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ABSTRACT

In the research of design patterns, the main activities
are the discovery or invention of new patterns, the appli-
cation, and the specification or formal description of de-
sign patterns. This paper aims at formalizing the com-
munication aspects of a subset of the design patterns
defined by Gamma et al. [8]. The LOTOS specification
language is used to formalize these communication as-
pects, where the objects are modeled as processes and
the messages between objects are expressed by LOTOS
communication patterns. Our formalization not only
contributes to a semantic foundation of design patterns,
but also supports validation and rapid prototyping.
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1 INTRODUCTION

Patterns [1] are widely applied in software construc-
tion to describe a problem and the core of its solution.
Object-oriented design patterns as the ones described
by Gamma et al. [8] represent frequently used ways to
combine classes or associate objects to achieve a cer-
tain purpose. One problem with design patterns is that
their descriptions are often ambiguous, and additional
semantics is frequently explained by examples.

Buschmann et al. [4] claim formal methods do not apply
to patterns, because “Formalisms ...tend to describe
particular issues very precisely, but do not allow for the
variation that is inherently embedded into every pat-
tern”. Moreover, they remark that there is no formal-
ism “suitable for describing the benefits and liabilities
of a pattern”.

In contrast to this opinion, we deem it to be worthwhile
to attempt a formalization of design patterns for the
following reasons:

o A formal description of (aspects of design patterns)
clarifies the ambiguous points of the informal de-
scription.

e Unambiguous descriptions make patterns better
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comprehensible.

e Designers are provided with criteria to decide on
the applicability of a certain pattern.

e Concrete designs based on patterns may be sub-
ject to proofs, analyzes, and other forms of valida-
tion [13], e.g., animation

e The development of pattern tools [6] is facilitated
by formal descriptions.

e A formal description of patterns does not prevent
their variation and evolution.

This paper aims at demonstrating that it is possible to
formalize some aspects of the design patterns. These as-
pects are specified using the formal description language
LOTOS [3], thus establishing a formal semantics of the
communication between the components constituting a
design pattern. This formalization is to be considered
as an enrichment of the pattern description, because
there are different aspects of design patterns than those
concerned with communication.

Besides providing a formal semantics, the use of LO-
TOS has the advantage that existing tools, such as
CADP (Caesar/Aldebaran Distribution Package) [7],
can be employed to analyze and animate instances of
patterns. Furthermore, LOTOS is an ISO standard so
a widespread familiarity can be assumed among scien-
tific community.

The basic ideas underlying our formalization are:

e Objects, which exhibit behavior, are modeled as
processes.

e Messages between objects are expressed by LOTOS
communication patterns.

Each formal pattern description consists of three
parts:

e requirements on the processes specifying the ob-
jects contained in an instance of the design pattern,

e a LOTOS communication pattern defining its top-
level behavior, and

e constraints, which provide sufficient conditions for
a design description to be an instance of the design



pattern. These conditions can be checked mechan-
ically.

The contribution of this approach is two-fold: First,
it provides a semantic foundation of the communica-
tion aspects of design patterns. Second, it supports the
practical use of design patterns and the validation of
concrete designs in the following way:

e Design takes place on the level of design patterns.
Designers need not be bothered with formal details.

o The formalization enables a routine translation of
the design into a LOTOS specification.

e This specification is an executable prototype of the
design that can be animated and analyzed using
existing tools.

Formalizing the communication aspects of design pat-
terns has revealed a strong relation of design patterns
to the concept of an architectural style as it is used in
software architecture. Indeed, each of the patterns pre-
sented in the following is a variant of an architectural
style. Architectural styles can be formalized in much
the same way as communication aspects of design pat-
terns [10].

This paper is structured as follows: in Section 2, we
briefly present the LOTOS specification language. In
Section 3, we present the formalizations of three design
patterns that all make use of a distinguished object that
serves to distribute messages: Facade, Mediator, and
Strategy. These patterns are used for the development
of graphical user interfaces, as sketched in Section 4.
Sections 5 and 6 present the formalizations of the pat-
terns Chain of Responsibility and Observer, which are
based on different principles. A discussion of what has
been achieved concludes the paper.

2 INTRODUCTION TO LOTOS

LOTOS [3] is a formal specification language developed
to specify open distributed systems. A LOTOS specifi-
cation describes the global behavior of interacting pro-
cesses. A process can be parameterized by abstract data
types, and it can exchange typed values with other pro-
cesses and call functions to transform data. Communi-
cation between processes in LOTOS is synchronous, i.e.,
two processes must participate in a common action at
the same time. Gates are used to synchronize processes
and to exchange data. Each process definition has the
syntactic form

process processname[gate_list] (params): func:=
behaviour behav_ezpr
where local_def_ list

endproc

where func indicates whether the process may termi-
nate (func= exit) or not (func= noexit). The be-
havior expression describes the sequences of observable

actions that may occur at the gates of the process. Pro-
cess definitions may include instantiations of processes.

The choice operator [1 is used when alternative be-
haviors are allowed. The behavior expression P1 [] P2
expresses that exactly one of the two processes will be
executed, depending on a choice of the environment.

The behavior expression P1 ||| P2 (interleaving) ex-
presses that the two processes P1 and P2 behave inde-
pendently and in parallel.

The behavior expression P1[g] [[g]l| P2[g] (parallel
composition) expresses that the two processes P1 and
P2 must synchronize on the gate g. During the synchro-
nization, they may exchange data. To synchronize, two
processes must contain an action via the same gate g.
To exchange data, one of them must contain an action
g 7 v: t which reads a value v of type t via gate g.
The other process must contain an action g ! exp that
writes a value exp of type t onto the gate g. It is also
possible to read or write more than one value in the
same action.

Behaviors may be made conditional by using the guard
operator [pred] -=> beh . The behavior expression beh
will take place only if the predicate pred is satisfied.

In LOTOS, data are described using abstract data types
with conditional equations and an initial semantics. Ab-
stract data types are used for describing process param-
eters and values exchanged by the processes.

Note that an asymmetric communication in the object-
oriented world usually corresponds to a symmetric com-
munication in LOTOS. If object A sends a message to
object B, then A must have a reference to B, but not
vice versa. In the LOTOS process modeling this com-
munication, the processes A and B corresponding to the
two objects must contain a common gate onto which A
writes the service request, which is read by B. The result
of the service is then sent back to A from B.

Design Descriptions in LOTOS

A valid design description expressed in LOTOS must be
a valid LOTOS expression, regardless of the pattern it is
an instance of. Each design description consists of two
parts. The behavior part describes the overall behavior
of the design, i.e., the interaction of its parts. The local
definitions part contains the definition of the processes
involved in the behavior part and the necessary defini-
tions of abstract data types. The syntactic structure of
a design description is

behaviour behav_ezpr where local_def_ list

LOTOS patterns are obtained from LOTOS specifica-
tion by abstraction, i.e. by replacing concrete LOTOS
expressions by metavariables. Both parts of a design de-
scription, i.e., behav_ezpr as well as local_def_list,



can be subject to abstraction. In the following, concrete
LOTOS expressions are set in teletype, and metavari-
ables are set in italics teletype.

3 PATTERNS WITH A DISTINGUISHED
ADMINISTRATIVE OBJECT

We now present the formalizations of three patterns,
each of which is based on a distinguished object that
serves to pass on messages or requests to the other
components of the pattern. Recall that each formal-
ization consists of (i) a characterization of the compo-
nents of the pattern, (ii) a LOTOS pattern describing
how the components communicate, and (iii) constraints
that provide sufficient conditions for a concrete design
description to be an instance of the formalized design
pattern.

3.1 The Facade Design Pattern

The intent of the Facade design pattern is [8]:

Provide a unified interface to a set of interfaces
in a subsystem. Facade defines a higher-level
interface that makes the subsystem easier to
use.

The Facade design goal is to minimize communication
and dependencies between subsystems. Facade can be
applied, for example, for layering a subsystem. It does
not prevent applications from using subsystem classes
if they need to, leaving the choice between ease of use
and generality.

3.1.1 Component Characteristics. ~As shown in
Fig. 1, a distinguished Facade object receives service
requests from the environment and passes them on
to other colleague objects. The colleague objects
can communicate with each other and also with the
environment.
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Figure 1: The LOTOS Facade Pattern

The following process models the Facade object:

process Facade [REQUEST, IN_1,
REQUEST 7 r: request;
pass_on_request

., IN.nl: func:=

endproc

This process reads service requests from the environ-
ment via the gate REQUEST' and then passes them on
to the colleague object (via one of the gates IN_1, ...,
IN_n) that can process the request, details of which are
defined in the behavioral expression pass_on_request.
The Facade process may terminate (func = exit) or
not (func = noexit). The data type request must be
defined algebraically. It can be structured to allow the
handling of complex requests.

In the behavioral expression pass_on_request, the Fa-
cade object passes on the request to a colleague object
that can serve it, according to some predicates p_j5. Ac-
cordingly, the definition of this expression must contain
the following pattern:

[p-1(r)] => IN_1 ! r ; beh 1
a...
[0 [pn(r)] => IN_n ! v ; behn

where the metavariables beh_7 usually will contain a
recursive call

Facade [REQUEST, IN.1, ... IN.n]

so that an indefinite number of requests can be treated.

Each Facade design consists of a Facade object modeled
as described above and an arbitrary number of colleague
objects. Each such object Colleague_i has a gate IN_4
which it uses to communicates with the Facade object.
To receive requests from the Facade object, it must con-
tain an action

IN_.+ ? r: request

This concludes the characterization of the involved com-
ponents.

3.1.2 Communication Pattern. The communication
between the Facade object and the colleague objects
takes place according to the pattern

hide IN.1, ... IN.n in
Facade [REQUEST, IN_-1, ... INn]
|[IN.1, ... INn]|
behav
where IN_1, ...IN_n isthe list of all gates that connect

the Facade and the colleague objects. The hide clause
hides the communication between the Facade and the
colleague objects from the environment, i.e., for the en-
vironment only the gates REQUEST and the gates that
connect the colleague objects with one another or the
environment are visible.

The behavior behav represents the communication be-
tween the colleague objects, which is a parallel compo-
sition according to the pattern

Tn this definition, there is only one gate REQUEST . The LO-
TOS pattern can easily be generalized to allow for several external
gates.



(Colleague_1[IN_1,int_gate list_1,env_gate list_1]
| [2nt_gate_list_1]|

|[int_gate list_n-1]1|
Colleague_n[IN n,int_gate list_n,env_gatelist_n]
)
If some colleague objects need not communicate, their
synchronization list is empty, and the interleaving op-
erator | || instead of the parallel operator | [J| can be
used.

3.1.83 Constraints. The instantiations of  the
metavariables  behav_ezpr and local_def_list
making up the description of a concrete Facade design
must satisfy the following constraints:

e behav_ezpr must conform to the communication
pattern given above.

e Each of the processes that occurs in behav_expr
must conform to the description given in the com-
ponent characterization.

The Facade design pattern will be used in Section 4 to
design the overall structure of the interface of a graph-
ical editor.

3.2 The Mediator Design Pattern

The intent of the Mediator design pattern as shown in
Fig. 2 is [§]:

Define an object that encapsulates how a set
of objects interact. Mediator promotes loose
coupling by keeping objects from referring to
each other explicitly, and it lets you vary their
interaction independently.

Collective behavior of a group of objects may be encap-
sulated in a Mediator object, responsible for controlling
and coordinating the interactions of the group. The ob-
jects do not know one another, but only their Mediator;
thereby the number of interconnections is reduced.

aColleague

@ mediator

aColleague

aColleague

mediator

aColleague

Figure 2: The Mediator Pattern of [8]

From the description of this pattern given in [8], it does
not become clear if the colleague objects communicate

with other objects than the mediator. For our formal-
ization, we clarify this ambiguity by adopting the more
general choice and assume that the colleague objects
may communicate with their environment. The commu-
nication among them, however, is performed exclusively
through the Mediator object as shown in Fig. 3.

aColleagie

: ‘aColleague

Figure 3: The LOTOS Mediator Pattern

3.2.1 Component Characteristics. A distinguished
Mediator object manages the communication between
different colleague objects. The Mediator process has
the following form:

process Mediator [IN.OUT_1,...INOUT.n,gate list]:
func :=
recetve_message
>> accept m: message in
pass_on_message
endproc

where gate_list denotes the gate that connect the
Mediator object with its environment, and IN_OUT.,
... IN.OUT_n denote the gates that connect the Medi-
ator object with its colleague objects.

Because the Mediator process—in contrast to the
Facade process—reads messages from several gates, a
receipt of a message is modeled by a behavior expression
instead of a simple read action. Thus, the process def-
inition consists of two components, receive_message
and pass_on_message, which are separated by >>. The
accept clause means that a message m is passed from
the behavior receive message (via exit clauses) to
the behavior pass_on_message. As in the Facade for-
malization, the Mediator process may terminate (func
= exit) or not (func = noexit), and the data type
message is defined algebraically.

In the behavior receive_message, the mediator reads
incoming messages from some colleague object via some
gate IN_OUT_i or from the environment. Accordingly,
this behavior must contain the pattern

IN.OUT-1 7 m: message; exit(m)

...
[1 IN.OUT-n 7 m: message; exit(m)



In the behavior pass_on_message, the mediator passes
on the message to the colleague object to which the mes-
sage is addressed, according to some predicates. This
behavior must contain a pattern similar to the pattern
given for the behavior pass_on_request of the Facade
pattern in Section 3.1.1.

Each concrete Mediator design consists of a process
Mediator as described above and an arbitrary number
of independent colleague processes. Each such colleague
must communicate with the Mediator object in the same
way as described in Section 3.1.1.

3.2.2 Communication Pattern. The communication
between the mediator and the independent colleagues
takes place according to the following LOTOS pattern.
In contrast to the Facade design pattern, all colleague
objects behave independently.

hide INOUT.1, ... IN.OUTn in
Mediator [IN.OUT-1, ... IN.OUT-n, gate_list]
|[IN.OUT_1, ... IN.OUT-n]|

( Colleague_1[IN.OUT-1, gate list_1]

e ... 111
Colleague_n [IN.OUT-n, gate_list_n]
)

3.2.8 Constraints.
cade pattern, see Section 3.1.3.

These are the same as for the Fa-

In Section 4, we will use the Mediator design pattern
to define the Control role in the PAC (Presentation-
Abstraction-Control) [5] model of user interfaces.

3.3 The Strategy Design Pattern

The intent of the Strategy design pattern is [8]:

Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy
lets the algorithm vary independently from the
clients that uses it.

For example, different geometrical shapes, e.g., triangle
or rectangle, may make up different contexts. In each
context, one may click the mouse once or twice, which
calls different algorithms, depending on the context.

3.3.1 Component Characteristics. A distinguished
Strategy object serves to pass on calls issued in differ-
ent contexts to the concrete strategy objects that imple-
ment the appropriate algorithm to be called, as shown
in Fig. 4.

The pattern of the process Strategy is the following:

process Strategy [CONT-1, ..., CONTn,
IN-1,1, ... IN_1,k1,

IN.n,1, .y INn,kn] : func :=
CONT_1 7 c: call; pass_on_call_1

.
CONT 11 , CONT n

- . N ~

.
- , N .
INLL - -~ IN_1kL,” IN_n1 < IN_nkiT ~ <
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Figure 4: The LOTOS Strategy Pattern

o...
[1 CONT-n ? c: call; pass_on_call_n
endproc

The Strategy object first reads incoming calls from the
different contexts via one of the gates CONT_1, ...,
CONT_n and then passes on the call to the various con-
crete strategies that define the algorithm called by the
context. Each behavior pass_on_call_i must contain
a pattern analogous to the one given in Section 3.1.1.

Each concrete Strategy design consists of a process
Strategy as described above and an arbitrary number
of concrete strategies that are associated with contexts.
Each concrete strategy communicates with the Strategy
object in the same way as described in Section 3.1.1.

3.3.2 Communication Pattern. The communication
between Strategy and the concrete algorithm imple-
mentations takes place according to the pattern

hide IN_1,1, ... IN_1,k1,
INn,1, ..., IN.n,kn in
Strategy [CONT_1, ..., CONTn,
Inv_1,1, ... IN_1,k1,
INn,1, ..., INn,kn]
|[IN_1,1, ... IN-1,%k1,
INn,1, ..., INn,kn]l|

( ConcStrat_1,1[IN_1,1,env_gate list_1,1]
[ ... 1
Conc_Strat_1,k1[IN_1,k1,env_gate list_1,k1]
|
Conc Stratn,1 [INn,1, env_gate_listn,1]
[ ... 1
Conc_Stratn,kn [IN.n,kn, env_gate_list_n,kn]

)

3.3.3 Constraints.
cade pattern, see Section 3.1.3.

These are the same as for the Fa-

In Section 4, the Strategy pattern will be used to en-
capsulate different algorithms for creating and deleting
different graphical items.

3.4 Comparing the Three Patterns

The three patterns we have presented are based on the
same principles. All of them make use of a distinguished



object that serves to pass on messages or requests to
the other components of the pattern. Thus, they are
variations of the event-action architectural style [10].

The Facade object receives messages from the environ-
ment that are passed on to the colleague objects. Hence,
the environment is encouraged to communicate with the
Facade object instead of with the colleague objects di-
rectly. The interaction between the colleague objects,
however, 1s not of interest for this pattern. These prin-
ciples are reflected in our formalization by the following
facts:

e The Facade process does not read from the gates
IN_-1, ..., IN_n that connect it with the col-
league objects but only from the gates that connect
it with the environment.

e The processes modeling the colleague objects are
only required to read the messages sent to them
by the Facade process. Hence, the connection be-
tween the Facade and the colleague objects is one-
directional.

e The processes modeling the colleague objects may
communicate with one another, as is expressed by
use of the parallel operator | [...]| in the commu-
nication pattern of Section 3.1.2.

In contrast, the Mediator object is concerned with man-
aging the internal communication between the colleague
objects. The communication of the various objects with
the environment is not a concern of this pattern. This
concept 1s reflected in our formalization as follows:

e The Mediator process must read incoming mes-
sages from the colleague objects.

e The colleague objects are not allowed to communi-
cate with one another, as expressed by using the in-
terleaving operator ||| in the communication pat-
tern of Section 3.2.2.

e Each object contained in the pattern instance may
have gates that connect it with the environment.

From a technical point of view, the Strategy pattern is
a combination of the Facade and Mediator patterns. As
in the Facade pattern, the communication between the
Strategy process and the processes modeling the con-
crete strategies is one-directional, because the purpose
of the Strategy object solely is to select the appropri-
ate algorithm. For these algorithms, there is no need to
communicate. Hence, the respective processes act inde-
pendently, as is the case for the colleague processes in
the Mediator pattern.

4 Example: Development of Graphical User In-
terfaces Using the PAC Framework

The PAC (Presentation, Abstraction, Control) multi-
agent model [5] is inspired on the MVC (Model-View-

Controller) approach for the development of graphical
user interfaces (GUI) [9]. Both approaches are based
on the idea that the presentation or physical user inter-
action is kept separate from the semantics or concep-
tual part of the application. The PAC model allows to
structure recursively the architecture of an interactive
system. The agents are organized according to three
basic components:

(i) the Presentation, defining the appearance of the
system, reflecting its behavior with respect to user
input/output. It corresponds to the view-controler

pair of MVC.

(ii) the Abstraction, or the MVC model, defining the
concepts and functionalities of the system, inde-
pendently of its graphical presentation, and

(iii) the Control, absent in MVC, maintaining the coher-
ence and communication between the Presentation
and the Abstraction perspectives. These are not
allowed to communicate with each other. Com-
munication among PAC agents is only performed
by means of the respective controls of the different
subsystems of the GUI.

A framework [14] for PAC agents is defined in [2]. Two
main patterns characterize this framework: Mediator
and Strategy. The control class, which implements
communication between abstraction and presentation,
is modeled by the Mediator pattern. The Strategy pat-
tern models the presentation, attaching a view to a con-
troller, allowing to change the way a view responds to
user input.

Application

MOUSE SCREEN
Figure 5: Application of Facade Pattern

This framework is used to specify a simple graphical
editor containing three PAC agents: The editor compo-
nent implements the interface of the GUI with the ap-
plication. It uses a canvas (implementing the graphics),



and a palette (allowing the user to select different con-
texts, e.g., for drawing circles or rectangles). The spec-
ification is obtained simply by instantiating the frame-
work. Fig. 5 shows the overall architecture of the graph-
ical editor. The three components Editor, Canvas and
Palette are three PAC agents. The Window-Manager
acts as a facade for the other components, thus provid-
ing an interface between the PAC agents and the user.

Each PAC agent is specified by instantiating the Medi-
ator pattern as shown in Fig. 6.
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Figure 6: Application of Mediator Pattern

An example of the Strategy behavior is to relate the way
the context of a presentation or view changes with re-
spect to the user inputs, encapsulating the correspond-
ing algorithms required for handling these inputs as
shown in Fig. 7.

v
Editor_Canvas . ‘ \
.

P Se ’

Figure 7: Application of Strategy Pattern

In this example, we consider the contexts edge, node,
and background. In the contexts edge and node, one
may create and delete items by mouse clicks. On the
background, however, mouse clicks have no effect.

In the following, we present two more formalizations of
communication in design patterns. These are based on

different principles than the ones presented in Section 3,
and correspond to different architectural styles.

5 THE CHAIN OF RESPONSIBILITY DE-
SIGN PATTERN

The intent of the Chain of Responsibility design pattern,
as shown in Fig. 8, is [8]:

Avoid coupling the sender of a request to its re-
ceiver by giving more than one object a chance
to handle the request. Chain the receiving ob-
Jjects and pass the request along the chain until
an object handles it.

The Chain of responsibility design allows to send re-
quests to an object implicitly through a chain of can-
didate objects. Any candidate may handle the request
depending on conditions which are dynamically deter-
mined. The number of candidates is open-ended. An
example illustrating an application of the Chain of Re-
sponsibility is the handling of requests for an on-line
help system. The user can obtain help information on
any part of the interface, just by clicking on it. The
help that is provided depends on the part of the inter-
face that is clicked and on its context.

aSaveDialog
handler @

aPrintDialog

aPrintButton
handler @

aPrintButton

Figure 8: The Chain of Responsibility Pattern of [8]

anApplication

5.1 Component Characteristics

As shown in Fig. 9, an object in the chain (called a
handler) is modeled by a process that receives requests
from incoming gates, and either handles the request, or
passes it on to the next object in the chain. Communi-
cation with the environment will be necessary to deliver
the results of a request that has been handled.

An object in this design pattern is therefore character-
ized by the following behavior:

wn_gate 7 wv: TYPE;
( [Prop_1(v)] -> out_gate ! v ; recursivecall
[1[Prop2(v)] -> int_beh >> recursive_call
)

where Prop_1 and Prop_2 are predicates deciding
whether the request v 1is treated or passed on.
int_beh is a behavioral expression describing the han-
dling of the request and the recursive_call is just
the mechanism for continuing the process. Its gates are
divided into a list of incoming gates in_gate_list, at



most one gate out_gate connecting it with the next
handler in the chain, and a list of gates env_gate_list
connecting it to the environment. A process modeling
a handler does not write on gates of its in_gate_list
and does not read from out_gate.

Figure 9: The LOTOS Chain of Responsibility Pattern

5.2 Communication Pattern

Two handlers communicate via their common gates.
For example, in Fig. 8, the handlers aPrintButton and
aPrintDialog exhibit the communication behavior

aPrintButton[gate 1]
| [gate_1]|
aPrintDialoglgate_1, gate 2, gate_3]

where gates with the environment are not taken into
account. When adding a third handler anApplication
synchronizing with the previous system via the gate
gate_3, the following behavior is obtained:

(aPrintButton[gate_1]
| [gate_1]|
aPrintDialog[gate_1, gate 2, gate 3] )
| [gate 31|
anApplication[gate 3, gate 4]

Note that, since we have a chain, each synchronization
list has length 1. Hence, the general communication
pattern of a Chain of Responsibility design has the form

hide gate.1, gate2, ... gaten-1 in
( ... ((Handler_1[gate_list_1]
|[gate_1]]|
Handler 2[gate_list_2]
)
|[gate2]]|
Handler 3[gate_list_3]
) ...
|[gaten-11]
Handlern[gate_list_n]
)

We have used “...” instead of an inductive definition
for better comprehensibility of the communication pat-
tern.

5.3 Constraints

Again, we state the constraints in terms of the top-level
behavior behav_ezpr and the local_def_list:

o All synchronization gates (i.e. the values given to
gate 1, ..., gate_n-1) occurring in behav_ezpr
are different. This means that such a gate connects
only two handlers.

e Each gate occurring in some synchronization list
of behav_ezpr occurs exactly twice in the gates of
the processes Handler_1, ..., Handler_n defined in
local_def_list. This means that a gate connect-
ing two handlers cannot be re-used as an external
gate.

e Each of the processes that occur in behav_ezpr
must conform to the characterization given above.
The gates of a process representing connections
with other handlers are exactly the ones that are
used as a synchronization gate gate_i. The di-
rection of such a gate can be determined from the
process definition.

e There are no cycles allowed in the chain. This is
ensured by the fact that each synchronization list
has length 1.

Note that some of the formalizations given in this pa-
per (in Sections 3 and 6) contain a distinguished com-
ponent. This results in a relatively detailed character-
ization of the other components of the design pattern.
One can state requirements concerning the communi-
cation of the other components with the distinguished
one. Further constraints are not necessary. In contrast,
the Chain of Responsibility pattern does not have a dis-
tinguished component. This allows only a weak char-
acterization of the components, but leads to non-trivial
constraints concerning the communication between the
different components.

The Chain of Responsibility design pattern is struc-
turally similar to the pipe/filter architectural style [10],
where no cycles are allowed but the components do not
react the same way.

6 THE OBSERVER DESIGN PATTERN

The intent of the observer design pattern is [8]:

Define a one-to-many dependency between ob-
Jjects so that when one object changes state, all
its dependents are notified and updated auto-
matically.

The Observer design defines and maintains a depen-
dency between objects. The classical example illustrat-
ing the Observer behavior is the MVC (Model-View-
Controller) approach [9] for separating the presenta-
tional aspects of the user interface (Views) from the
underlying application data (Model).



6.1 Component Characteristics

There is one distinguished Subject object (and pro-
cess), and several independent observer objects as
shown in Figure 10. Each observer may change the
subject. After a change, all observers must be notified
of the change. However, only one observer at a time
may change the subject (the subject is locked during
a change). There is no interaction between observers:
they behave independently and only communicate with

the subject and the environment.

Three kinds of interactions between the subject and the
observers are possible: an observer may read the sub-
ject, it may change the subject independently of its pre-
vious state, and it may change the subject, taking its
previous state into account.

Figure 10: The LOTOS Observer Pattern

If an observer wants to change the subject, it sends the
message WR (write request). This causes the subject to
set a lock. Only then can the new value be passed, using
the gate W (write). If an observer wants to read the sub-
ject, it sends the message RR (read request). If no lock
is set the value is passed via the gate R (read). It may
happen that a value to be written into the subject de-
pends on a value that was read previously. In this case,
no other write operation should be allowed between the
read and the write action. For this purpose, the message
RWR (read/write request) is used.

Each process sending a request must also send a unique
identification. This prevents other processes from ac-
cessing the subject during a transaction. The process
implementing the subject is defined as follows:

process Subject [RR, R, WR, W, RWR]
(sub: subject, is_locked: BOOL,
for_whom: %d): noexit :=
[ is_locked = false ]
-> ( RR 7 who:d;
R ! who ! sub;
Subject[RR, R, WR, W, RWR]
(sub, false, for_nobody)
[]
WR 7 who:1d;
Subject[RR, R, WR, W, RWR]
(sub, true, who)

1
RWR ? who: id;
Subject[RR, R, WR, W, RWR]
(sub, true, who) )
[1[ is_locked = true ]
-> ( W ? who:4id 7 nsub:subject [who=for_whom];
R ! nsub ;
Subject[RR, R, WR, W, RWR]
(nsub, false, for_nobody)
1
? who:d ;
! who ! sub ;
? who:td 7 nv:subject [who=for whom];
! nsub ;
Subject[RR, R, WR, W, RWR]
(nsub, false, for_nobody))

o = U

endproc

The process Subject has the gates RR, R, WR, W, RWR
and the parameters sub representing the state of the
subject, is_locked and for _whom. It does not termi-
nate, as indicated by the keyword noexit. If the lock is
not set, either a read request can be served, or the lock
can be set because of a write or read/write request. If
the lock is set, either a new value for the subject read via
the gate W, or the state of the subject is output on gate
R, followed by reading a new value via gate W. These ac-
tions can only take place if the same process that sent
the request participates in them, as expressed by the
guard [who=for whom].

Whenever the state of the subject is changed, the new
value is sent to all observer processes, using the action
R ! nsub. The new value of the subject becomes the
new parameter of the process, and the lock is reset.
The constant for_nobody indicates that access to the
subject is not reserved for a particular observer.

Each concrete observer design consists of a process
Subject as defined above and an arbitrary number of
independent observers. Each of these observers must be
able to receive the notification of subject change, that is
an R message, at any time. To guarantee this behavior,
the observer must not be blocked by another commu-
nication with the environment. If an observer may be
involved in such a communication, it must be embedded
in a choice expression as follows:

R 7 nsub :

[1 process=2

subject ; process_1

where process_2 expresses the communication with the
environment and process_1 what is to be done after
a subject notification. This means that each observer
process 1s ready to read a new subject value at all times.

Apart from this requirement, each observer process
must contain at least one of the following behavioral
patterns: A read behavior is defined by the pattern

RR ! me ;

R 7?7 who: 2d ? v : walue [who = me]



where me is the identification of the observer process.
A write behavior is defined by the pattern

WR ! me ;
W ! me ! nsubd
where nsub i1s the new value of the subject. A

read/write behavior is defined by the pattern

RWR ! me ;

R 7 who: 4d 7 sub : subject [who = me]

followed, in all the branches of the process, by writing
access to the subject according to the pattern

W ! me ! nsudb

for a new subject value nsub. This condition can be
decided syntactically.

6.2 Communication Pattern

The communication between the subject and the ob-
servers is expressed by the following pattern:

hide RR, R, WR, W, RWR in
Subject [RR, R, WR, W, RWR]
(2nit of subject, false, for_nobody)
IL RR, R, WR, W, RWR ]|
(Observer_1[gate_list_1]
| [R]I | R

Observer_n [gate_list_n] )

All observers behave independently of each other ex-
cept for the broadcasting on R. For every Observer_i,
its gate_list_i must contain the gate R and some of
the gates RR, WR, W, RWR. The subject and observers
must synchronize on these gates, as expressed by the
synchronization list |[ RR, R, WR, W, RWR ]|.

6.3 Constraints

For an observer design, we have the constraints that
the behav_ezpr must conform to the communication
pattern given above, and that each process occurring
in behav_ezpr must conform to other behavioral con-
straints as defined in the process characteristics.

This pattern is a variant of the repository architectural
style [10], the difference being the broadcasting of the
new value of the subject.

7 CONCLUSION

We have presented the formalization of the communica-
tion aspects of several design patterns, thereby resolving
ambiguities and defining an unambiguous semantics of
the communication between the various objects of the
patterns. Making the communication structure explicit
encourages the definition of variants of these patterns
by varying the parts of the formalization, e.g., the com-
munication pattern, or the constraints.

Note that some of the formalizations given in this pa-
per (in Sections 3 and 6) contain a distinguished com-
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ponent. This results in a relatively detailed character-
ization of the other components of the design pattern.
One can state requirements concerning the communi-
cation of the other components with the distinguished
one. Further constraints are not necessary. In contrast,
the Chain of Responsibility pattern does not have a dis-
tinguished component. This allows only a weak char-
acterization of the components, but leads to non-trivial
constraints concerning the communication between the
different components.

Besides contributing to a semantic foundation of design
patterns, our work allows to make explicit the relation
between design patterns and architectural styles. The
architecture of a software system defines that system
in terms of computational components and interactions
among those components [15]. Some design patterns,
such as those we have studied, can be regarded as defin-
ing an architecture, because they state how different
objects have to interact to achieve a certain purpose.
Both architectural styles and design patterns can be
composed hierarchically.

We have applied our formalization to define a prototype
of a graphical editor, as described in Section 4. It was
remarkably simple to generate the LOTOS specification
from the design of the graphical editor, expressed as
a hierarchical combination of different design patterns.
The generated specification was checked and animated
with the CADP tool [7]. This shows that a formalization
may not only contribute to precision, but also facilitate
the practical usage of patterns and provide valuable val-
idation of designs based on patterns.

In the future, we intend to provide machine support
for our approach. Two development frameworks de-
signed by two of the authors are good candidates for
achieving this goal. The first is the knowledge repre-
sentation mechanism called strategies [11]. Strategies
form a generic framework in which development knowl-
edge for various software development activities can be
expressed. The second one, called PROPLANE [12],
aims at modeling specification construction and provid-
ing specifiers with tools to support them during the de-
velopment process.
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