the output value of the operation is read after
termination and possibly used to derive commands to the respective actuator.

The dynamic behavior of a software component may depend on the current system state.
To achieve this, a process of the CSP part is able to refer to the current system state via pred-
icates which are specified in the Z part by schemas. This link between both parts contributes
to a clear separation of the system states from the dynamic aspects.

The connection between the CSP part and the specification of the intended behavior of
the sensors and actuators is as follows. The CSP part is linked with every sensor via a
communication channel from which the measured values of the respective sensor are read.
Analogously, the CSP part is connected with every actuator via a communication channel
onto which the commands to the respective actuator are written.

Furthermore, the specification of communication channels in terms of CSP processes makes
it feasible to model aspects of a distributed communication, for example the delay of trans-
mission or the redundant arrangement of unreliable communication channels.

4.2 Common Semantic Model

In this section, we outline the formal definition of the semantics associated with a combined
specification as explained informally in the previous sections.

The basis of this definition is the semantic function of the timed failures model of real-
time CSP [Dav93]. This model associates with each process term a set of timed failures which
represents possible observations of the process. A timed failure consists of a ¢imed trace and
a timed refusal. A timed trace is a sequence of timed events, where each timed event is a pair
of an event and the time instant at when it was observed. A timed refusal is a set of timed
events. In case the corresponding timed trace has been observed, an event can be refused by
the system at a time instant if the corresponding pair is a member of the timed refusal.

timed failures : Process — P(seq TimedEvents X P TimedEvents)

Analogously, the set of all possible observations of a system specified by a combination of Z
and real-time CSP has to be determined. In this context, a third component is of importance,
namely the evolution of the system state within the observation interval. Hence an observation
for a combined specification is a tuple consisting of a timed trace, a timed refusal, and a so-
called timed state. A timed state is defined as a function which maps every time instant of
the observation interval to the respective system state observed.

The 7 part of a specification is characterized by a state schema State, an initial state
schema InitState, a set of external operation schemas Opl,..., OpN, and a set of predicates



on the system state Predl, ..., PredM. The CSP part of a specification is characterized by
a term of real-time CSP and a predicate of the timed failures model. The set RESTR-
_RTCSP_PROCESS contains all process terms of real-time CSP that do not allow subpro-
cesses to perform an event concerning the execution of a system operation (and consequently
causing a state change) in parallel with other subprocesses which either perform an operation
event or evaluate a predicate on the system state. Furthermore, the set TF_PREDICATE
contains all predicates of the timed failures model. Thus the signature of our semantic func-
tion is as follows.

timed failures states : SCHEMA x SCHEMA x PSCHEMAX
PSCHEMA X RESTR_RTCSP_PROCESS x TF_PREDICATE —+
P((seq TimedEvents X P TimedEvents) x (TIME -+ STATES))

A possible observation ((s, X), tstate) of the behavior of the specified system can be inter-
preted in the following sense: the timed failure (s, X') consisting of the timed trace s and the
timed refusal X is defined by the semantic function timed failures as a possible observation
of the CSP process, and the timed state tstate maps each instant of the observation inter-
val to a system state. This system state must be one of the states that can be reached at
the respective time instant, starting from an initial state and proceeding in accordance with
the operation events as well as their assigned input and output values which are recorded in
the timed trace s up to the considered time instant. The formal definition of the function
timed failures states can be found in [Siih96].

4.3 Reference Architectures

In practice, there are (at least) two different ways to design safety-critical systems, according
to the manner in which activities of the control component take place and which system
components trigger these activities. We express these as reference architectures that serve as
frameworks supporting the specifier with general structures to be instantiated in the context
of the specific application.

Concrete applications need not be “pure” instances of these architectures. When neces-
sary, they can be combined as appropriate.

4.3.1 Centralized Coordination of Passive Sensors

For this architecture it is assumed that all sensors are passive, i.e. they cannot cause activities
of the control component, and their measurements are permanently available. There is only
one control operation which is executed at time instants uniquely defined by the current
system state (e.g. equidistant points of time). Further assumptions are that all actuators are
able to perform the possible commands at arbitrary time instants and that the sample rate
is high enough to provide all relevant information about changes of the system state.

Functional view. The functional aspects of the control component comprise the structure
and the invariant properties of the system state defined by the state schema SystemState as
well as the functional aspects of the control operation. The control operation is specified
by an operation schema ControlOperation within the Z part. It is assumed that the con-
troller is always in one of the operational modes Model, ..., ModeK that are defined with
respect to the needs of the technical process. Within distinct modes, which can model dif-
ferent environmental or internal conditions, the behavior of the control component might be



totally different. The behavior within an operational mode Model is specified by the internal
operation OpModel. This yields the following general schema!:

Sensors = [input1? : ITypel; ...; inputN? : ITypeN | ...]

All sensor measurements of the controlled variables of the technical process are introduced
as inputs in a separate schema Sensors. If necessary, its predicate part should contain the
specification of consistency checks concerning the sensor measurements as well as for the
definition of redundancy mechanisms, e.g. the arrangement of several identical sensors and
the derivation of a unique value from a set of measured values of the same controlled variable.

Actuators = [outputl! : OTypel; ... ; outputM!: OTypeM | ...]

All commands which are to be sent to the actuators are introduced in the separate schema
Actuators. Here the derivation of these commands from the current system state is specified.

_ ControlOperation
A SystemState
Sensors; Actuators

mode = Model = OpModel
ANUA
mode = ModeK = OpModeK

By importing the schemas Sensors and Actuators the operation has all relevant inputs from
the sensors at its disposition. These inputs and the current operational mode determine the
successor mode which is specified by the internal operations OpModel. The outputs serve to
give commands to the actuators.

At this place we want to outline the application of validation criteria to a formal specifica-
tion complying with the described architecture. There are two important criteria referring to
the conditions of the transitions between different operational modes. The first one requires
that in every operational mode there is at least one successor mode for an arbitrary combi-
nation of sensor inputs. This guarantees that each possible situation is taken care of by the
system.

The second validation criterion requires that in every operational mode there is at most one
successor mode for each combination of sensor inputs. This validation criterion contributes
to the determinism of the specification. Although determinism is not a necessary condition
for safety, in the most cases it will enhance comprehensibility.

Validation criteria are a means to check a formal specification for consistency and com-
pleteness. The other means to validate the specification is to carry out mathematical proofs.
The main emphasis of the validation criteria is on the detection of incompleteness, whereas
the mathematical proofs concentrate on detecting inconsistencies. So both means are com-
plementary tools.

Dynamic view. The following CSP process ControlComponent serves as a template to
specify the reactive behavior of the control component as well as its structural connection
to other system components. Its behavior is cyclic which is modeled by a recursive process

"Readers not familiar with 7 are referred to [Spi92]. A summary of real-time CSP is given in Appendix A.
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definition. Before invoking the control operation, all associated input values are read from
the respective sensor channels (sensorl,..., sensorN) in an arbitrary order which is modeled
by the use of the parallel operator ||. When the control operation has terminated, all output
values are written to the respective actuator channels (actuatorl,..., actuatorM). The par-
allel process Wait INTFERVAL delays the process execution so that the next invocation of the
control operation will happen exactly INTERVAL time units after the current invocation.

ControlComponent = X o
((sensor1?valuel 1 — input1lvaluel 1 — Skip || ... ||
sensorN 7valueIN — inputN'valueIN — Skip);
ControlOperationInvocation — ControlOperationTermination —
(output1?valueO1 — actuatorllvalueO1l — Skip || ... ||
outputM ?valueOM — actuatorMvalueOM — Skip)

]
Wait INTERVAL); X

In addition to the process term, the predicate FnvironmentalAssumption specifies an assump-

tion about the duration of the operation execution. The maximal time distance between the
invocation and the termination are INTERVAL time units?. Moreover, the invocation of the
control operation must be possible at any time.

FEnvironmentalAssumption = (Yt : [0,00) @
ControlOperationInvocation open t A
ControlOperationInvocation at t = (3t : (t,t + INTERVAL] e

ControlOperation Termination open t'))

The above shows (i) that it is possible to give fairly detailed guidelines concerning the shape
of formal specifications in a given context, (ii) how the proposed validation criteria contribute
to validate a specification, and (iii) that both styles of specifying behavior (as process terms
and as predicates) are useful and should be combined as appropriate.

4.3.2 Decentralized Coordination of Active Sensors

For this architecture it is assumed that all sensors are active, i.e. they control a certain variable
of the technical process and independently report certain changes of the controlled variable
to the control component at arbitrary time instants. Such a report immediately triggers the
execution of a handling operation within the control component.

In contrast to the centralized architecture for which one “central” control operation suf-
fices, a control component in the decentralized architecture has to make several “decentral”
handling operations available at its external interface.

Functional View. We propose to define in the 7 part of the specification for every ac-
tive sensor exactly one sensor handling operation, which defines the reaction of the control
component to the received sensor measurement.

Furthermore, it is taken into consideration that actuators may not be able to accept
commands by the control component at arbitrary points in time. In general, actuators are
technical devices which are exposed to a physical inertia, i.e. they cannot change their state

2¢ open ¢ means that the environment of the process is ready to participate in event e at time ¢. e at ¢
means that event e happens at time ¢.

11
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Figure 4: Decentralized Architecture of Active Sensors

arbitrarily fast. On the other hand they may require to get current commands from the
control component in regular time distances. Consequently, the transmission of commands
to the actuators may be independent of the execution of sensor handling operations, so that
the specification of an actuator handling operation for every actuator is necessary, specifying
the derivation of the command from the current state of the control component.

As in the centralized architecture, the functional behavior of the control component may
depend on a set of operational modes. For each operational mode there is an internal operation
specifying the general behavior of the control component in this mode independently of special
inputs from sensors.

The relationship between the externally available sensor handling operations and the in-
ternal operations of the operational modes can be outlined as follows. A sensor handling
operation specifies the entire reaction of the control component to incoming sensor values.
If necessary, it should specify consistency conditions between sensor measurements and the
current state of the control component as well as redundancy mechanisms, e.g. the derivation
of a unique value from a set of measured values from redundantly arranged sensors. De-
pending on the current state of the control component, the result of consistency checks, and
the derived sensor value, a sensor handling operation may make use of the definition of the
different internal operations of the operational modes.

The actuator handling operations are either directly connected to the sensor handling
operations, i.e. every execution leads to a transmission of commands to the actuators, or
they are independently executed by the control component. This architecture is illustrated
in Figure 4.

Dynamic View. The following process term Coordination schematically specifies the re-
active behavior of the control component with a decentralized architecture. The version
presented here assumes that all sensor handling operations are not time critical, i.e. each ex-
ecution is represented by the occurrence of only one event. The actuator handling operations
are included in the sensor handling operations, i.e. every incoming sensor value leads to the
output of commands to the actuators.

12



Coordination = p X e
((sensorl?valuel 1 — inputllvaluel 1) —
SensorHandlerl Ezecution —
((output(1 1y?valueO 1y — actuator(s 1)lvalueO( 1y — Skip)

(output(y ar)?valueOq ary — actuator(y ar,ylvalueOn ary — Skip)))

0 X

)

((sensorN?valueIN — inputNlvalueIN) —
SensorHandler NErecution —
((output(n 1y?valueO(n 1y — actuator(y 1y!valueOy 1y — Skip)

(outputn ary)?valueO(y aryy — actuator(y aryy'valueOgn aryy — Skip)))

;X

)

In the context of the decentralized architecture there is a problem concerning the ability
of the sensors to independently trigger actions of the control component. The limited time
and space resources of the control component may impose several restrictions with respect to
the number of measured values a sensor can send in an interval. On the other hand, it may be
necessary to require that the sensors send fresh measurements in regular time distances as the
control component has to make its decisions on the basis of the current state of the technical
process. These assumptions about maximal and minimal numbers of sensor values in time
intervals of a certain length as well as the reaction of the control component to a violation of
such assumptions is specified in the dynamic view. They are expressed as predicates of the
timed failures model expressing these assumptions about the behavior of the environment.
For reasons of space their integration in this architecture is not described in this paper. An
example of a specification for this architecture can be found in [HS96].

5 Example

The following case study is a variant of a specification problem used in [MP95]. The software
controller of an inert gas release system to be operated from the control room of a plant is to
be specified. The task of this system is to detect fire in one of the different machine rooms
of the plant and to extinguish a detected fire with the help of inert gas. The architecture of
the control component is central, i.e. the sensors are passive always allowing the controller
to request the current value of the controlled process variable. The only control operation is
executed at equidistant time instants.

5.1 Functional View

We first specify the internal operations of the various operational modes of the controller,
together with the necessary data types and constants. Finally, the central control operation
is defined in terms of these internal operations.

Data Types. The operational modes of the inert gas system are included in the following
data type MODFE and the possible transitions between them are depicted in Figure 5.
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Figure 5: Operational Modes

MODE ::= NORMAL | AUTOMATIC_REQUESTED
| WARNING | RELEASE_INITIATED | RELEASE_FAILED
| RELEASE_SUCCEED | INCONSISTENCY

The remaining data types encompass the sets of values representing possible measurements
made by the sensors or possible commands given to the actuators. The sensors and actuators
of the system are described in the next paragraph.

BANK_SELECTOR_STATUS ::= BANK_A | BANK_B | INHIBIT
BUTTON_STATUS ::= PRESSED | NOT_PRESSED
DETECTION_STATUS ::= DETECTION | NO_DETECTION
OPEN_CLOSED ::= OPEN | CLOSED

LIGHT_STATUS ::= ON | OFF | FLASHING

BEEP_STATUS ::= BEEPING | NOT_BEEPING

YES_NO ::= YES | NO

Sensors and Actuators. To detect the event of a fire in a certain machine room, the
software controller of the inert gas system makes use of two redundantly arranged sensors
(fire_detector1?, fire_detector2?) which are able to detect the presence of smoke. The con-
troller only assumes the existence of fire if both sensors report smoke simultaneously. This
redundancy mechanism is represented by the derived component fire_detector of the schema
SENSORS given below.

The gas sensor (gas_detector) serves to observe if there really is an escape of inert gas
into the machine room after an initiation of gas release. Thus, it realizes feedback control.
There are two banks of extinguishant, bank A and bank B. By means of a bank selector
switch (bank_selector?) within the control room, the operator is able to select one of them or
to deselect both by choosing the INHIBIT position of the switch.

Inside the control room there is an inhibit switch (inhibit_button?) which — if being in
the inhibit position — prevents that a fire alarm is automatically triggered somewhere on
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the whole plant. The operator can by-pass a global inhibit by pressing the request button
(request_button?). Moreover, the operator can abort the release of gas and reset the inert gas
system at any time by pressing the reset button situated in the control room (reset_button?).

__SENSORS
InertGasSystem

bank_selector? : BANK_SELECTOR_STATUS
request_button? : BUTTON_STATUS

reset_button? : BUTTON_STATUS

inhibit_button? : BUTTON_STATUS

fire_detector1?, fire_detector2? : DETECTION_STATUS
gas_detector? : DETECTION _STATUS

fire_detector : DETECTION _STATUS
consistency : YES_NO

fire_detector = DETECTION &
fire_detector1? = fire_detector2? = DETECTION

consistency = NO &
mode # RELEASE_INITIATED A gas_detector? = DETECTION

This schema imports the global system state InertGasSystem to be defined subsequently.

There is a consistency condition between the current state of the controller, i.e. the current
operational mode, and the incoming sensor values. An inconsistency exists if and only if the
controller is not in the mode RELEASE_INITIATED (and consequently not releasing inert
gas) but the gas sensor is reporting the detection of escaping gas. This is represented by the
component consistency. This condition makes it possible to detect leaks in the gas banks.

The controller guides the escape of inert gas from the two banks by means of two actuators
(release_bank_A!, release_bank_B!). To inform the persons in the machine room that a release
of gas will take place soon, that a release of gas currently happens, that a release has taken
place recently, or that a gas leak was detected, a warning light (warning_light!) can change
between the states ON, OFF, and FLASHING. The warning beeper (warning_beeper!) serves
a similar purpose acoustically. The operator of the inert gas system is informed about the
state of the system (mode!). All the outputs of the system are collected in the ACTUATORS
schema.

__ACTUATORS
InertGasSystem’

release_bank_A!, release_bank_B! : OPEN_CLOSED
warning_light! : LIGHT_STATUS

warning_beeper! : BEEP_STATUS

mode! : MODE

release_bank_A! = release_bank_A'
release_bank_B'! = release_bank_B’
warning_light! = warning_light’
warning_beeper! = warning_beeper
mode! = mode’

/
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Constants. The constant WARNING_DURATION represents the duration of an interval
after an automatic or manual request during which the persons in the machine room are
warned before the release of inert gas actually takes place. The duration of the period during
which the system tries to detect escaping gas after the initiation of gas release before assuming
a failure is represented by the constant CHECK _DURATION. Finally, the length of the time
interval between two consecutive executions of the control operation is characterized by the
constant FXECUTION _INTERVAL.

WARNING_DURATION : Ny
CHECK_DURATION : N,
EXECUTION_INTERVAL : Ny

WARNING_DURATION mod EXECUTION _INTERVAL =10
CHECK_DURATION mod EXECUTION_INTERVAL =0

It is required that the warning and check durations are multiples of the time distance between
two consecutive executions of the control operation.

Abstract State. The following schema InertGasSystem defines the set of abstract states
of the software controller. The main component is the state variable mode representing the
current operational mode. Furthermore, the controller must have at its disposal two timer
components which are initialized with the duration of the warning period or the checking
period and subsequently decrease their values until reaching zero. These timer components
are represented by the state variables warning_timer and check_timer, respectively. The
other state components define the current states of the actuators as assumed by the controller.

—InertGasSystem
mode : MODE
warning_timer : 0.. WARNING_DURATION
release_check_timer : 0 .. CHECK_DURATION
release_bank_A, release_bank_B : OPEN_CLOSED
warning_light : LIGHT_STATUS
warning_beeper : BEEP_STATUS

mode # RELEASE_INITIATED =
release_bank_A = release_bank_B = CLOSED
mode = WARNING & warning_timer > 0
mode = RELEASE_INITIATED & release_check_timer > 0 & warning_light = ON
mode ¢ { WARNING, RELEASE_INITIATED, INCONSISTENCY }
& warning_light = OFF
mode = NORMAL < warning_beeper = NOT_BEEPING

Only in the mode RELEASFE _INITIATED a release of gas from bank A or bank B is possible
if the selector switch is in the corresponding position. The warning timer is only set in the
mode WARNING (i.e. has a strictly positive value), and the release check timer is only set
in the mode RELFEASE_INITIATED. The warning light is ON when inert gas is released,
and it is flashing in the warning period before the gas release and in the INCONSISTENCY
mode. The warning beeper is always beeping outside the NORMAL mode.

When starting the software controller of the inert gas release system the current opera-
tional mode is NORMAL, since at this moment there may be no fire detection by the sensors
and no manual request by the operator.
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__InertGasSystemINIT
InertGasSystem’

mode’ = NORMAL

Operations. Under normal environmental conditions, i.e. there has been no fire detection
by the sensors and no manual request by the operator, the controller is in the mode NORMAL.
No inert gas is released and no visual or auditory signal is given.

— OpNormal
AlnertGasSystem
SENSORS; ACTUATORS

mode = NORMAL

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(request_button? = PRESSED = mode’ = WARNING) A
(request_button? = NOT_PRESSED =
(fire_detector = DETECTION =
mode' = AUTOMATIC_REQUESTED) A

(fire_detector = NO_DETECTION = mode’ = NORMAL))))

If both redundantly arranged sensors report the detection of smoke, the controller changes
to the mode AUTOMATIC_REQUESTED. If the request button is pressed in the mode
NORMAL there is a transition into the mode WARNING. If the reset button is pressed, a
transition from any mode to the mode NORMAL is the consequence.

In the case of an automatic request, the WARNING can only be entered if the global
inhibit switch is not set.

— OpAutomaticReq
AlnertGasSystem
SENSORS; ACTUATORS

mode = AUTOMATIC_REQUESTED

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(inhibit_button? = PRESSED = mode’ = AUTOMATIC_REQUESTED) A
(inhibit_button? = NOT_PRESSED =
mode’ = WARNING A warning_timer’ = WARNING_DURATION)))

In the mode WARNING which lasts exactly WARNING_DURATION time units, the warn-
ing light is flashing to inform the persons in the machine room about the following release
of inert gas to give them the possibility to leave the danger area. When this warning period
is elapsed there is a transition into the mode RELFEASFE_INITIATED. At each execution of
the control operation in the mode WARNING, the warning timer either has to be reduced

17



by EXECUTION _INTERVAL or, if the controller leaves the WARNING mode, has to be set

to zero to fulfill the state invariant.

— OpWarning
AlnertGasSystem
SENSORS; ACTUATORS

mode = WARNING

(warning_timer' = warning_timer — EXECUTION _INTERVAL
V warning_timer’ = 0)

(consistency = NO = mode’ = INCONSISTENCY')
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(warning_timer — EXECUTION_INTERVAL > 0 = mode’ = WARNING) A
(warning_timer — EXECUTION_INTERVAL =0 =
mode' = RELEASE_INITIATED A
(release_bank_A' = OPEN & bank_selector? = BANK_A) A
(release_bank_B' = OPEN & bank_selector? = BANK_B) A
release_check_timer’ = CHECK _DURATION)))

In the RELEASFE_INITIATED mode, inert gas is released either from bank A or bank B,
or no gas is released if the bank selector switch is in the INHIBI'T position. The alarm light
is ON to indicate the potential danger. During a period of CHECK _DURATION time units
it is tested if inert gas is indeed escaping into the machine room. The detection of escaping
gas by the respective sensor will cause a transition into the mode RKLFEASE_SUCCEED.
If there is no gas detection within this period, a change into the mode RELEASE_FAILED
results. At each execution of the control operation in the mode RELEASE_INITIATED the
check timer either has to be reduced by FXECUTION _INTERVAL or, if the controller leaves
the RELEASFE_INITIATED mode, has to be set to zero to fulfil the state invariant.

— OpReleaselnitiated
AlnertGasSystem
SENSORS; ACTUATORS

mode = RELEASE_INITIATED

(release_check_timer' = release_check_timer — EXECUTION _INTERVAL
V release_check_timer' = 0)

(consistency = NO = mode’ = INCONSISTENCY')
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(gas_detector? = DETECTION = mode’ = RELEASE_SUCCEED) A
(gas_detector? = NO_DETECTION =
(release_check_timer — EXECUTION _INTERVAL > 0 =
mode' = RELEASE_INITIATED A
release_bank_A' = release_bank_A A
release_bank_B' = release_bank_B) A
(release_check_timer — EXECUTION _INTERVAL = 0 =
mode’ = RELEASE_FAILED))))
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Being in the mode RELFASE_FAILFED indicates that either the chosen bank is empty or
defect or that the bank selector switch is in the INHIBIT position. Therefore the operator
must have the possibility to change the selector position and to repeat the process of gas
release. This is done by pressing the request button causing a transition into the mode

WARNING.

___OpReleaseFailed
AlnertGasSystem
SENSORS; ACTUATORS

mode = RELEASE_FAILED

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(request_button? = PRESSED = mode’ = WARNING) A
(request_button? = NOT_PRESSED = mode' = RELEASE_FAILED)))

__OpReleaseSucceed
AlnertGasSystem
SENSORS; ACTUATORS

mode = RELEASE_SUCCEED

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED = mode’ = RELEASE_SUCCEED))

If an inconsistency is noticed by the controller in an arbitrary mode it immediately changes to
the mode INCONSISTENCY. No inert gas is released in this mode and the flashing warning
light and warning beep warn the persons in the machine room.

— OplInconsistency
AlnertGasSystem
SENSORS; ACTUATORS

mode = INCONSISTENCY

(consistency = NO = mode’ = INCONSISTENCY)

(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED = mode’ = INCONSISTENCY))

The central control operation is executed by the software controller at equidistant points
in time. According to the current operational mode, the corresponding internal operation of
the mode is executed. The following schema ControlOperation is very straightforward only
connecting the different modes to the corresponding internal operations.
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_ ControlOperation
AlnertGasSystem
SENSORS; ACTUATORS

mode = NORMAL = OpNormal

mode = AUTOMATIC_REQUESTED = OpAutomaticReq
mode = WARNING = OpWarning

mode = RELEASE_INITIATED = OpReleaselnitiated
mode = RELEASE_FAILED = OpReleaseFailed

mode = RELEASE_SUCCEED = OpReleaseSucceed

mode = INCONSISTENCY = Oplnconsistency

5.2 Dynamic View

The dynamic behavior of the controller of the inert gas release system is defined by the
real-time CSP process ControlSystem. First, the controller is initialized by occurrence of the
event InertGasSystemINITExecution. The behavior after the initialization is specified by the
process ControlSystempgapy .

ControlSystem = InertGasSystemINITEzxecution — ControlSystemprapy

The architecture of the software controller is in accordance with the centralized control
of passive sensors. Thus, the only control operation is executed in equidistant time points.
Before executing the operation, the current measurements of all sensors are read from the
corresponding communication channels which is summarized in the process SensorInputs.
After the operation execution the resulting commands to the actuators are written to the
corresponding communication channels which is represented by the process ActuatorOutputs.
Defining SensorInputs and ActuatorOutputs as separate processes results in a slightly different
syntactic form of the control process as shown in Section 4.3.1.

ControlSystemgrapy = p X o
(SensorInputs;
(ControlOperationEzecution — Skip);
ActuatorQutputs

]
Wait EXECUTION _INTERVAL); X

The process Sensorinputs specifies the reading of sensor values before the execution of the
control operation. All sensor values are read in parallel from the corresponding communication
channels. These values are subsequently written to the channels having the identical names
as the inputs of the operation schema.

SensorInputs =
bank_selector_sensor?bs_status — bank_selector!bs_status — Skip

request_button_sensor?rq_status — request_button!rq_status — Skip
reset_button_sensor?rs_status — reset_button!rs_status — Skip
inhibit_button_sensor?ib_status — inhibit_button!ib_status — Skip

fire_detector1_sensor?fd1_status — fire_detector1!\fd1_status — Skip
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fire_detector2_sensor?fd2_status — fire_detector2!\fd2_status — Skip
gas_detector_sensor?gd_status — gas_detector!gd_status — Skip

The process ActuatorQutputs is defined analogously.

ActuatorQutputs =
release_bank_A7rbA_status — release_bank_A_actuator!rbA_status — Skip

release_bank_B7rbB_status — release_bank_B_actuator!rbB_status — Skip
warning_light?wl_status — warning_light_actuator'wl_status — Skip
warning_beeper?wb_status — warning_beeper_actuator!wb_status — Skip
mode?m_status — mode_output!m_status — Skip

The predicate FnvironmentalAssumption defines the assumptions concerning the environ-
ment. It is supposed that the control operation and the initialization operation may be
executed in arbitrary time instants by the controller. It is also assumed that all sensors are
always able to send a unique measured value to the controller. Analogously, every actuator
must always be able to receive an arbitrary command from the controller.

Environmental Assumption = (Yt : [0,00) @

ControlOperationExecution open t A

InertGasSystemINITFErecution open t A

(3, value : BANK_SELECTOR_STATUS e (bank_selector_sensor.value) open t) A

(3, value : BUTTON_STATUS e (request_button_sensor.value) open t) A

(3, value : BUTTON_STATUS e (reset_button_sensor.value) open t) A

(3, value : BUTTON_STATUS e (inhibit_button_sensor.value) open t) A

(3, value : DETECTION _STATUS e (fire_detector1_sensor.value) open t) A
(3, value : DETECTION_STATUS e (fire_detector2_sensor.value) open t) A
(
(
(
(
(

V value : OPEN_CLOSED e (release_bank_A_actuator.value) open t) A
V value : OPEN_CLOSED e (release_bank_B_actuator.value) open ) A
Vvalue : LIGHT _STATUS e (warning_light_actuator.value) open t) A

V value : BEEP_STATUS e (warning_beeper_actuator.value) open t) A
Y value : MODE e (mode_actuator.value) open t))

This example shows that — once a suitable architecture and the necessary operating modes are
chosen — the specification can be set up in a fairly routine way. Other case studies performed
by the authors confirm this observation.

5.3 Validation of the Specification

The validation consists of three parts. First, the applicable criteria of our checklist [Siih96]
are checked. Second, important safety-related properties exhibited by the specification are
made explicit. Third, liveness properties following from the specification are stated. We do
not perform any mathematical proofs because the claimed properties follow immediately from
the specification.
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General Criteria. The following properties are of a general nature. They are instances of
validation criteria, two examples of which were already given in Section 4.3.1.

1. Feedback control is realized by the gas_detector sensor. For the remaining actuators
(warning light and beeper) feedback control is not feasible.

2. For each operating mode and each combination of sensor values, there is exactly one
successor mode. This means that the system is deterministic and that it treats all
possible situations.

3. There are no redundant or unreachable operational modes.

Safety-Related Properties. The specification guarantees the following safety-related prop-
erties:

4. Gas leaks are detected and result in an alarm.
5. A gas release can only take place if both of the two smoke sensors detect smoke.

6. If a fire is detected, the persons in the danger area have WARNING_DURATION time
units to be evacuated before gas is released.

7. If a fire is detected but the release of gas is not successful, this can be noticed by the
operator after CHECK_DURATION time units.

Liveness Properties. The specification guarantees the following liveness properties:

8. After an unsuccessful gas release, the operator can change the bank selector switch and
manually try to release gas.

9. The system can be brought back to normal operation at any time by pressing the reset
button.

10. At every time instant the operator is able to by-pass a global inhibit (inhibit button is
set) for a certain machine room by pressing the corresponding request button for this
room.

To show the properties 1 — 5 and 8 — 10, it suffices to consider the Z part of the specification.
To show the properties 6 and 7, however, both parts of the specification have to be taken into
account.

6 Refinement and Implementation

In the following, we describe how the transition from an abstract requirements specification
to an executable program can be performed using formal methods. In a first stage, the
specification is refined, where the notion of refinement for specifications in the combined
language is based on the notions of refinement as they are defined for Z and real-time CSP.
For program development, a program synthesis system developed by the first author can be
used to develop a procedure for each system operation defined in Z. At the current stage, the
CSP part of a specification has to be hand-coded.
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6.1 Refinement

To make stepwise refinement possible for our combined language, we have to define what it
means that a specification of a reactive system consisting of a Z part as well as a real-time
CSP part is refined by another such combination. To this end, we can make use of the existing
refinement notions of Z and real-time CSP.

The essential idea of refinement in 7 is that abstract data structures are transformed into
more concrete data structures. The relations between abstract and concrete data types have
to be formally defined by a so-called abstraction relation. For every operation on the abstract
system state, a corresponding operation on the concrete system state has to be defined.

The concrete operation must satisfy two conditions: First, if an abstract operation is ap-
plicable to an abstract state (i.e. its precondition is fulfilled) then the corresponding concrete
operation must be applicable to all concrete states that are related to the abstract state. Sec-
ond, if the execution of a concrete operation can result in a certain concrete state then there
must exist an abstract state which is a possible result of the execution of the corresponding
abstract operation and is related to the concrete state.

In real-time CSP every semantic model maps a term of the process syntax to a set of
possible observations as described in Section 4.2. A process term is refined by another process
term if each possible behavior of the latter is also a possible behavior of the former.

To refine a combined specification, either the 7 part or the real-time CSP part is refined
separately. For the Z part, however, the notion of refinement must be strengthened. In the
definition of refinement in 7 as described above, the refining operation can have a weaker
precondition than the refined operation, i.e. it can be applicable to a system state to which
the latter is not applicable.

If this were admitted, the refining specification would include such behaviors as possible
observations that result from the application of the concrete operation to system states where
the abstract operation is not applicable. These behaviors would not be observable in the
refined specification. To avoid this violation to the notion of refinement, the definition of
operation refinement is adapted in the sense that the precondition of the refining operation
must be equivalent to the precondition of the refined operation. With this adaptation ev-
ery isolated refinement of the 7Z or the real-time CSP part is a refinement of the combined
specification.

6.2 Program Synthesis

We first present the synthesis system that is used. Then we describe the conversion of 7
schemas into the input format of the system. Finally, we sketch the synthesis of a procedure
implementing the operation OpReleaseSucceed defined in Section 5.

6.2.1 The Synthesis System

The first author’s synthesis system 10SS (Integrated Open Synthesis System) [HSZ95] sup-
ports the development of imperative programs using so-called strategies, [Hei94]. Strategies
describe possible steps during the synthesis process. Their purpose is to find a suitable so-
lution to some programming problem. A strategy works by problem reduction. For a given
problem, it determines a number of subproblems. From their solutions, it produces a solution
to the initial problem. Finally, it checks whether that solution is acceptable. The solutions
to subproblems are also obtained by applications of strategies. In general, the subproblems
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produced by a strategy are not independent of each other or of the solutions to other sub-
problems. This restricts the order in which the various subproblems can be set up and solved.
A strategy describes how exactly the subproblems are constructed, how the final solution is
assembled, and how to check whether this solution is acceptable.

Problems are specifications of programs, expressed as pre- and postconditions that are
formulas in first-order predicate logic. To aid focusing on the relevant parts of the task, the
postcondition is divided into two parts, invariant and goal. In addition to these it has to
be specified which variables may be changed by the program (result variables), which ones
may only be read (input variables), and which variables must not occur in the program (state
variables). The latter are used to store the value of variables before execution of the program
for reference of this value in its postcondition.

Solutions are programs in an imperative Pascal-like language. Additional components are
additional pre- and postconditions, respectively. If the former is not equivalent to true, the
developed program can only be guaranteed to work if not only the originally specified, but
also the additional precondition holds. The additional postcondition gives information about
the behavior of the program, i.e. it says how the goal is achieved by the program.

A solution is acceptable if and only if the program is totally correct with respect to
both the original and the additional the pre- and postconditions, does not contain state
variables, and does not change input variables. For each developed program a formal proof in
dynamic logic [Gol82] is constructed. This is a logic designed to prove properties of imperative
programs. The proofs are represented as tree structures that can be inspected at any time
during development.

The strategy base of IOSS contains formalized development knowledge in form of strategy
modules. A number of interactive, semi-automatic and fully automatic strategies have been
implemented. For a more complete description of 10SS, the reader is referred to [HSZ95].

6.2.2 Conversion of Z Schemas into I0SS Problems

The combination of Z and 10SS can be achieved easily: since both formalisms allow for states
and have concepts to deal with changing values of variables, 7 specifications can mechanically
be translated into 10SS programming problems. The translation mechanism as well as the
synthesis process resembles the approach of the refinement calculus [Woo91].

Four kinds of variables occurring in a 7 schema have to be considered (not to be confused
with the variable classification of IOSS problems): input variables are the ones decorated with
“?7. Qutput variables are the variables decorated with “!”. State variables are the variables
of the global state schema. All other variables are auziliary variables. With this classification,
the translation of a Z schema into an [OSS programming problem proceeds as follows:

e Each input variable of the Z schema becomes an input variable of the corresponding
problem.

e Fach output variable of the 7Z schema becomes a result variable of the problem.

e Bach variable z of the 7 state schema becomes an input variable if the schema predicate
entails z = z'.

e Otherwise z becomes a result variable, and a new state variable zy is generated for z if
z occurs in the schema predicate.

e Bach auxiliary variable becomes a result variable.
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e The precondition of the 10SS problem is the precondition of the 7Z schema plus an
equation x = 1z for each introduced state variable zg.

e The invariant of the IOSS problem is the invariant of the Z schema defining the system
state.

e The goal of the 10SS problem consists of those conjuncts of the schema predicate
that depend on result variables of the TIOSS problem, where dashed state variables
of the schema have to be replaced by plain variables and plain state variables of the
schema have to be replaced by their corresponding state variables of the IOSS problem.
Auxiliary variables remain unchanged.

6.2.3 Synthesis of a Procedure for OpReleaseSucceed

As an example, we consider the implementation of the internal operation OpReleaseSucceed.
The programming language of 10SS allows for enumeration types, so that a data refinement
is not necessary.

In the mode RELFASE_SUCCFEED, both timers are zero, the warning light is off, but the
beeper is on. The only possible successor modes are RELEASE_SUCCEED, NORMAL and
INCONSISTENCY. Hence, only the variables mode, warning_light and warning_beeper of
the state schema InertGasSystem can change their values. According to the above translation
rules, we obtain the following programming problem:

input variables: bank_selector?, ..., gas_detector?,

warning_timer, release_check_timer, release_bank_A, release_bank_B
result variables: release_bank_A!, ..., mode!,

mode, warning_light, warning_beeper,

fire_detector, consistency
state variables:  modey, warning_lighty, warning_beeperg

precondition: mode = modey A warning_light = warning_light

A warning_beeper = warning_beeperg A mode = RELEASE_SUCCEED
invariant: see InertGasSystem
goal: (fire_detector = DETECTION <

(fire_detector1? = DETECTION A fire_detector2? = DETECTION))
A (consistency = NO &
(modey # RELEASE_INITIATED A gas_detector? = DETECTION))
A (consistency = NO = mode = INCONSISTENCY)
A (consistency = YES =
((reset_button? = PRESSED = mode = NORMAL)
A (reset_button? = NOT_PRESSED = mode = RELEASE_SUCCFEED))
A ...see ACTUATORS

The goal is a conjunction with 5 top-level conjuncts. We observe that the new values of
the result variables can be computed one after another. In this situation, the disjoint goal
strategy can be applied. This strategy is based on the assumption that a conjunctive goal can
be achieved by a compound statement, each part of the compound establishing one conjunct.
It can be applied if the goal can be divided into two independent subgoals, i.e. the result
variables that need to be changed to achieve one subgoal are disjoint from the result variables
that need to be changed to achieve the other one.
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For the above problem, we can apply the disjoint goal strategy three times, yielding a pro-
gram of the form py; po; p3; psa. The statement p; determines the new value of fire_detector.
The new value of consistency is set in po, and the new values for mode, warning_light and
warning_beeper are determined in ps. Finally, ps serves to set the outputs for the actuators.

The program p4 can be generated automatically using the automatic assignment strategy
because its goal consists of a conjunction of equations. For the other subprograms, the
second strategy to be applied is the strengthening strategy. It serves to replace a goal by
a stronger (or equivalent) one and is frequently used to incorporate knowledge about the
used data types into the synthesis process. In our example, it has to be used to replace
equivalences by conjunctions of implications and to replace formulas like consistency = YES
and reset_button? = NOT_PRESSED by — (consistency = NO) and — (reset_button? =
PRESSED), respectively. Moreover, it is necessary to make the implicit predicates of the
state schema explicit. For instance, mode = NORMAL has to be strengthened to mode =
NORMAL A warning_light = OFF A warning_beeper = NOT_BFEEPING; similarly for the
mode INCONSISTENCY .

The third strategy to be applied is called disjunctive conditional. It generates a con-
ditional and can be used if the goal is of disjunctive form or equivalent to a disjunction.
Each branch of the conditional will establish one disjunct of the goal. In our example,
the goal for the variable consistency is equivalent to the disjunction (consistency = NO A
modey # RELEASE_INITIATED A gas_detector? = DETECTION) V (consistency =
YES A = (modey # RELEASE_INITIATED A gas_detector? = DETECTION)).

The disjunctive conditional strategy can automatically propose a test for the conditional,
those parts of the goal consisting solely of variables that cannot be changed by the pro-
gram and hence cannot be enforced but only be tested. In the above case, the test is
mode # RELEASE_INITIATED A gas_detector? = DETECTION (for inclusion in the pro-
gram, the state variables are automatically replaced by the corresponding result variables).
Since the conclusions of all implications are equations, the automatic assignment strategy
can automatically generate assignments establishing the equations. The resulting program is
shown in Figure 6 where the inputs and outputs of the schema are modeled as parameters,
and the other variables are modeled as global variables.

The advantage of using a synthesis system instead of hand-coding this simple procedure
is that a correctness proof is generated during the synthesis process.

7 Discussion

We first contrast our work to that of others in the field and then summarize its merits and
limitations.

7.1 Related Work

The use of model-based languages like 7Z or VDM [Jon90] in the area of system safety is not
uncommon. Several case studies have been performed using VDM, e.g. the British government
regulations for storing explosives [MS93], a railway interlocking system [Han94], and a water-
level monitoring system [Wil94]. Mukherjee’s and Stavridou’s as well as Hansen’s work,
however, place the focus on the adequate modeling of safety requirements, independently of
the fact if software is employed or not. Consequently, they do not discuss issues specific to
the construction of safety-critical software.
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proc op_release_succeed(bank_selector? : BANK_SELECTOR_STATUS; ... ;
gas_detector? : DETECTION_STATUS; ... release_bank_A! : OPEN_CLOSED; ... ;
mode! : MODE)

do if fire_detectorl? = DETECTION and fire_detector2? = DETECTION
then fire_detector := DETECTION
else fire_detector := NO_DETECTION

fi;

if mode <> RELEASE_INITIATED and gas_detector? = DETECTION
then consistency := NO

else consistency := YES

fi;

if consistency = NO
then mode := INCONSISTENCY;
warning_light := FLASHING;
warning_beeper := BEEPING
else if reset_button? = PRESSED
then mode := NORMAL;
warning_light := OFF;
warning beeper := NOT_BEEPING

fi
fi;
release_bank_A! := release_bank_A;
mode! := mode

end

Figure 6: Program Synthesized for OpReleaseSucceed

Jacky [Jac95] uses 7 to define a framework for safety-critical systems that emphasizes
safety interlocking. McDermid and Pierce [MP95] define a graphical notation based on a
variant of statecharts [Har87] that is translated into Z for the purpose of mechanical validation.
This notation is used to specify and develop software for programmable logic controllers.
Halang and Kriamer [HK94] also focus on programmable logic controllers. They present a
development process, from the formalization of requirements to the testing of the constructed
program. As formalisms they use the specification language Obj and the Hoare calculus,
where their choice is motivated by the tool support available. Both of these formalisms are
weaker than the ones we chose. Obj only allows to state conditional equations, and the Hoare
calculus is a proper subset of dynamic logic. Heisel [Hei96] describes several phases in the
development of safety-critical software where 7 is used in the specification phase.

The work presented here is distinguished from these approaches in that it is intended to be
used for systems where the exclusive use of model-based or algebraic specification languages
does not lead to satisfactory results. The expressive power of these languages does not suffice
to specify the behavior of sophisticated real-time systems adequately. Other researchers share
our goal to provide more powerful constructs to express behavioral and real-time requirements.

Ravn et al. [RRH93] use the duration calculus to express functional requirements and
safety constraints. The duration calculus is a specialized formalism designed to express re-
quirements on the duration of states. These durations are expressed as integrals. In contrast,
our approach uses less specialized formalisms that are more easily accessible and more widely
used. Weber [Web96] combines Z and statecharts for purposes similar to ours. Since state-
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charts are a semi-formal specification technique, the resulting specification is not completely
formal. Using a formal language like CSP, however, yields completely formal combined spec-
ifications, as shown in Section 4.2.

Like our work, Moser’s and Melliar-Smith’s approach to the formal verification of safety-
critical systems, [MMS90], comprises the specification, design and implementation phases.
They use a reliability model for the processors that execute the program. This enables them
to take computer failures into account, an aspect not covered by this work. On the other
hand, their approach does not cover the validation of the top-level specification, an issue that
is of much importance for us.

7.2 Assessment of Our Approach

Limitations. The approach outlined above concentrates on the software aspects of safety-
critical systems. Nothing can be guaranteed about the hardware. For instance, our method
does not take processor failures into account. This limitation cannot be overcome by means
concerning the software alone. Instead, fault tolerance methods like redundancy have to be
applied.

Since we can only guarantee that the states before and after execution of an operation
are safe, the execution must be sufficiently fast, because in the intermediate states that
occur during execution, safety cannot be guaranteed. It is up to the system designers and
implementors to judge if this is the case.

Enhancing the Applicability of the Approach. In contrast to hardware or power failure
which are beyond our capabilities, the problem that safety cannot be guaranteed in interme-
diate states can be treated under the condition that sequences of assignments are considered
as sufficiently fast. In this case, we can require a “safety invariant” to hold before and after
each sequence of assignments. Then the system can be in an unsafe state only for the time
that is needed to execute the longest assignment sequence occurring in the implementation.
With little effort, IOSS can be extended to deal with such safety invariants.

For relatively small systems, a complete formal treatment certainly can be recommended
because the control software is relatively simple. The cost for a formal safety proof would be
much less than potential damages. For larger systems, however, a complete formal treatment
might not be feasible. In this case, our approach can be applied nevertheless. It is possible to
formalize and prove only selected properties of the system and treat the other requirements
with traditional techniques (partial verification, [Lev91]). When this approach is taken, still
all of the software modules have to be considered. To reduce cost further, one might exclude
those parts of the software from the verification process that can be guaranteed to be of no
importance for safety. Usually, it will be the specifier’s responsibility to decide which parts
of the software are safety-critical and which are not.

Summary. With the work presented here, we have provided an elaborate methodology for
the formal specification of software for safety-critical applications:

e T'he system model underlying most of these applications is taken into account by explic-
itly referring to it in the methodology. It provides a suitable structuring and nomencla-
ture to model safety-critical systems.

e 'I'wo formal languages are combined according to the needs arising in the development of
safety-critical systems. Each of the languages in isolation would not be satisfactory; in
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combination, however, they provide adequate constructs for the specification of safety-
critical software components. Both languages are well-established.

The combined language is given a common semantics, making combined specifications
completely formal and providing a basis for formal proof.

A software model for the combined use of the two languages is defined, yielding a general
framework for the modeling and specification of control components for safety-critical
systems.

This model is further refined into two reference architectures that capture frequent
designs of safety-critical systems. These architectures can be instantiated for concrete
systems, thus providing detailed guidance for specifiers.

Not only for the development of the specification but also for its validation, detailed
guidance is given. Besides the use of a checklist that is independent of concrete applica-
tions, it is proposed to demonstrate specific safety-related as well as liveness properties
that necessarily are application-dependent.

Not only the specification but also the later phases in software development are sup-
ported: a notion of refinement for combined specifications is defined, and a translation
of the 7 part of a specification into the input format of an existing program synthesis
system is provided.

The feasibility of the approach was illustrated by means of an example.

In the future, we intend to develop a calculus that allows one to perform formal proofs on and
refinements of combined specifications and to implement this calculus in order to support the

application of our approach by machine.

Acknowledgment. Thanks to Thomas Santen whose comments helped to improve the

presentation.
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A Real-Time CSP

Prefix: a — P first accepts event a and subsequently behaves like process P;

External Choice: P O () behaves either identical to process P or () where the environment
might influence this choice by accepting a certain initial event;
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Channel Input: ¢?z — P(z) first is ready to receive an arbitrary value z from channel ¢
and afterwards behaves like the parameterized process P(z);

Channel Output: clv — P first is ready to write the value v to the channel ¢ and subse-
quently behaves equal to process P;

Parallel Composition: P || ) has the processes P and () as parallel subprocesses;

Sequential Composition: P; () first behaves like process P until its termination and af-
terwards behaves like process @;

Atomic Process: Skip is only accepting the termination event before releasing control;

Wait: Wait t does not accept any event for the first ¢ time units and afterwards is ready to
accept the termination event before releasing control.
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