
Methodology and Machine Support

for the Application of Formal Techniques

in Software Engineering

von Dr� rer�nat� Maritta Heisel

Habilitation am Fachbereich Informatik der TU Berlin

Lehrgebiet� Informatik

Er�o�nung des Verfahrens� �� Februar ���	
Verleihung der Lehrbef�ahigung� �
� Juni ���	
Aush�andigung der Urkunde�

Habilitationsausschu�� Prof� Dr� K� Obermayer �Vorsitzender

Prof� Dr� S� J�ahnichen� TU Berlin
Prof� Dr� H� Ehrig� TU Berlin
Prof� Dr� B� Kr�amer� FernUniversit�at Hagen
Prof� Dr� F� Wysotzki� TU Berlin

���	
D
�

Acknowledgments

I am grateful to Stefan J�ahnichen for his constant encouragement and for urging me to direct
my research toward practically relevant subjects�

Thomas Santen has accompanied my research for several years now and has shown an
untiring willingness to discuss strategies and to read all the research documents I have written�
He has read and commented on all the chapters of this work and has made useful suggestions
for improving the presentation of my results�

Graeme Smith and Carsten S�uhl�s careful reading of Chapter � helped put the �nishing
touch to the agendas presented there�

Frances Paulisch� Patricia Johann� Ellen Siegel� Graeme Smith and Debora Weber�Wul	
have helped polish up the English�

Finally� I would like to thank Nicole L
evy� Jeanine Souqui�eres and Carsten S�uhl for the
work we have done together�

Contents

� Methodological Support for the Application of Formal Techniques �

��� Bene�ts of Formal Techniques �

��� Making Formal Techniques Applicable for Non�Experts � � � � � � � � � � � � � � �

����� Agendas �

����� Strategies �

��� Overview �

I METHODOLOGY �

� A Pragmatic Approach to Formal Speci�cation ��

��� Specifying New Systems ��

��� Dealing with Legacy Systems ��

��� Phases � and �� De�nitions and Requirements�Behavior � � � � � � � � � � � � � ��

��	 Phase �� Pragmatic Approach ��

��	�� Combining Di
erent Speci�cation Techniques � � � � � � � � � � � � � � � ��

��	�� Leaving out Details ��

��	�� Ignoring Restrictions ��

��� Phase 	� Mapping between Requirements�Description and Speci�cation � � � � � ��

��� Phase �� Validation of the Speci�cation ��

��
 Summary �

��� Further Research ��

� Speci�cation of Safety�Critical Software with Z and Real�Time CSP ��

��� System Model ��

��� A Language to Specify Safety�Critical Software � � � � � � � � � � � � � � � � � � ��

����� The Language Real�Time CSP ��

����� Software Model ��

����� Common Semantic Model ��

��� The Passive Sensors Architecture ��

����� Agenda for the Passive Sensors Architecture � � � � � � � � � � � � � � � � ��

����� Example� The Inert Gas System �

��	 The Active Sensors Architecture �

��	�� Agenda ��

��	�� Example� A Gas Burner ��

��� Re�nement ��

i

ii Contents

��� Related Work ��

��
 Summary ��

��� Further Research ��

� Software Design Using Architectural Styles ��

	�� Expressing Architectural Designs and Styles with LOTOS � � � � � � � � � � � � � �

	�� Repository Style ��

	���� Style Characterization ��

	���� Agendas ��

	�� Pipe�Filter Style ��

	���� Style Characterization ��

	���� Agendas ��

	�	 Event�Action Style ��

	�	�� Style Characterization �

	�	�� Agendas ��

	�� Example� Design of a Robot ��

	���� The robot design using the repository style � � � � � � � � � � � � � � � � ��

	���� The robot design using the pipe��lter style � � � � � � � � � � � � � � � � �

	���� The robot design using the event�action style � � � � � � � � � � � � � � � ��

	���	 Comparing the three designs with Aldebaran � � � � � � � � � � � � � � � � ��

	�� Related Work ��

	�
 Summary ��

	�� Further Research ���

II MACHINE SUPPORT ���

� Strategies 	 A Generic Knowledge Representation Mechanism �
�

��� Formal De�nition of Strategies ��

����� De�nition of Database Relations ���

����� Problems� Solutions� Acceptability ���

����� Constituting Relations ���

����	 Strategies ���

��� Strategicals ���

����� The Then Strategical ���

����� The Repeat Strategical ���

����� The Lift Strategical ���

��� Problem Solving With Strategies ���

����� Modular Representation of Strategies ���

����� An Abstract Problem Solving Algorithm � � � � � � � � � � � � � � � � � � ��

��	 System Architecture ���

��	�� The Structure of Development and Control Trees � � � � � � � � � � � � � ���

��	�� Data Flow ���

��� Related Work ���

��� Summary ���

��
 Further Research ���

Contents iii

� Strategy�Based Program Synthesis ���

��� Problems� Solutions� Acceptability and Explanations � � � � � � � � � � � � � � � � �
�

��� Strategies for Program Synthesis �
�
����� The strengthening strategy �
�

����� The protection strategy �

����� The loop strategy �
�

����	 A Combined Strategy �
�
��� IOSS� An Implemented Program Synthesis System � � � � � � � � � � � � � � � � � �
�

����� The Strategy Base �
�

����� The Interface �
�
����� Experience with Re�Use and Integration � � � � � � � � � � � � � � � � � � ���

��	 Related Work ���
��� Summary ���

��� Further Research ���

� Strategy�Based Speci�cation Acquisition ���

�� The Concept of a Speci�cation Style ���

�� Problems� Solutions� and Acceptability ���

�� Strategies for Speci�cation Acquisition ���

���� General�Purpose Strategies ���

���� Strategies for the State�Based Style ���

���� Strategies for the Algebraic Style ��

���	 Strategies for the Reuse Style ���

�	 Speci�cation of the Unix File System ���

�� Connecting Instantiations ���

�� Related Work ���

�
 Summary ���

�� Further Research ���

� Strategy�Based Speci�cation of Safety�Critical Software ���

��� From Agendas to Strategies ���
��� Problems� Solutions� and Acceptability ���
��� A Strategy for the Passive Sensors Architecture � � � � � � � � � � � � � � � � � � ��

��	 A Strategy for the Active Sensors Architecture ���
��� Summary ���

��� Further Research ��

 Strategy�Based Development of Software Architectures �
�

��� Problems� Solutions� and Acceptability ���
��� Strategies for the Repository Style ���

��� Strategies for the Pipe�Filter Style ���
��	 Strategies for the Event�Action Style ���
��� Comparing Instantiations of the Strategy Framework � � � � � � � � � � � � � � � ���

��� Summary ���
��
 Further Research ���

�
 Conclusions ���

iv Contents

Bibliography ���

A Summary of Z Notation ���

Chapter �

Methodological Support for the Application

of Formal Techniques

Methodological support for the application of formal techniques in software engineering is the
motto for this entire work� We use the term �formal techniques� instead of the more common
term �formal methods�� because we �nd the term �formal method� to be a misnomer� A
formal notation with a mathematically rigorous semantics is often called a formal method�
In comparison with notational and semantic issues� methodological aspects are frequently
neglected in the research on formal techniques� In our opinion� this fact is one of the greatest
obstacles that hinders the transfer of formal techniques from academic environments into
software engineering practice� The word �technique� does not suggest that there exists a
method for guiding the application of the formalism in question�

The aim of this work is to demonstrate how formal techniques can be pro�tably employed
in software engineering� We do not treat the whole software engineering process and consider
all known formal techniques� but show areas where formal techniques can improve the quality
of products or processes in software engineering� For this purpose� we describe some impor�
tant and typical situations and show what can be gained by applying formal techniques in
these situations� Examples are the development of safety�critical systems� where formal spec�
i�cation techniques contribute to the overall system safety� and software architectures� where
a formal characterization makes it possible to reuse previously acquired design knowledge in
a semantically sound way�

Using formal techniques� we can positively guarantee that the product of a development
step of the software engineering process enjoys certain semantic properties� In this respect�
formal techniques can lead to an improvement in software quality that cannot be achieved by
traditional techniques alone� However� formal techniques are no panacea� Even if a program is
proven correct with respect to its speci�cation� this does not mean that it will perform to the
satisfaction of its users� The speci�cation may not capture the requirements adequately� the
performance of the program may be unsatisfactory� or the compiler or the operating system
that are needed to execute the program may contain errors� Hence� informal methods as they
are applied in traditional software engineering � and especially informal validation techniques
such as testing � are still indispensable� and we propose to complement traditional techniques
by formal ones� not to replace them�

�

� Chapter �� Methodological Support for the Application of Formal Techniques

��� Bene�ts of Formal Techniques

There are three areas where the bene�ts of formal techniques become particularly apparent�
quality improvement� machine support� and reuse�

Quality improvement

Since the artifacts of the software engineering process that are expressed formally have a
well�de�ned and unambiguous semantics� this semantics can be used to assess their quality�
Not only syntactic� but also semantic properties of the artifact can be checked and eventually
guaranteed� This o	ers a strong potential for quality improvement� If semantic properties of
an artifact are speci�ed and demonstrated� then there are fewer possibilities for misconcep�
tions� contradictions� and omissions than is the case for classical methods of quality assurance�
such as reviews and testing� It could be demonstrated that a system is speci�ed in such a
way that certain safety constraints cannot be violated� or a program can be proven correct
with respect to a formal speci�cation�

Machine support

Supporting parts of the software development process by machine enforces the representation
of the documents to be produced or processed in a formal syntax� If this syntax has no
rigorous semantics� only limited machine support can be provided� Taking semantics into
account� machine support can cover a wider range of activities� namely the ones that are
concerned with those properties of a product which cannot be expressed with reference to its
syntax alone� A formal� machine�supported proof of properties of the developed product can
be conducted� or test cases can automatically be generated and the results evaluated�

Reuse

A necessary condition for reusing previously acquired knowledge about software engineering
is that the knowledge is represented in some way� Using formal techniques to represent devel�
opment knowledge supports reuse� First� a formal document that represents some knowledge
has an unambiguous semantics� Hence� it is clear what the document represents� and the in�
tended way of reuse and the situations in which the document can be reused can be expressed
in an unambiguous manner� Second� reuse is normally achieved by constructing libraries that
contain reusable entities� Finding an appropriate library item is di�cult if no meaning is
associated with it� Again� it is the fact that formally de�ned documents have a semantics
that makes reuse more goal�directed and thus more promising� Software design principles can
be represented by �formally de�ned� architectural styles� or program libraries can be anno�
tated with speci�cations� which describe the function of the program at a much higher level
of abstraction than the program itself�

��� Making Formal Techniques Applicable for Non�Experts

A major drawback of formal techniques is that they are not easy to apply� Users of formal
techniques need an appropriate education� They have to deal with lots of details� and often
they are left alone with a mere formalism without any guidance on how to use it�

���� Making Formal Techniques Applicable for Non�Experts �

While nothing can be done about the �rst two points� it is de�nitely possible to provide
guidance for the users of formal techniques� Indeed� this is the main goal of the work presented
here� We consider appropriate guidance as a necessary condition for the practical applicability
of formal techniques� This work presents two concepts that realize such guidance� The �rst
concept� called an agenda� is informal and supports the application of formal techniques
without the need for machine support� The second concept is called a strategy� It is a
formalization of agendas� and its purpose is to make the knowledge represented in agendas
amenable to machine support�

����� Agendas

An agenda is a list of activities to be performed when carrying out some task in the context of
software engineering� Agendas contain informal descriptions of the activities and sometimes
schematic expressions of a formal notation that can be instantiated in carrying out the activity�
The activities listed in an agenda may depend on each other� Usually� they will have to be
repeated to achieve the goal� like in the spiral model of software engineering�

As one of the major reasons for applying formal techniques is to guarantee semantic
properties of an artifact� the activities of an agenda may have validation conditions associated
with them� These validation conditions state necessary semantic conditions� which the artifact
must ful�ll in order to serve its purpose properly� The purpose of the artifact is always clear
in the context of an agenda� because the agendas are de�ned to make explicit tried and tested
approaches to tackle some particular class of problems� Since the veri�cation conditions that
can be stated in an agenda are necessarily application independent� the developed artifact
should be further validated with respect to application dependent needs�

Following an agenda gives no guarantee of success� Agendas cannot replace creativity� but
they can tell the user what needs to be done and can help avoid omissions and inconsistencies�
Their use lies in an improvement of the quality of the developed products and the possibility
for reusing the knowledge incorporated in an agenda�

����� Strategies

Strategies are a formally de�ned concept� They model software development tasks as prob�
lem solving processes� A strategy speci�es how to reduce a given problem to a number of
subproblems� how to assemble the solution of the original problem from the solution to the
subproblems� and what semantic conditions a solution must ful�ll to be an acceptable solu�
tion to the problem� The de�nition of strategies is generic with respect to the de�nitions of
problems� solutions� and acceptability� Hence� strategies can serve to formalize a wide variety
of software engineering activities�

When comparing an agenda and a strategy that are de�ned to support the same devel�
opment task� it turns out that most of the steps of the agenda correspond to subproblems
generated by the strategy�

Strategies can be combined to perform larger and more sophisticated development steps�
They can be implemented and supplied with a generic architecture for systems supporting
strategy�based problem solving� Hence strategies lead to machine supported development pro�
cesses� In comparison to agendas� the formalization provided by strategies further enhances
product quality �e�g� by formal proofs� and reusability�

	 Chapter �� Methodological Support for the Application of Formal Techniques

Agendas and strategies are designed to better exploit the potential bene�ts formal techniques
can achieve than would be possible without methodological support� They lead their users
through di	erent stages of the development� relieve them of tedious bookkeeping tasks� and
propose or enforce validations of the developed product�

The development of agendas and strategies that support some software development task
needs collaboration between experts on formal techniques and those parties who will be ap�
plying a formal technique� In a �rst knowledge engineering phase� experts and users jointly
de�ne agendas for the development task� It is the responsibility of the users to make their
knowledge explicit and to identify the steps that must be taken when performing the develop�
ment task� Users and formal techniques experts can then work together and relate the results
of the di	erent steps identi�ed to the formalism to be used�

After the knowledge engineering phase that leads to agendas is �nished� it is the exclusive
task of the experts to formalize the agendas as strategies� Although it cannot be expected of
su�ciently trained users of formal techniques to be able to de�ne strategies� they should be
able to successfully work with agendas or strategies�

��� Overview

This work consists of two parts� The �rst part is centered around the concept of an agenda�
We present agendas for di	erent development tasks and di	erent contexts� The second part
is centered around the concept of a strategy� In the �rst part� we provide methodological
support for di	erent areas of software engineering by de�ning agendas� In the second part�
we de�ne strategies corresponding to the agendas of the �rst part� These strategies make the
application of the methods represented by the agendas supportable by machine� The chapters
and their interrelations are illustrated in Figure ����

The top layer of the �gure shows the methodological part� where we set up agendas for
di	erent speci�cation and design approaches� In the second part� whose subject is to support
the application of formal techniques by machine� these agendas are mapped to the strategy
framework shown in the bottom layer of the �gure� The strategy framework consists of the
formal de�nition of strategies� complemented by a system architecture� Chapters ��� present
di	erent instantiations of this generic framework� For the instantiation for program synthesis
�Chapter ��� an implemented support system called Integrated Open Synthesis System �IOSS�
exists�

The methodological part focuses particularly on formal speci�cation techniques for several
reasons� First� the presence of a formal speci�cation is a necessary prerequisite for supporting
other development activities with formal techniques� It is not only the basis for an imple�
mentation but also helps in maintaining the developed software�

Secondly� there is a tendency to perform large parts of the software development within
the speci�cation language� Speci�cations are subject to re�nements aimed at making the
transition from a re�ned design speci�cation to an executable program almost a routine task�

Finally� formal speci�cation techniques are nearest to practical application in industry�

Formal speci�cation techniques can be applied in many domains and in many di	erent
ways� All these application areas have their own methodologies� Speci�cally� we consider the
areas of safety�critical software and software architecture�

���� Overview �

Support Systems IOSS

Specification Design

Strategies: A Generic Knowledge Representation Mechanism

System Architecture

Ch. 5

Ch. 7

Specific
ation Acquisitio

n

Stra
tegy-Based

Ch. 8

of S
afety-Critic

al S
oftw

are

Stra
tegy-Based Specific

ation

Ch. 9

of S
oftw

are Architectures

Stra
tegy-Based Development

Ch. 6

Stra
tegy-Based

Program Synthesis

Ch. 2

to Form
al S

pecific
ation

A Pragmatic Approach

Ch. 3

Safety-Critic
al S

oftw
are

Specific
ation of

Architectural S
tyles

Ch. 4

Softw
are Design with

Machine
Support

Design ImplementationSpecification

Methodology

Part I

Part II

Figure ���� Overview of chapters and their interrelation

In most chapters� we use the speci�cation language Z �Spivey� ����b�� A summary of the
Z notation is given in Appendix A� While Z is useful in the contexts under consideration�
it must be noted that our methodologies could also be de�ned and pro�tably applied in
conjunction with other formal speci�cation languages�

In the following� we outline the contents of each chapter�

Chapter �

We describe the process of developing formal speci�cations in some generality and represent
it as an agenda� This agenda shows how formal speci�cation techniques can be integrated in
traditional software development processes� It is relatively abstract because we cannot make
speci�c assumptions about the kind of software system to be developed�

One step in the agenda is the transformation of �informal� requirements into a formal
speci�cation� To overcome some di�culties arising in the practical usage of formal speci��
cation techniques� we propose to perform this step in a pragmatic way� We argue that the
transition from informal requirements to a formal speci�cation should not be made too early�
that it is not necessary to formally specify every detail� that di	erent formalisms should be
combined where appropriate� and that sometimes it may be useful not to adhere to limitations
imposed by the formal speci�cation language� This pragmatic approach also helps to deal
with legacy systems�

The chapter shows that the application of formal techniques is not a question of �all or
nothing�� Instead� there are several degrees of formality� Many of the bene�ts of formal
techniques still occur when they are applied in a pragmatic way� This approach and the
guidance provided by the agenda help to overcome some of the di�culties that arise when
formal techniques are newly introduced into an organization�

� Chapter �� Methodological Support for the Application of Formal Techniques

Chapter �

In this chapter� we no longer consider speci�cation processes in general but concentrate on
the speci�cation of software for safety�critical applications� We consider the requirements
a speci�cation language must ful�ll in order to be suitable for this purpose and show that
a combination of the formal languages Z and real�time CSP ful�lls these requirements� To
obtain methodological support for the application of the combined language� we introduce a
software model that is re�ned to di	erent reference architectures representing frequently used
designs of safety�critical systems� Speci�c agendas complement the reference architectures
to guide speci�ers in the development of software components for the architectures� These
agendas are fairly detailed� and validation conditions are associated with many of the steps�
The validation conditions are� of course� independent of a particular application� To further
validate the developed speci�cation� safety�related and liveness properties of the speci�cation
should be proven� A de�nition of re�nement enables steps toward an implementation�

The chapter shows that the agendas guiding the development of an artifact in the software
development process can be quite precise� if the context of development is limited to a certain
application area� This is of great importance if non�experts are to apply formal techniques� We
are convinced that following an agenda and showing all the associated validation conditions
leads to a better quality of the developed speci�cations and the software implemented on
their basis�

Chapter 	

Not only the speci�cation� but also the design of software systems can be supported with
formal techniques� Software architectures make design principles for software systems explicit�
Classes of architectures that follow common principles are called architectural styles� In this
chapter� we show how the formal description language LOTOS can be used to de�ne software
architectures and how patterns over LOTOS can serve to characterize architectural styles�
The bene�t of using LOTOS for architectural descriptions is not only the formality of the
language� but also the availability of tools for analysis and animation�

We characterize styles by giving characteristics of the involved processes� a top�level com�
munication pattern� and constraints that are su�cient conditions for a concrete architectural
description to be an instance of a given style� The purpose of the style characterizations is
not only to clarify the meaning of styles� but also to form the basis for de�ning agendas that
support the development of concrete architectures� Three style characterizations and their
corresponding agendas are presented and illustrated by an example�

With this chapter� we contribute to a systematic design of software systems and to a
semantic foundation of architectural styles�

Chapter
 concludes the �rst part of this work� which is concerned with the methodological
aspects of formal techniques� In this part� we demonstrate that di	erent development ac�
tivities and di	erent formalisms can be supported by agendas� The purpose of agendas is
to contribute �i� to a better acceptance of formal techniques by software engineers by giving
detailed guidance and �ii� to a better quality of the developed product by stating validation
conditions� Thus� agendas help to apply formal techniques independently of machine support�

The second part is devoted to the development of concepts for the machine�supported
application of formal techniques� Applying formal techniques with machine support further
enhances their acceptance and the quality of the developed products� because� due to the

���� Overview

amount of detail that must be handled� the application of formal techniques without machine
support tends to be error�prone�

Chapter �

This chapter presents a formal de�nition of strategies in Z� Strategies represent development
knowledge used to perform di	erent software engineering activities� The development of an
artifact is modeled as a problem solving process� Hence� the de�nition of strategies is based
on relations between problems and solutions to these problems� Since it is an important
goal for us to guarantee semantic properties of the developed product� the solutions that
are developed must always be acceptable for the corresponding problem� The de�nition of
acceptability captures the semantic requirements on the solution�

Strategies can be combined to obtain more powerful strategies using strategicals� which are
functions that take strategies as their arguments and yield strategies as their result� Moreover�
strategies support stepwise automation of development tasks� We already noted that� because
the concept of a strategy is generic� strategies can pro�tably be employed in several di	erent
phases of the software life cycle�

The de�nition of strategy is complemented by a generic system architecture that serves
as a template for the implementation of support tools for strategy�based problem solving�

The strategy framework provides a uniform approach to the representation of software
development knowledge and its machine supported application�

Chapter �

This chapter presents an instance of the strategy framework that supports the synthesis of
provably correct imperative programs� A methodology for program synthesis is not presented
in the �rst part of this work� This topic is treated in detail in an earlier work �Heisel� ������

An implemented prototype system for strategy�based program synthesis exists� whose
features and implementation are discussed� The instance of the strategy framework that
supports program synthesis also serves to compare program synthesis with the activities that
are formalized in the following chapters�

Chapter

Chapter � presents an instantiation of the strategy framework that supports the development
of speci�cations in the language Z� In its generality� it matches Chapter �� although the
strategies presented focus only on one step of the agenda of Chapter �� First� we introduce the
notion of a speci�cation style� These styles represent di	erent approaches to the development
of a formal speci�cation� For each of the styles� we give a set of strategies associated with that
style� An example of a speci�cation acquisition shows how the development of a speci�cation
can be driven by styles� Finally� we sketch how di	erent instances of the strategy framework
can be combined�

Chapter �

Chapter � presents a �meta�agenda� that shows how agendas can be formalized as strategies
in a routine way� This meta�agenda is then used to de�ne strategies for the agendas of Chapter
��

� Chapter �� Methodological Support for the Application of Formal Techniques

Chapter �

In Chapter �� the agendas de�ned in Chapter
 are transformed into strategies� Subsequently�
the four instantiations of the strategy framework presented in Chapters ��� are compared�
It turns out that strategies are powerful enough to represent several di	erent development
activities that use di	erent formalisms� Chapter �� summarizes and assesses what has been
achieved�

In summary� the goal of this work is to show that the di�culties in introducing and applying
formal techniques in software engineering are not insurmountable� By way of several impor�
tant and practically relevant examples� we demonstrate that � for well�de�ned development
activities � it is possible to supply comprehensive guidance to the users of formal techniques�
It is no longer necessary for developers to be confronted with a mere formalism without guide�
lines on how to use it� Instead� they can use agendas that tell them what to do in which order
and how to validate the developed product�

This work not only presents concrete methodologies that show precisely how to apply
formal techniques in di	erent contexts� but also gives special consideration to the de�nition of
adequate concepts for the machine supported application of the developed methodologies� An
implemented support system relieves the developers of tedious bookkeeping tasks and enforces
the ful�llment of certain semantic conditions of the product� thus solving two important
problems that normally arise in the use of formal techniques�

Part I

METHODOLOGY

�

Chapter �

A Pragmatic Approach to Formal

Speci�cation

In this chapter� we argue that the application of formal speci�cation techniques need not be
a question of �all or nothing�� The choice is not to either apply formal techniques completely
rigorously and as intended by their designers� or not at all� The �all or nothing� standpoint
would mean that the introduction of formal techniques necessitates a complete revision of the
software development process� It is clear that organizations usually are neither willing nor
capable to undergo such drastic changes�

Instead� we vote for a smooth introduction of formal techniques into software engineer�
ing� This can be achieved by taking a pragmatic attitude� To motivate what we mean by
a pragmatic approach� we �rst discuss the bene�ts and drawbacks of formal speci�cation�
The pragmatic approach then consists of relaxing formal speci�cation discipline in order to
overcome the identi�ed drawbacks� Our pragmatic approach to formal speci�cation also helps
to deal with legacy systems�

In theory� the advantages of formal speci�cation techniques over conventional ones are
well known�

� The problem is analyzed in more detail and thus better understood�

� The formal speci�cation is an unambiguous and �hopefully� complete starting point for
the implementation of a software system�

� The formal speci�cation documents the behavior of the system�

� It can be used to select test cases and to determine if the results of the test cases coincide
with the expected behavior�

� It makes maintenance and evolution of the system easier�

� Systems implemented from formal speci�cations often contain fewer defects�

In practice� however� formal speci�cation techniques are not widely applied for the following
reasons�

��

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

�� The formal nature of speci�cation languages may make their use di�cult� especially if
the semantics is not easily comprehensible�

�� Formal speci�cation languages can be as rich as programming languages and have a
similarly steep learning curve�

�� There is no single speci�cation language that is equally well suited for all kinds of
systems and all aspects of an individual system� just as there is no one true programming
language for all tasks�

� It takes longer and is more expensive to develop a formal speci�cation than to specify
a system with conventional methods�

Are these really valid arguments against formal speci�cation� � and if so� what can be done
to lessen their disadvantages� Point
 cannot be regarded as a drawback because a greater
e	ort in the earlier phases of software development may pay o	 in later phases and need not
lead to an overall increase of costs �Houston and King� ������

The di�culties mentioned in points � and � cannot be completely overcome� But pro�
gramming languages are formal languages too� and there is no argument against programming
just because one has to learn one or more programming languages with non�trivial seman�
tics� Speci�cation languages with useful� semantically clean and intuitively clear concepts are
needed� Such languages would make the introduction of formal speci�cation techniques into
software engineering practice much easier� Existing speci�cation languages are not altogether
bad� but all of them leave something to be desired� and unnecessarily so� as we have argued
elsewhere �Heisel� ����b��

Even carefully designed languages have their strengths and weaknesses� We cannot expect
to �nd one single general�purpose speci�cation language that suits all needs equally well�
Hence� point � is a very serious one� One idea is to use several formalisms instead of one� When
such a combination is done with care� a �hybrid� speci�cation will be clearer� shorter and
more comprehensible than a speci�cation in only one language that is clumsy in parts because
the language does not allow some relevant parts to be expressed elegantly and concisely� We
would even go further and recommend not using formal speci�cation techniques at all for
those aspects of a system that just cannot be formally speci�ed in a satisfactory way�� These
aspects need not necessarily be non�functional� as shown in the example of Section ��
���

With these ideas� we seek to bridge the gap between the theoretical bene�ts of and the
practical problems with formal speci�cation techniques� The choice is not to either apply
them in a puristic way or not at all� Instead� there are varying degrees of formality�

However� to make formal speci�cation techniques more widely applicable� it does not
su�ce to consider only those activities in software development that deal with formal objects�
Before we can write down some formal text� we should have an idea of what we want to write
down� This means that a detailed requirements elicitation is a very important prerequisite to
making the application of formal speci�cation techniques successful�

In Section ���� an overview is given of what we understand to be a pragmatic approach
to formal speci�cation when a new system is built� More often� however� legacy systems have
to be used and maintained� Here� formal speci�cation techniques can be of help� too� as is

�By formal we mean all those speci�cations where the language is given a formal semantics�
�What �satisfactory� exactly means depends not only on the problem and the language but also on the
individual speci�er�

���� Specifying New Systems ��

No� Phase Validation

� De�ne all relevant notions of the ap�
plication domain�

� De�ne the requirements for the sys�
tem to be built�

Every important aspect of the applica�
tion domain and the system must be
expressible�
For each of the de�ned notions a state�
ment for the system should be made�

� Convert the requirements in a prag�
matic way into a formal speci�ca�
tion�

All relevant aspects of the system must
be expressed appropriately�

The speci�cation must be more ab�
stract than code�

 Set up a mapping between the re�
quirements and the formal speci��
cation�

Each requirement must show up in the
speci�cation�

Each part of the speci�cation must be�
long to a requirement�

� Validate the speci�cation� Besides inspecting the speci�cation�
use as many of the following mecha�
nisms as appropriate� checklists� ani�
mation� proof of properties� testing�

Table ���� Agenda for speci�cation acquisition

explained in Section ���� In Sections ��� through ���� the various activities that make up
the pragmatic approach to formal speci�cation are presented in more detail and illustrated
by examples� The main focus is on demonstrating how formal speci�cation discipline can
be relaxed in order to overcome the intrinsic problems of formal speci�cation techniques as
mentioned above� Finally� we discuss what is gained by using this pragmatic approach� and
point out directions for further research� This chapter is an adaptation of the paper �Heisel�
����b��

��� Specifying New Systems

In the following� we give an agenda for our approach� i�e� a list of the activities that have to
be performed� Some of the activities are complemented by means for validating their results�
The single steps should not be considered as isolated phases with no feedback between each
other� They should be partially carried out in parallel and are likely to be repeated� as in
the spiral model of software engineering �Boehm� ������ A �later� activity can reveal errors
or omissions in an �earlier� phase� A overview of the agenda is given in Table ���� The
dependencies between the phases are shown in Figure ���� Phase i depends on phase j if the
result of phase j is needed to perform phase i � We now explain the phases one by one�

Phase � De�ne all relevant notions of the application domain�

�	 Chapter �� A Pragmatic Approach to Formal Speci�cation

4

3 5

21

Figure ���� Dependencies of phases

It must be possible to talk about all relevant aspects of the system� For this purpose� all
phenomena that might be of interest must be given names and be informally described as
precisely as possible� Jackson and Zave �Jackson and Zave� ����� call this a designation set�
In the context of software architectures� one may de�ne criteria that are relevant for these
systems� see Section ��� and �Heisel and Krishnamurthy� ����a��

Phase � De�ne the requirements for the system to be built�

The notions de�ned in Phase � provide a language in which the requirements can be expressed�
If some requirement or some phenomenon concerning the system cannot be expressed� then
the application domain was not investigated carefully enough� and we have to go back to
Phase �� Conversely� in order not to forget some requirements� we should make sure that
for each of the relevant notions a statement for the new system is made �this may be the
statement that some phenomenon will not be treated at all��

Phase � Convert the requirements in a pragmatic way into a formal speci�cation�

By �pragmatic� we mean that we should not always adhere to the ideal of purely formal
speci�cation but take the freedom to make a speci�er�s life easier� In our past work on
and with formal speci�cation� we applied the following relaxations of formal speci�cation
discipline� �

�� Combine di	erent formal or semi�formal speci�cation techniques if one formalism alone
is not powerful enough to express all relevant parts of the speci�cation elegantly�

�� If the speci�cation would be as low�level as program code� refrain from specifying these
details formally but use conventional speci�cation techniques and document the program
code in a particularly detailed way�

�� Ignore restrictions of the speci�cation language if it is clear how to give the requirement
a semantics�

Of course� all the above relaxations must be applied with great care because they are poten�
tially dangerous� a speci�cation where several formalisms are combined may be inconsistent�
Incomplete formal speci�cations may result in an insu�cient understanding of the parts not
formally speci�ed and thus lead to a wrong implementation� Indeed� this relaxation should
mostly be applied for legacy systems� see Section ���� Finally� when we write down illegal
expressions of a speci�cation language� we must make sure that these expressions have a well�
de�ned semantics� which should be explained carefully in the accompanying text of the formal
speci�cation� Section ��
 presents some examples and sketches how to apply the relaxations
�safely��

�Other persons may come up with di�erent relaxations� according to their experience�

���� Dealing with Legacy Systems ��

Phase � Set up a mapping between the requirements and the formal speci�cation�

Such a mapping shows where and how each requirement is re�ected in the formal speci�cation�
It helps to make the speci�cation complete� When the system must be adjusted to new
requirements� the speci�cation should be changed before the code� The mapping shows where
the changes have to be made� An example is given in Section ����

Phase � Validate the speci�cation�

This step is very important because� usually� customers only have a vague idea of what
the system should do� Formal speci�cations can be validated more rigorously than informal
ones because they can be checked for inconsistencies or incompleteness with formal proof
techniques� Possible techniques to apply are animation� proof of properties� and testing�

Again� the di	erent phases are not independent of each other� Especially Phase � will have
an e	ect on Phases � and �� After several rounds in a spiral consisting of the above phases�
the speci�cation should stabilize� with a high probability that the requirements are complete�
the speci�cation captures them adequately� and that customers and developers understand
equally well what the system is supposed to do�

��� Dealing with Legacy Systems

Building a new system entirely from scratch is not always possible or desirable� Often� legacy
systems have to be used and maintained� But also for existing code� it is very useful to have
a formal speci�cation� It documents the behavior of the system and helps in maintenance
and evolution�

If the legacy system exhibits some unexpected behavior� it is more feasible to seek the
explanation for the behavior in a formal speci�cation than in the code because the speci�cation
is more abstract and usually much shorter� Using reverse engineering techniques� the formal
speci�cation can help in locating code that deals with a certain aspect of the given system�
Thus� when a formal speci�cation is available� it is no longer necessary to search through the
entire code to make changes in a legacy system� see �Heisel and Krishnamurthy� ����a� and
Section ����

To deal with legacy systems� the approach described in the previous section has to be
adjusted� Phase � does not change� In Phase �� not the requirements are formulated but the
behavior of the system as far as it is known� Phases � and
 are as before� In Phase �� the
formal speci�cation is used to generate test cases� H�orcher and Peleska describe how this can
be done systematically �H�orcher and Peleska� ������ These test cases should be run in order
to check if the results of Phases � and � coincide with the actual behavior of the system�

Phase � De�ne all relevant notions of the application domain�

Phase � Describe the behavior of the legacy system as far as it is known�

Phase � Convert this description in a pragmatic way into a formal speci�cation�

Phase � Set up a mapping between the description and the formal speci�cation�

Phase � Use the formal speci�cation to generate test cases and validate the assumptions�

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

As when building new systems� it can be expected that the last phase reveals errors in
earlier ones and that several iterations are necessary�

We see that specifying new systems and dealing with legacy systems are quite similar
activities� The following sections that explain the various phases in more detail can thus
serve to illustrate both of them� Of course� the speci�cation of the legacy system exclusively
documents its behavior� To understand the implementation with all its possible optimizations
and �tricks�� more e	ort is necessary�

��� Phases � and �� De�nitions and Requirements	Behavior

These phases consist mainly of informal activities� The resulting documents may be informal
or semi�formal� They serve to form a basis for the development of a formal speci�cation�
Their purpose is to gain a thorough understanding of the problem domain and relate this to
the requirements for or the description of a concrete system� Without such an understanding�
it is hopeless to work on setting up formal speci�cations� But of course these phases are also
important when traditional methods are applied�

We illustrate the informal de�nition of the notions relevant for a software system by the
description of event�action systems �Krishnamurthy and Rosenblum� ������ Such systems
wait for events to occur �e�g� it is Friday � p�m� and the boss is logged in� and then take
an action �e�g� send an email to all group members that there will be a group meeting at
���� p�m��� Such a pair� consisting of an event pattern and a corresponding action� is called
speci�cation and is not to be confused with formal speci�cations� The areas of application of
event�actions systems include calendar and noti�cation systems� computer network manage�
ment� and software process automation� Some of the criteria that characterize event�action
systems �Heisel and Krishnamurthy� ����a� are��

� Matching style
Matching event patterns against occurring events is the heart of each event�action sys�
tem� Event patterns can be complex expressions of so�called primitive events� When an
event pattern is only partially matched� it is possible to either consider the whole event
pattern as unmatched �transient matching� or mark the matched events and only wait
for those events that were not yet matched �perpetual matching��

� Context
This means that not only the event itself but also the context in which it occurs is taken
into account� e�g� the event must be caused by a certain user or a certain machine�

� Grouping speci�cations
Is it possible to group logically related speci�cations together and refer to them as a
whole�

� Handling unmatchable speci�cations
Can the system detect and eliminate speci�cations that can never be matched�

These criteria provide a language in which the requirements for newly designed event�action
systems can be expressed �e�g� the system should consider context and allow for grouping

�We will give a formal characterization of the event�action architectural style in Chapter 	� The criteria we
mention here will be part of the speci�cation of the event manager component and the type that de�nes events�

��	� Phase �� Pragmatic Approach �

speci�cations� but unmatchable speci�cations are not considered�� They also contribute to
make the requirements complete� for each criterion� a decision should be made� If the set of
criteria is complete� then so are the requirements� We will come back to this example and
show some of the formalizations of the criteria in Sections ��
�� and ����

��
 Phase �� Pragmatic Approach

The purpose of relaxing formal speci�cation discipline is to show that formal techniques need
not be straightjackets that leave little freedom to their users� The relaxations may convince
potential users to start experimenting with them�

����� Combining Di�erent Speci�cation Techniques

The combination of di	erent speci�cation techniques is certainly the most important means to
make a speci�er�s life easier� It directly addresses the drawback mentioned in the beginning
of this chapter that there is no single ideal speci�cation language� We illustrate it by an
example� where algebraic and model�based speci�cations are combined� In Chapter �� this
technique is also applied� There� Z and real�time CSP are used to specify di	erent aspects of
safety�critical systems�

The European Commission has de�ned the so�called Information Technology Security
Evaluation Criteria� ITSEC �ITSEC� ������ These criteria de�ne security levels against
which information technology systems can be evaluated� As an example� we consider the
formalization of the ITSEC functionality class F�C�� Its description in natural language is as
follows�

�The TOE shall be able to distinguish and administer access rights between each
user and the objects which are subject to the administration of rights� on the basis
of an individual user� or on the basis of membership of a group of users� or both�
It shall be possible to completely deny users or user groups access to an object��

Here �TOE� means Target of Evaluation� i�e� the product to be evaluated� For the formal
speci�cation of security functionality classes� the clearest and most abstract speci�cation is
algebraic� For the systems to be certi�ed� however� Z is more appropriate� It must be shown
that the Z speci�cation of a particular system is a correct �re�nement� of the algebraic one�
This can be established by working from both ends� doing algebraic re�nements of the abstract
speci�cation� and performing �abstractions� on the Z speci�cation until the re�ned algebraic
speci�cation and the abstracted Z speci�cation can be related by a one�to�one mapping of
the involved constructs�

To formally specify F�C�� we use the algebraic speci�cation language PLUSS� �Bidoit
et al�� ������ This language was designed to make formal speci�cations resemble natural�
language text� Accordingly� names of functions or predicates may consist of several words�
The argument positions are indicated by � �� Quanti�ers and connectives have a nonstandard�
yet obvious� syntax� The keyword proc indicates that the speci�cation is generic� and the
symbol ��� denotes the Cartesian product� Each axiom is given a name for later reference�

�Any other algebraic speci�cation language could be used as well� as long as it allows for genericity� �rst�order
formulas as axioms� and has a loose semantics�

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

The semantics of a PLUSS speci�cation is loose� i�e� it consists of all ��algebras that satisfy
the axioms� where � is the signature of the speci�cation�

Taking the above description of the functionality class F�C� as a starting point� we come
up with the following PLUSS speci�cation�

procF �C ��object � user � group�
predicate

user allowed access to � user � object
user denied access to � user � object
group allowed access to � group � object
group denied access to � group � object
associated with � user � group
grant access to � user � object

axioms

uc � �user u allowed access to o user u denied access to o� is false
gc � �group g allowed access to o group g denied access to o� is false
ga � grant u access to o �

��user u allowed access to o or
� existsg� � group��u associated with g� group g� allowed access to o���

 user u denied access to o is false
 � existsg� � group��u associated with g�

 group g� denied access to o�� is false �
whereu � user � g � group� o � object
endF �C �

This speci�cation clari�es the ambiguities contained in the natural language description� e�g�
what happens if a user is allowed access individually who at the same time is member of
a group that is denied access� It de�nes a global predicate grant access to deciding if a
user is granted access to an object or not� Access may only be granted if there is positive
but no negative information concerning the user� The user must either be granted access di�
rectly �predicate user allowed access to � or via a group �predicate group allowed access to ��
Additionally� the user may neither be denied access directly �formalized by the predicate
user denied access to �� nor be member of a group that is denied access �predicate group �
denied access to �� This formalization represents a �conservative� approach� in case of any
doubt� access is denied� If the conservative policy is considered too restrictive� it is always
possible to de�ne the predicate group denied access to to be false everywhere�

Let us suppose that the access control mechanism of Unix is to be evaluated against the
above requirement� In Unix� each �le belongs to a user and is associated with exactly one
group� The permission mode of a �le consists of three parts� the access rights of the user� the
group� and the others� The tokens r�w�x stand for the rights to read� write� or execute the
�le� respectively� The token ��� means that the corresponding access right is denied�

This means that the access information is stored locally with each Unix object� not globally
as in the PLUSS speci�cation� The most natural way to specify the Unix access control
mechanism is not algebraically but model�based since the access information is stored in a
global system state� A formal speci�cation of the Unix access control mechanism in Z can be
found in �Peleska� ������

Therefore� the task is to show that a model�based speci�cation of a concrete access control
mechanism captures security requirements that are speci�ed algebraically� i�e� that it is a

��	� Phase �� Pragmatic Approach ��

correct re�nement� For algebraic as well as model�based speci�cations� there are notions of
re�nement� However� it is not clear what it means that a model�based speci�cation is a
re�nement of an algebraic one� To make the transition between the algebraic and the model�
based world as smooth as possible� we introduce an intermediate speci�cation� It is stated in
Z and is an abstraction of the Unix access control mechanism� The parameters of the PLUSS
speci�cation are introduced as basic types�

!USER�GROUP �OBJECT "

The access information is stored together with the respective object� like in Unix� We
abstract� however� from the di	erent possible access rights and treat users and groups sym�
metrically� as in the algebraic speci�cation� The information about which groups a user is
associated with is also localized�

ZObject
o � OBJECT
pos user � neg user � �USER
pos group� neg group � �GROUP

pos user � neg user # �
pos group � neg group # �

User
userid � USER
assoc with � �GROUP

The following schema speci�es when a user is granted access to an object�

GrantAccess
u� � User
zo� � ZObject

�u��userid � zo��pos user �
�� g� � GROUP � �g� � �u��assoc with � zo��pos group����

u��userid �� zo��neg user
� �� g� � GROUP � �g� � �u��assoc with � zo��neg group���

It must now be shown that if the Z schema grants a user access to an object then this
must comply with the abstract predicate grant access to � The algebraic notion of re�nement
by model inclusion �Wirsing� ����� requires us to do the following�

�� Provide a signature morphism from the abstract entities to the concrete ones�

�� Apply the signature morphism to the axioms of the abstract speci�cation�

�� Show that the formulas obtained in this way are theorems of the concrete theory�

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

In this special case� the re�nement is relatively simple� The algebraic speci�cation consists
solely of predicates� All of these except grant access to are �auxiliary predicates� that do not
belong to the �user interface� of the speci�cation� These auxiliary predicates are represented
by sets in the abstract Z speci�cation� This is justi�ed because a predicate and its extension
can be regarded equivalent� In the general case� however� more research is needed to de�ne
a mapping between the algebraic semantics based on universal algebras to the Z semantics
based on sets� The signature morphism is as follows�

group 	
 GROUP

user 	
 User

object 	
 ZObject

user allowed access to 	
 �u � User $ zo � ZObject � u�userid � zo�pos user

user denied access to 	
 �u � User $ zo � ZObject � u�userid � zo�neg user

group allowed access to 	
 � g � GROUP $ zo � ZObject � g � zo�pos group

group denied access to 	
 � g � GROUP $ zo � ZObject � g � zo�neg group

associated with 	
 �u � User $ g � GROUP � g � u�assoc with

grant access to 	
 GrantAccess

In this signature morphism� we have only changed the name of the predicate that makes
up the user interface of the speci�cation� The internal predicates have been replaced by
their extensions� In this way� we have made sure that GrantAccess can be used instead of
grant access to without any restrictions� provided GrantAccess ful�lls the axioms stated for
grant access to � This can easily be shown to be the case�

In this example� the desire to combine di	erent formalisms arose because the formal
speci�cations had di	erent levels of abstraction� For abstract properties� algebraic techniques
are the most natural� and for the speci�cation of concrete realizations� model�based techniques
are appropriate�

Many more useful combinations of di	erent speci�cation techniques are conceivable� Weber
�Weber� ����� combines Statecharts �Harel� ����� and Z for the design of safety�critical
systems� Zave�s and Jackson�s �Zave and Jackson� ����� multiparadigm speci�cations are
combinations of partial speci�cations expressed in di	erent languages� In Chapter �� we
present a combination of Z and real�time CSP in detail�

����� Leaving out Details

Formal speci�cations need not be useful in every situation$ sometimes it is more important
to keep the speci�cation concise and easily comprehensible� In �Heisel and Krishnamurthy�
����b�� the speci�cation of an existing event�action system called YEAST �Yet another Event
Action Speci�cation Tool� is given� As already mentioned in Section ���� matching of events
against event�action�speci�cations is very important for such systems� Starting out from
so�called primitive events� the event language of YEAST allows one to build complex event
expressions� using the connectors then �sequencing�� and �conjunction�� and or �disjunction��

Matching of composite events can be de�ned in terms of matching of primitive events
relatively easily� A speci�cation of matching for primitive events� however� would be no

��	� Phase �� Pragmatic Approach ��

more abstract than the code itself and would make the formal speci�cation much longer and
less comprehensible� Therefore� matching of primitive events is not included in the formal
speci�cation but only described in the system documentation� For the formal speci�cation of
matching� this means that we declare a matching predicate on primitive events� but do not
de�ne it�

matches � �EVENT � TIME�� �EVENT � TIME�

The further speci�cation of the matching process can now make use of this predicate� even
though its meaning is not contained in the formal speci�cation�

This relaxation to formal speci�cation discipline can be applied in those cases where
a formal speci�cation would not be an abstract description of system behavior but only a
di	erent notation for a program�

����� Ignoring Restrictions

We expect that almost everybody who has some experience in formal speci�cation techniques
has encountered situations of surprise and annoyance� where it seemed obvious how to write
down some formal expression� only that the designers of the formal notation had not foreseen
the respective situation and hence excluded this possibility� Sometimes� it is advisable to
disregard such language restrictions� We illustrate such a situation by a speci�cation of the
Unix �le system� which will be presented in more detail in Section ��
�

The Unix �le system presents itself to the user as a tree where each node has a name and
an arbitrary number of successors� A speci�cation of such trees should be present in some
library for re�use� where the content of the nodes �as opposed to their names� should be a
generic parameter� It appears straightforward to de�ne such trees as a free type in Z�

!NAME "

NAMED TREE !X " ��# lf �NAME � X�
j node�NAME � seqNAMED TREE !X "�

Although it is semantically sound as long as X is not instantiated with a type or set depend�
ing on NAMED TREE � this speci�cation is invalid because free types in connection with
genericity are not allowed in Z� For the subsequent speci�cation� it has to be decided if this
�unnecessary� restriction of the Z language should be ignored and the rest of the speci�cation
should use the generic free type de�nition� In this case� we decided against it because Z type
checkers reject the above type de�nition$ hence� tool support would be lost for the entire
speci�cation�

Instead� we chose an alternative de�nition based on sets� Named trees are �nite partial
functions from sequences of positive natural numbers into the Cartesian product NAME �X �

NAMED TREE !X " ##
ff � seq���NAME �X j

hi � dom f
� �
 path � seq� �� j path � dom f �

front path � dom f
� �last path �# �� front path � hlast path � �i � dom f ��g

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

This de�nition models trees as functions mapping �addresses� to the content of the node
under the respective address� Each node consists of a name and an item of the parameter
type X � The empty sequence is the address of the root� The length of an address sequence
coincides with the depth of the node in the tree� Hence� an address can only be valid if its
front is also a valid address� The number i denotes the i �th subtree� If there is an i �th subtree
for i � � then there must also exist an i � ��th subtree�

In comparison to free types� this de�nition looks quite complicated� Although the opera�
tions on named trees can be de�ned elegantly� this shows how much more incomprehensible
speci�cations can become when the speci�cation language does not support the features best
suited for the situation at hand�

To specify a function selecting a successor of a node with a given name� we gave the
following speci�cation�

!X "
child named � NAMED TREE !X "�NAME	NAMED TREE !X "

 n � NAME $ t � NAMED TREE !X " �
�n � names�subtrees t�� �t � n� � dom�child named��
� child named�t � n� � children t
� name of tree�child named�t � n�� # n

Again� there are problems with genericity� The above speci�cation of the function child named
is semantically invalid in Z because in the reference manual it is required that �the predicates
must de�ne the values of the constants uniquely for each value of the formal parameters���
�Spivey� ����b� p� ���� This is not the case here� because if there is more than one child with
the given name� child named selects an arbitrary one� However� we do not see any di�culties
with a de�nition like this� On the contrary� it has the advantage to give an implementor the
greatest possible freedom� if it is more e�cient to search the list of subtrees from the back to
the front instead of vice versa� it should be possible to do so�

�Legal� possibilities would be to either de�ne child named as a relation instead of a
function or give an unambiguous de�nition� Both of these do not cover our intention� namely
to state that of the several functions satisfying the speci�cation we do not care which one
is implemented� Since this speci�cation clearly has a a well�de�ned semantics and no type
checker can �nd the �violation�� it is possible to stick to this �illegal� speci�cation without
loosing tool support�

��� Phase
� Mapping between Requirements	Description and Speci�ca�
tion

The e	ort to record where in the speci�cation the various requirements or features of a
system are re�ected is worthwhile� because such a mapping serves several purposes� First�
it helps us understand the formal speci�cation� starting from an intuitive understanding
of the requirements or system features� Second� it may help to detect misconceptions in
case the intuitive understanding of the system contradicts the corresponding parts in the
formal speci�cation� Third� changes in the system usually �rst manifest themselves in the
requirements� The mapping helps us �nd out what e	ects the change in the requirements has
on the formal speci�cation and indirectly on the code� If a change is very hard to accomplish

���� Phase �� Validation of the Speci�cation ��

in the formal speci�cation� it can be expected that changing the code would be di�cult� too�
Fourth� in case the correspondence between speci�cation and code is not available� it helps
to detect those parts of the code implementing a certain feature of the system�

To illustrate this mapping� we come back to the example of Sections ��� and ��
��� the
YEAST case study� We demonstrate how the criterion of grouping speci�cations is re�ected
in the formal speci�cation� The schema de�ning the global system state is

SpecState
specs � � Spec
specMap � LABEL
 Spec
groups � GNAME� LABEL

specMap # fs � specs � s �label 	
 sg
ran groups � dom specMap

Speci�cations can be referred to using labels� This is re�ected by the injective partial function
specMap� The group component of the schema records which speci�cation belongs to which
groups via labels�

Other components of the formal speci�cation onto which the criterion of grouping spec�
i�cations is mapped include all operations having arguments or results of type GNAME
or changing the groups component� Once we know that GNAME and group represent the
grouping mechanism� these other components can be found automatically because they are
characterized purely syntactically� In case the grouping mechanism is to be changed� the
mapping gives all parts of the formal speci�cation that have to be considered�

YEAST was formally speci�ed only after it has been implemented� Therefore� this case
study serves well to illustrate the treatment of legacy systems� For these systems� the mapping
between criteria �i�e� the informal description of the system� and the speci�cation is especially
useful because it helps to locate the criterion in the code��

In order to locate those parts of the YEAST code that implement the grouping mechanism�
we used the mapping from the criterion to the formal speci�cation �which points out all
relevant user operations� to generate test cases that should trigger the code associated with
speci�cation grouping� All of these were executed with various inputs� Di	erent reverse
engineering tools made it possible to pinpoint the set of functions implementing speci�cation
groups� Only �� functions out of ��� were executed more than once� Some of these were
library and other utility functions� This left only a handful of functions that had to be
considered� For more details� see �Heisel and Krishnamurthy� ����a��

��� Phase �� Validation of the Speci�cation

For legacy systems� the validation is easier than for systems that are not yet implemented
because the implementation is available� In principle� even a formal veri�cation would be
possible that establishes the consistency of the speci�cation and the code�

For new systems� speci�cations can only be validated informally because no formal relation
can be established between the necessarily informal requirements and a formal speci�cation�

�For newly designed systems� the mapping between the formal speci�cation and the code could be recorded
from the beginning�

�	 Chapter �� A Pragmatic Approach to Formal Speci�cation

Validating speci�cations is very important because� as Brooks �Brooks� ����� stated� �For
the truth is� the client does not know what he wants�� As possible validation techniques we
mentioned animation� proof of properties� and testing�

For animation� an executable prototype is built that makes it possible to �try things
out�� This possibility is very helpful in the elicitation of the �real� requirements� Elsewhere
�Heisel� ����b�� we have argued that formal speci�cations should be as abstract as possible and
that they should not introduce any implementation bias� Such speci�cations are usually non�
constructive and hence not executable� However� the possibility of animating the speci�cation
is so valuable that we consider it worthwhile to perform a few re�nement steps in order to
make the speci�cation executable�

Proving properties of the speci�cation �e�g� that two operations are inverses of each other�
or showing that in certain situations something undesirable cannot happen also enhance con�
�dence in the speci�cation and contribute to its understanding� The problem with this tech�
nique may be to �nd the relevant properties to be proven� In a more concrete context� like the
speci�cation of safety�critical systems �see Chapter ��� or software design using architectural
styles �see Chapter
�� detailed validation guidelines can be given�

Finally� speci�cations can be tested almost like code� Test cases �that must be selected
anyway� can be used to check if the speci�cation captures the expected behavior of the system
for these cases�

��
 Summary

Our work aims at supporting the introduction and application of formal techniques in system
speci�cation and development� We take a pragmatic viewpoint of formal techniques� They
should not be applied under all circumstances but only in situations where it is clear what is
gained by their application� To achieve this aim� we must �i� show how formal speci�cation
techniques can be integrated in the traditional software engineering process� and �ii� show
how the undeniable drawbacks of formal techniques can be dealt with�

Integration in traditional software processes

The application of formal techniques can only be successful when it is well prepared� This
means that those phases of the software process where formal techniques cannot be applied
are not to be neglected� On the contrary� requirements analysis must be performed at least as
thoroughly as in a traditional process� Our approach gives a guideline how to proceed� �rst
create a suitable language� and then use it to express all relevant requirements or facts about
the system� It clearly does not su�ce to hand a formal language description to speci�ers and
then expect them to be able to write formal speci�cations� Not only the formal techniques
themselves have to be learned� but also how formal techniques can smoothly be integrated in
the process model to be followed�

Relaxations of formal speci�cation discipline

Our pragmatic approach to using formal speci�cation techniques directly addresses the prob�
lems described earlier�

� If a formal speci�cation technique not suitable to specify certain aspects of a system�
and is suitable for other aspects� then di	erent formalisms should be combined�

���� Further Research ��

� If formally de�ning every detail would enlarge the speci�cation disproportionally and
make it harder to comprehend� then some aspects of the system should not be formally
speci�ed at all�

� If it is clear how some aspect of the system could be speci�ed but the chosen formalism
is too weak� then appropriately commented �illegal� speci�cations should be considered�

The proposed relaxations are most valuable in situations where formal techniques would
otherwise be rejected because a complete speci�cation using a single formalism would be too
long� too complicated� or too expensive to develop� Of course� all these relaxations have
to be used with care� It must always be demonstrated that the resulting speci�cations are
semantically sound�

One might object that such a �pragmatic� speci�cation does not enjoy the advantages
of formal speci�cations as enumerated at the beginning of this chapter any longer� Even
if this were true� a �pragmatic� speci�cation would still lead to a better analysis of the
system� contain fewer ambiguities and better document the system behavior than an informal
speci�cation does� Even in connection with formal techniques� there are better choices than
�all or nothing��

However� it need not always be true that �pure� speci�cations are superior to �pragmatic�
ones� Consider the case of the embedded safety�critical systems� which we will discuss in detail
in Chapter �� Rejecting the combination of Z with another formalism means that important
aspects of safety�critical systems cannot be formally speci�ed at all or only in an unsatisfactory
way�

In summary� our approach has the following bene�ts�

� An agenda makes explicit the tasks to be performed and their interdependencies�

� The relaxations of formal speci�cation discipline recommended for transforming require�
ments into formal speci�cations �if necessary� contribute to making the speci�cation less
complicated and better comprehensible�

� Validating the speci�cation helps to make the speci�cation complete and conforming
more closely to the wishes of the customers�

� When requirements change� the mapping between requirements and formal speci�cation
shows where changes have to be made in the formal speci�cation� The corresponding
code can be found with reverse engineering techniques�

��� Further Research

The pragmatic approach can be further elaborated in the following ways�

Method for requirements engineering� The elicitation of the requirements was only de�
scribed very brie�y� We intend to develop agendas for requirements engineering� They
should be de�ned such that the application of formal speci�cation techniques is well
prepared�

�� Chapter �� A Pragmatic Approach to Formal Speci�cation

Combination of algebraic and model�based speci	cations� The example of a combi�
nation of the algebraic language PLUSS and the model�based language Z we presented
in Section ��
�� was a simple case� where we considered only predicates� which can
be identi�ed with their set�theoretic extensions� More research is needed to develop a
general notion of re�nement between algebraic and model�based languages�

Integration of semi�formal methods� In this and the following chapter� we consider the
combination of di	erent formal speci�cation languages� It is also promising to con�
sider the combination of semi�formal� e�g� graphical notations with formal ones� This
would make it possible to gradually enrich traditional techniques with formal elements�
The tasks here are to develop such combinations and to develop agendas for existing
combinations� e�g� �Weber� ������

Other relaxations� More experience should be gained concerning useful relaxations of for�
mal speci�cation discipline�

Reverse engineering� To successfully adapt and maintain legacy systems� reverse engineer�
ing techniques must be applied� Methods and agendas for this purpose remain to be
developed�

Chapter �

Speci�cation of Safety�Critical Software with

Z and Real�Time CSP

Although every software�based system potentially bene�ts from the application of formal
methods� their use is particularly advantageous in the development of safety�critical systems�
These are systems whose malfunctioning can lead to accidents resulting in loss of property or
danger for human lives� The potential damage operators and developers of a safety�critical
system have to envisage in case of an accident may be much greater than the additional costs
of applying formal methods in system development� It is therefore worthwhile to develop
formal methods tailor�made for the development of safety�critical systems�

Most safety�critical systems are reactive� This means they do not just perform data
transformations� like payroll systems� Instead� they are not intended to terminate� and their
behavior depends on stimuli coming from the environment and their internal state which
usually is an approximation of the state of the environment� Frequently� they have to ful�ll
real�time requirements�

From these characteristics� it follows that two aspects are important for the speci�cation
of software for safety�critical systems� First� it must be possible to specify behavior� i�e� what
happens in the system in which order� how the system reacts to incoming events� and what
signals it sends to the environment under which conditions� The speci�ed behavior must
additionally take place su�ciently fast� This is a crucial requirement for the system and thus
should be expressed in the speci�cation� Second� complementing the behavioral speci�cation�
the structure of the system�s data state and the operations that change this state must be
speci�ed�

Both of these parts are of equal importance� and a speci�cation that ignores one of them
would not be satisfactory� Process algebras o	er appropriate constructs to specify behavior�
With some extensions� also real�time requirements can be expressed� Model�based speci��
cation languages are suitable to specify the data�oriented part of the system� Since they
allow the legal states of the system to be explicitly and elegantly speci�ed� they are to be
preferred over algebraic languages in this context� A combination of a process algebra and a
model�based speci�cation language yields a suitable language for the speci�cation of software
for safety�critical systems�

We choose to combine the speci�cation notation Z with the process algebra real�time CSP
�Davies� ����� which adds real�time constructs to CSP �Hoare� ������ Both languages are

��

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

fairly well known and frequently used� Other such combinations� however� �e�g� VDM �Jones�
����� and CCS �Milner� ������ would also be conceivable� Although with the language
LOTOS� a combined language already exists� we do not use it because the speci�cation
language contained in LOTOS is a simple algebraic language that is less appropriate than Z
for the data�oriented part of the speci�cation�

A combination of two di	erent speci�cation languages must be given a common seman�
tics$ otherwise� combined speci�cations cannot be regarded as completely formal� Once this
is achieved� we obtain a speci�cation language tailored for the modeling of safety�critical
systems�

A mere language� however� does not su�ce to improve product quality� A methodology
for its application that provides speci�ers with guidance on how to construct speci�cations
is indispensable� We provide such a methodology by identifying frequently used designs of
safety�critical systems� These designs are expressed as reference architectures� and for each
architecture we give an agenda that can be followed to develop an instance of the architecture�

The validation of a speci�cation is as important as a controlled process for its development�
Therefore� our approach also contains guidelines for this purpose� In the agendas� general
validation criteria are stated that are independent of concrete applications� referring only
to the chosen architecture� Furthermore� two di	erent kinds of properties are important for
safety�critical systems� namely safety�related and liveness properties� Examples are assertions
that the system cannot stay longer than a certain time in a certain state� that the violation
of a safety constraint is noticed within some time limit� that certain conditions exclude each
other� or that certain conditions always occur together� Our method encourages speci�ers to
identify and demonstrate such properties�

The main focus of this chapter is on the development of the speci�cation and its validation�
A formal speci�cation is a necessary prerequisite for the usage of formal methods in the
development process� Later phases like design and implementation can only be supported
by formal methods in presence of a formal speci�cation� But formal speci�cations are not
only necessary for exploiting the bene�ts of formal techniques� Often� it is even su�cient to
develop a formal speci�cation and perform the subsequent development steps with traditional
methods to obtain a considerable gain in product quality �Houston and King� ������

Nevertheless� our approach also o	ers formal support for the later phases of the software
development process� A notion of re�nement for speci�cations in the combined language is
de�ned� and how code can be synthesized for the Z part of a combined speci�cation is shown
in Chapter � and Section ����

In the following� we �rst make explicit what kind of system we want to specify with our
methodology �Section ����� This gives us a structure and the vocabulary to adequately model
this kind of system� We then present the common language to be used in Section ���� The
reference architectures and the corresponding agendas presented in Sections ��� and ��
 make
use of the language� How to further re�ne the speci�cations developed with the help of the
agendas is explained in Section ���� A discussion of the approach� a summary and further
research directions conclude the chapter� This chapter further elaborates concepts presented
in �Heisel� ����a$ Heisel� ����a$ Heisel and S�uhl� ����b$ Heisel and S�uhl� ����a$ S�uhl� ������

���� System Model ��

Figure ���� System Model

��� System Model

The purpose of the systems we want to consider is to control some technical process� where
the control component is at least partially realized by software� see Figure ��� and �Leveson�
������ Such a system consists of four parts� the technical process� the control component�
sensors to communicate information about the current state of the technical process to the
control component� and actuators that can be used by the control component to in�uence the
behavior of the technical process�

The control component may consist of several sub�components� some of which can be
realized with software� In the following� we focus on the software�based parts of the control
component� A software�based control component a	ects certain process variables �manipu�
lated variables� by sending commands to actuators� By evaluating the current state of certain
process variables which are measured by sensors �controlled variables�� the control component
approximates the current state of the technical process to verify the e	ect of the commands
sent to the actuators �feedback control� and to determine further commands to be sent� It
is very important that the image of the state of the technical process that is built up in the
software control component is su�ciently accurate and up�to�date� In the following� we will
call this state the internal state� because it is internal to the software control component$ the
state of the technical process we will call the external state�

The behavior of the technical process does not only depend on internal conditions within
the process� e�g� the state of the manipulated variables� but it is also in�uenced by external
disturbances� The basic objective of process control is to achieve the process control function
in spite of disturbances from the environment�

Safety can be de�ned as the property of a system to be free from accidents or losses
�cf� �Leveson� ������� It follows that a software component which is considered in isolation
cannot be unsafe because it is not directly able to cause a loss event� Safety is a property
of a whole system in the context of its environment rather than a property of a separate
system component� A method concerned with software development for safety�critical systems
must aim at system safety and can only be evaluated in this respect� Hence� the following

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

subsystems of a safety�critical system must be modeled to contribute to system safety�

� all parts of the process�control component� i�e� software components� mechanical and
electrical components� and interfaces to human operators�

� sensors� determining the projection of the technical process state to the internal state
of the control component� and

� actuators� which realize the execution of commands given by the control component
within the technical process�

Another desirable property of software systems is correctness� What is the relationship
between safety and correctness� The latter is de�ned as the property of a software component
to ful�ll the relation between inputs and outputs prescribed in the component speci�cation�

One might consider safety to be a weaker requirement than correctness� Leveson �Leveson�
����� states �We assume that� by de�nition� the correct states are safe�� However� safety
concerns have an in�uence on what is considered a correct state� For example� incorrect
measurements of process variables or the failed realization of given commands by the actuators
are normally not relevant in the context of correctness� To achieve system safety� on the other
hand� the thorough examination of the above situations is a necessary condition�

This leads to di	erences in the modeling of a system� If correctness in the usual sense of the
word is striven for� the environment in which the system operates� hardware failures� and the
credibility of inputs are of no interest� In contrast� to achieve system safety� the environment
must explicitly be modeled� too� It is necessary to try to detect hardware failures� and not
only the speci�ed relation between input and output values must be guaranteed� It must also
be checked if the input values can represent a possible situation in the real world� e�g� by
consistency checks on di	erent sensors and by redundant arrangements of sensors�

The approaches to guarantee correctness on the one hand and safety on the other hand
do not di	er in a technical� but in a methodological way� in the end� safety requirements are
expressed as functional requirements� and safety is guaranteed by developing software that is
correct with respect to the safety requirements�

��� A Language to Specify Safety�Critical Software

In general� the control component of a safety�critical system is a reactive system� which is
characterized as being mainly event�triggered� It continuously reacts to events occurring
within the environment by invoking internal operations and subsequently emitting resulting
events into the environment� Hence� two aspects of the software component must be speci�ed
in an adequate way� First� how does it react to events� and second� how is its internal state
de�ned� and how can it evolve� Accordingly� we split the speci�cation of a software component
into two parts�

�� In the dynamic part the reactive behavior of the software component is speci�ed� i�e� its
reaction to the occurrence of events within the technical process �detected by sensors�
which is realized by invoking internal operations and giving commands to the actuators�
In this part� real�time requirements and the ordering of events are crucial�

���� A Language to Specify Safety�Critical Software ��

�� In the functional part the invariant properties and the structure of the possible internal
system states� i�e� data structures� are speci�ed� as well as the operations applied to
these states � Operations on the internal state are de�ned by relations between inputs�
outputs� and the internal system states before and after the execution of the respective
operation�

The speci�cation languages Z and real�time CSP provide constructs to adequately express
both aspects� Before we can show how the two languages are combined� we give a brief
description of the language real�time CSP�

����� The Language Real�Time CSP

Real�time CSP �Davies� ����$ Davies and Schneider� ����� is a language to model the com�
municating behavior of real�time systems� It adds real�time constructs to CSP �Hoare� ����$
Hinchey and Jarvis� ������ The following de�nitions are mostly taken from �Davies and
Schneider� ������

A process denotes the behavior pattern of a component of a real�time system� Events
mark important points in the history of a process at which a process may communicate or
interact� The set of events a process can engage in is called its alphabet�

Events are atomic and instantaneous� i�e� their occurrence takes no time� Processes need
not compete for resources� This property is called maximal parallelism� The property of max�
imal progress says that internal events occur as soon as possible� Communication between
processes is synchronous� i�e� each communication event requires the simultaneous participa�
tion of the involved processes�

Syntax of Real�Time CSP

Process expressions of real�time CSP are built from the following syntactic constructs�

Pre	x
 a
 P �rst accepts event a and subsequently behaves as process P �

External Choice
 P � Q behaves either identical to process P or Q where the environment
might in�uence this choice by accepting a certain initial event�

Internal Choice
 P u Q behaves either identical to process P or Q where the environment
can neither in�uence nor observe the choice�

Channel Input
 c�x
 P�x� �rst is ready to receive an arbitrary value x from channel c
and afterwards behaves as the parameterized process P�x��

Channel Output
 c%v
 P �rst is ready to write the value v to the channel c and subse�
quently behaves equal to process P �

Parallel Composition
 P k Q has the processes P and Q as parallel subprocesses�

Hiding
 P n A behaves as P � except that all events contained in the event set A are hidden
from the environment� i�e� they become internal�

Sequential Composition
 P $ Q �rst behaves as process P until its termination and after�
wards behaves as process Q �

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Conditional
 �if b then P else Q �� behaves as P if the predicate b is true� Otherwise it
behaves as Q �

Interrupt
 P � Q behaves as P until the environment o	ers an initial event of Q � From
then on� P is discarded and the process behaves as Q �

Atomic Process
 Skip accepts the termination event before releasing control$ Stop never
engages in any event�

Wait
 Wait t does not accept any event for the �rst t time units and afterwards is ready to
accept the termination event before releasing control�

Timeout
 P �ftg Q is initially prepared to behave as P � but if no events have occurred
within t time units� it begins to behave as Q instead�

Timed�Interrupt
 P �ftg Q behaves as P for t time units� and then behaves as Q �

Semantics of Real�Time CSP

Di	erent semantic models have been developed for CSP� Each process is associated with the
set of observations that can be made during its execution� In the traces model� an observation
is a sequence of events�

traces � CSP���seqEVENTS�

In this model� however it is impossible to specify non�deterministic behavior� the processes
P � Q and P u Q cannot be distinguished� This leads to the failures�divergences model�
where two semantic functions are de�ned�

failures � CSP���seqEVENTS � �EVENTS�

maps a process onto a set of pairs� consisting of a trace and a set of events� called a refusal�
A pair �tr � ref � is a failure of process P if P may perform tr and then refuse every event in
ref �

divergences � CSP���seqEVENTS�

A trace tr is a divergence of P if P may engage in an unbounded sequence of internal events
after performing tr �

For real�time CSP� a timed failures model is de�ned� This model associates with each
process term a set of timed failures which represents possible observations of the process� A
timed failure consists of a timed trace and a timed refusal� A timed trace is a sequence of
timed events� where each timed event is a pair of an event and the time instant at when it
was observed� A timed refusal is a set of timed events� In the case when the corresponding
timed trace has been observed� an event can be refused by the system at a time instant if the
corresponding pair is a member of the timed refusal�

timed failures � RT CSP���seqTimedEvents � �TimedEvents�

���� A Language to Specify Safety�Critical Software ��

Behavioral Speci�cations

Two di	erent styles of specifying the reactive behavior of systems in real�time CSP can
be distinguished� First� a term of the syntax of real�time CSP can be given to model the
dynamic behavior in a constructive manner which is amenable to further re�nement� Second�
predicates can be used to constrain the set of possible behaviors� This is a more abstract
way of speci�cation� Both approaches are semantically equivalent and can thus be combined
arbitrarily� The syntax for behavioral speci�cations is

Process sat Spec�o�

Its semantics is that all observations associated with the process must satisfy the speci�ed
predicate�

Process sat Spec�o��

 o � OBSERVATIONS � o � semantic function
Process�� Spec�o�

Speci�cation of Timing Properties

The following speci�cation macros allow one to state requirements concerning timed obser�
vations in a concise way� We would like to express that some event happens at some time
instant� or that the process or its environment are prepared to engage in an event at some
time instant�

The function � yields the set of events occurring in a trace or refusal� With �� we restrict
the traces or refusals we consider to a certain time interval� We can then give a formal
de�nition of an event e happening at time t or being refused at this time� relative to a trace
tr and refusal ref � To make assertions about a process� we must universally quantify over the
timed failures associated with the process�

e at t �tr � ref �� e � ��tr � !t � t "�
e ref t �tr � ref �� e � ��ref � !t � t "�

If a process accepts event e at time t � this is expressed by the predicate

e live t �tr � ref �� e at t �tr � ref � � � �e ref t �tr � ref ��

The event happens at time t or it is not refused by the process�
An event e is accepted by the environment of the process at time t if it happens at t or

is refused by the process�

e open t �tr � ref �� e at t �tr � ref � � e ref t �tr � ref �

This concludes our presentation of real�time CSP� We now de�ne a software model that leads
to a suitable combination of the two languages�

����� Software Model

To achieve a suitable combination of both parts of the formal speci�cation of a software
component formulated in Z and real�time CSP� we propose the software model shown in
Figure ����

�	 Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Z:
internal system state,
system operations,

and predicates

functional
part

measured
values

com-
mands

operation
invocations,
inputs

operation
termination,
outputs

predicates

sensors and actuators

canyd p ri a tm

Figure ���� Software Model

�� The innermost component which is expressed in Z speci�es the functional aspects� i�e�
the structure and the properties of the valid internal system states as well as the re�
quirements for system operations�

�� Around this innermost component� a CSP process speci�es the reactive behavior� i�e�
the absorption of values provided by the sensors� the invocation and termination of
internal operations� and the transmission of the operation results to the actuators�

�� The outermost component models the required behavior of the sensors and actuators�
It o	ers the possibility to specify fault tolerance mechanisms� e�g� the redundant ar�
rangement of sensors and actuators� The sensors and actuators can be modeled in Z or
in real�time CSP� This depends on the particular application��

Both the Z speci�cation and the sensors and actuators form the environment of the CSP
process�

Informally� the relation between the elements of the Z part and the CSP part of a formal
speci�cation can be explained as follows� see also Figure ���� For each system operation Op
speci�ed in the Z part which is intended to be externally available� the CSP part is able to refer
to the events OpInvocation and OpTermination� whose occurrences represent the invocation
of the system operation Op by the software component and its termination� respectively� The
two events mark the execution interval of an operation� This makes it possible to specify
requirements for the maximal duration in terms of assumptions about the environment which
constrain the availability of these events� see Section ���� Alternatively� if the duration of the
execution is negligible� only one event OpExecution is used to represent the execution of the
operation Op�

�In Section
�
��� a redundancy mechanism is speci�ed in Z� In Section
�	� priorities on sensor messages are
speci�ed in real�time CSP�

���� A Language to Specify Safety�Critical Software ��

OpInvocation OpTermination

out!

Op Pred

in?

Z

time

CSP

Figure ���� Connection between Z and CSP

For each input in� � Type of a system operation Op� there is a communication channel in
within the CSP part onto which an input value possibly derived from sensor measurements
is written before operation invocation� The alphabet of this channel is identical to the type
of the operation input�

Analogously� for each output out % � Type of a system operation� there is a communication
channel out in the CSP part from which the output value of the operation is read after
termination and possibly used to derive commands to the respective actuator�

The dynamic behavior of a software component may depend on the current internal system
state� To take this requirement into account� a process of the CSP part is able to refer to the
current internal system state via predicates which are speci�ed in the Z part by schemas�

These links between both parts contribute to a clear separation of the functional aspects
from the dynamic aspects of the system�

The connection between the CSP part and the speci�cation of the intended behavior of
the sensors and actuators is as follows� The CSP part is linked with every sensor via a
communication channel from which the measured values of the respective sensor are read�
Analogously� the CSP part is connected to every actuator via a communication channel onto
which the commands to the respective actuator are written�

Furthermore� the speci�cation of communication channels in terms of CSP processes makes
it feasible to model aspects of a distributed communication� for example the delay of trans�
mission or the redundant arrangement of unreliable communication channels�

����� Common Semantic Model

In this section� we outline the formal de�nition of the semantics associated with a combined
speci�cation as explained informally in the previous sections� The basis of this de�nition is
the semantic function of the timed failures model of real�time CSP� which we mentioned in
Section ������

To de�ne a semantic function for the combined language consisting of Z and real�time
CSP� we must de�ne the set of all possible observations of a system speci�ed in the combined
language� In this context� apart from traces and refusals� a third component is of importance�
namely the evolution of the internal system state within the observation interval� Hence an
observation for a combined speci�cation is a tuple consisting of a timed trace� a timed refusal�
and a timed state� A timed state is de�ned as a function that maps every time instant of the
observation interval to the observed system state�

The Z part of a speci�cation is characterized by a state schema State� an initial state
schema InitState� a set of external operation schemas Op�� � � � �OpN � and a set of predicates
on the internal system state Pred�� � � � �PredM � The CSP part of a speci�cation is charac�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

terized by a term of real�time CSP and a predicate of the timed failures model� The set
RESTR RTCSP PROCESS contains all process terms of real�time CSP that do not allow
subprocesses to perform an event concerning the execution of a system operation �and con�
sequently to cause a state change� in parallel with other subprocesses that either perform an
operation event or evaluate a predicate on the internal system state�� Furthermore� the set
TF PREDICATE contains all predicates of the timed failures model� Thus the signature of
our semantic function is as follows�

timed failures states � SCHEMA� SCHEMA� �SCHEMA�
�SCHEMA� RESTR RTCSP PROCESS � TF PREDICATE	
���seqTimedEvents � �TimedEvents�� �TIME	 STATES��

A possible observation ��tr � ref �� tstate� of the behavior of the speci�ed system can be inter�
preted in the following sense� the timed failure �tr � ref � consisting of the timed trace tr and
the timed refusal ref is de�ned by the semantic function timed failures as a possible obser�
vation of the CSP process� and the timed state tstate maps each instant of the observation
interval to an internal system state� This internal system state must be one of the states that
can be reached at the respective time instant� starting from an initial state and proceeding in
accordance with the operation events as well as their assigned input and output values which
are recorded in the timed trace tr up to the considered time instant� The formal de�nition
of the function timed failures states can be found in �S�uhl� ������

��� The Passive Sensors Architecture

There are several ways to design safety�critical systems� according to the manner in which
activities of the control component take place� and the manner in which system components
trigger these activities� We express two of these di	erent approaches to the design of safety�
critical systems as reference architectures� The �rst architecture� which is the subject of
this section� assumes that sensors are passive measuring devices� The second architecture�
presented in Section ��
� assumes that sensors can cause interrupts in the control component�

For each of the reference architectures� we de�ne an agenda� The agendas describe the
steps to be taken to specify software control components suitable for the reference archi�
tectures� They provide schematic expressions of Z or real�time CSP that only need to be
instantiated� and state validation obligations that should be ful�lled� Our general approach
to the speci�cation of safety�critical software is to �rst decide on the architecture of the sys�
tem for which a software control component must be speci�ed� and then to follow the steps
of the corresponding agenda�

The two architectures we present cover frequently used design principles of safety�critical
systems� However� the aim of this work is not to completely cover the area of speci�cation
of safety�critical systems� but to show that detailed guidance can be provided to speci�ers
of software systems� under the condition that special contexts are considered� which stem
from particular application areas� Consequently� other reference architectures for the design
of safety�critical systems are useful� too� An example is a reference architecture for dis�
tributed systems� where each component may have its own private state� These additional

�We do not give a formal de�nition of RESTR RTCSP PROCESS but only note that in the speci�cations
developed with our method at most one process of a parallel composition refers to the Z part of the speci�cation�

���� The Passive Sensors Architecture �

reference architectures could be supported in a similar way as the ones presented in this chap�
ter� Furthermore� concrete safety�critical systems need not be �pure� instances of prede�ned
architectures� When necessary� reference architectures can be combined as appropriate�

For both reference architectures we present� we assume that it is appropriate to distinguish
several operational modes of the system� Within distinct modes� which can model di	erent
environmental or internal conditions� the behavior of the system � and thus the control com�
ponent � may be totally di	erent� For instance� an elevator might assume di	erent operational
modes when moving up� moving down� not moving with the door open� and not moving with
the door closed� Depending on the mode� the reaction of the elevator to a pressed button will
be di	erent�

In the passive sensors architecture� all sensors are passive� i�e�� they cannot trigger activities of
the control component� and their measurements are permanently available� This architecture
is often used for monitoring systems� i�e�� for systems whose primary function is to guarantee
safety� Examples are the control component of a steam boiler whose purpose it is to ensure
that the water level in the steam boiler never leaves certain safety limits �see �Heisel� ����a$
S�uhl� ������� and an inert gas release system� whose purpose is to detect and extinguish �re�
We present a speci�cation of the latter as an example of the passive sensors architecture in
Section ������

Figure ��
 shows the structure of a software control component associated with the passive
sensors architecture� Such a control component contains a single control operation� which is
speci�ed in Z� and which is executed at equidistant points of time� The sensor values v
coming from the environment are read by the CSP control process and passed on to the Z
control operation as inputs� The Z control operation is then invoked by the CSP process� and
after it has terminated� the CSP control process reads the outputs of the Z control operation�
which form the commands c to the actuators� Finally� the CSP control process passes the
commands on to the actuators�

o!__

i?_

real-time CSP

Z

a ! c

o?c

s?v
i ! v_ _

__

_

_ _

_

actuator commands

sensor values

ControlOperationTermination

ControlOperationInvocation
Sensors

internal
system
state

Operation
Control

Actuators

Figure ��	� Software Control Component for Passive Sensors Architecture

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

The passive sensors architecture is suitable only for systems where all actuators are able
to perform the commands given by the control component at arbitrary time instants� and for
which it can be guaranteed that executing the control operation at equidistant time instants
su�ces to obtain a sample rate that is high enough to provide all relevant information about
changes of the external system state�

����� Agenda for the Passive Sensors Architecture

An agenda gives instructions on how to proceed in the speci�cation of a software�based
control component for systems as described in Section ���� according to a chosen reference
architecture� It consists of several steps� some of which have validation obligations associated
with them� The steps need not be carried out exactly in the given order� Some of them
are independent of each other� In the following� we give a graphical representation of the
dependencies between the di	erent steps for each agenda we present�

The validation obligations given in an agenda state only validation mechanisms that are
independent of concrete applications� Usually� the speci�cations developed according to an
agenda should be validated further� taking the speci�cs of the application into account� Such
further validation will usually consist of mathematical proofs� where safety�related as well as
liveness properties of the speci�cation are demonstrated�

The agenda for the passive sensors architecture is summarized in Table ���� The depen�
dencies between the steps are shown in Figure ����

3

2

1 5

7

6

4

Figure ���� Dependencies of steps of agenda for passive sensors architecture

We now explain the steps one by one�
In the �rst step� we model the sensor values and actuator commands� i�e� the interface of

the software component with its environment� Since for the architecture of passive sensors�
the sensors are mere measuring devices� the measurement values of the sensors must be
modeled as members of appropriate types in Z� These types coincide with the alphabets of
the channels that are used by the CSP control process to read the sensor values coming from
the environment of the software component� Analogously� we have to de�ne types that model
the actuator commands� which are an output of the Z control operation� Again� these types
coincide with alphabets of communication channels in of the CSP control process�

Step � Model the sensor values and actuator commands as members of Z types�

The de�ned types depend on the technical properties of the sensors and actuators� If the
sensor is a thermometer� the corresponding type will be a subset of the integers� If the sensor
can only distinguish a few values� the corresponding type will be an enumeration of these
values� The same principles are applied to model the actuators�

���� The Passive Sensors Architecture ��

No� Step Validation Conditions

� Model the sensor values and actu�
ator commands as members of Z
types�

� Decide on the operational modes of
the system�

� De�ne the internal system states
and the initial states�

The internal system state must be an
appropriate approximation of the state
of the technical process�
The internal state must contain a vari�
able corresponding to the operational
mode�
Each legal state must be safe�
There must exist legal initial states�
The initial internal states must ade�
quately re�ect the initial external sys�
tem states�

 Specify an internal Z operation for
each operational mode�

The only precondition of the operation
corresponding to a mode is that the
system is in that mode�
For each operational mode and each
combination of sensor values there
must be exactly one successor mode�
Each operational mode must be reach�
able from an initial state�
There must be no redundant modes�

� De�ne the Z control operation�

� Specify the control process in real�
time CSP�

� Specify further requirements if nec�
essary�

Table ���� Agenda for the passive sensors architecture

We assume that the controller is always in one of the operational modes Mode�� � � � �ModeK
that are de�ned with respect to the needs of the technical process�

Step � Decide on the operational modes of the system�

The operational modes are de�ned as an enumeration type in Z� If possible� a fail�safe mode
should be de�ned� The system can then switch to this mode when safety can no longer be
guaranteed�

MODE ��#Mode� j � � � jModeK

Next� the legal internal states of the software component must be de�ned by means of a Z
schema�

	� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Step � De�ne the internal system states and the initial states�

The components of the internal state must be de�ned such that� for each time instant� they
approximate the state of the technical process in a su�ciently accurate way� The internal state
must contain all information that is relevant to control the technical process� The speci�er
must decide if the sensor values are components of the state or if they are incorporated only
indirectly as inputs of operations� The components must su�ce to characterize the operational
modes of the system�

The state invariant de�nes the relations between the components� It comprises the safety�
related requirements as well as the functional properties of the legal states� It can be set up
by one party� treating functional as well as safety�related requirements� Another possibility
is to set up two speci�cations� a functional and a safety speci�cation by di	erent parties
and then show that the safety requirements are entailed by the functional speci�cation� The
latter approach can be used to double�check the safety requirements� or it may be enforced
by certi�cation procedures or safety standards�

Initial states must be speci�ed� too� Here� the speci�er must decide if it is necessary to
de�ne the initial states in terms of real sensor values or if default values for the components
su�ce�

A suitable de�nition of the internal state is crucial for the safety of the system� Therefore�
we have several validation obligations�

Validation Condition ��� The internal system state must be an appropriate approximation
of the state of the technical process�

This condition cannot be proven formally� It is a reminder for the speci�er to carefully
reconsider the de�nition� The speci�er must be convinced that the internal state represents
all important aspects of the state of the technical process�

Validation Condition ��� The internal state must contain a variable corresponding to the
operational mode�

This variable mode will be used to de�ne the Z control operation�

Validation Condition ��� Each legal state must be safe�

This condition need only be shown if the state invariant does not directly contain the safety�
related requirements� as in the second scenario discussed previously� where the safety and
functional requirements are set up by di	erent parties�

Validation Condition ��� There must exist legal initial states�

If this condition were not true� our state de�nition would be erroneous�

Validation Condition ��� The initial internal states must adequately re�ect the initial ex�
ternal system states�

System safety can only be guaranteed if� on initialization of the system� the internal state
faithfully re�ects reality�

���� The Passive Sensors Architecture 	�

We must now specify how the state of the system can evolve� When new sensor values are
read� the internal state must be updated accordingly�

Step � Specify an internal Z operation for each operational mode�

Each of these Z operations speci�es the successor mode of the current mode and the commands
that have to be given to the actuators� according to the sensor values� It is normally useful
to de�ne separate schemas for the sensor values and actuator commands according to the
following schematic expressions Sensors andActuators � The internal Z operations then import
these schemas�

Sensors b# !SystemState$ input�� � SType�$ � � � $ inputN � � STypeN j
hconsistency conditions � redundancy mechanismsi "

The types of the di	erent inputs have been de�ned in Step �� If necessary� the predicate part
of the schema should contain the speci�cation of consistency checks concerning the sensor
measurements in relation to the internal system state� Therefore� the Sensors schema may
import the state schema SystemState� Moreover� in the Sensors schema� redundancy mech�
anisms can be speci�ed� e�g�� the arrangement of several identical sensors and the derivation
of a unique value from a set of measured values of the same controlled variable�

Actuators b# !SystemState�$ output�% � AType�$ � � � $ outputM % � ATypeM j
hderivation of commandsi "

In the Actuators schema� the derivation of commands from the current internal system state�
i�e�� the state after the internal operation has terminated� is speci�ed�

Validation Condition ��� The only precondition� of the operation corresponding to a mode
is that the system is in that mode�

This condition requires that the speci�er not only takes the normal functioning of the system
into account� but also considers the situation where an inconsistency between the sensor values
and the internal system state is detected� We recommend to de�ne a consistency condition
for each operational mode and then de�ne the internal operation by case distinction on this
consistency condition�

Validation Condition ��� For each operational mode and each combination of sensor val�
ues there must be exactly one successor mode�

There must be at least one successor mode� because otherwise situations could arise that are
not taken care of by the speci�cation of the control component� The internal state would no
longer faithfully re�ect the external state� and safety could no longer be guaranteed�

There must be at most one successor mode� because otherwise the system would be non�
deterministic� Although determinism is not a necessary condition for safety� in the most cases
it will enhance comprehensibility of the speci�cation�

�The formal de�nition of a precondition in Z also includes the state invariant and the requirement that the
inputs are members of the speci�ed sets� These conditions� however� are preconditions of all operations working
on the system state and legal inputs� Therefore� we do not state them explicitly�

	� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Validation Condition ��� Each operational mode must be reachable from an initial state�

Unreachable modes indicate a speci�cation error� Either the mode is not necessary and
should be eliminated� or the mode transition relation � which results from the de�nition of
the internal operations � is erroneous�

Validation Condition ��� There must be no redundant modes�

There should be no two modes that cannot be distinguished� i�e� where the system behaves
identically� Eliminating redundant modes makes the speci�cation simpler and more compre�
hensible�

The central control operation de�ned in Z is a case distinction according to the operational
modes�

Step � De�ne the Z control operation�

For this operation� we give a schematic expression to be instantiated� By importing the
schemas Sensors and Actuators the operation has all inputs from the sensors at its disposition�
and it is guaranteed that all actuator commands are de�ned� The inputs and the current
operational mode determine the successor mode which is speci�ed by the internal operations
OpModeI �

ControlOperation
&SystemState
Sensors $ Actuators

mode #Mode�� OpMode�
� � � � �
mode #ModeK � OpModeK

This concludes the speci�cation of the functional view of the system using Z� It remains to
de�ne the behavior of the system using real�time CSP�

Step � Specify the control process in real�time CSP�

Again� we can provide schematic expressions to aid building the speci�cation� First� the
system must be initialized� establishing an initial state� If the initial state schema requires
sensor values� these have to be read �rst� We give the schematic expression for the case where
the initialization is performed with default values�

ControlComponent b# SystemInitExecution
 ControlComponentREADY

The behavior of the process ControlComponentREADY �see Figure ��
� is cyclic and is mod�
eled by a recursive process de�nition� Before invoking the control operation� all associated

���� The Passive Sensors Architecture 	�

input values are read from the respective sensor channels �sensor�� � � � � sensorN � in par�
allel� This is modeled using the parallel composition operator k� When the control op�
eration has terminated� all output values are written to the respective actuator channels
�actuator�� � � � � actuatorM � in parallel�

ControlComponentREADY b# �X �
��sensor��valueS�
 input�%valueS�
 Skip k � � � k
sensorN �valueSN
 inputN %valueSN
 Skip�$
ControlOperationInvocation
 ControlOperationTermination

�output��valueA�
 actuator�%valueA�
 Skip k � � � k
outputM �valueAM
 actuatorM %valueAM
 Skip�
k
Wait INTERVAL�$X

If the control operation is not time�critical� we can write ControlOperationExecution instead
of ControlOperationInvocation
 ControlOperationTermination�

The constant INTERVAL must be chosen small enough� so that it is guaranteed that the
internal system state is always su�ciently up�to�date�

The execution time of the process ControlComponentREADY is the maximum of the ex�
ecution time of the Z control operation and the constant INTERVAL� Since we want the
control operation to be executed every INTERVAL time units� we must state the requirement
that the execution time of the control operation is at most INTERVAL time units� We can
formally express this requirement by limiting the maximal time distance between the invo�
cation and the termination of the control operation to INTERVAL time units� Moreover�
the invocation of the control operation must be possible at any time� This is expressed as a
predicate EnvironmentalAssumption��

EnvironmentalAssumption b#
�
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j

�tr � ref � � timed failures
ControlComponent� �
SystemInitExecution open t �tr � ref � �
ControlOperationInvocation open t �tr � ref � �
ControlOperationInvocation at t �tr � ref �� �� t � � �t � t ' INTERVAL" �

 t �� � !t �� t ' INTERVAL" � ControlOperationTermination open t ���tr � ref ���

Furthermore� we require that each sensor is always able to send a measured value to the
controller and that each actuator is always able to receive an arbitrary command from the
controller�

�Recall that the environment of the real�time CSP process consists of the sensors and actuators and the Z part
of the speci�cation�

		 Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

SensorActuatorAssumption b#
�
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j

�tr � ref � � timed failures
ControlComponent� �
�� value � SType� � sensor��value open t �tr � ref �� �
� � �
�� value � STypeN � sensorN �value open t �tr � ref ��
�
�
 value � AType� � actuator��value open t �tr � ref �� �
� � �
�
 value � ATypeM � actuatorM �value open t �tr � ref ���

To summarize� the speci�cation of the control process in real�time CSP consists of the
de�nition of the process ControlComponent and the behavioral speci�cations Environmental �
Assumption and SensorActuatorAssumption� We see that both styles of specifying behavior
in real�time CSP �as process terms and as predicates� are useful and should be combined as
appropriate�

Step � Specify further requirements if necessary�

Additional requirements depending on particular applications can be stated in this step�

����� Example	 The Inert Gas System

The following case study is a variant of a speci�cation problem used in �McDermid and
Pierce� ������ The software controller of an inert gas release system� which is operated from
the control room of a plant� is to be speci�ed� The task of this system is to detect �re in
one of the machine rooms of the plant and to extinguish a detected �re with the help of inert
gas� The sensors are passive� always allowing the controller to request the current value of
the controlled process variable� The only control operation is executed at equidistant time
instants�

Step �� Model the sensors values and actuator commands as members of Z types

To detect the event of a �re in a certain machine room� the software controller of the inert
gas system makes use of two redundantly arranged sensors ��re detector��� �re detector���
that are able to detect the presence of smoke� The controller only assumes the existence of
�re if both sensors report smoke simultaneously� This redundancy mechanism will be de�ned
in Step �� The gas sensor �gas detector�� serves to observe if inert gas really escapes into the
machine room after the gas release has been initiated� Thus� it realizes feedback control� For
these sensors� we de�ne the type DETECTION STATUS �

There are two banks of extinguishant� bank A and bank B� By means of a bank selector
switch �bank selector�� within the control room� the operator is able to select one of them
or to deselect both by choosing the INHIBIT position of the switch� This yields the type
BANK SELECTOR STATUS �

Inside the control room there is an inhibit switch �inhibit button��� which � if in the inhibit
position � prevents a �re alarm being automatically triggered somewhere in the plant� The

���� The Passive Sensors Architecture 	�

INCONSIST-
ENCY

RELEASE
SUCCEDED

Figure ���� Operational modes of inert the gas system

operator can by�pass such a global inhibit by pressing the request button �request button���
Moreover� the operator can abort the release of gas and reset the inert gas system at any
time by pressing the reset button situated in the control room �reset button��� The states of
buttons are modeled by the type BUTTON STATUS �

The controller guides the escape of inert gas from the two banks by means of two actuators
�release bank A%� release bank B %�� Their status is captured by the type OPEN CLOSED �
To inform the persons in the machine room that a release of gas will take place soon� that a
release of gas is currently happening� that a release has taken place recently� or that a gas leak
was detected� a warning light �warning light %� can change between the states ON � OFF � and
FLASHING � The warning beeper �warning beeper %� serves a similar purpose acoustically�

This yields the following type de�nitions�

DETECTION STATUS ��# DETECTION j NO DETECTION

BANK SELECTOR STATUS ��# BANK A j BANK B j INHIBIT

BUTTON STATUS ��# PRESSED j NOT PRESSED

OPEN CLOSED ��# OPEN j CLOSED

LIGHT STATUS ��# ON j OFF j FLASHING

BEEP STATUS ��# BEEPING j NOT BEEPING

Step �� Decide on the operational modes of the system

The operational modes of the inert gas system are de�ned in the following data type MODE
and the possible transitions between them are depicted in Figure ����

MODE ��# NORMAL j AUTOMATIC REQUESTED
j WARNING j RELEASE INITIATED j RELEASE FAILED
j RELEASE SUCCEEDED j INCONSISTENCY

	� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Step �� De�ne the internal system states and the initial states

We de�ne the abstract states of the software controller in the schema InertGasSystem� The
main component is the state variable mode representing the current operational mode� Fur�
thermore� the controller must have at its disposal two timer components which are initialized
with the duration of the warning period or the checking period and subsequently decrease
their values until reaching zero� Hence� we need some more global de�nitions before we can
de�ne the state schema�

The constant WARNING DURATION represents the duration of an interval after an
automatic or manual request during which the persons in the machine room are warned
before the release of inert gas actually takes place� The duration of the period during which
the system tries to detect escaping gas after the initiation of gas release before assuming a
failure is represented by the constant CHECK DURATION � Finally� the length of the time
interval between two consecutive executions of the control operation is characterized by the
constant EXECUTION INTERVAL�

WARNING DURATION � ��
CHECK DURATION � ��
EXECUTION INTERVAL � ��

WARNING DURATION mod EXECUTION INTERVAL # �
CHECK DURATION mod EXECUTION INTERVAL # �

It is required that the warning and check durations are multiples of the time distance between
two consecutive executions of the control operation�

The timer components are represented by the state variables warning timer and check �
timer � respectively� The other state components de�ne the current states of the actuators
as assumed by the controller�

InertGasSystem
mode �MODE
warning timer � � � �WARNING DURATION
release check timer � � � �CHECK DURATION
release bank A� release bank B � OPEN CLOSED
warning light � LIGHT STATUS
warning beeper � BEEP STATUS

mode �# RELEASE INITIATED �
release bank A # release bank B # CLOSED

mode #WARNING � warning timer � �
mode # RELEASE INITIATED � release check timer � �

� warning light # ON
mode �� fWARNING �RELEASE INITIATED � INCONSISTENCYg

� warning light # OFF
warning light # FLASHING � mode � fWARNING � INCONSISTENCYg

mode # NORMAL� warning beeper # NOT BEEPING

Only in the mode RELEASE INITIATED a release of gas from bank A or bank B is possible
if the selector switch is in the corresponding position� The warning timer is only set �i�e�

���� The Passive Sensors Architecture 	

has a strictly positive value� in the mode WARNING � and the release check timer is only set
in the mode RELEASE INITIATED � The warning light is ON when inert gas is released�
and it is �ashing in the warning period before the gas release and in the INCONSISTENCY
mode� The warning beeper is always beeping outside the NORMAL mode�

The initial operational mode of the system is the NORMAL mode�

InertGasSystemInit
InertGasSystem �

mode� # NORMAL

We now have to show some validation conditions� As already mentioned� condition ���
is a matter of judgment� As required by validation condition ���� the state schema contains
the variable mode corresponding to the operational mode of the system� Since the purpose
of the whole system is to detect unsafe situations in the plant and to deal with these� the
safety�related requirements coincide with the functional requirements� Hence� condition ��� is
trivially satis�ed� The initialization of the system with the NORMALmode is consistent with
the state invariant� Therefore� validation condition ��
 is ful�lled� It is safe to initialize the
system in this way� because a possible �re during initialization of the system will be detected
as soon as the �rst sensor values are delivered� Hence� validation condition ��� is also satis�ed�

Step 	� Specify an internal Z operation for each operational mode

As recommended� we �rst de�ne schemas for the sensors and actuators� where we use the
names for the sensors and actuators as introduced in Step ��

There is a consistency condition between the current state of the controller� i�e� the current
operational mode� and the incoming sensor values� An inconsistency exists if and only if the
controller is not in the mode RELEASE INITIATED �and consequently not releasing inert
gas� but the gas sensor is reporting the detection of escaping gas� This is represented by the
component consistency � This condition allows the controller to detect leaks in the gas banks�
To de�ne consistency � we need the type YES NO �

YES NO ��# YES j NO

Sensors
InertGasSystem
bank selector� � BANK SELECTOR STATUS
request button� � BUTTON STATUS
reset button� � BUTTON STATUS
inhibit button� � BUTTON STATUS
�re detector��� �re detector�� � DETECTION STATUS
gas detector� � DETECTION STATUS
�re detector � DETECTION STATUS
consistency � YES NO

�re detector # DETECTION �
�re detector�� # �re detector�� # DETECTION

consistency # NO �
mode �# RELEASE INITIATED � gas detector� # DETECTION

	� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

All outputs of the system are collected in the Actuators schema� The operator of the inert
gas system is informed about the state of the system �mode%��

Actuators
InertGasSystem �

release bank A%� release bank B % � OPEN CLOSED
warning light % � LIGHT STATUS
warning beeper % � BEEP STATUS
mode% �MODE

release bank A% # release bank A�

release bank B % # release bank B �

warning light % # warning light �

warning beeper % # warning beeper �

mode% # mode�

We are now able to de�ne the operations for the modes shown in Figure ��� one by one�

Under normal environmental conditions� i�e�� if there has been no �re detection by the
sensors and no manual request by the operator� the controller is in the mode NORMAL� No
inert gas is released� and the visual or auditory signals are switched o	�

OpNormal
&InertGasSystem
Sensors $ Actuators

mode # NORMAL

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED �

�request button� # PRESSED � mode� #WARNING� �
�request button� # NOT PRESSED �

��re detector # DETECTION �
mode � # AUTOMATIC REQUESTED� �

��re detector # NO DETECTION � mode� # NORMAL����

If both redundantly arranged sensors report the detection of smoke� the controller changes
to the mode AUTOMATIC REQUESTED � If the request button is pressed in the mode
NORMAL there is a transition into the mode WARNING � If the reset button is pressed� a
transition from any mode to the mode NORMAL is the consequence�

In the case of an automatic request� the WARNING mode can only be entered if the
global inhibit switch is not set�

���� The Passive Sensors Architecture 	�

OpAutomaticReq
&InertGasSystem
Sensors $ Actuators

mode # AUTOMATIC REQUESTED

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED �

�inhibit button� # PRESSED � mode� # AUTOMATIC REQUESTED� �
�inhibit button� # NOT PRESSED �

mode� #WARNING � warning timer � #WARNING DURATION ���

In the modeWARNING which lasts exactlyWARNING DURATION time units� the warning
light is �ashing to inform the persons in the machine room about the following release of
inert gas to give them the possibility to leave the danger area� After this warning period has
elapsed� there is a transition into the mode RELEASE INITIATED � At each execution of
the control operation in the mode WARNING � the warning timer either has to be reduced
by EXECUTION INTERVAL or� if the controller leaves the WARNING mode� has to be set
to zero to ful�ll the state invariant�

OpWarning
&InertGasSystem
Sensors $ Actuators

mode #WARNING
�warning timer � # warning timer � EXECUTION INTERVAL

� warning timer � # ��
�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED �

�warning timer � EXECUTION INTERVAL � ��
mode� #WARNING� �

�warning timer � EXECUTION INTERVAL # ��
mode� # RELEASE INITIATED �
�release bank A� # OPEN � bank selector� # BANK A� �
�release bank B � # OPEN � bank selector� # BANK B� �
release check timer � # CHECK DURATION ���

In the RELEASE INITIATED mode� inert gas is released either from bank A or bank B� or
no gas is released if the bank selector switch is in the INHIBIT position� The alarm light is
ON to indicate the potential danger� During a period of CHECK DURATION time units
it is tested if inert gas is indeed escaping into the machine room� The detection of escaping
gas by the respective sensor will cause a transition into the mode RELEASE SUCCEEDED �
If there is no gas detection within this period� a change into the mode RELEASE FAILED
results� At each execution of the control operation in the mode RELEASE INITIATED the

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

check timer either has to be reduced by EXECUTION INTERVAL or� if the controller leaves
the RELEASE INITIATED mode� has to be set to zero to ful�ll the state invariant�

OpReleaseInitiated
&InertGasSystem
Sensors $ Actuators

mode # RELEASE INITIATED
�release check timer � # release check timer � EXECUTION INTERVAL

� release check timer � # ��
�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED �

�gas detector� # DETECTION � mode� # RELEASE SUCCEEDED� �
�gas detector� # NO DETECTION �

�release check timer � EXECUTION INTERVAL � ��
mode � # RELEASE INITIATED �
release bank A� # release bank A �
release bank B � # release bank B� �

�release check timer � EXECUTION INTERVAL # ��
mode � # RELEASE FAILED����

Being in the mode RELEASE FAILED indicates that either the chosen bank is empty or
defective or that the bank selector switch is in the INHIBIT position� Therefore the operator
must have the possibility to change the selector position and to repeat the process of gas
release� This is done by pressing the request button� which causes a transition into the mode
WARNING �

OpReleaseFailed
&InertGasSystem
Sensors $ Actuators

mode # RELEASE FAILED

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED �

�request button� # PRESSED � mode� #WARNING� �
�request button� # NOT PRESSED � mode� # RELEASE FAILED���

The system stays in mode OpReleaseSucceeded until the reset button is pressed or an
inconsistency between the internal system state and the sensor values is detected�

���� The Passive Sensors Architecture ��

OpReleaseSucceeded
&InertGasSystem
Sensors $ Actuators

mode # RELEASE SUCCEEDED

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED � mode� # RELEASE SUCCEEDED��

If the controller notices an inconsistency in an arbitrary mode it immediately changes to
the mode INCONSISTENCY � No inert gas is released in this mode and the �ashing warning
light and warning beep alert the persons in the machine room�

OpInconsistency
&InertGasSystem
Sensors $ Actuators

mode # INCONSISTENCY

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED � mode� # INCONSISTENCY��

Analysis of these schemas shows that they all contain case distinctions according to the
consistency of the internal state with the sensor values and the environmental conditions as
represented by the sensor values� Hence� validation conditions
�� and
�� are easily veri�ed�
Inspection of the Z operations also shows that they faithfully represent the state transition
diagram of Figure ���� Therefore� conditions
�� and
�
 are also ful�lled�

Step �� De�ne the Z control operation

This step simply consists of the instantiation of the generic schema given in the agenda�

ControlOperation
&InertGasSystem
Sensors $ Actuators

mode # NORMAL� OpNormal
mode # AUTOMATIC REQUESTED � OpAutomaticReq
mode #WARNING � OpWarning
mode # RELEASE INITIATED � OpReleaseInitiated
mode # RELEASE FAILED � OpReleaseFailed
mode # RELEASE SUCCEEDED � OpReleaseSucceeded
mode # INCONSISTENCY � OpInconsistency

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Step �� Specify the control process in real�time CSP

According to Step � of the agenda� we get the top�level process

ControlComponent b# InertGasSystemInitExecution
 ControlComponentREADY

The de�nition of the process ControlComponentREADY also follows the schematic expression
given on page
� �in the version with a single event ControlOperationExecution�� with the mi�
nor syntactic di	erence that we de�ne separate processes SensorInputs and ActuatorOutputs �

ControlComponentREADY b# �X �
�SensorInputs $
�ControlOperationExecution

ActuatorOutputs�
k
Wait EXECUTION INTERVAL�$ X

The process SensorInputs speci�es the reading of sensor values before executing of the control
operation� All sensor values are read in parallel from the corresponding communication
channels� These values are subsequently written to the channels having the identical names
as the inputs of the operation schema�

SensorInputs b#
bank selector sensor�bs status
 bank selector %bs status
 Skip

k
request button sensor�rq status
 request button%rq status
 Skip

k
reset button sensor�rs status
 reset button%rs status
 Skip

k
inhibit button sensor�ib status
 inhibit button%ib status
 Skip

k
�re detector� sensor�fd� status
 �re detector�%fd� status
 Skip

k
�re detector� sensor�fd� status
 �re detector�%fd� status
 Skip

k
gas detector sensor�gd status
 gas detector %gd status
 Skip

The process ActuatorOutputs is de�ned analogously�

ActuatorOutputs b#
release bank A�rbA status
 release bank A actuator %rbA status
 Skip

k
release bank B�rbB status
 release bank B actuator %rbB status
 Skip

k
warning light�wl status
 warning light actuator %wl status
 Skip

k
warning beeper�wb status
 warning beeper actuator %wb status
 Skip

k
mode�m status
 mode output %m status
 Skip

���� The Passive Sensors Architecture ��

As prescribed in the agenda� we de�ne a predicate EnvironmentalAssumption concerning
the environment� We require that the control operation and the initialization operation may
be executed at arbitrary time instants by the controller�

EnvironmentalAssumption b#
�
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j

�tr � ref � � timed failures
ControlComponent� �
InertGasSystemInitExecution open t �tr � ref � �
ControlOperationExecution open t �tr � ref ��

To express the assumption that each sensor is always able to send a measured value to
the controller and that every actuator is always able to receive an arbitrary command from
the controller� we again instantiate the schematic expression given in the agenda�

SensorActuatorAssumption b#
�
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j

�tr � ref � � timed failures
ControlComponent� �
�� value � BANK SELECTOR STATUS �

�bank selector sensor �value� open t �tr � ref �� �
�� value � BUTTON STATUS � �request button sensor �value� open t �tr � ref �� �
�� value � BUTTON STATUS � �reset button sensor �value� open t �tr � ref �� �
�� value � BUTTON STATUS � �inhibit button sensor �value� open t �tr � ref �� �
�� value � DETECTION STATUS � ��re detector� sensor �value� open t �tr � ref �� �
�� value � DETECTION STATUS � ��re detector� sensor �value� open t �tr � ref ��
�
�
 value � OPEN CLOSED � �release bank A actuator �value� open t �tr � ref �� �
�
 value � OPEN CLOSED � �release bank B actuator �value� open t �tr � ref �� �
�
 value � LIGHT STATUS � �warning light actuator �value� open t �tr � ref �� �
�
 value � BEEP STATUS � �warning beeper actuator �value� open t �tr � ref �� �
�
 value �MODE � �mode actuator �value� open t �tr � ref ���

This concludes the speci�cation of the inert gas system� Step � is not necessary� This example
shows that � once a suitable architecture and the necessary operating modes are chosen � the
speci�cation can be set up in a fairly routine way�

Further validation of the speci�cation

Apart from the general validation criteria� we state safety�related and liveness properties
following from the speci�cation�

The speci�cation guarantees the following safety�related properties�

�� Gas leaks are detected and result in an alarm�

�� A gas release can only take place if both of the smoke sensors detect smoke�

�� If a �re is detected� the persons in the danger area have WARNING DURATION time
units to be evacuated before gas is released� They are visually and acoustically warned
during that time�

�	 Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

� If a �re is detected but the release of gas is not successful� this can be noticed by the
operator after CHECK DURATION time units�

The speci�cation guarantees the following liveness properties�

�� After an unsuccessful gas release� the operator can change the bank selector switch and
manually try to release gas�

�� The system can be brought back to normal operation at any time by pressing the reset
button�

�� At every time instant the operator is able to by�pass a global inhibit �inhibit button is
set� for a certain machine room by pressing the corresponding request button for this
room�

We do not give proofs of these properties here because they follow directly from the speci��
cation�

��
 The Active Sensors Architecture

This architecture models systems with only active sensors� i�e�� all sensors control a certain
variable of the technical process and independently report certain changes of the controlled
variable to the control component at arbitrary time instants� Such a report immediately
triggers the execution of a handling operation within the control component�

internal
system
state

actuator commands

real-time CSP

Z

au
xi

lia
ry

 p
ro

ce
ss

es

sensor events

Priority

EventOpNExecution

EventOp2Execution

EventOp1Execution

Interface Control

EventOp1

EventOp2

EventOpN

prioritized events

Figure ��
� Software Control Component for Active Sensors Architecture

Figure ��� shows the structure of a software control component associated with the active
sensors architecture� The CSP part of such a control component consists of three parallel pro�
cesses� A Priority process receives the sensor events from the environment� If several events
occur at the same time� this process de�nes which of these events is treated with priority�
Depending on the prioritized events passed on from the Priority process� an InterfaceControl
process invokes a Z operation to update the internal state of the software controller� The Z

��	� The Active Sensors Architecture ��

operations do not correspond to operational modes� as in the passive sensors architecture�
but to events that cause transitions between internal modes� The InterfaceControl process
is also responsible for sending actuator commands to the environment� Finally� there may
be auxiliary processes that interact only with the InterfaceControl process� not with the en�
vironment or with the Priority process� The parallel composition of the auxiliary processes
forms the third subprocess of the control component�

The active sensors architecture is suitable for systems whose purpose is di	erent from
merely ensuring safety of a technical process by monitoring it� but which continuously have
to react to user commands or other stimuli from the environment� Examples are elevators
�S�uhl� ������ microwave ovens �Heisel� ����a�� or the gas burner presented in Section ��
���

As for the passive sensors architecture� we �rst give an agenda and then� following the
agenda� we specify an example system�

����� Agenda

An overview of the agenda is given in Table ���� The dependencies between the steps are
shown in Figure ���� Steps
 and � are drawn in the same box because they both depend on
Steps ���� Step � depends only on Step
� whereas Step � depends on Steps
� �� and �� Step
� depends on Steps �� � and ��

109

8

11 12

2

1

3

5 7

6, 4

Figure ���� Dependencies of steps

Step � Model the sensors as CSP events or members of Z types�

In the active sensors architecture� sensors trigger operations of the control component� If
a sensor carries a measured value� it is modeled as in the passive sensors architecture� If a
sensor just carries boolean information �i�e�� something happens or not�� it is modeled as a
CSP event� without a corresponding communication channel� This step yields a set of events
External Events � If a sensor delivers values of type T over communication channel c� then
the set External Events contains events of the form c�v � for all v � T �

Step � Decide on auxiliary processes�

One can regard these auxiliary processes as subcomponents of the controller that do not need
a state� Examples are timers that are controlled by the software component� and beepers
that have to beep for a number of time units� and are automatically switched o	 afterwards�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

No� Step Validation Condition

� Model the sensors as CSP events or
members of Z types�

� Decide on auxiliary processes�

� Decide on the operational modes of
the system and the initial modes�

 Set up a mode transition relation�
specifying which events relate which
modes�

All events identi�ed in Step � and all
modes de�ned in Step � must occur in
the transition relation�
The omission of a successor mode for a
mode�event pair must be justi�ed�
All modes must be reachable from an
initial mode� and there must be no re�
dundant modes�

� Model the actuator commands as
members of Z types or CSP events�

� De�ne the internal system states
and the initial states�

The internal system state must be an
appropriate approximation of the state
of the technical process�
Each legal state must be safe�
There must exist legal initial states�
For each initial internal state� the con�
troller must be in an initial mode�

� Specify a Z operation for each event
that can cause a mode transition�

These operations must be consistent
with the mode transition relation�

� De�ne the auxiliary processes iden�
ti�ed in Step ��

The alphabets of these processes must
not contain external events or events
related to the Z part of the speci�ca�
tion�

� Specify priorities on events if neces�
sary�

The priorities must not be cyclic�

�� Specify the interface control pro�
cess�

All prioritized external events and all
internal events must occur as initial
events of the branches of the interface
control process�
The interface control process must be
deterministic�
The preconditions of the invoked Z op�
erations must be satis�ed�

�� De�ne the overall control process� The auxiliary processes must communi�
cate with the interface control process�

�� De�ne further requirements or envi�
ronmental assumptions if necessary�

Table ���� Agenda for the active sensors architecture

��	� The Active Sensors Architecture �

The events that are used in the auxiliary processes to communicate with the rest of the
control component must be de�ned� For timers� these usually are the events start timer � stop�
timer and timer elapsed � This step yields a set of events Internal Events �

Step � Decide on the operational modes of the system and the initial modes�

This step resembles Step � of the passive sensors architecture� with the di	erence that the
modes must be identi�ed in which the controller can be initialized� If possible� a fail�safe mode
should be de�ned� This step yields an enumeration type MODE as in the passive sensors
architecture�

Step � Set up a mode transition relation� specifying which events relate which modes�

This transition relation can be de�ned in Z� or it can be given as a state transition diagram�
For each operational mode m and each event e �which can be internal or external�� it must
be decided on the successor modes that are possible when event e occurs in mode m� It
should also be speci�ed what happens when the sensors report an event that normally cannot
happen in the respective mode �e�g�� if the operational mode assumes a door to be open� but
the open door occurs�� Hence� the mode transition relation should be made as complete as
possible� and a justi�cation should be given� if for a pair �m� e� no successor mode is de�ned�

Validation Condition ��� All events identi�ed in Step 	 and all modes de�ned in Step

must occur in the transition relation�

Validation Condition ��� The omission of a successor mode for a mode�event pair must
be justi�ed�

Furthermore� all modes should be necessary�

Validation Condition ��� All modes must be reachable from an initial mode� and there
must be no redundant modes�

No matter if it is directly expressed in Z or given as a state transition diagram� Step
 yields
a relation

transition � �MODE � �External Events � Internal Events���MODE

to which we will refer in the following�

Step � Model the actuator commands as members of Z types or CSP events�

Those commands that are not determined by Z operations must be modeled as events� The
others are modeled as members of Z types� as in the passive sensors architecture�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Step � De�ne the internal system state and the initial state�

This step can be performed in the same way as for the passive sensors architecture� We also
have the same validation conditions� plus the condition that the initial internal states must
correspond to some initial mode�

Validation Condition ��� The internal system state must be an appropriate approximation
of the state of the technical process�

Validation Condition ��� Each legal state must be safe�

Validation Condition ��� There must exist legal initial states�

Validation Condition ��� For each initial internal state� the controller must be in an initial
mode�

Step � Specify a Z operation for each event that can cause a mode transition�

In contrast to the passive sensors speci�cation� we have several externally available Z op�
erations� They do not correspond to the operational modes but to the events that cause
transitions between them� i�e�� to the events e � ran�dom transition� of the transition func�
tion de�ned in Step
� If �m�� e� and �m�� e� for m� �# m� are both in dom transition� it
su�ces to de�ne one operation that treats the occurrence of event e�

As in the passive sensors architecture� it is useful to de�ne a schema Actuators that
speci�es how the actuator commands that are determined by Z operations are derived from
the internal state� Since the sensors are no longer necessarily modeled as Z types� it is possible
that the Z operations import only the state and the actuator schemas�

Validation Condition ��� These operations must be consistent with the state transition
relation�

The precondition of the operation corresponding to event e must be true for all operational
modes m with �m� e� � dom transition� Furthermore� the successor states de�ned in the
operation must be consistent with the state transition relation�

Step
 De�ne the auxiliary processes identi�ed in Step ��

This step can be performed by de�ning process terms or by specifying predicates that restrict
the behavior of the respective processes� Timers can be de�ned as processes beginning with
a start timer event� followed by aWait process and a timer elapsed event� This process can
be interrupted at any time by a stop timer event�

Timer b# �X �
�start timer
Wait duration$ timer elapsed
 X � � �stop timer
 X �

The auxiliary processes should neither receive external sensor messages nor invoke Z op�
erations or depend on the internal system state� They should exclusively interact with the
InterfaceControl process� see Figure ����

��	� The Active Sensors Architecture ��

Validation Condition
�� The alphabets of these processes must not contain external events
or events related to the Z part of the speci�cation�

Step � Specify priorities on events if necessary�

To determine if priorities are necessary� we have to analyze the state transition diagram� If
more than one event can occur at the same time when the system is in a certain operational
mode� it must be decided how the system reacts when several events occur simultaneously�
Usually� the event with the highest importance for safety will be treated� whereas the other
ones will be ignored�

Technically� this means to de�ne derived events and a process Priority that relates the
original events with the derived ones�� If we have a high priority event high and a low priority
event low � then the system will only react to the event low if high does not occur at the same
time� Therefore� an event excl low is derived that occurs at time t exactly when low but not
high occurs at time t �

	Priority b# fhigh� low � excl lowg

Priority sat
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j
�tr � ref � � timed failures
Priority� �

high live t �tr � ref � � low live t �tr � ref � �
�excl low live t �tr � ref �� low at t �tr � ref � � � high at t �tr � ref ��

This de�nition can easily be extended for several events of lower or higher priority� or several
degrees of priority� Basically� Priority implements a partial order on events�

Validation Condition ��� The priorities must not be cyclic�

Step �� Specify the interface control process�

The interface control process handles the prioritized events coming from the sensors� Accord�
ing to the internal or external events that occur� it triggers the execution of Z operations
and sends events to actuators or auxiliary processes� The syntactic form of the process is an
external choice of prioritized events� Each branch of the external choice should be robust� i�e��
if the sensors send signals that contradict the internal state of the system� then the system
must handle the faulty situation consistently with the state transition relation of Step
�

�This approach to handling priorities was developed by C� S�uhl�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

The interface control process that is executed after the system is initialized can be de�ned
by

InterfaceControlREADY b# �X �
event�

if hconsistency conditioni
then hexecute event� � Z � operationi hsend eventsi$ X
else hemergency shutdowni hsend eventsi$ Stop �

�

event�
 � � �
�

� � �

�

eventn
 � � �

This form is only possible if there is a fail�safe state� Then the system can shut down when
an inconsistency is detected�

All branches are de�ned similarly� If a branch consists exclusively of events �which
take no time�� Wait processes must be introduced to model the time one execution of the
InterfaceControlREADY takes�

To express the consistency conditions� predicates on the current internal system state
must be de�ned in Z�

The following validation conditions relate the results of di	erent steps of the agenda�

Validation Condition ���� All prioritized external events and all internal events must oc�
cur as initial events of the branches of the interface control process�

To check this condition� the results of Steps � and � have to be considered�

Validation Condition ���� The interface control process must be deterministic�

This validation condition was already explained in Section ���� In Step �� derived events
were de�ned that guarantee that none of the events that guard the external choice can occur
simultaneously�

Validation Condition ���� The preconditions of the invoked Z operations must be satis�ed�

This is guaranteed by appropriate consistency conditions guarding the invocation of the Z
operations in the interface control process� Moreover� we must check that in each branch of
the interface control process the Z operation corresponding to the respective event� as de�ned
in Step �� is invoked�

Step �� De�ne the overall control process�

The process combines the processes de�ned in Steps �� � and ��� Let Aux�� � � � �Auxk be the
auxiliary processes de�ned in Step �� Then

��	� The Active Sensors Architecture ��

ControlComponent b# �InterfaceControl k Aux� k � � � k Auxk � n Internal Events

InterfaceControl b# SystemInitExecution

�InterfaceControlREADY k Priority� n

�	Priority n �External Events � Internal Events��

where SystemInitExecution establishes an initial internal system state� The internal events
are hidden from the environment� and the prioritized events newly introduced in the alphabet
of the Priority process are hidden from the the other components of the controller �and hence
from the environment��

Validation Condition ���� The auxiliary processes must communicate with the interface
control process�

Technically� this means that the alphabets of �Aux� k � � � k Auxk � and InterfaceControl have
a non�empty intersection�

Step �� De�ne further requirements or environmental assumptions if necessary�

Usually� these will be assumptions on the environment and real�time requirements on the
execution time of Z operations�

����� Example	 A Gas Burner

The speci�cation of the software controller of a gas burner illustrates the active sensors
architecture� The speci�cation is a simpli�ed version of the case study presented by Ravn et
al� �Ravn et al�� ������ There are two actuators� The gas actuator controls the emission of
gas and receives commands to start or stop emitting gas at arbitrary time instants from the
controller� The ignition actuator can ignite escaping gas at arbritrary time instants� There are
two sensors� The thermometer sensor measures the temperature in the vicinity of the burner
and actively reports to the controller decreases below and increases above certain points�
indicating a disappearance or an appearance of the �ame� respectively� Users can request
the controller to activate or deactivate the burner via the thermostat sensor� These sensor
reports cause an immediate reaction of the controller� The gas burner system is safety critical�
because a persistent escape of unburned gas or a failure to realize a request to deactivate the
�ame can lead to major accidents�

Step �� Model the sensors as CSP events or members of Z types�

According to the informal description of the system� the controller must react to the following
external events� the �rst two coming from the thermostat� the other two generated by the
thermometer sensor�

External Events # fheat o� request � heat on request ��ame on��ame o� g

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Step �� Decide on auxiliary processes�

For safety reasons� we need two timers� First� a user�s request to start the gas burner may
be served only after a delay of DELAY DURATION time units to ensure that two di	er�
ent attempts to ignite gas are su�ciently separated� Secondly� after the controller has tried
to activate the burner by starting the emission of gas and activating the ignition� it must
be checked whether or not the ignition was successful� because a persistent escape of un�
burned gas is dangerous to the environment� The second timer produces an alarm event after
CHECK DURATION time units� unless a �ame is detected and the timer is reset� As a
result of this step� we have

Internal Events # fstart timer�� stop timer�� timer� elapsed �
start timer�� stop timer�� timer� elapsedg

Steps �� Decide on the operational modes of the system and the initial modes�

The operational modes are de�ned by the type

MODE ��# IDLE j DELAY j IGNITION j BURNING j SHUT DOWN

The initial mode will be mode IDLE �

Step 	� Set up a mode transition relation� specifying which events relate which modes�

The possible mode transitions are illustrated in Figure ����

IDLE

DELAYBURNING

IGNITION

heat_on
request

heat_off
request

flame_on

flame_off

timer2
elapsed

timer1
elapsed

SHUT
DOWN

BurnerActivated
BurnerOperational

Figure ���� Mode transitions of gas burner

In the IDLE mode the controller waits for an activation request without emitting or
igniting gas� With an activation request the controller changes to the DELAY mode� waiting
for DELAY DURATION time units� This delay is realized by a process Timer� identi�ed
in Step �� After changing to mode IGNITION � the controller tries to activate the burner by
starting the emission of gas and activating the ignition source� Timer� is set� If a �ame is
detected within CHECK DURATION time units� the controller changes to the BURNING

��	� The Active Sensors Architecture ��

mode in which gas further escapes but the source of ignition is switched o	� Otherwise the
controller returns to the IDLE mode� When the �ame disappears in the BURNING mode� the
controller changes to the IDLE mode� Furthermore� a request to deactivate the gas burner
causes a change to the IDLE mode from every other mode with priority� Each event not
explicitly shown in the diagram causes the system to enter the SHUT DOWN mode�

The validation conditions
�� through
�� can easily be checked� All members of External �
Events and MODE occur in Figure ���� and for each mode�event pair� a successor mode is
de�ned� Each mode can be reached and is distinguished from the others�

Step �� Model the actuator commands as members of Z types or CSP events�

The commands to the actuators depend on the operational mode of the gas burners and
hence will be determined by Z operations� Therefore� the actuator commands are modeled as
members of Z types� Since both commands are binary� one type for both actuators su�ces�

YES NO ��# YES j NO

Step �� De�ne the internal system states and the initial states�

The abstract internal system state of the gas burner controller is speci�ed by the schema
GasBurner � There is one major system variable mode representing the current operational
mode� The other system variables gas � ignition� and �ame can be deduced from this system
variable�

GasBurner
mode �MODE
gas � ignition��ame � YES NO

gas # YES � mode � fIGNITION �BURNINGg
�ame # YES � mode # BURNING
ignition # YES � mode # IGNITION

After initialization the controller is in the IDLE mode�

GasBurnerInit b# !GasBurner � j mode� # IDLE "

Only the speci�er can assert that condition ��� is ful�lled� Since the safety conditions for
the gas burner cannot be expressed statically but only with respect to the duration of certain
conditions� validation condition ��� is vacuously ful�lled �the state at one time instant cannot
be unsafe�$ we will prove a safety property later� Since the initial state is consistent with
the state invariant and puts the system into the IDLE mode� which was distinguished as the
initial mode� validation conditions ��� and ��
 are satis�ed�

Step
� Specify a Z operation for each event that can cause a mode transition�

We start with the de�nition of the Actuators schema� The commands to the actuators can
directly be deduced from the current internal system state�

�	 Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Actuators
GasBurner �

gas %� ign% � YES NO

gas % # gas � � ign% # ignition�

The system operations are straightforward� They follow the state transition diagram of Figure
����

HeatOnRequest b# !&GasBurner $ Actuators j mode # IDLE � mode� # DELAY "

HeatO�Request b# !&GasBurner $ Actuators j
mode � fDELAY � IGNITION �BURNINGg � mode� # IDLE "

Ignition b# !&GasBurner $ Actuators j mode # DELAY � mode� # IGNITION "

IgnitionOK b# !&GasBurner $ Actuators j mode # IGNITION � mode � # BURNING "

IgnitionFailure b# !&GasBurner $ Actuators j mode # IGNITION � mode� # IDLE "

FlameFailure b# !&GasBurner $ Actuators j mode # BURNING � mode� # IDLE "

ShutDown b# !&GasBurner $ Actuators j mode� # SHUT DOWN "

These mode transitions are consistent with the state transition diagram of Figure ���� as
required in validation condition ����

Step �� De�ne the auxiliary processes identi�ed in Step ��

We de�ne two timers according to the schematic de�nition of Step �� page ���

	Timer� b# fstart timer�� stop timer�� timer� elapsedg
	Timer� b# fstart timer�� stop timer�� timer� elapsedg

Timer� b# �X �
�start timer�
 Wait DELAY DURATION $ timer� elapsed
 X �

� �stop timer�
 X �

Timer� b# �X �
�start timer�
 Wait CHECK DURATION $ timer� elapsed
 X �

� �stop timer�
 X �

where

DELAY DURATION �CHECK DURATION � ��

DELAY DURATION � CHECK DURATION

The alphabets of the timers do not contain any event of the set External Events or any events
related to the Z part of the speci�cation� Hence� validation condition ��� is ful�lled�

��	� The Active Sensors Architecture ��

Step �� Specify priorities on events if necessary�

The request to turn o	 the �ame has priority over all other events� The events heat o� request
and heat on request cannot occur simultaneously� because they are signals of the same sensor�
Hence� we get the following Priority process�

	Priority b# fheat o� request ��ame on��ame o� � timer� elapsed � timer� elapsed �
excl �ame on� excl �ame o� � excl timer� elapsed � excl timer� elapsedg

Priority sat
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j
�tr � ref � � timed failures
Priority� �

heat o� request live t �tr � ref � �
�ame on live t �tr � ref � � �ame o� live t �tr � ref � �
timer� elapsed live t �tr � ref � � timer� elapsed live t �tr � ref �
�
�excl �ame on live t �tr � ref ��

�ame on at t �tr � ref � � � heat o� request at t �tr � ref �� �
�excl �ame o� live t �tr � ref ��

�ame o� at t �tr � ref � � � heat o� request at t �tr � ref �� �
�excl timer� elapsed live t �tr � ref ��

timer� elapsed at t �tr � ref � � � heat o� request at t �tr � ref �� �
�excl timer� elapsed live t �tr � ref ��

timer� elapsed at t �tr � ref � � � heat o� request at t �tr � ref ��

The priorities de�ned here are not cyclic� as required by validation condition ����

Step ��� Specify the interface control process

The main control process is speci�ed by the process InterfaceControlREADY � It follows the
schematic expression given previously for Step �� on page ��� where
 is the response time
for the technical components�

InterfaceControlREADY b# �X �
heat o� request
Wait
$

if � BurnerIsDeactivated
then stop timer�
 stop timer�
 HeatO�RequestExecution

 ActuatorControl $ X
else ShutDownExecution
 ActuatorControl $ Stop �

�

heat on request
Wait
$
if BurnerIsDeactivated
then start timer�
 HeatOnRequestExecution
 ActuatorControl $ X
else ShutDownExecution
 ActuatorControl $ Stop �

�

excl �ame on
Wait
$
if IgnitionIsActivated
then stop timer�
 IgnitionOKExecution
 ActuatorControl $ X
else ShutDownExecution
 ActuatorControl $ Stop �

�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

excl �ame o�
Wait
$
if FlamePresent
then FlameFailureExecution
 ActuatorControl $ X
else ShutDownExecution
 ActuatorControl $ Stop �

�

excl timer� elapsed
Wait
$ start timer�
 IgnitionExecution

 ActuatorControl $ X

�

excl timer� elapsed
Wait
$ IgnitionFailureExecution
 ActuatorControl $ X

The controller reacts to prioritized events� Predicates are used to check for inconsistencies
between the sensor values and the internal system state� To process the events� Z operations
are executed and events are sent to the environment of the process� The outputs to the
actuators are de�ned by the process ActuatorControl � We still need to de�ne the Z predicates
and the process ActuatorControl �

BurnerIsDeactivated b# !GasBurner j mode # IDLE "

BurnerIsActivated b# !GasBurner j mode � fDELAY � IGNITION �BURNINGg "

IgnitionIsActivated b# !GasBurner j ignition # YES "

FlamePresent b# !GasBurner j �ame # YES "

ActuatorControl b#
gas�Gas
 gas command %Gas
 Skip

k
ignition�Ignition
 ignition command %Ignition
 Skip

Conditions ���� and ���� are satis�ed by the de�nitions of External Events � Internal Events
and Priority � Validation condition ���� is shown by inspecting the predicates and the pre�
conditions of the Z operations that are executed after the consistency predicate has been
checked�

Step ��� De�ne the overall control process

The dynamic behavior of the gas burner controller is de�ned by the real�time CSP process
GasBurnerControl � It is an instantiation of the schema given in the agenda on page ���

GasBurnerControl b# �InterfaceControl k Timer� k Timer�� n Internal Events
InterfaceControl b# GasBurnerInitExecution
 �InterfaceControlREADY k Priority�

nfexcl �ame on� excl �ame o� � excl timer� elapsed � excl timer� elapsedg

Step ��� De�ne further requirements or environmental assumptions if necessary�

The behavior of the environment of the burner is constrained by the following predicate�

EnvironmentalAssumption b#
�
 t � !����$ tr � seqTimedEvents $ ref � �TimedEvents j

�tr � ref � � timed failures
GasBurnerControl� �
�
 op � Operations � op open t �tr � ref �� �
� �heat on request open t�tr � ref � � heat o� request open t�tr � ref ���

��	� The Active Sensors Architecture �

where

Operations b# fHeatOnRequestExecution�HeatO�RequestExecution�
IgnitionExecution� IgnitionOKExecution� IgnitionFailureExecution�
FlameFailureExecution�GasBurnerInitExecutiong

The execution of the system operations must be under exclusive control of the control process�
Requests to activate and to deactivate the gas burner must not occur simultaneously�

Proof of a safety constraint

During each interval of DELAY DURATION time units unburned gas may escape for at
most CHECK DURATION '
 time units� We prove this constraint for our speci�cation�

According to the de�nition of the state schema GasBurner � unburned gas can escape only
in the IGNITION mode� Hence� within an interval of at most DELAY DURATION time
units� the total length of all subintervals that begin with the event IgnitionExecution and end
with an event from the set of operations �marking the end of the ignition phase� must not
exceed CHECK DURATION '
 time units�

The following argument has two parts� First� we show that every period within the
IGNITION mode lasts at most CHECK DURATION '
 time units� which is essentially the
purpose of the Timer� process� Second� we show that two di	erent periods in the IGNITION
mode are separated by at least DELAY DURATION time units�

Let t be an arbitrary point in time�

IgnitionExecution at t

� !InterfaceControlREADY "

start timer� at t

� !Timer�"

�� t � � �t � t ' CHECK DURATION " � stop timer� at t �� �

timer� elapsed at �t ' CHECK DURATION �

First case�

� t � � �t � t ' CHECK DURATION " � stop timer� at t �

� !InterfaceControlREADY �Priority "

� t � � �t � t ' CHECK DURATION " �

IgnitionOKExecution at t � � HeatO�RequestExecution at t �

Second case�

timer� elapsed at �t ' CHECK DURATION �

� !InterfaceControlREADY �Priority "

IgnitionFailureExecution at �t ' CHECK DURATION '
�

� HeatO�RequestExecution at �t ' CHECK DURATION '
�

� ShutDownExecution at �t ' CHECK DURATION '
�

�� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

This argument shows that in all cases� the IGNITION mode is left after at most CHECK �
DURATION '
 time units�

To show that two di	erent periods in the IGNITION mode are separated by at least
DELAY DURATION time units� we consider two arbitrary points in time� t� and t�� at
which the event IgnitionExecution occurred�

t� � t� � IgnitionExecution at t� � IgnitionExecution at t� �

�
 t � �t�� t�� � � IgnitionExecution at t�

� !possible mode transitions� InterfaceControlREADY "

� t � �t�� t�� � start timer� at t � mode # DELAY �at t�

�
 t � �t�� t�� � � IgnitionExecution at t�

� !Timer�"

� t � �t�� t�� � �� �� t � � !t � t 'DELAY DURATION � � timer� elapsed at t ��� �

�
 t � �t�� t�� � � IgnitionExecution at t�

� !InterfaceControlREADY "

� t � �t�� t�� � �� �� t � � !t � t 'DELAY DURATION � � IgnitionExecution at t ��� �

�
 t � �t�� t�� � � IgnitionExecution at t�

� !predicate logic"

�
 t � � �t�� t� 'DELAY DURATION � � � IgnitionExecution at t ��

�

t� � t� 'DELAY DURATION

As a consequence� there is at most one subinterval of CHECK DURATION '
 time units
during which unburned gas escapes in any interval of at most DELAY DURATION time
units� Thus the safety constraint is guaranteed by the software controller�

��� Re�nement

To make stepwise re�nement possible for our combined language� we have to de�ne what it
means for a speci�cation of a reactive system consisting of a Z part and a real�time CSP part
to be re�ned by another such combination� To this end� we can make use of the existing
re�nement notions of Z and real�time CSP�

The essential idea of re�nement in Z is that abstract data structures are transformed into
more concrete data structures� The relations between abstract and concrete data types have
to be formally de�ned by a so�called abstraction relation� For every operation on the abstract
system state� a corresponding operation on the concrete system state has to be de�ned�

The concrete operation must satisfy two conditions� First� if the corresponding abstract
operation is applicable to an abstract state �i�e� its precondition is ful�lled� then the corre�
sponding concrete operation must be applicable to all concrete states that are related to the
abstract state� Second� if the execution of a concrete operation can result in a certain concrete
state then there must exist an abstract state which is a possible result of the execution of the
corresponding abstract operation and is related to the concrete state �Spivey� ����b��

In real�time CSP every semantic model maps a term of the process syntax to a set of

���� Related Work ��

possible observations as described in Section ������ A process term is re�ned by another
process term if each possible behavior of the latter is also a possible behavior of the former�

To re�ne a combined speci�cation� either the Z part or the real�time CSP part is re�ned
separately� For the Z part� however� the notion of re�nement must be strengthened� In the
de�nition of re�nement in Z as described above� the re�ning operation can have a weaker
precondition than the re�ned operation� i�e� it can be applicable to a system state to which
the latter is not applicable�

If this were admitted� the re�ning speci�cation would include such behaviors as possible
observations that result from the application of the concrete operation to system states where
the abstract operation is not applicable� These behaviors would not be observable in the
re�ned speci�cation� To avoid this violation to the notion of re�nement� the de�nition of
operation re�nement is adapted in the sense that the precondition of the re�ning operation
must be equivalent to the precondition of the re�ned operation� With this adaptation ev�
ery isolated re�nement of the Z or the real�time CSP part is a re�nement of the combined
speci�cation�

��� Related Work

The use of model�based languages like Z or VDM �Jones� ����� in the area of system safety
is not uncommon� Several case studies use VDM� e�g� the British government regulations for
storing explosives �Mukherjee and Stavridou� ������ a railway interlocking system �Hansen�
���
�� and a water�level monitoring system �Williams� ���
�� Mukherjee�s and Stavridou�s
as well as Hansen�s work� however� focus on adequately modeling safety requirements� inde�
pendently of the question of whether software is employed or not� Consequently� they do not
discuss issues speci�c to the construction of safety�critical software�

Jacky �Jacky� ����� uses Z to de�ne a framework for safety�critical systems that em�
phasizes safety interlocking� McDermid and Pierce �McDermid and Pierce� ����� de�ne a
graphical notation based on a variant of statecharts �Harel� ����� that is translated into Z
for the purpose of mechanical validation� This notation is used to specify and develop soft�
ware for programmable logic controllers� Halang and Kr�amer �Halang and Kr�amer� ���
�
also focus on programmable logic controllers� They describe a development process� from
the formalization of requirements to the testing of the constructed program� They use the
speci�cation language Obj and the Hoare calculus� and their choice is motivated by the avail�
able tool support� The speci�cation language Obj is weaker than our combination of Z and
real�time CSP because Obj only allows conditional equations to be stated�

The work presented here is distinguished from these approaches in that it is intended to be
used for systems where the exclusive use of model�based or algebraic speci�cation languages
does not lead to satisfactory results� The expressive power of these languages does not su�ce
to specify the behavior of sophisticated real�time systems adequately� Other researchers share
our goal to provide more powerful constructs to express behavioral and real�time requirements�

Ravn et al� �Ravn et al�� ����� use the duration calculus to express functional require�
ments and safety constraints� The duration calculus is a specialized formalism designed to
express requirements on the duration of states� These durations are expressed as integrals�
In contrast� our approach uses less specialized formalisms that are more easily accessible and
more widely used� Weber �Weber� ����� combines Z and statecharts for purposes similar to
ours� Since statecharts are a semi�formal speci�cation technique� the resulting speci�cation is

� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

not completely formal� Using a formal language like CSP� however� yields completely formal
combined speci�cations� as shown in Section ������

Like our work� Moser�s and Melliar�Smith�s approach to the formal veri�cation of safety�
critical systems �Moser and Melliar�Smith� ����� comprises the speci�cation� design and im�
plementation phases� They use a reliability model for the processors that execute the program�
This enables them to take computer failures into account� an aspect we do not address� On
the other hand� their approach does not cover the validation of the top�level speci�cation� an
issue that we pay particular attention to�

��
 Summary

The approach presented in this chapter concentrates on the speci�cation of software for safety�
critical applications� It cannot guarantee that a system whose software controller is imple�
mented from a speci�cation developed according to our approach is free from accidents for
several reasons� �rst� our validation criteria cannot rule out errors in the speci�cation com�
pletely$ second� there may be errors in the implementation$ third� there may be errors in the
compiler or the operating system that are used to run the software$ fourth� nothing can be
guaranteed about the hardware� For instance� our method does not take processor failures
into account� This last limitation cannot be overcome by means concerning the software
alone� Instead� fault tolerance methods like redundancy have to be applied�

We can expect� however� that there are fewer errors in the speci�cation and the imple�
mentation of safety�critical software if our approach is applied� With the work presented
here� we have provided an elaborate methodology for the formal speci�cation of software for
safety�critical applications�

� The system model underlying most of these applications is taken into account by explic�
itly referring to it in the methodology� It provides a suitable structure and nomenclature
to model safety�critical systems�

� Two formal languages are combined according to the needs arising in the development of
safety�critical systems� Each of the languages in isolation would not be satisfactory$ in
combination� however� they provide adequate constructs for the speci�cation of safety�
critical software components� Both languages are well�established�

� The combined language is given a common semantics� making combined speci�cations
completely formal and providing a basis for formal proof�

� A software model for the combined use of the two languages is de�ned� yielding a general
framework for the modeling and speci�cation of control components for safety�critical
systems�

� This model is further re�ned into reference architectures that capture frequent designs
of safety�critical systems� For each of these architectures� an agenda is given� Safety�
related considerations are of particular importance in the agendas�

� The agendas provide detailed guidance� not only for developing speci�cations of software
controllers matching the reference architectures� but also for validating the developed
speci�cations� To complement the application�independent validation criteria of the

���� Further Research
�

agendas� we propose to demonstrate safety�related and liveness properties that neces�
sarily are application�dependent�

� The agendas are su�ciently detailed to allow them to be formalized and their application
by machine to be supported� as demonstrated in Chapter ��

� Not only the speci�cation phase but also the later phases in software development
are supported� a notion of re�nement for combined speci�cations is de�ned� and the
semi�automatic synthesis of programs for the Z part of the speci�cation is possible� as
described in Chapters � and ��

��� Further Research

In the future� we intend to improve the technical basis of our approach and further elaborate
the methodological part�

Calculus� We want to develop a common calculus for Z and real�time CSP that will allow
us to perform formal proofs on and re�nements of combined speci�cations� An imple�
mentation of this calculus would provide machine support for discharging validation
conditions�

Synthesis for CSP� We want to investigate how program synthesis for the CSP part of a
speci�cation can be supported$ of special importance are the real�time requirements�

Partial veri	cation� For relatively small systems� a complete formal treatment certainly
can be recommended because the control software is relatively simple� The cost for a
formal safety proof would be much less than potential damages� For larger systems�
however� a complete formal treatment might not be feasible� In this case� one would
formalize and prove only selected properties of the system and treat the other require�
ments with traditional techniques �partial veri�cation� �Leveson� ������� When this
approach is taken� all of the software modules still have to be considered� To reduce
cost further� one might exclude those parts of the software from the veri�cation process
that can be guaranteed to be of no importance for safety� We want to develop guidance
on how to guarantee �i� that a requirement is not safety�critical� and �ii� that a part of
the software is not safety�critical�

Formalism independence� We want to show that our approach can also be used with
other formalisms than the ones chosen here� We believe that the agendas can easily be
adapted� Another formalism for specifying behavior is Petri Nets� We intend to replace
real�time CSP by Petri Nets and investigate how the agendas have to be changed�

Other architectures� We want to consider more reference architectures� especially for dis�
tributed systems�

Structural aspects of speci	cations� The combination of Z and real�time CSP does not
support modularization very well� Language constructs to modularize speci�cations are
needed�

� Chapter �� Speci�cation of Safety�Critical Software with Z and Real�Time CSP

Chapter �

Software Design Using Architectural Styles

Architectural styles are a mechanism to make system design knowledge explicit and thus
amenable to reuse� They characterize designs in terms of the components of a system and
the connectors that enable communication between components �Abowd et al�� ������ An
important question in the �eld of software architectures is how to represent styles in such
a way that unambiguous criteria can be stated to decide whether a given design conforms
to some style� A second question is how a style representation can help to develop concrete
architectures�

Informal circle�and�line drawings have shown their limitations and� today� the need for
formal languages to represent software architectures has been recognized� New languages for
architectural descriptions have been developed but they are still in a maturing phase and few
are provided with tools �Clements� ������

In this chapter� we address the questions of representing architectural styles and sup�
porting the development of style instances in three steps� �rst� we demonstrate that LO�
TOS �Bolognesi and Brinksma� ����� is a suitable language to express architectural designs�
Second� we contribute to a clari�cation of the meaning of architectural styles by characteriz�
ing such styles as LOTOS patterns� Third� we present agendas to support designers in the
development of concrete software architectures�

LOTOS as an Architectural Description Language

LOTOS is a formal description language designed to specify open distributed systems� It
consists of a process algebra similar to CSP �Hoare� ����� or CCS �Milner� ������ and an
algebraic speci�cation language that allows the equational de�nition of data types� Using
LOTOS to express architectural designs has several advantages�

� LOTOS consists of two parts� an algebraic speci�cation language to de�ne data� and a
process algebra to de�ne the behavior of a system� Hence� the communication between
system components in an architecture can be described using the process algebraic
parts of LOTOS� and the algebraic speci�cation language can be used to specify the
data transformations that are performed by the system�

� Architectural descriptions in LOTOS are formal and hence have an unambiguous se�
mantics� They can be subject to proofs and analyses�

��

	 Chapter 	� Software Design Using Architectural Styles

� The use of LOTOS makes it possible to use existing tools� like CADP �Caesar(Aldebaran
Distribution Package� �Fernandez et al�� ������ for analysis and animation of architec�
tures de�ned with it�

� LOTOS is an ISO standard� The use of a standardized language relieves system de�
signers of the burden to learn an extra architectural description language� These can
be quite rich and complex� see e�g� �Luckham et al�� ������

Style Characterizations

We characterize an architectural style by �i� requirements on the processes specifying the
components of a system� �ii� a communication pattern de�ning its top�level behavior� and
�iii� constraints� which provide su�cient conditions for an architectural description to be an
instance of the style� These conditions can be checked mechanically�

Our style characterizations clarify the meaning of an architectural style by making its
essence explicit�

Design Support

Starting from the style characterizations� we can de�ne agendas for the development of in�
stances of the styles� The validation conditions associated with the agendas refer to the di	er�
ent parts of the style characterizations� Concrete architectures can be developed recursively
in such a way that subsystems of a system can again be instances of styles� Furthermore� the
architectural descriptions can be analyzed and animated using existing tools� No new tools
need to be developed�

In Section
��� we explain the general approach we take to express architectural designs
in LOTOS and styles as LOTOS patterns� The approach is illustrated by characterizing
three architectural styles� repository �Section
���� pipe(�lter �Section
��� and event�action
�Section
�
�� In Section
��� we present three di	erent designs for a robot� following the
three architectural styles� The tool CADP is used to compare the alternative designs� The
concluding sections discuss our approach in the context of related work and give directions
for further research� This chapter extends the work presented in �Heisel and L
evy� ������

�� Expressing Architectural Designs and Styles with LOTOS

Architectural designs and styles are usually described in terms of components and connectors
between them� In our approach to represent architectural styles� system components are
modeled as processes� These processes usually perform some data transformation� They
can consist of another architectural description� representing the design of a subsystem� In
this way� hierarchical composition of architectures is possible� Connectors are not separate
syntactic entities but are realized by the kind of communication that takes place between the
component processes�

A LOTOS speci�cation is composed of interacting processes� They can be parameterized
by abstract data types� A process can exchange typed values with another process and call
functions to transform data� Communication between processes in LOTOS is synchronous�
i�e� two processes must participate in a common action at the same time� Gates are used to
synchronize processes and to exchange data� To synchronize� two processes must contain an

	��� Repository Style
�

action via the same gate g� To exchange data� one of them must contain an action g � v� t

which reads a value v of type t via gate g� The other process must contain an action g � exp

that writes a value exp of type t onto the gate g� It is also possible to read or write more
than one value in the same action�

We use this kind of communication by rendez�vous to describe the communication between
the components of a system� In LOTOS� data are described using abstract data types with
conditional equations and an initial semantics� Abstract data types are used for describing
process parameters and values exchanged by the processes via gates�

Each architectural description must be a valid LOTOS expression� regardless of the style
it belongs to� It consists of two parts� The behavior part describes the overall behavior of the
architecture� i�e� the interaction of its parts� The local de�nitions part contains the de�nition
of the processes involved in the behavior part and the necessary de�nitions of abstract data
types� The syntactic structure of an architectural description is

behaviour behav expr where local def list

LOTOS patterns are obtained from LOTOS by abstraction� i�e� by replacing concrete LOTOS
expressions by metavariables� Both parts of an architectural description� i�e�� behav expr as
well as local def list � can be subject to abstraction� In the following� concrete LOTOS
expressions are set in teletype� and metavariables are set in italics teletype �

A characterization of an architectural style consists of

� component characteristics� which describe properties of the involved component
processes$

� a communication pattern� which characterizes the top�level behavior of the system
by a LOTOS pattern$

� constraints� which� when ful�lled� guarantee that an architectural description conforms
to the style�

Such representations make style characteristics explicit and form the basis for the de�nition
of agendas� In the following� we present characterizations of three architectural styles�

�� Repository Style

Garlan and Shaw �Garlan and Shaw� ����$ Shaw and Garlan� ����� describe the repository
style as follows�

� In a repository style there are two distinct kinds of components� a central data
structure represents the current state� and a collection of independent components
operate on the central data store��

In a �rst step� we characterize the style with LOTOS patterns� Then we de�ne an agenda that
gives guidelines for the development of concrete architectures conforming to the repository
style�

� Chapter 	� Software Design Using Architectural Styles

����� Style Characterization

In our modeling� we suppose that the central data structure � the shared memory � contains
data accessible via indices� which select parts of the stored data�

Component Characteristics

We consider three kinds of components operating on the shared memory� components that
only read �part of� the memory� components that only change the memory� and components
that do both� There is no interaction between components� they behave independently and
only communicate with the repository and the environment�

 W WR RR R

 WR RR R W RWR

Shared_Memory

 R W RWR

 Write
Component

Read
Component

Read_Write
Component

Figure 	��� General view of repository style architecture

The three kinds of components are illustrated in Figure
��� where the system interface is
represented by black squares� If a component wants to change the shared memory� it sends
the message WR �write request�� This causes the shared memory to set a lock� Only then
can the new value be passed� using the gate W �write�� If a component wants to read the
shared memory� it sends the message RR �read request�� If no lock is set the value is passed
via the gate R �read�� It may happen that a value to be written into the shared memory
depends on a value that was read previously� In this case� no other write operation should be
allowed between the read and the write action� For this purpose� the message RWR �read(write
request� is used�

Each process sending a request must also send a unique identi�cation� This prevents other
processes from accessing the memory during a transaction� The process implementing the
shared memory is de�ned as follows�

process Shared Memory �RR� R� WR� W� RWR�

�sm� shared�memory� is�locked� BOOL� for whom� id �� noexit �	

� is�locked 	 false �

� � RR � who� id

R � who� id � j � index

R � who � get�sm� j�

Shared Memory �RR� R� WR� W� RWR� �sm� false� for nobody�

��

WR � who� id

Shared Memory �RR� R� WR� W� RWR� �sm� true� who�

��

	��� Repository Style

RWR � who� id

Shared Memory �RR� R� WR� W� RWR� �sm� true� who� �

�� � is�locked 	 true �

� � W � who� id � j � index � nv� value �who	for whom�

Shared Memory �RR� R� WR� W� RWR� �store�sm� j� nv�� false� for nobody�

��

R � who� id � j � index

R � who � get�sm� j�

W � who� id � nv� value �who	for whom�

Shared Memory �RR� R� WR� W� RWR� �store�sm� j� nv�� false� for nobody��

endproc

The process Shared Memory has the gates RR� R� WR� W� RWR and the parameters sm rep�
resenting the memory� is locked and for whom� It does not terminate� as indicated by the
keyword noexit� If the lock is not set� either a read request can be served� or the lock can
be set because of a write or read(write request� If the lock is set� either a new value and an
index are read via the gate W� or the part of the repository stored under index j is output
on gate R� followed by reading a new value via gate W� These actions can only take place
if the same process that sent the request participates in them� as expressed by the guard
�who�for whom	� The new value of the shared memory becomes the new parameter of the
process� and the lock is reset�� The constant for nobody indicates that access to the shared
memory is not reserved for a particular process�

The process Shared Memory is the same for all instantiations of the repository architec�
ture� except for the type of information to be stored� and the types used as indices and for
the identi�cation of components� The type shared memory � which represents the shared
memory� has to be de�ned algebraically� We need an initial value init � a function store

changing the shared memory� and a function get reading it� The type de�nition should follow
the schema

type SHARED�MEMORY

is INDEX� VALUE

sorts

shared�memory

opns

init �
� shared�memory

store � shared�memory� index � value
� shared�memory

get � shared�memory� index
� value

eqns

forall sm� shared�memory� j�� j�� index� v�� value

ofsort value

get �store�sm� j�� v��� j�� 	 v�

not�equiv�j�� j��� 	� get�store�sm� j�� v��� j�� 	 get �sm� j��

get �init� j�� 	 ���

endtype

where equiv is the equality on indices�

�To keep our presentation concise� we do not allow parallel write or read
write actions on di�erent parts of
the shared memory� i�e� on di�erent indices� The de�nition of such an optimization is straightforward�

� Chapter 	� Software Design Using Architectural Styles

The types id � index and value of the values that can be stored under an index are also
de�ned algebraically� For the type id � we need an initial value for nobody � as explained
previously�

Each repository architecture consists of a process Shared Memory as de�ned above and
an arbitrary number of independent components� Each of these is either a read process� a
write process or a read
write process�

A read process does not use the gates WR� W� RWR and contains an arbitrary �positive�
number of read behaviors but neither write nor read(write behaviors� A read behavior is
de�ned by the pattern

RR � me

R � me � ind

R � who� id � v � value �who 	 me �

where me is the identi�cation of the process and ind is the index to be read�
A write process does not use the gates RR� R� RWR and contains an arbitrary �positive�

number of write behaviors but neither read nor read(write behaviors� A write behavior is
de�ned by the pattern

WR � me

W � me � ind � v

where v is the new value to be stored under index ind �
A read(write process may use three behavioral patterns� It contains at least one read(write

behavior� or read as well as write behaviors� A read(write behavior is de�ned by the pattern

RWR � me

R � me � ind

R � who� id � v � value �who 	 me �

followed� in all the branches of the process� by writing access to the shared memory according
to the pattern

W � me � ind � nv

for the same index ind and a value nv � This condition can be syntactically decided as follows�
Let R�W Comp be a process whose behavior part contains as a sub�expression the �rst part of
the read(write pattern� composed via �
� with another behavior expression B� We now de�ne
a predicate write pattern that is a su�cient condition for B to contain the second part of the
pattern in each of its branches� This is done by a case distinction of the syntactic form of B �

exit
 write pattern�exit����
� # false

stop
 write pattern�stop� # false

action pre	x
 B # g	� � � �	n
 B� �
If g	� � � �	n # W � me � ind � nv then write pattern�B� # true$
else write pattern�B� # write pattern�B��

choice or disabling
 B # B� �	 B� or B # B� �� B� �
write pattern�B� # write pattern�B�� � write pattern�B��

	��� Repository Style
�

parallel or sequential composition
 B # B� op B�

with op � f��g�� ���� gn	�� ���� ��� ��g�
write pattern�B� # write pattern�B�� � write pattern�B��

hiding
 B # hide g�� ���� gn in B� �
if W � fg�� ���� gn g then write pattern�B� # false$
else write pattern�B� # write pattern�B��

process instantiation
 B # P �g�� ���� gn 	����
�
if W �� fg�� ���� gn g or P invokes R�W Comp then write pattern�B� # false$
else write pattern�B� # write pattern�PB �g� �g��� ����gn�gn�	��
where PB �g��g��� ����gn �gn�	 is the behavior expression that de�nes process P �
where the formal gates g��� ���� gn� are replaced by the actual gates g�� ���� gn �

Note that the condition for process instantiation may be too restrictive if P �rst contains a
write pattern and only then invokes R�W Comp � Hence� the predicate write pattern is only a
su�cient condition that the process following the �rst part of a read(write pattern contains
the second part of the pattern in each of its branches�

The occurrence of the patterns for read and write processes and the �rst part of a
read(write pattern in a process de�nition can easily be checked syntactically$ hence� we
have shown that we can de�ne su�cient conditions for the component processes to ful�ll the
component characteristics� and that these conditions can be checked syntactically�

Communication Pattern

The communication between the shared memory and the independent components is ex�
pressed by the following pattern� where for better readability we use �� � � � instead of an
inductive de�nition�

hide RR� R� WR� W� RWR in

Shared Memory �RR� R� WR� W� RWR� �init of shared�memory� false� for nobody�

�� RR� R� WR� W� RWR ��

�Component���gate list � �

���

���

���

Component�n �gate list n � �

All components behave independently of each other �the operator ��� involves no communi�
cation at all�� For every Component i � its gate list i must contain the gates RR and R if
it is a read process and WR and W if it is a write process� A read(write process may contain
RR� R as well as WR� W� or RWR� R and W� The repository and the independent components
must synchronize on these gates� as expressed by the synchronization list �� RR� R� WR� W�

RWR 	�� The hide clause hides communications via the gates RR� R� WR� W� RWR from the
environment�

Constraints

Constraints are expressed in terms of the two parts of an architectural description� namely
behav expr and local def list � as introduced in Section
��� For the repository style�

�� Chapter 	� Software Design Using Architectural Styles

we have the constraints that the behav expr must conform to the communication pattern
given above� and that each process occurring in behav expr � except Shared Memory� must
be a read� a write or a read(write process as de�ned in the process characteristics�

����� Agendas

The steps that lead to a repository architecture are summarized in Table
��� They have to be
performed in the given order� as indicated in Figure
��� The guidelines for the development
of architectural descriptions are mostly captured in the style characterization� Hence� the
agenda contains only a few steps�

No� Step Validation Conditions

� De�ne the types shared memory �
id � index and value �

The type shared memory must be de�
�ned according to the schema given in
Section
����� The type id must con�
tain a constant for nobody �

� De�ne the component processes� Each component process must be either
a read� a write� or a read(write process�

� Assemble the overall architectural
description according to the com�
munication pattern of the repository
style�

The processes must communicate with
the shared memory according to their
being a read� write or read(write pro�
cess� as described in the communica�
tion pattern�

Table 	��� Agenda for the repository architectural style

1 2 3

Figure 	��� Dependencies of steps for developing repository architectures

Step � De�ne the types shared memory� id� index and value�

First� we must decide what kind of information is to be stored in the repository and how it
can be accessed�

Step � De�ne the component processes�

For de�ning a single component process� we give an agenda in Table
��� The steps of this
agenda must be performed in the given order� The second step is very general� This makes
it possible to de�ne one component of a repository architecture as a subsystem according to
some other style� The agenda shown in Table
�� can be applied repeatedly�

Step � Assemble the overall architectural description according to the communication pat�
tern�

This step can be performed in a routine way� It only must be guaranteed that the right gates
are used for the communication between the repository and the component processes�

	��� Pipe�Filter Style ��

No� Step Validation Conditions

� Decide if the component is a read�
write� or read(write process�

� De�ne the component as a process� The process de�nition must contain the
patterns for the chosen kind of compo�
nent�

Table 	��� Agenda to develop components for a repository architecture

�� Pipe	Filter Style

The characteristics of the pipe(�lter style are the following �Garlan and Shaw� ����$ Shaw
and Garlan� ������

�In a pipe and �lter style each component has a set of inputs and a set of outputs�
A component reads streams of data on its inputs and produces streams of data on
its outputs� !� � � " Components are termed ��lters�� The connectors of this style
serve as conduits for the streams� transmitting outputs of one �lter to inputs of
another� Hence connectors are termed �pipes�� !� � � " �lters must be independent
entities� in particular� they should not share state with other �lters� �

Garlan et al� �Garlan et al�� ����� additionally state the topological constraint that pipes are
directional and that at most one pipe can be connected to a given �port� of a �lter� Figure
��
shows an example of a pipe(�lter architecture� As can be seen� a �lter �in this case Filter ��
may have several incoming and several outgoing pipes� Cycles are also allowed� see �Garlan
and Shaw� ������

pipe_13

env_3

pipe_34

pipe_23
pipe_35

env_1

pipe_12

env_4

pipe_54

Filter_3Filter_1

Filter_2

Filter_4

Filter_5

Figure 	��� A pipe��lter architecture

����� Style Characterization

In the LOTOS characterization of this style� a pipe between two �lters is a synchronous
communication via some gate�

Component Characteristics

A �lter is modeled by a process that takes its inputs from the incoming pipes� transforms
them according to its task� and delivers the results via the outgoing pipes� Communication
with the environment is also possible�

�� Chapter 	� Software Design Using Architectural Styles

Hence� a component of this style is not characterized by some speci�c behavior but by its
gates� These are divided into the lists in pipe list � out pipe list and env gate list �
A �lter process does not write on gates of its in pipe list and does not read from gates
of its out pipe list �

Communication Pattern

Two �lters communicate via their common pipes� For example� the �lters Filter � and
Filter � in the smallest box of the architecture shown in Figure
�� exhibit the communi�
cation behavior

Filter ��env �� pipe ��� pipe ���

��pipe ����

Filter ��pipe ��� pipe ���

When adding the third �lter Filter � synchronizing with the previous system via the pipes
pipe �� and pipe �� connecting it to Filter � and Filter �� the following behavior is
obtained�

� Filter � �env �� pipe ��� pipe ���

��pipe ����

Filter � �pipe ��� pipe ��� �

��pipe ��� pipe ����

Filter � �env �� pipe ��� pipe ��� pipe ��� pipe ���

Hence� the general communication pattern of a pipe(�lter architecture has the form

hide pipe list � � pipe list � � ��� pipe list n�� in

� ��� ��Filter � �gate list � � ��pipe list � �� Filter � �gate list � ��

��pipe list � �� Filter � �gate list � ��

���

��pipe list n�� ��

Filter n �gate list n ��

We have used �� � � � again instead of an inductive de�nition for better comprehensibility of
the pattern�

Constraints

Again� we state the constraints in terms of the top�level behavior behav expr and the local�
def list �

� All synchronization lists �i�e� the values given to pipe list � � � � � � pipe list n�� �
occurring in behav expr are disjoint� This means that a pipe connects only two �lters�

� Each gate occurring in some synchronization list of behav expr occurs exactly twice in
the gates of the processes Filter � � � � � � Filter n de�ned in local def list � This
means that a pipe cannot be re�used as an external gate�

	�	� Event�Action Style ��

� Each of the processes that occur in behav expr must conform to the characterization
given above� The gates of a process representing pipes are exactly the ones that occur
in some synchronization list pipe list � � � � � � pipe list n�� � The direction of the
pipe can be determined from the process de�nition�

Note that� in our de�nition� pipes and �lters have no bu	ers like in �Abowd et al�� ������
because � according to the synchronous communication of LOTOS � no data can be lost�
The bu	ered version � which we consider to be closer to an implementation � could also be
expressed in LOTOS�

����� Agendas

The agenda to develop a software architecture according to the pipe(�lter style is shown in
Table
��� The steps must be performed in the order given in the agenda�

No� Step Validation Conditions

� De�ne the �lters one by one� Each �lter must ful�ll the conditions
stated in the component characteristics
part of the style characterization�

� Assemble the �lters according to the
pattern given in the communication
pattern part of the style characteri�
zation�

The architectural description must ful�
�ll the constraints stated in the con�
straints part of the style characteriza�
tion�

Table 	��� Agenda for the pipe��lter architectural style

Again� we de�ne an agenda that helps to de�ne a single �lter process and that can be
applied repeatedly to perform Step � of the agenda for the pipe(�lter style in Table
�
� The
dependencies of the steps are shown in Figure
�
�

No� Step Validation Conditions

� Decide on the pipes that connects
the �lter with other �lters�

� Decide on the gates of the �lter with
the environment�

� De�ne the �lter as a process� The process must ful�ll the conditions
stated in the component characteristics
part�

Table 	�	� Agenda to develop components for a pipe��lter architecture

�
 Event�Action Style

According to Krishnamurthy and Rosenblum �Krishnamurthy and Rosenblum� ������

�An event�action system is a software system in which events occurring in the
environment of the system trigger actions in response to the events� The triggered
actions may generate other events� which trigger actions� and so on��

�	 Chapter 	� Software Design Using Architectural Styles

2

1

3

Figure 	�	� Dependencies of steps for developing a �lter

Garlan and Shaw �Garlan and Shaw� ����� mention that � The main invariant in this style is
that announcers of events do not know which components will be a	ected by those events��

����� Style Characterization

An event architecture consists of components that react to events� When an event has hap�
pened� actions are carried out and other events may be sent� An event manager is responsible
for distributing all events that have occurred to all components that have to react to that
event� Figure
�� shows an example of an event architecture�

EVENTS Event
Manager OUT2

RESULT2IN2
Component 2

RESULT1IN1

OUT1
Component 1

IN3

OUT3

RESULT3
Component 3

Figure 	��� An event�action architecture

Component Characteristics

The event manager has the following form��

process Event Manager �EVENTS� IN � � OUT � ���� IN n � OUT n � � func �	

receive event

�� accept e � event in

trigger actions

endproc

This de�nition consists of two processes� receive event and trigger actions � which are
separated by ��� The accept clause means that an event e is passed from the process
receive event �via exit clauses� to the process trigger actions � The event manager
may terminate �func # exit� or not �func # noexit�� The data type event must be
de�ned algebraically� It can be structured to allow the handling of complex events�

�In this de�nition� there is only one gate EVENTS � The pattern can easily be generalized to allow for several
external gates�

	�	� Event�Action Style ��

In the process receive event � the event manager reads incoming events� either from the
environment via the gate EVENTS or from some other component via some gate OUT i � The
process receive event must contain the following pattern�

EVENTS � e � event
 exit�e�

�� OUT � � e � event
 exit�e�

�� ���

�� OUT n � e � event
 exit�e�

In the process trigger actions � the event manager distributes the event to the various
components that de�ne the actions to be taken in reaction to the event� according to some
predicates p j � The process trigger actions must contain the pattern

�p � �e��
� IN���� � e
 ��� IN���n� � e

Event�Manager �EVENTS� IN � � OUT � � ��� IN n � OUT n �

�� ���

�� �p k �e��
� IN�k�� � e
 ��� IN�k�nk � e

Event�Manager �EVENTS� IN � � OUT � � ��� IN n � OUT n �

Each event�action architecture consists of a process Event Manager as described above
and an arbitrary number of independent components� Each such component Component i

has a gate IN i and contains an action

IN i � e � event

If the component generates events� it has a gate OUT i � which is used to send events to the
event manager� In this case� the process behavior contains actions of the form�

OUT i � e

The process does not write on IN i and does not read from OUT i �

Communication Pattern

The communication between the event manager and the independent components takes place
according to the pattern

hide IN � � OUT � � ��� IN n � OUT n in

Event�Manager �EVENTS� IN � � OUT � � ��� IN n � OUT n �

��IN � � OUT � � ��� IN n � OUT n ��

� Component���IN � � OUT � � env gate list � �

���

���

���

Component�n �IN n � OUT n � env gate list n � �

�� Chapter 	� Software Design Using Architectural Styles

Constraints

The behav expr and local def list making up the architectural description of an event�
action system must satisfy the following constraints�

� behav expr must conform to the communication pattern given above�

� Each of the processes that occurs in behav expr � except Event Manager� must conform
to the description given in the component characterization�

����� Agendas

Like a repository architecture� an event�action architecture consists of a distinguished com�
ponent � the event manager � and a number of other components that perform independently
of each other and communicate only with the event manager and the environment� Hence�
the agendas are similar to the agendas for the repository style� The top�level agenda is given
in Table
��� It must be processed in the given order�

No� Step Validation Conditions

� De�ne the type event �

� De�ne pairs� consisting of a predi�
cate on the type event and a pro�
cess de�ning the corresponding ac�
tion�

Each action process must communicate
with the event manager and de�ne the
reaction to the events that ful�ll the
de�ned predicate�

� De�ne the process Event Manager

and assemble the overall architec�
tural description according to the
communication pattern�

The de�nition of the event manager
must conform to the pattern given in
the component characteristics� and it
must be consistent with Step ��

Table 	��� Agenda for the event�action architectural style

The validation condition of Step � means that for each pair �pred� Component � de�ned in
Step �� the process Component must be noti�ed exactly of all events satisfying the predicate
pred� i�e�� the de�nition of the process Event Manager must contain the expression

�pred�e
	 �� ��� IN�k � e
 ���

Event�Manager �EVENTS� IN � � OUT � � ��� IN n� OUT n 	

where IN k is the gate used by process Component to communicate with the event manager�
The agenda to develop one component is given in Table
��� The steps must be performed

in the given order� Again� the generality of the second step makes it possible to de�ne one
component of a repository architecture as a subsystem according to some other style�

�� Example� Design of a Robot

We illustrate the development of instances of architectural styles by designing a robot� This
robot can make the movements shown in Figure
��� it can advance by moving its right or
its left leg$ it can stand still$ and it can smile or not� In the following� we develop three

	��� Example� Design of a Robot �

No� Step Validation Conditions

� Decide on the events to be treated�

� De�ne the action to be taken as a
process�

The process de�nition conforms to the
component characteristics given in the
style characterization�

Table 	��� Agenda to develop components for an event�action architecture

advance advance chg_smile stand chg_smile init chg_smile

Figure 	��� The movements of the robot

alternative designs� one for each style presented previously� These three designs use the same
robot de�nition�

The robot can be modeled as an automaton with three states� standing� left up and
right up as shown in Figure
��� To each state a boolean value is associated indicating
whether the robot is smiling or not� The initial state is standing and smiling�

variable
 s: bool

right_up(s)

chg_smilechg_smile

standing(s)

left_up(s)

chg_smile
stand

stand stand

advance

advance

advance

Figure 	�
� The robot automaton

The robot is de�ned by the abstract data type robot where the states are de�ned as
constants and the movements as transitions from one state to another� except for smiling�
which is de�ned by a boolean value� true for smiling� For each state a predicate is de�ned
deciding if the robot is in this state�

type ROBOT

is BOOLEAN

sorts robot

opns

standing � bool
� robot

left�up � bool
� robot

right�up � bool
� robot

is�standing� is�left�up� is�right�up � robot
� bool

�� Chapter 	� Software Design Using Architectural Styles

the�smile � robot
� bool

init �
� robot

stand� advance� chg�smile � robot
� robot

eqns

forall roro� robot� s � bool

ofsort bool

is�standing�standing�s�� 	 true

is�standing�left�up�s�� 	 false

is�standing�right�up�s�� 	 false

is�left�up�standing�s�� 	 false

is�left�up�left�up�s�� 	 true

is�left�up�right�up�s�� 	 false

is�right�up�standing�s�� 	 false

is�right�up�left�up�s�� 	 false

is�right�up�right�up�s�� 	 true

the�smile�standing�s�� 	 s

the�smile�left�up�s�� 	 s

the�smile�right�up�s�� 	 s

ofsort robot

init 	 standing�true�

stand�roro� 	 standing�the�smile�roro��

advance �standing�s�� 	 right�up �s�

advance �left�up�s�� 	 right�up �s�

advance �right�up�s�� 	 left�up �s�

chg�smile �standing�s�� 	 standing�not�s��

chg�smile �left�up�s�� 	 left�up �not�s��

chg�smile �right�up�s�� 	 right�up �not�s��

endtype

The movements are de�ned by the type mvt with three constants m stand� m advance and
m chg smile�

type mvt

is boolean

sorts mvt

opns

m�stand� m�advance� m�chg�smile �
� mvt

endtype

The robot will be asked to execute several movements collected in a list� This list is de�ned
by an abstract data type m list with a constant empty� a function add adding an element to
the end of the list� a function rm first removing the �rst element of a list� a function first

selecting the �rst element of a list� and a predicate is empty� A constant init list is used
to de�ne the list of movements initially given to the robot�

type M�LIST

is BOOLEAN� MVT

sorts m�list

opns

empty�list �
� m�list

add � m�list� mvt
� m�list

rm�first � m�list
� m�list

	��� Example� Design of a Robot ��

is�empty � m�list
� bool

first � m�list
� mvt

init�list �
� m�list

eqns

forall m�mvt� lm� m�list

ofsort m�list

rm�first �add �empty�list� m�� 	 empty�list

not �is�empty �lm�� 	� rm�first �add �lm� m�� 	

add �rm�first �lm�� m�

init�list 	 add�add�add�add�add�add�empty�list�

m�chg�smile�� m�advance�� m�advance�� m�chg�smile��

m�stand�� m�chg�smile�

ofsort Bool

is�empty �empty�list� 	 true

is�empty �add �lm� m�� 	 false

ofsort mvt

first �add �empty�list� m�� 	 m

not �is�empty �lm�� 	� first �add �lm� m�� 	 first �lm�

endtype

OUTPUTSTART

Figure 	��� Interface of robot design

We have the same interface shown in Figure
�� for all architectures� The input is the
initial state of the robot together with the movements to be performed� Therefore� a data
type value must be de�ned as the Cartesian product of the two types robot and m list�
Its constructor function is called make� and the two selector functions are called the robot

and the list� This data type will be de�ned in Section
����� The gate START is used to
start the simulation� yielding in the following top�level behavior�

START �make�init of robot�init�list�
 exit

��START��

� behav expr �

The three architectures will result in di	erent de�nitions of behav expr and the associated
local def list �

��
�� The robot design using the repository style

Our �rst robot design follows the repository style� Step � of the agenda shown in Table
��
tells us to �rst give type speci�cations for shared memory � id � index and value �

The shared memory is to hold the current state of the robot and the list of movements
to be executed� i�e� items of type value � As we just have one value �one robot and its list
of movements� to be stored in the shared memory� we only need one index� which we call
index�� This yields the following type de�nitions�

�� Chapter 	� Software Design Using Architectural Styles

type SHARED�MEMORY

is INDEX� VALUE

sorts

shared�memory

opns

init �
� shared�memory

store � shared�memory� index� value
� shared�memory

get � shared�memory� index
� value

eqns

forall sm� shared�memory� j�� j�� index� v�� value

ofsort value

get�store�sm� j�� v��� j�� 	 v�

not�equiv�j�� j��� 	� get�store�sm� j�� v��� j�� 	 get �sm� j��

get�init� j�� 	 make�init of robot� empty�

endtype

type INDEX

is BOOLEAN

sorts

index

opns

index� �
� index

equiv� index�index
� bool

eqns

forall j�� j�� index

ofsort bool

equiv�index��index�� 	 true

endtype

type IDENTIFIER

is BOOLEAN

sorts

id

opns

for�nobody �
� id

id�init�sm �
� id

id�stand �
� id

id�advance �
� id

id�chg�smile �
� id

endtype

type VALUE

is ROBOT� M�LIST

sorts

value

opns

make � robot� m�list
� value

the�robot� value
� robot

the�list � value
� m�list

eqns

forall roro� robot� ml� m�list

ofsort robot

the�robot�make�roro� ml�� 	 roro

	��� Example� Design of a Robot ��

ofsort m�list

the�list�make�roro� ml�� 	 ml

endtype

It can easily be checked that the validation conditions associated with Step � of the agenda
are ful�lled� The type shared memory is de�ned according to the schema given in Section

����� and the type id contains a constant for nobody�

Next� as required in Step � of the agenda� we de�ne the component processes of the
architecture� First� we need a write process Init sm that writes the initial state and the
initial list of movements into the shared memory�

Furthermore� we need three independent components Stand� Chg Smile and Advance to
execute the corresponding movements� These components try in parallel to access the shared
memory in order to execute the movement they are responsible for� Therefore� they all are
read(write processes� Each of them �rst reads the list of movements� denoted by the variable
ml� If the �rst movement is the one it is responsible for� the movement is executed� the robot
state changed �variable roro� and the rest of the movement list is written back in the shared
memory� If the movement cannot be executed by the component that has been granted access�
it writes back the unchanged state in order to unlock the shared memory� This architecture
is illustrated in Figure
���

START

 WR

 Init_sm

OUTPUT

 R W RWR

Chg_Smile Stand

 R W RWR

Advance

 R W RWR

 WR RR R W RWR

Shared_Memory

Figure 	��� The repository architecture for the robot

The component processes are de�ned as follows�

process Init�sm �START� W� WR� � exit

�	

START � vv� value

WR � id�init�sm

W � id�init�sm � index� � vv

exit

endproc

process Stand �OUTPUT� R� W� RWR� � exit

�	

RWR � id�stand

R � id�stand � index�

R � for whom� id � v� value �for whom	id�stand�

�let ml� m�list 	 the�list�v��

�� Chapter 	� Software Design Using Architectural Styles

roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� W � id�stand � v
 exit

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�stand 	 true �

� OUTPUT � make�stand�roro�� rm�first�ml��

W � id�stand � make�stand�roro�� rm�first�ml��

Stand �OUTPUT� R� W� RWR�

�� �first�ml� equal m�stand 	 false�

� W � id�stand � v

Stand �OUTPUT� R� W� RWR�

��

endproc

process Advance �OUTPUT� R� W� RWR� � exit

�	

RWR � id�advance

R � id�advance � index�

R � for whom� id � v� value �for whom	id�advance�

�let ml� m�list 	 the�list�v��

roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� W � id�advance � v
 exit

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�advance 	 true �

� OUTPUT � make�advance�roro�� rm�first�ml��

W � id�advance � make�advance�roro�� rm�first�ml��

Advance �OUTPUT� R� W� RWR�

�� �first�ml� equal m�advance 	 false�

� W � id�advance � v

Advance �OUTPUT� R� W� RWR�

��

endproc

process Chg�Smile �OUTPUT� R� W� RWR� � exit

�	

RWR � id�chg�smile

R � id�chg�smile � index�

R � for whom� id � v� value �for whom	id�chg�smile�

�let ml� m�list 	 the�list�v��

roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� W � id�chg�smile � v
 exit

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�chg�smile 	 true �

� OUTPUT � make�chg�smile�roro�� rm�first�ml��

W � id�chg�smile � make�chg�smile�roro�� rm�first�ml��

Chg�Smile �OUTPUT� R� W� RWR�

�� �first�ml� equal m�chg�smile 	 false�

� W � id�chg�smile � v

Chg�Smile �OUTPUT� R� W� RWR�

��

endproc

The process Init sm conforms to the pattern for write processes� The other component
processes conform to the pattern for read(write processes� They �rst lock the shared memory

	��� Example� Design of a Robot ��

and read its content� Subsequently� in each branch of the choice� a write action is performed�
Hence� the validation conditions associated with Steps � of the agendas shown in Tables
��
and
�� are ful�lled� This concludes Step � of the agenda for the repository architecture� Step
� yields the overall behavior of the repository robot and the concrete de�nition of the process
SM�

START �make�init of robot�init�list�
 exit

��START��

�

hide RR� R� WR� W� RWR in

SM �RR� R� WR� W� RWR� �init of shared�memory� false� for nobody �

�� RR� R� WR� W� RWR ��

�

Init�sm �START� W� WR�

���

Stand �OUTPUT� R� W� RWR�

���

Chg�Smile �OUTPUT� R� W� RWR�

���

Advance �OUTPUT� R� W� RWR�

�

�

where

process SM �RR� R� WR� W� RWR� �sm�shared�memory� is�locked�BOOL� for whom� id�

� noexit

�	

� is�locked 	 false �

� � RR � who� id

R � who� id � j� � index

R � who � get�sm� j��

SM �RR� R� WR� W� RWR� �sm� false� for nobody�

��

WR � who� id

SM �RR� R� WR� W� RWR� �sm� true� who�

��

RWR � who� id

SM �RR� R� WR� W� RWR� �sm� true� who� �

��

� is�locked 	 true �

� � W � who� id � j� � index � nv� value �who	for whom�

SM �RR� R� WR� W� RWR� �store�sm� j�� nv�� false� for nobody�

��

R � who� id � j� � index

R � who � get�sm� j��

W � who� id � nv� value �who	for whom�

SM �RR� R� WR� W� RWR� �store�sm� j�� nv�� false� for nobody� �

endproc

Again� syntactic checks show that the validation condition associated with Step � of the
agenda of Table
�� is ful�lled� The communication of the component processes takes place
as described in the communication pattern described in Section
�����

�	 Chapter 	� Software Design Using Architectural Styles

This architecture has the disadvantage that the system implementation must guaran�
tee fairness� i�e� each component must be given the chance to access the shared memory�
Otherwise� an in�nite number of unsuccessful accesses is possible� and the system does not
terminate�

��
�� The robot design using the pipe��lter style

In the pipe(�lter modeling� we can make sure that each component is given the possibility
to execute its movement if required� The idea is to have a line of �lters� Each �lter inspects
the movement list� If it can execute the movement� it does so and hands the new robot state
and the new movement list to the next �lter� Otherwise� it passes on the unchanged data�
Again� we need an initializing component� called here Init pf� The architecture is shown in
Figure
���� It also shows the gates that are needed for the processes�

START

 Init_pf
P0

P3

Chg_Smile

OUTPUT

 Stand Advance
P1 P2

Figure 	���� The pipe��lter architecture of the robot

For each process� we now proceed according to the agenda of Table
�
� Process Init pf

is connected via pipe P� with the other �lters and via START with the environment� Its
de�nition is

process Init�pf �START� P�� � exit

�	 START � vv� value

P� � vv

exit

endproc

For the other processes� we proceed analogously and get the de�nitions

process Stand �P�� P�� P�� OUTPUT� � exit

�	

�P� � vv� value
 exit �vv� �

��

�P� � vv� value
 exit �vv� �

�� accept v � value in

�let ml� m�list 	 the�list�v�� roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� �exit�

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�stand 	 true �

� OUTPUT � make�stand�roro�� rm�first�ml��

P� � make�stand�roro�� rm�first�ml��

Stand �P�� P�� P�� OUTPUT�

�� �first�ml� equal m�stand 	 false�

� P� � v

Stand �P�� P�� P�� OUTPUT� ��

endproc

	��� Example� Design of a Robot ��

process Advance �P�� P�� OUTPUT� � exit

�	

P� � v� value

�let ml� m�list 	 the�list�v�� roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� �exit�

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�advance 	 true �

� OUTPUT � make�advance�roro�� rm�first�ml��

P� � make�advance�roro�� rm�first�ml��

Advance �P�� P�� OUTPUT�

�� �first�ml� equal m�advance 	 false�

� P� � v

Advance �P�� P�� OUTPUT� ��

endproc

process Chg�Smile �P�� P�� OUTPUT� � exit

�	

P� � v� value

�let ml� m�list 	 the�list�v�� roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� �exit�

�� �is�empty�ml�	 false�
�

� �first�ml� equal m�chg�smile 	 true �

� OUTPUT � make�chg�smile�roro�� rm�first�ml��

P� � make�chg�smile�roro�� rm�first�ml��

Chg�Smile �P�� P�� OUTPUT�

�� �first�ml� equal m�chg�smile 	 false�

� P� � v

Chg�Smile �P�� P�� OUTPUT� ��

endproc

This concludes Step � of the agenda given in Table
��� Each of the processes conforms to
the component characteristics of Section
����� According to the style characterization� the
overall behavior of the process is

hide P�� P�� P�� P� in

� Init�pf �START� P��

�� P� ��

Stand �P�� P�� P�� OUTPUT�

�� P�� P� ��

Advance �P�� P�� OUTPUT�

�� P� ��

Chg�Smile �P�� P�� OUTPUT� �

This result of Step � ful�lls the constraints stated in Section
����� The synchronization
lists � P� 	� � P�� P� 	 and � P� 	 are pairwise disjoint� Gate P� occurs exactly in the
gate lists of the processes Init pf and Stand� Gate P� occurs exactly in the gate lists of
the processes Stand and Advance� Gate P� occurs exactly in the gate lists of the processes
Advance and Chg Smile� Finally� gate P� occurs exactly in the gate lists of the processes
Stand and Chg Smile� Pipe P� has the direction shown in Figure
��� because Init pf only

�� Chapter 	� Software Design Using Architectural Styles

writes on it and Stand only reads from it� For the other pipes� the conditions that the gates of
a process representing pipes are exactly the ones that occur in some synchronization list and
that the direction of the pipe can be determined from the process de�nition can be checked
analogously�

This solution is better than the repository architecture because it always terminates� It is
not ideal� however� because each component must inspect the data� even if it cannot process
them�

��
�� The robot design using the event�action style

The event�action style can be used to overcome the disadvantages of the previous two archi�
tectures� The event manager inspects the movement list and passes on the data only to the
component that can process them� Events are items of type value � The initial state of the
robot and the movement list are given to the event manager� An initialization component is
not required� This architecture is shown in Figure
����

START

 Event
Manager

Advance

Chg_Smile

 Stand

Advance

In_stand

In_chg_smile

Out_advance

Out_stand

Out_chg_smile

In_advance

OUTPUT

Figure 	���� The event�action architecture for the robot

Step � of the agenda for the event�action style shown in Table
�� has already been
performed in Section
����� According to the agenda of Table
��� we decide that the action
Stand must be invoked for all events v where the list�v
 is a list that starts with the
movement m stand� For the actions Advance and Chg Smile we have analogous predicates�
These independent components communicate with the event manager via the gates In stand�
In advance and In chg smile� respectively� They pass their result on to the event manager
for further processing� Their de�nition is

process Stand �OUTPUT� In�stand� Out�stand� � noexit

�	

In�stand � v� value

�let ml� m�list 	 the�list�v��

roro� robot 	 the�robot�v�

in OUTPUT � make�stand�roro�� rm�first�ml��

Out�stand � make�stand�roro�� rm�first�ml��

Stand �OUTPUT� In�stand� Out�stand�

�

endproc

process Advance �OUTPUT� In�advance� Out�advance� � noexit

�	

	��� Example� Design of a Robot �

In�advance � v� value

�let ml� m�list 	 the�list�v��

roro� robot 	 the�robot�v�

in OUTPUT � make�advance�roro�� rm�first�ml��

Out�advance � make�advance�roro�� rm�first�ml��

Advance �OUTPUT� In�advance� Out�advance�

�

endproc

process Chg�Smile �OUTPUT� In�chg�smile� Out�chg�smile� � noexit

�	

In�chg�smile � v� value

�let ml� m�list 	 the�list�v��

roro� robot 	 the�robot�v�

in OUTPUT � make�chg�smile�roro�� rm�first�ml��

Out�chg�smile � make�chg�smile�roro�� rm�first�ml��

Chg�Smile �OUTPUT� In�chg�smile� Out�chg�smile�

�

endproc

Each de�nition ful�lls the validation condition of Step � of the agenda given in Table
��
by using appropriate gates to receive and send events� It remains to perform Step � of the
agenda given in Table
��� The event manager is de�ned as follows�

process Event�Manager �START� In�stand� Out�stand� In�chg�smile�

Out�chg�smile� In�advance� Out�advance� � exit �	

START � v� value
 exit�v�

�� Out�stand � v� value
 exit�v�

�� Out�advance � v� value
 exit�v�

�� Out�chg�smile � v� value
 exit�v�

�� accept v� value in

�let ml� m�list 	 the�list�v�� roro� robot 	 the�robot�v�

in �is�empty�ml�	 true �
� �exit�

����is�empty�ml�	 false�
�

� �first�ml� 	 m�stand�

� In�stand � v

Event�Manager �START� In�stand� Out�stand�

In�chg�smile� Out�chg�smile� In�advance� Out�advance�

�� �first�ml� 	 m�advance�

� In�advance � v

Event�Manager �START� In�stand� Out�stand�

In�chg�smile� Out�chg�smile� In�advance� Out�advance�

�� �first�ml� 	 m�chg�smile�

� In�chg�smile � v

Event�Manager �START� In�stand� Out�stand�

In�chg�smile� Out�chg�smile� In�advance� Out�advance� ���

endproc

The event manager contains the patterns required in Section
�
��� It invokes the actions
exactly under the conditions stated de�ned in Step � of the agenda of Table
��� when the

�� Chapter 	� Software Design Using Architectural Styles

�rst movement to be executed is m stand� then the event(value is passed via gate In stand

to the process Stand� and similarly for the other movements�
In accordance with the event�action style characterization� we have the following overall

behavior�

hide In�stand� Out�stand� In�chg�smile� Out�chg�smile� In�advance� Out�advance in

Event�Manager �START� In�stand� Out�stand� In�chg�smile�

Out�chg�smile� In�advance� Out�advance�

��In�stand� Out�stand� In�chg�smile� Out�chg�smile� In�advance� Out�advance��

� Stand �OUTPUT� In�stand� Out�stand�

���

Advance �OUTPUT� In�advance� Out�advance�

���

Chg�Smile �OUTPUT� In�chg�smile� Out�chg�smile� �

Note that the components executing the movements are much simpler now than in the other
architectures�

��
�� Comparing the three designs with Aldebaran

Under the assumption of fairness for the repository solution� all three LOTOS speci�cations
exhibit the same behavior to the environment� i�e� a user cannot distinguish implementations
of the three architectures� This can be shown using CADP �Caesar(Aldebaran Distribution
Package� �Fernandez et al�� ������ The tool generates the same following automata mini�
mized with respect to safety equivalence �Fernandez� ����� �i�e� internal transitions are not
considered� for all the three architectures� where we use the movement list shown in Figure
���

des �������

����START �MAKE �STANDING �TRUE��

ADD �ADD �ADD �ADD �ADD �ADD �EMPTY� M�CHG�SMILE��

M�ADVANCE�� M�ADVANCE�� M�CHG�SMILE�� M�STAND�� M�CHG�SMILE����

��

����OUTPUT �MAKE �STANDING �FALSE��

ADD �ADD �ADD �ADD �ADD �EMPTY�

M�ADVANCE�� M�ADVANCE�� M�CHG�SMILE�� M�STAND�� M�CHG�SMILE����

��

����OUTPUT �MAKE �RIGHT�UP �FALSE��

ADD �ADD �ADD �ADD �EMPTY�

M�ADVANCE�� M�CHG�SMILE�� M�STAND�� M�CHG�SMILE����

��

����OUTPUT �MAKE �LEFT�UP �FALSE��

ADD �ADD �ADD �EMPTY� M�CHG�SMILE�� M�STAND�� M�CHG�SMILE����

��

����OUTPUT �MAKE �LEFT�UP �TRUE��

ADD �ADD �EMPTY� M�STAND�� M�CHG�SMILE����

��

����OUTPUT �MAKE �STANDING �TRUE��

ADD �EMPTY� M�CHG�SMILE����

��

����OUTPUT �MAKE �STANDING �FALSE��

EMPTY���

��

	��� Related Work ��

This labeled transition system has to be interpreted as follows� the initial state is �� there are
� states and � transitions� State � is a sink state that is entered when the list of movements is
empty� The �rst transition is from State � to State �� and it is performed when the automaton
outputs the message STANDING �FALSE
 and the rest of the movement list� This means that
during this transition the robot has moved to the state where it still stands but is no longer
smiling� This corresponds to the �rst movement of the list� M CHG SMILE� starting from the
initial state� standing and smiling�

The labeled transition systems� minimized with respect to safety equivalence� are the same
for the three architectures�

� aldebaran
sequ robot�repository robot�pipe�filter

TRUE

� aldebaran
sequ robot�repository robot�event

TRUE

� aldebaran
sequ robot�pipe�filter robot�event

TRUE

Stepwise execution of the three alternative architectures is also possible� This shows
that existing LOTOS tools can help to animate and compare architectural descriptions� thus
providing valuable support for their validation�

�� Related Work

This work is not the �rst to formally characterize architectural styles or to use a process
algebra to specify the behavioral aspects of software architectures� Abowd� Allen and Gar�
lan �Abowd et al�� ����� use the speci�cation language Z to formally de�ne architectural
styles� Concrete designs� however� are described in a di	erent language� Thus� there is no
direct way from a style de�nition to an instance of the style� Fiadeiro and Maibaum �Fi�
adeiro and Maibaum� ����� conceive architectural styles as well as architectural description
languages as categories� Their work is language�independent and aims more at a categorical
foundation of software architecture than detailed guidance for designers�

Allan and Garlan �Allan and Garlan� ���
� use CSP to formalize architectural connec�
tion� In their approach� connectors are de�ned as processes� In contrast to our work where
components are modeled as processes� this yields several de�centralized behaviors in one ar�
chitectural description instead of one central behavioral description characterizing the whole
system� as proposed in this work� Moriconi and Qian �Moriconi and Qian� ���
� use CSP
to show that an architectural description is a correct re�nement of another� Both of these
approaches are not concerned with architectural styles but with architectural descriptions in
general� These need not conform to any style�

�
 Summary

Considering the di	erent style characterizations given in this chapter� we notice that there
are two styles �repository and event�action� that contain a distinguished component �Shared�
Memory and Event Manager� respectively�� This results in a relatively detailed characteri�
zation of the other components of the architecture because one can state requirements con�
cerning the communication of the other components with the distinguished one� Further

��� Chapter 	� Software Design Using Architectural Styles

constraints are not necessary� In contrast� the pipe(�lter style does not have a distinguished
component� This allows only for a weak characterization of the components� but leads to
non�trivial constraints concerning the communication between the di	erent components�

Formal descriptions of architectural styles and concrete architectural designs are important
because only architectural descriptions with a formal semantics allows us to precisely answer
the questions stated by Clements �Clements� ����� on software architecture� What are the
components� How do they behave� What do the connections mean�

In particular� the results of this chapter are�

� We have shown that LOTOS is a language suitable to express individual architectures�
and that LOTOS patterns in combination with constraints are suitable to characterize
architectural styles�

� The style characterizations provide a semantic foundation of architectural styles� Fur�
thermore� they yield su�cient conditions for a given concrete architectural description
to conform to the style�

� Agendas that are based on the style characterizations support the development of in�
stances of the styles�

� The formal nature of the architectural descriptions and the availability of tools makes
it possible to formally analyze and to animate the architectural descriptions� In our
example� we have demonstrated how di	erent designs can be compared�

� Our approach to expressing architectural descriptions allows for hierarchical composition
of such descriptions�

� Substyles of given architectural styles can be de�ned by adding further constraints or
adding further detail to the patterns of a style characterization�

Of the �hot research areas� identi�ed by Garlan� Allen and Ockerbloom �Garlan et al�� ������
our work addresses architectural description� formal underpinnings and role of tools and en�
vironments� This is achieved using only a single formalism �and patterns of it� and existing
tools�

�� Further Research

The work presented here forms the basis for future work in several directions�

Architecture re	nement� A notion of architecture re�nement should be de�ned� based on
the notion of behavioral equivalence in LOTOS�

Other styles� Besides the three styles characterized here� other architectural styles� e�g�
client�server� are of importance� To make our approach more broadly applicable� these
should also be characterized and provided with agendas�

Alternatives for the algebraic speci	cation language� The example has shown that the
data type parts of the architectural descriptions are somewhat lengthy� Case studies
should be performed to investigate what the architectural descriptions of more realistic
systems look like� If appropriate� one could consider replacing the algebraic speci�cation
language of LOTOS by Z or another more powerful language�

Part II

MACHINE SUPPORT

���

Chapter �

Strategies � A Generic Knowledge

Representation Mechanism for Software

Development Activities

All e	orts to automate software engineering activities and to reuse previously gained expe�
rience must be based on representations of the knowledge possessed by software engineers�
which are easily implementable on machines� and complemented by some process model de�
scribing how to make use of the represented knowledge�

In this chapter� we present precisely such a knowledge representation mechanism� called
strategy� This concept is speci�cally designed to support the application of formal techniques
in software engineering� Formal techniques make it possible to guarantee semantic properties
of the developed product �this may be a speci�cation� a design� a program� test cases� or
the like�� This is in contrast to CASE tools� which usually do not take semantic issues into
account� The notion of a strategy is independent of any particular formalism�

Strategies are used to describe possible steps that may be taken during the development
of an artifact of the software engineering process� A strategy might� for example specify
how to decompose a system design to guarantee a particular property� how to conduct a data
re�nement� or how to implement a particular class of algorithms� This is the kind of knowledge
often described in text books or the agendas presented in the �rst part of this work� The ability
to decide which strategy may successfully be applied in a particular situation� on the other
hand� typically requires human intuition and a deep understanding of the problem under
consideration� While heuristics for selecting strategies are hardly mechanizable� strategies
themselves can� in fact� be implemented�

The basic idea underlying strategies is to conceive software engineering activities as prob�
lem solving processes in which� for each given development problem� an acceptable solution
has to be constructed� The notion of acceptability captures semantic requirements that the
developed products must ful�ll� The notion of strategy is generic� Its generic parameters are
the notions of problems� solutions� and acceptability� This means that strategies can be used
to formalize a variety of software development activities�

In problem solving with strategies� problems are solved by reducing them to a number of
subproblems� which are in turn solved by applying strategies� The problem solving process

���

��	 Chapter �� Strategies � A Generic Knowledge Representation Mechanism

terminates when the generated subproblems are so simple that they can be solved directly�
The use of strategies to support software engineering activities has the following advan�

tages�

� Development methods formalized by strategies can be combined freely and can be en�
hanced� changed� and adapted to special project contexts in a routine way�

� Strategicals provide ways to de�ne more powerful strategies by combination of existing
ones�

� The parts of a strategy� which guarantee acceptability of solution it generates are well�
isolated� Only these parts have to be veri�ed to obtain trustworthy support systems�

As already mentioned� merely representing development knowledge does not su�ce � the
knowledge representation mechanism must therefore be complemented by mechanisms for the
machine supported application of this knowledge� For strategies� this is achieved as follows�

� We give a modular representation of strategies� This representation maps without
di�culty to encapsulation mechanisms of modern programming languages�

� An abstract problem solving algorithm describes how development activities with strate�
gies can be carried out by machine �where appropriate� user interaction will be neces�
sary��

� The parts of the problem solving algorithm in which user interaction can be replaced
by automatic procedures are clearly identi�ed� making stepwise automation possible�

� A generic system architecture provides detailed concepts for implementing support sys�
tems for strategy�based problem solving�

We formally de�ne strategies� strategicals� strategy modules� and the abstract problem
solving algorithm in the language Z �Spivey� ����b�� This provides precise de�nitions of these
notions� and thus supports reasoning about strategies�

The rest of the chapter is organized as follows� We present a formal de�nition of strategies
in the speci�cation language Z in Section ���� Section ��� introduces strategicals that can be
used to de�ne more powerful strategies from simpler ones� Steps toward an implementation
of strategies are taken in Section ���� The system architecture described in Section ��
 takes
user needs into account� In Section ���� we compare strategy�based problem solving with
tactical theorem proving and other related work� Finally� we summarize in Section ��� and
give directions for further research in Section ���� The results of this chapter are based on
the publications �Heisel� ���
$ Heisel et al�� ����b$ Heisel et al�� ����a$ Heisel� ����c�

��� Formal De�nition of Strategies

As discussed earlier� strategies are used to describe possible steps that can be taken during
the development of an artifact of the software engineering process� Strategies are based on
the reduction of problems to subproblems from whose solutions the strategy synthesizes a
solution to the original problem� The solutions to subproblems are obtained by strategy
applications as well� Finally� the strategy tests if the synthesized solution to the original

���� Formal De�nition of Strategies ���

problem is acceptable according to some pre�de�ned notion of acceptability� In general� the
subproblems generated by a strategy are neither independent of one another nor of solutions
to other subproblems� Hence� the order in which the various subproblems can be set up and
solved is restricted�

We �rst de�ne the general notion of relation and then introduce speci�c relations called
constituting relations� Strategies are then de�ned as sets of constituting relations� which
relate problems to the subproblems needed to solve them� and relate their ultimate solutions
to the solutions of those subproblems� The formal de�nition of a strategy is expressed in the
speci�cation language Z �Spivey� ����b��

���� De�nition of Database Relations

Since� in the context of strategies� it is convenient to refer to the subproblems and their
solutions by names� our de�nition of strategies is based on the the notion of a relation� as
used in the theory of relational databases �Kanellakis� ������ In this setting� relations are sets
of tuples� A tuple is a mapping from a set of attributes to the domains of these attributes�
In this way� each component of a tuple can be referred to by its attribute name� In order not
to confuse the domains of attributes with the domains of relations as typically used in Z� we
introduce the type Value to denote attribute values�

!Attribute�Value"

Having introduced Attribute and Value as basic types� we can de�ne tuples as �nite partial
functions from attributes to values� where � is the powerset operator�

tuple � ��Attribute�Value�

Relations are sets of tuples all of which have the same domain� This common domain is
called the scheme of the relation� Note that� in Z� function applications are written without
parentheses�

relation � ��� tuple�

 r � relation �
 t�� t� � r � dom t� # dom t�

scheme ## �� r � relation �
S
ft � r � dom tg�

The usual notions of domain restriction and domain subtraction for relations are also needed
for the relations used in database theory�

� �r � ## �� attrs � �Attribute$ r � relation � ft � r � attrs � tg�

� �r � ## �� attrs � �Attribute$ r � relation � ft � r � attrs � tg�

Here� � restricts the domain of a relation to its left argument� and � subtracts its left
argument from the domain of the relation� The operator �S denotes the set of �nal subsets
of S �

A join is a total function combining two relations� The scheme of the joined relation is
the union of the schemes of the given relations� On common elements of the schemes� the
values of the attributes must coincide�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

� � relation � relation� relation

 r�� r� � relation �
r� � r�
ft � tuple j dom t # scheme r� � scheme r� �

scheme r� � t � r� � scheme r� � t � r�g

The join operation is associative and commutative� and so can be extended to �nite sets of
relations�

��� � relation� relation

 rels � � relation �
�rels # � � �� rels # ��
�
�� r � relation$ rels � � � relation j r �� rels � � rels # frg � rels � �

�� rels # r � ��� rels ���

���� Problems� Solutions� Acceptability

Problems and solutions are generic parameters for strategies� The sets Problem and Solution
are de�ned to be subsets of Value� Acceptability is a relation between problems and solutions�

Problem� Solution � �Value

acceptable for � Solution� Problem

The sets ProblemAttribute and SolutionAttribute are countable� disjoint subsets of Attribute�

ProblemAttribute � �Attribute
SolutionAttribute � �Attribute

ProblemAttribute � SolutionAttribute # �
ProblemAttribute�� �# �
SolutionAttribute�� �# �

We use the distinguished attributes P init and S �nal to refer to the initial problem and
its �nal solution� Moreover� we assume a bijective correspondence cor between problem and
solution attributes�

P init � ProblemAttribute
S �nal � SolutionAttribute
cor � ProblemAttribute� SolutionAttribute

cor P init # S �nal

���� Constituting Relations

Each strategy will be de�ned to be a set of constituting relations� representing the depen�
dencies between the subproblems generated by that strategy from any given problem� Their

���� Formal De�nition of Strategies ��

schemes consist of arbitrary attributes for problems and solutions� and are divided into input
attributes and output attributes� Constituting relations restrict the values of output attributes�
in relation to given values of the input attributes� Thus� they determine orderings on sub�
problems that must be respected during the problem solving process�

const rel � � relation

 cr � const rel �
 t � cr $ a � scheme cr �
scheme cr � �ProblemAttribute � SolutionAttribute� �
�a � ProblemAttribute � t a � Problem� �
�a � SolutionAttribute � t a � Solution�

IA�OA � const rel��Attribute

 cr � const rel � hIA cr �OAcri partition scheme cr

Given some relation� it will often be necessary to refer the problem or solution attributes of
its scheme�

problem attrs ## �� r � relation � scheme r � ProblemAttribute�

solution attrs ## �� r � relation � scheme r � SolutionAttribute�

subprs ## �� r � relation � problem attrs r n fP initg�

partsols ## �� r � relation � solution attrs r n fS �nalg�

The functions subprs and scheme are also for sets of relations�

subprss � � relation��ProblemAttribute
schemes � � relation��Attribute

 crs � � relation$ t � tuple �
subprss crs # subprs��� crs� �
schemes crs # scheme��� crs�

It is now possible to de�ne dependency relations on constituting relations� One constituting
relation directly depends on another such relation if one of its input attributes is an output
attribute of the other relation$ in this way� each set of constituting relations determines a
direct dependency relation� The depending constituting relation is considered �larger� than
the one on which it depends� For any given set crs of constituting relations� one dependency
relation determined by crs is de�ned to be the transitive closure of the direct dependency
relation it determines�

�d � const rel� const rel
�� � const rel� �const rel� const rel�

 cr�� cr� � const rel $ crs � � const rel �
��cr��d cr� � OAcr� � IA cr� �# �� �
�� �crs� # fcr�� cr� � crs j �� chain � seq crs � head chain # cr� �

last chain # cr� � �
 i � � � �)chain � � � chain i �d chain�i ' ����g��

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

Instead of writing �cr � cr �� � �� crs�� we write cr �crs cr ��
A set of constituting relations de�ning a strategy must conform to our intuitions about

problem solving� namely�

�� The original problem to be solved must be known� i�e� P init must always be an input
attribute�

�� The solution to the original problem must be the last item to be determined� i�e� S �nal
must always be an output attribute�

�� Each attribute value except that of P init must be determined in the problem solving
process� i�e�� each attribute except P init must occur as an output attribute of some
constituting relation�

� Each attribute value should be determined only once� i�e� the sets of output attributes
of all constituting relations must be disjoint�

�� Each solution to a subproblem is used further� i�e�� it occurs as an input attribute of
some constituting relation� �For the subproblems� it is not necessary to state such a
requirement� because they are guaranteed to be used further to generate the solutions
to the subproblems��

�� Each solution must directly depend on the corresponding problem� i�e� if a solution at�
tribute is an output attribute of a constituting relation� then the corresponding problem
attribute must occur in the scheme of this constituting relation� Each subproblem must
therefore be set up before it is solved�

�� The dependency relation on the constituting relations must not be cyclic�

Finite sets of constituting relations ful�lling these requirements are called admissible� In the
following formal de�nition of admissibility� each line of the predicate part of the axiomatic
box formalizes one of the previous requirements� The inverse of a relation �or function� r is
denoted r��

admissible � ��� const rel�

 crs � � const rel �
admissible crs
�
�
 cr � cr � � crs j cr �# cr � �

�P init � scheme cr � P init � IA cr� �
�S �nal � scheme cr � S �nal � OAcr� �
�
 a � schemes crs n fP initg � � cr �� � crs � a � OAcr ��� �
OAcr � OAcr � # � �
�
 a � partsols cr � �� cr �� � crs � a � IA cr ��� �

�a � OAcr � cor�a � scheme cr�� �
� �cr �crs cr��

From this de�nition it follows that each attribute a except P init occurs as an output at�
tribute of exactly one constituting relation� and each input attribute of a constituting relation
except P init must be an output attribute of a smaller relation� This implies that there is
some order in which all attribute values can be determined�

���� Formal De�nition of Strategies ���

Lemma �

 crs � � const rel j admissible crs �
�
 a � schemes crs n fP initg � �� cra � crs � a � OAcra�
�
�
 cr � crs � IA cr � �

S
fcr � � crs j cr � �crs cr � OA�cr ��g�� fP initg�

Proof

The �rst part of the lemma follows from requirements � and
 of the de�nition of admissibility�
The second part follows from requirements � and ��

���� Strategies

It is now possible to de�ne strategies as admissible sets of constituting relations that ful�ll
certain conditions� An admissible set strat of constituting relations is a strategy if

�� The set schemes strat contains the attributes P init and S �nal �

�� For each problem attribute of schemes strat � the corresponding solution attribute is a
member of the scheme� and vice versa�

�� If a member of the relation �� strat contains acceptable solutions for all problems except
P init � then it also contains an acceptable solution for P init � Thus� if all subproblems
are solved correctly� then the original problem must be solved correctly as well�

The last condition guarantees that a problem that is solved exclusively by application of
strategies is solved correctly� This condition requires that strategies solving the problem
directly must produce only acceptable solutions�

As with admissible constituting relations� each of the above requirements that a strategy
must satisfy corresponds to one conjunct in the formal de�nition�

strategy � ��� const rel�

 strat � strategy �
admissible strat �
fP init � S �nalg � schemes strat �
�
 a � ProblemAttribute � a � schemes strat � cor a � schemes strat� �
�
 res � �� strat �

�
 a � subprss strat � �res �cor a�� acceptable for �res a��
� �res S �nal� acceptable for �res P init��

Figure ��� illustrates the de�nition of strategies� Here� arrows denote the propagation of
attribute values�

Note that the values of the output attributes of a constituting relation need not be in�
dependent� Strategies will usually be de�ned in such a way that a subproblem and its cor�
responding solution are output attributes of the same constituting relation� and the solution
ful�lls certain requirements derived from the problem�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

crmax

cr1

cr2

cr0
P_init S_final

strat

Figure ���� De�nition of strategies

From the de�nition of strategies it follows that there is at least one member of a strategy
that has P init as its only input attribute� This means that the problem solving process can
actually be initiated� Moreover� there is exactly one maximal member in a strategy that has
S �nal as its only output attribute� and this member depends on all of the other members
of the strategy� In the following� we will often make use of these properties of the maximal
constituting relation�

Lemma �

 strat � strategy �
�� cr� � strat � IA cr� # fP initg�
�
�let crmax ## �� r � strat j S �nal � OAr� �

�fS �nalg # OAcrmax � �
 cr � �strat n fcrmax g� � cr �strat crmax ���

Proof

The �rst part of the lemma follows from Lemma �� together with the fact that �strat does
not contain cycles� The second part follows from requirements �� � and � of the de�nition of
admissibility for strat �

Renaming attributes �except P init and S �nal� does not change the semantic content
of a strategy� Hence� we can de�ne an equivalence relation equiv on strategies� which will
be used in Section ������

equiv � strategy� strategy

 strat�� strat� � strategy �
strat� equiv strat�
�
�� f � schemes strat�� schemes strat� j f �P init� # P init � f �S �nal� # S �nal �

 cr � strat� � �� cr
� � strat� �

IA cr � # fa � IA cr � f ag � OAcr � # fa � OAcr � f ag �
�
 t � tuple � t � cr � fa � Attribute$ v � Value j a 	
 v � t � f a 	
 vg � cr ���

���� Strategicals ���

The de�nitions presented in this section comprise the theoretical foundation of our ap�
proach� The next sections show how strategies can be combined and how they can be repre�
sented to facilitate their implementation�

��� Strategicals

Strategicals are functions that take strategies as their arguments and yield strategies as their
result� They are useful to de�ne higher�level strategies by combining lower�level ones or to
restrict the set of applicable strategies� thus contributing to a larger degree of automation of
the development process�

We de�ne three strategicals that are useful in di	erent contexts� The Then strategical
composes two strategies� Applications of this strategical can be found in program synthesis�
The Repeat strategical allows stepwise repetition of a strategy� Such a strategical is useful
in the context of speci�cation acquisition� where several items of the same kind often need
to be developed� To increase applicability of the Repeat strategical� we also de�ne a Lift
strategical that transforms a strategy for developing one item into a strategy for developing
several items of the same kind�

���� The Then Strategical

The idea of this strategical is to replace one subproblem p generated by strategy strat� by
the subproblems generated by strategy strat�� The e	ect of the Then strategical is the same
as that obtained by �rst reducing a problem with strat� and then reducing some generated
subproblem p by strat�� The di	erence is that p and its corresponding solution cor p are not
generated explicitly� This is illustrated in Figure ����

1 2THEN(strat , p, strat)

cr’0

1cr’
2a

maxcr’

2cr
3a

2strat

1strat

a1

a1

2a

3a

0cr

1cr

2cr

maxcr

P_init S_final

p cor p

P_init

P_init S_final

S_final

p
cor p

Figure ���� The Then strategical

If p is a subproblem generated by strat�� then in the strategy de�ned by Then�strat�� p�
strat��� p plays the role of P init � and cor p plays the role of S �nal in strat�� The attribute
values for p and cor p are no longer explicitly set up� and so all of the attribute values needed
to de�ne the value of p must be supplied to all constituting relations that rely on the value
of p� Similarly� all attribute values needed to determine the �nal solution of strat� must be

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

supplied to all constituting relations that have cor p as an input attribute� Furthermore� we
must guarantee that all attribute values are determined relative to the same values for p
and cor p� i�e�� there must be unique values for p and cor p such that Then�strat�� p� strat��
equals strat�� strat�� except that the attributes p and cor p are removed from their respective
schemes� This is achieved by joining the members of the two strategies with all members
upon which they depend� The e	ect of this de�nition is that the constituting relations that
make up Then�strat�� p� strat�� have more input attributes than the ones in strat� and strat��
Independent subproblems� however� do remain independent�

The following function de�nes the transformation of the constituting relations that is
necessary to replace p and cor p� A constituting relation cr is joined with all constituting
relations upon which it depends� and the attributes p and cor p are removed from its scheme�

transformThen � const rel � �� const rel�� ProblemAttribute	 const rel

 cr � crt � const rel $ crs � � const rel $ p � ProblemAttribute �
�crt # transformThen�cr � crs � p��

cr � crs �
p � schemes crs �
�let lo ## �� fr � crs j r �crs crg �

IA crt # �IA cr � scheme lo� n fp� cor pg �
OAcrt # OAcr n fp� cor pg �
crt # scheme crt�r �lo � cr���

In de�ning Then�strat�� p� strat��� we must �rst guarantee that the sets of subproblems gen�
erated by strat� and strat� are disjoint by choosing a strategy strat

�

� that is equivalent to strat�
and ful�lls this requirement� Then� in strat ��� P init is replaced by p and S �nal is replaced
by cor p using the function replace which replaces attribute aold by attribute anew in relation
r �

replace � Attribute �Attribute � relation� relation

 aold � anew � Attribute$ r � r
� � relation �

r � # replace�aold � anew � r��
�aold �� scheme r � r � # r� �
�aold � scheme r � r � # ft � r � �faoldg� t� � fanew 	
 t aoldgg�

Each of the resulting constituting relations is then transformed using the function transformThen �

Then � strategy � ProblemAttribute � strategy	 strategy

 strat�� strat� � strategy $ p � ProblemAttribute �
��strat�� p� strat�� � domThen� p � subprss strat��
�
�� strat �� � strategy j strat

�

� equiv strat� � subprss strat� � subprss strat
�

� # � �
�let strat ���r ## fcr � strat �� � replace�S �nal � cor p� replace�P init � p� cr��g �

Then�strat�� p� strat��
fcr � strat� � strat ���r � transformThen�cr � strat� � strat ���r � p�g��

Whenever Then�strat�� p� strat�� is de�ned� it yields a strategy�

���� Strategicals ���

Lemma �

 strat�� strat� � strategy $ p � ProblemAttribute j �strat�� p� strat�� � domThen �
Then�strat�� p� strat�� � strategy

The next lemma states that Then�strat�� p� strat�� conforms to our intuition� its join contains
exactly those tuples� which can also be obtained by joining strat� and strat

�

��r �where strat
�

��r

is de�ned as before� and then dropping the values of p and cor p�

Lemma �

�� �Then�strat�� p� strat��� # fp� cor pg�r ��� �strat� � strat ���r��
where strat ���r is de�ned as in the de�nition of Then

Finally� Lemma � states that Then does not introduce any new dependencies� i�e�� if two con�
stituting relations of Then�strat�� p� strat�� are dependent� also their untransformed versions
are�

Lemma �

cr �t �Then�strat��p�strat�	
crt � cr � �strat��strat

�

��r

cr

where strat ���r is de�ned as in the de�nition of Then and

crt # transformThen�cr � strat� � strat ���r � p� � cr �t # transformThen�cr
�� strat� � strat ���r � p�

Proof

We �rst prove Lemma �� where we use the same abbreviations and declarations as introduced
there� Using the fact that � is the transitive closure of �d with respect to some set of
constituting relations� the lemma follows by an inductive argument from

cr �t�dcrt � cr � �strat��strat
�

��r

cr

The relation crt�dcr
�

t meansOAcr �t � IA crt �# �� According to the de�nition of transformThen �
this is equivalent to

�OAcr � n fp� cor pg�
� ��IA cr � scheme��� fr � strat� � strat ���r j r �strat��strat

�

��r

crg�� n fp� cor pg�

�# �

This condition is equivalent to

� a � Attribute j a �� fp� cor pg �
a � OAcr � � a � �IA cr � scheme��� fr � strat� � strat ���r j r �strat��strat

�

��r

crg��

If a � OAcr � � IA cr � we immediately have cr ��d cr and hence cr
�
�strat��strat

�

��r

cr � Other�
wise�

� cr � fr � strat� � strat ���r j r �strat��strat
�

��r

crg � a � scheme cr

��	 Chapter �� Strategies � A Generic Knowledge Representation Mechanism

Since the sets of all output attributes of strat� � strat ���r except p and cor p are disjoint� and
since a �� fp� cor pg� a cannot be an output attribute of cr � Hence� a � IA cr � This yields
OAcr � � IA cr �# �� It follows that

cr ��d cr � where cr �strat��strat
�

��r

cr

which �nishes the proof of Lemma ��

�

We now prove Lemma �� where we use the same de�nitions and abbreviations as before�
We have

schemes�Then�strat�� p� strat���
�schemes strat� n fp� cor pg� � �schemes strat

�

� n fP init � S �nalg�

where �schemes strat� n fp� cor pg� � �schemes strat
�

� n fP init � S �nalg� # �� It follows that
the conditions � and � of the de�nition of a strategy are ful�lled�

The admissibility of Then�strat�� p� strat�� is ful�lled� as the following argumentation
shows�

� Since transformThen does not change the property of P init or S �nal being an input
or output attribute of some cr � strat�� and since these two attributes do no longer
occur in strat ���r � the requirements � and � of the admissibility de�nition are ful�lled�

� The function transformThen removes the attributes p and cor p from the input and
output attributes of the constituting relation supplied as its �rst argument� Since these
attributes are no longer in the scheme of Then�strat�� p� strat��� removing them does
not destroy satis�ability of requirements � and
� Hence� the requirements also hold for
the transformed constituting relations�

� Condition � holds because it holds for strat� as well as strat ��� and because the attribute
cor p that replaces S �nal in strat �� is an input attribute of a constituting relation of
strat��

� The condition � is not changed by transformThen because the attributes p and cor p are
always removed pairwise from the schemes of the constituting relations�

� We show condition � by contraposition� If there were cyclic dependencies in Then�strat��
p� strat��� then� by Lemma �� there would also be a cyclic dependency in strat��strat ���r �
Since strat� and strat ���r both cannot contain cycles �because strat� and strat

�

� are strate�
gies�� a cycle in strat� � strat ���r must contain members of both strat� and strat ���r � It
follows without loss of generality that

� cr � strat� � � chain � seq�strat� � strat ���r� � head chain # cr � last chain # cr �

�
 j � ���)chain � � � chain j �d chain�j ' ���

Since the cycle must contain members of strat ���r � there must be a minimal index i and
a maximal index k of chain such that

���� Strategicals ���

chain i � strat� � chain�i ' �� � strat ���r �
chain k � strat ���r � chain�k ' �� � strat�

and since p and cor p are the only common elements of strat� and strat
�

��r � only these can
be involved in the direct dependencies chain i �d chain�i '�� and chain k �d chain�k '
���

For index i � cor p � OA�chain i� � IA�chain�i ' ��� is impossible because� in strat ���r �
cor p is always an output attribute �it takes the role of S �nal in strat ���� For index k �
p � OA�chain k� � IA�chain�k ' ��� is impossible because� in strat ���r � p is always an
input attribute �it takes the role of P init in strat���� It follows that

p � OA�chain i� � IA�chain�i ' ��� � cor p � OA�chain k� � IA�chain�k ' ���

Since p � OA�chain i�� we get � �crcor p �strat� chain i�� where crcor p is the unique
constituting relation of strat� that contains cor p as an output attribute� Since i was
chosen to be minimal� cr �strat� chain i holds� It follows that � �crcor p �strat� cr�
holds� since otherwise� by transitivity of �strat� � we would have crcor p �strat� cr �strat�

chain i �

Since cor p � IA�chain�k'���� we have crcor p �strat� chain�k'��� Index k was chosen
to be maximal� which yields chain�k ' �� �strat� cr � By transitivity of �strat� � we then
get crcor p �strat� cr � But this is a contradiction because we had already concluded that
� �crcor p �strat� cr�� This completes the proof that Then�strat�� p� strat�� contains no
cycles�

It remains to show the correctness of Then�strat�� p� strat��� as required by condition � of
the de�nition of a strategy� This follows immediately from Lemma
� together with the facts
that both strat� and strat �� are strategies� and that renaming of attributes does not destroy
correctness�

�

To prove Lemma
� we �rst show that

 cr � strat� � strat ���r j cr �# crmax � cr �strat��strat
�

��r

crmax

where crmax ## �� r � strat� j S �nal � OAr�

Because of Lemma �� the above condition holds for cr � strat� n fcrmax g� For cr � strat ���r n
fcrmax ��g� we have cr �strat �

��r

crmax ��� where crmax �� ## �� r � strat
�

��r j cor p � OAr�� Since

cor p is an input attribute of some cr � strat�� it follows that crmax �� �strat��strat
�

��r

crmax �

and� by transitivity of �strat��strat
�

��r

� the above proposition is shown�

This gives us

transformThen�crmax � strat� � strat ���r � p� # fp� cor pg�r �� �strat� � strat ���r�

It follows that �� �Then�strat�� p� strat��� � fp� cor pg�r �� �strat� � strat ���r��
For the converse implication� we consider some t � fp� cor pg�r �� �strat� � strat ���r� and

show that it is also a member of transformThen�crmax � strat� � strat ���r � p�� This follows from

 crt � Then�strat�� p� strat�� � scheme crt � t � crt

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

which holds because all crt � Then�strat�� p� strat�� are de�ned to be fp� cor pg�r �� crs �

for some crs � � strat� � strat ���r � By the de�nition of �� if a tuple is in the join of a set of
relations� then its appropriate restriction is in every subset of that set� This concludes the
proof of Lemma
 �and hence of Lemma ���

An example of a strategy de�ned with Then is given in Section ����
�

���� The Repeat Strategical

The �rst argument of this strategical is the strategy strat to be repeated� Repetition here
means that a subproblem p generated by strat should again be reduced by a �nite iteration of
strat or another strategy terminate that does not generate new subproblems� The attribute
p and the strategy terminate are the other arguments of Repeat� A strategy de�ned with
Repeat does not itself perform an iteration but only one step of an iteration� How often
strat is iterated is decided elsewhere� e�g� by the user of an implemented system� The strategy
Repeat�strat � p� terminate� is distinguished from strat only in that one if its constituting
relations is restricted� as shown in Figure ����

The new constituting relation crrep is a subset of crp � Problem p is solved either by
terminate or by a �nite iteration of strat � The �nite iteration is characterized by the fact
that there is a �nite sequence of tuples of �� strat such that the subproblem p of tuple i is
the initial problem P init for tuple i ' �$ for the solutions� the analogous condition holds�
The last tuple must contain a pair that is a member of �� terminate�

Repeat � strategy � ProblemAttribute � strategy	 strategy

 strat � terminate � strategy $ p � ProblemAttribute �
��strat � p� terminate� � domRepeat

� p � subprss strat � schemes terminate # fP init � S �nalg�
�
�let crp ## �� cr � strat j cor p � OAcr� �
�let crrep ## ft � crp j fP init 	
 t p� S �nal 	
 t�cor p�g � �� terminate

�
��n � ��$ ts � seq��� strat� j)ts # n �

�ts ��P init # t p � �ts �� S �nal # t�cor p� �
�
 i � � � � n � �ts i�P init # �ts�i � ��� p �

�ts i� S �nal # �ts�i � ��� �cor p�� �
fP init 	
 �ts n� p� S �nal 	
 �ts n��cor p�g

� �� terminate�g �
IA crrep # IA crp �
Repeat�strat � p� terminate� # ��strat n fcrpg� � fcrrepg���

Whenever Repeat�strat � p� terminate� is de�ned� it yields a strategy�

Lemma �

 strat � terminate � strategy $ p � ProblemAttribute j �strat � p� terminate� � domRepeat �
Repeat�strat � p� terminate� � strategy

���� Strategicals ��

crp cr rep

P_init S_final

p
cor pstrat

P_init S_final

p
cor p

REPEAT(strat, p, terminate)

Figure ���� The Repeat strategical

Proof

Since Repeat�strat � p� terminate� is distinguished from strat only by additional requirements
on membership in its constituting relation crp � it follows immediately that Repeat�strat � p�
terminate� is a strategy�

���� The Lift Strategical

It is possible that a strategy must be changed to make the Repeat strategical applicable�
In speci�cation acquisition� for instance� we are face with the problem of de�ning a list of
Z operations� and we might wish to solve this problem by repeatedly applying a strategy
de�ne schema that de�nes one schema� As it is� this strategy cannot serve as an argument
to Repeat� because it de�nes only one schema and not a list of schemas � it cannot be
applied to the subproblems it generates� namely the problems to de�ne the declaration part
and to de�ne the predicate part of the schema� We must �rst �lift� the strategy if we want
to generate a list of schemas rather than a single schema� The �lifted� strategy will generate
in addition to the problems generated by its argument strategy� one problem� which will be
used for the repetition� In addition to a strategy to be repeated� the Lift strategical requires
the following arguments�

�� a function p down� which converts a �bigger� problem �e�g�� that of developing a list of
schemas�� into a �smaller� one �e�g�� that of developing one schema��

�� an injective function p combine� which combines the original problem and a partial
solution to yield a new problem� and

�� a function s combine� which combines the solutions of �bigger� and �smaller� problems�

These functions must be de�ned in such a way that the correctness of the lifted strategy can
be guaranteed�

 pr � Problem$ sol � sol � � Solution j
sol � acceptable for p down pr � sol acceptable for p combine�pr � sol �� �
s combine�sol �� sol� acceptable for pr

The Lift strategical is illustrated in Figure ��
�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

p_down

S_final

LIFT(strat, p_down, p_combine, s_combine)

P_init

p_combine s_combine

crup finalcr

p_rep

s_rep

crmaxP_init S_final

strat

crmax sol

Figure ��	� The Lift strategical

The Lift strategical generates two new attributes� p rep and s rep� which achieve lifting�
While the argument strategy strat can solve a �smaller� problem� Lift�strat � p down� p com�
bine� s combine� is used to solve a �bigger� problem� The problem P init given to Lift�strat �
p down� p combine� s combine� must therefore be transformed into a �smaller� problem by
the function p down� With the single exception of the value for S �nal � all the attribute
values of strat are determined as required by strat for p down�P init�� The solution sol
that would have been bound to S �nal by strategy strat is propagated into the new problem
p rep using the function p combine� Its solution s rep is combined with the solution sol of
the �smaller� problem using the function s combine�

As for the Then strategical� we need to transform the constituting relations of strat � Since
Lift�strat � p down� p combine� s combine� solves a �bigger� problem� this problem must be
transformed by p down into a �smaller� one in order to ensure that strat is applicable� The
transformation concerns only those constituting relations whose schema contains P init �

transformLift � const rel � �Problem	Problem�	 const rel

 cr � const rel $ p down � Problem	 Problem j S �nal �� scheme cr �
IA�transformLift�cr � p down�� # IA cr �
OA�transformLift�cr � p down�� # OAcr �
transformLift�cr � p down� #

if P init �� scheme cr then cr
else ft � tuple j t � fP init 	
 p down�t P init�g � crg

The constituting relations of Lift�strat � p down� p combine� s combine� are the transformed
constituting relations of strat � together with two new ones� The �rst of these� cr up� de�nes
the attributes p up and s up for the �lifted� problem and its solution using the function
p combine� The second� cr�nal � assembles the �nal solution of the lifted strategy by combining
the solution of the transformed strategy strat with the �bigger� solution s up�

���� Strategicals ���

Lift � strategy
��Problem	 Problem�
��Problem � Solution
 Problem�
��Solution � Solution	 Solution�
	strategy

 strat � strategy $ p down � Problem	 Problem$
p combine � Problem � Solution
 Problem$
s combine � Solution � Solution	 Solution j

�
 pr � Problem$ sol � sol � � Solution j
sol � acceptable for p down pr � sol acceptable for p combine�pr � sol �� �
s combine�sol �� sol� acceptable for pr� �

� p up � ProblemAttribute$ s up � SolutionAttribute j
cor p up # s up � fp up� s upg � subprss strat # � �
�let crmax ## �� cr � strat j OAcr # fS �nalg� �
�let crsnew ## fcr � strat n fcrmax g � transformLift�cr � p down�g$

ias ## IA crmax � fP initg$ oas ## fp up� s upg �
�let crup ## ft � tuple j dom t # ias � oas �

�� sol � Solution j
�IA crmax � t� � fS �nal 	
 solg � crmax �
t p up # p combine�t P init � sol� �
t s up acceptable for t p up�g$

cr�nal ## ft � tuple j dom t # fP init � p up� s up� S �nalg �
�let sol ## �� sol � Solution j

t p up # p combine�t P init � sol�� �
t S �nal # s combine�sol � t s up��g �

IA crup # ias � OAcrup # oas �
IA cr�nal # fP init � p up� s upg � OAcr�nal # fS �nalg �
Lift�strat � p down� p combine� s combine� # crsnew � fcrup � cr�nalg���

The injectivity of the function s combine guarantees that the tuples of crup and cr�nal are
de�ned with respect to the same solution sol �

Whenever Lift�strat � p down� p combine� s combine� is de�ned� it yields a strategy�

Lemma �

 strat � strategy $ p down � Problem	Problem$
p combine � Problem � Solution
Problem$
s combine � Solution � Solution	 Solution j

�strat � p down� p combine� s combine� � domLift �
Lift�strat � p down� p combine� s combine� � strategy

Proof

The conditions � and � of the de�nition of a strategy as well as the conditions � and � of
the de�nition of admissibility are easily veri�ed� The other conditions for the admissibility of
Lift�strat � p down� p combine� s combine� can be veri�ed as follows�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

� Condition � is ful�lled because it is ful�lled for a � schemes strat n fS �nalg in crsnew �
for p up and s up in crup and for S �nal in cr�nal �

� Condition
 holds because it holds for strat and schemes strat � fp up� s upg # �

� Condition � holds because it holds for strat and s rep � IA cr�nal �

� The condition � is ful�lled because it is ful�lled for strat and and fp up� s upg �
scheme crup �

� There are no cycles in Lift�strat � p down� p combine� s combine�� To see this� �rst
note that there are no cycles in strat � Secondly�

 cr � crsnew � cr �Lift�strat����	 crup

holds because cr �strat crmax for cr � strat n fcrmax g and IA crmax � IA crup� Thirdly�
we have crup �d cr�nal � and for cr � crsnew � �crup �Lift�strat����	 cr� is impossible be�
cause OAcrup � schemes crsnew # �� Finally� cr�nal does not depend on any other
constituting relation because S �nal does not occur in the scheme of any constituting
relation other than cr�nal �

It remains to show the correctness of Then�strat�� p� strat��� as required in condition �
of the de�nition of a strategy� For some t � �� �Lift�strat � p down� p combine� s combine���
which contains acceptable solutions for all subproblems � i�e� that contains members of
the set subprss strat � fp upg � we must show that t S �nal acceptable for t P init holds�
From the de�nition of transformLift and the fact that strat is a strategy� it follows that
� sol � Solution � sol acceptable for �p down�t P init��� Since the function p combine is
required to be injective� the solution that is used in crup to de�ne t p up and the one that is
used in cr�nal to de�ne t S �nal must be the same� This gives us

sol acceptable for �p down�t P init�� � t s up acceptable for p combine�t P init � sol�

which� according to the requirements on p down� p combine and s combine is su�cient to
conclude that s combine�sol � t s up� # t S �nal acceptable for t P init holds�

An example of a strategy de�ned with Lift and Repeat is given in Section ������

We have now de�ned strategies formally� and so have speci�ed methods for combining simpler
strategies into more powerful ones� Thus far� strategies have been described in a purely
declarative manner� Our goal� however� is to make strategies applicable for problem solving�
and so� we must ultimately take a more much procedural view of them�

��� Problem Solving With Strategies

Strategies and strategicals� as they have been de�ned thus far� are the conceptual basis
for strategy�based problem solving� To make strategies applicable mechanically� we must
take two further steps� First� we represent strategies as modules that are implementable

���� Problem Solving With Strategies ���

using the encapsulation constructs o	ered by modern programming languages� Secondly� we
present an abstract algorithm describing the manner in which strategy�based problem solving
is to proceed� This algorithm will be expressed as a set of algebraically de�ned Z functions�
intended to denote recursive algorithms easily implementable in a functional programming
language� If the algorithm yields a solution to a given input problem� then this solution will
be acceptable�

���� Modular Representation of Strategies

To render strategies implementable� we must �nd suitable representations for them� which
are closer to the constructs provided by programming languages than are the relations of
database theory� Implementations of strategies should be independent of each other with
a uniform interface between them� In an implemented support system for strategy�based
problem solving� the implementation of a strategy is a module with a clearly de�ned interface
to other strategies� as well as the rest of the system� A strategy module comprises the following
items�

� the set subp of subproblems it produces�

� the dependency relation depends on them and their solutions�

� for each subproblem� a procedure setup that de�nes it� using the information in the
initial problem and the subproblems and solutions it depends on�

� for each solution to a subproblem� a predicate local accept that checks whether or not
the solution conforms to the requirements stated in the constituting relation of which
it is an output attribute�

� a procedure assemble describing how to assemble the �nal solution� and

� a test accept of acceptability for the assembled solution�

Optionally� an explain component may be added that explains why a solution is acceptable
for a problem�

In the following� we de�ne a number of functions� each of which has a strategy as its
argument and yields one of the pieces of information described before� That is� each of these
functions de�nes one component of a strategy module for its argument strategy�

The function subprss introduced in Section ����
 yields the subproblems generated by a
strategy� The dependency relation must be de�ned on pairs of problems instead of pairs of
constituting relations�

Depends � strategy� �ProblemAttribute� ProblemAttribute�

 strat � strategy $ p�� p� � ProblemAttribute j fp�� p�g � schemes strat �
�let cr� ## �� r � strat j p� � OAr�$

cr� ## �� r � strat j p� � OAr� �
�p�� p�� � Depends�strat�� cr� �strat cr��

It is possible for a combination of values for the input attributes of a constituting relation
to be related to several combinations of values for the output attributes� In this case� the

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

basic type ExtInfo is used to select one of these combinations� External information can be
derived from user input or can be computed automatically� By means of external information�
relations are transformed into functions�

!ExtInfo"

A function that sets up a problem has as its arguments a strategy strat and a subproblem
p of strat that is to be de�ned� �Setup strat� p takes a tuple and some external information
as its arguments and yields a problem� It is de�ned with respect to the particular consti�
tuting relation crp of which p is an output attribute� Each tuple t for which the function
�Setup strat� p is de�ned contains at least the values of the input attributes of crp � If the
values of the input attributes are consistent with crp � then the value yielded by the setup
function must also be consistent with crp � The external information is used to choose among
di	erent possible values that satisfy these conditions�

Setup � strategy� �ProblemAttribute	 �tuple � ExtInfo	 Problem��

 strat � strategy $ p � ProblemAttribute �
dom�Setup�strat�� # subprss strat �
�p � subprss strat �

��� crp � strat j p � OAcrp �

 t � tuple$ i � ExtInfo j �t � i� � dom�Setup�strat��p�� �

dom t � IA crp �
��IA crp � t� � �IA crp��rcrp �

�IA crp � t� � fp 	
 �Setup�strat��p���t � i�g
� �IA crp � fpg��rcrp���

For the intermediate solutions� we may have local acceptability conditions that are stated
in the constituting relation crs of which the solution is an output attribute� Each tuple in
the domain of �Local Accept strat� s contains at least the values of the input attributes that
are needed to de�ne the value of s and its corresponding problem cor�s � If the values of the
input attributes and the problem attribute cor�s are consistent with crs � then the value of s
must also be consistent with crs �

Local Accept � strategy� �SolutionAttribute	 �tuple� Solution��

 strat � strategy $ s � SolutionAttribute �
dom�Local Accept�strat�� # partsols strat �
�s � partsols��� strat��

��� crs � strat j s � OAcrs �

 t � tuple$ sol � Solution j �t � sol� � Local Accept�strat��s� �
�let inp ## IA crs � fcor�sg �

dom t � inp �
��inp � t� � inp�r crs �

�inp � t� � fs 	
 solg � �inp � fsg��r crs����

The conditions for the Assemble function can be expressed similarly�

���� Problem Solving With Strategies ���

Assemble � strategy� �tuple � ExtInfo	 Solution�

 strat � strategy �
�� crmax � strat j S �nal � OAcrmax �

 t � tuple$ i � ExtInfo j �t � i� � dom�Assemble strat� �
dom t # �scheme crmax � n fS �nalg �
t � fS �nalg�rcrmax �

t � fS �nal 	
 Assemble�strat��t � i�g � crmax

A tuple can only be a member of the set Accept strat if it is a member of �� strat � Thus�
Accept strat will usually represent a su�cient condition for membership in a strategy that can
be checked mechanically�

Accept � strategy� �� tuple�

 strat � strategy � Accept�strat� � ��� strat�

A Z speci�cation does not specify what happens if a function is applied to an argument
that does not lie in the domain of the function� and so an algorithm implementing the function
could reasonably either fail to terminate or report failure� For our problem solving algorithm�
we will require that failure is reported whenever a problem cannot be set up� a solution cannot
be assembled properly� or a partial solution is determined not to be locally acceptable� This
is achieved by de�ning free types into which problems� solutions� and tuples are embedded�
and which contain error values indicating that some of the previous functions are unde�ned�
Thus� partial functions are made total by allowing them to return members the free types
other than problems� solutions� or tuples�

total P ��# fail P j ok P�Problem�
total S ��# fail S j ok S�Solution�
total t ��# fail t j ok t�tuple�

Strategy modules are algorithmic descriptions of strategies� A strategy module is obtained
by applying the functions subprss �Depends � Setup�Local Accept �Assemble and Accept to a
strategy strat � and making total the functions being the results of Setup and Assemble� An
error value is returned if and only if the corresponding partial function is unde�ned� Strategy
modules are de�ned as schema types that resemble record types in programming languages�
The components of schema types are selected with the dot notation� e�g�� for a strategy module
sm� we write sm�subp to denote the subproblems generated by the strategy�

��	 Chapter �� Strategies � A Generic Knowledge Representation Mechanism

StrategyModule
subp � �ProblemAttribute
depends on � ProblemAttribute� ProblemAttribute
setup � ProblemAttribute	 �tuple � ExtInfo� total P�
local accept � SolutionAttribute	 �tuple� Solution�
assemble � tuple � ExtInfo� total S
accept � � tuple

� strat � strategy �
�subp # subprss strat �
� depends on � # Depends strat �
local accept # Local Accept strat �
accept # Accept strat �
�
 p � ProblemAttribute$ t � tuple$ i � ExtInfo �

���t � i� � dom��Setup strat��p��� setup�p��t � i� � ran ok P� �
��t � i� � dom��Setup strat��p��� setup�p��t � i� # ok P��Setup strat��p��t � i��� �
��t � i� � dom�Assemble strat�� assemble�t � i� � ran ok S� �
��t � i� � dom�Assemble strat�� assemble�t � i� # ok S��Assemble strat��t � i������

A function mod rep � strategy�StrategyModule transforms a strategy into a strategymodule�

���� An Abstract Problem Solving Algorithm

In this section� we present an abstract algorithm that describes strategy�based development�
This algorithm is expressed as a set of functions in Z�

Problem solving with strategies usually requires user interaction� The basic typeUserInput
comprises all possible user input� User interaction is modeled by giving a sequence of user
inputs to the various functions� If such a sequence is not long enough� the functions are
unde�ned� This corresponds to the situation where an interactive system expects user input
that has not been supplied�

A heuristic function is a function that converts user input� which is needed to determine
the value of some attribute of a strategy� into external information� Heuristic functions may
depend on the values of other attributes� which are supplied to it as a tuple� Heuristic
functions are those parts of a strategy implementation that can be implemented with varying
degrees of automation� so that they can range from interactive to fully automatic� It is also
possible to automate them gradually by replacing� over time� interactive parts with semi�
or fully automatic ones� Here� we simulate the situation in which a heuristic function is
independent of user input by using a dummy value in the sequence of user inputs�

heuristic function � StrategyModule � Attribute� �tuple �UserInput	 ExtInfo�

The set available strategies denotes the set of all available strategy modules� The function
choice is used to select� from among the available strategies� a strategy to solve the given
problem�

���� Problem Solving With Strategies ���

available strategies � � StrategyModule

choice � Problem � ��StrategyModule�� UserInput	 StrategyModule

 p � Problem$ sms � � StrategyModule$ inp � UserInput j sms �# � �
choice�p� sms � inp� � sms

We now can give the top�level problem solving algorithm� Its arguments are a problem and
a list of user inputs� Since solve will be applied recursively� its result must yield not only
a solution but also a user input list� A strategy to be applied to the problem is selected�
and the function apply is called to apply the strategy to the problem� If the application of
this strategy is successful� then the value of the attribute S �nal obtained from the tuple
yielded by apply � together with the input list obtained from apply � form the result of the solve
function� Otherwise� another trial is made with the user input list obtained from apply �

solve � Problem � seqUserInput	 �Solution � �seqUserInput��

 pr � Problem$ input list � seqUserInput �
solve�pr � input list� #

�let sm ## choice�pr � available strategies � head input list� �
�let t ## apply�pr � sm� tail input list� �
if �rst t # fail t then solve�pr � second t�
else ��ok t���rst t�� S �nal � second t���

The function apply �rst calls another function solve subprs to solve the subproblems
generated by the strategy� It then sets up the �nal solution and checks it for acceptability�
Each time a failure can occur� this is checked and propagated into the result if necessary�

apply � Problem � StrategyModule � seqUserInput	 �total t � seqUserInput�

 p � Problem$ sm � StrategyModule$ input list � seqUserInput �
apply�p� sm� input list� #

�let s ## solve subprs�fP init 	
 pg� sm�subp� sm� input list� �
if �rst s # fail t then �fail t � second s�
else �let tup ## ok t���rst s�$

input list � ## second s �
�let ext info ## heuristic function�sm� S �nal��tup� head input list �� �
�let �nal solution ## sm�assemble�tup� ext info� �
if �nal solution # fail S then �fail t � tail input list ��
else �let s � ## tup � fS �nal 	
 ok S��nal solutiong �

if s � �� sm�accept then �fail t � tail input list ��
else �ok t�s ��� tail input list �������

The function solve subprs applies solve recursively to all subproblems contained in its
second argument$ its �rst argument is the tuple consisting of the attribute values generated
so far� The function choose minimal selects a minimal problem attribute from the set of
unsolved problems� The appropriate setup function de�nes the corresponding problem� and
its solution� generated by solve� is then checked for local acceptability�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

solve subprs � tuple � ��ProblemAttribute�� StrategyModule � seqUserInput
	�total t � seqUserInput�

 t � tuple$ pas � �ProblemAttribute$ sm � StrategyModule$ input list � seqUserInput �
solve subprs�t � pas � sm� input list� #

if pas # � then �ok t�t�� input list�
else �let p ## choose minimal�sm�� depends on �� pas � head input list� �

�let ext info ## heuristic function�sm� p��t � head�tail input list�� �
�let pv ## ��sm�setup��p���t � ext info� �
if pv # fail P then �fail t � tail�tail input list��
else �let new pr ## ok P�pv �

�let s ## solve�new pr � tail�tail input list�� �
�let sol ## �rst s $ input list � ## second s �
if �t � fp 	
 new prg� sol� �� sm�local accept�cor p�
then �fail t � input list ��
else solve subprs��t � fp 	
 new pr � cor p 	
 solg��

pas n fpg� sm� input list ��������

The following lemmas show that the functions solve� apply and solve subprs model strategy�
based problem solving in an appropriate way� Whenever solve yields a solution to a problem�
this solution is acceptable�

Lemma

 pr � Problem$ sol � Solution$ i�� i� � seqUserInput j �sol � i�� # solve�pr � i�� �
sol acceptable for pr

If apply yields a tuple �as opposed to an error value�� then this tuple belongs to the join of
some strategy and contains acceptable solutions for all subproblems�

Lemma �

 pr � Problem$ sm � StrategyModule$ i�� i� � seqUserInput $ tt � total t j
�tt � i�� # apply�pr � sm� i�� � tt � ran ok t �

� strat � strategy j sm # mod rep strat �
�let t ## ok t� tt �

t � ��� strat� � t P init # pr �
�
 p � subprss strat � t�cor p� acceptable for�t p���

Lemma �� states that� if solve subprs is called with an argument list satisfying the condi�
tions stated there� then the arguments of the recursive call also ful�ll these conditions� i�e��
solve subprs preserves certain invariants� Speci�cally� Lemma �� asserts the existence of a
strategy such that the domain of the tuple generated so far consists of P init � together with
those subproblems of the strategy that are not contained in the second argument of the func�
tion and their corresponding solutions� The attribute values of the tuple are consistent with
all constituting relations of the strategy� whose scheme is a subset of the domain of the tuple�
All generated solutions are acceptable for their corresponding problems�

���� Problem Solving With Strategies ��

Lemma �� For solve subprs�t � pas � sm� i��� we have the following invariants�

 t � tuple$ pas � �ProblemAttribute$ sm � StrategyModule �
INV �t � pas � sm�
�
�� strat � strategy j sm # mod rep strat �

dom t # fP initg �
S
fp � �subprss strat n pas� � fp� cor pgg �

�
 cr � strat j scheme cr � dom t � scheme cr � t � cr� �
�
 p � ProblemAttribute j p � �dom t n fP initg� � t�cor p� acceptable for t p��

Proof

Lemma � follows from Lemma �� and the observation that solve is de�ned in such a way that
the �rst component of its result is a tuple t belonging to the strategy implemented by the
chosen strategy module sm�

�

The �rst part of Lemma � follows from the fact that all valid results obtained from apply
�i�e�� all results whose the �rst component is in ran ok t� satisfy the accept predicate of the
strategy module sm� The de�nition of StrategyModule entails that for each strategy module
there is a corresponding strategy� whose accept predicate is su�cient to guarantee that a tuple
is a member of the join of the strategy�

The second part of the lemma follows from Lemma �� and the fact that the invariants
hold for the arguments supplied to solve subprs in apply �

�

As already shown� there exists a strategy whose modular representation is sm� Since
solve subprs de�nes the attribute p� as well as de�ning cor p� the �rst invariant stated in
Lemma �� holds�

The second invariant holds because the values of all problem attributes are de�ned using
the function sm�setup� which relies on the global function Setup� The function Setup guaran�
tees consistency of its result with the corresponding constituting relation� The new values for
solution attributes are checked for consistency with the corresponding constituting relation
using the predicate sm�local accept � which relies on the global function Local Accept �

The third invariant follows by an inductive argument on the maximal depth of the recur�
sion� using Lemma � as the induction hypothesis� The base cases are strategies that solve the
problem directly� For these strategies� solve subprs terminates immediately� and the third
invariant is vacuously true�

From Lemma ��� we can deduce that solve subprs computes all attribute values other than
S �nal in such a way that they are consistent with the constituting relations of the applied
strategy�

pas # �� t � �� �strat n fcrmax g�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

where crmax ## �� r � strat j S �nal � OAr��

In this section� we have transformed purely declarative strategies into more procedural
representations of strategies and used problem solving functions show how such representa�
tions are used to perform strategy�based development� These functions have� however� been
de�ned in such a way that demonstrating acceptability of developed solutions is facilitated�
They are therefore very abstract and do not take adequate user support into account� as is
necessary for implemented support systems�

��
 System Architecture

We now de�ne a system architecture that describes how to implement support systems for
strategy�based problem solving� By contrast with the functions of the previous section� this
system architecture takes the user into account and allows for much more �exibility in the
problem solving process than does the abstract algorithm of Section ������

The de�nition of strategies is parameterized by the notions of problem� solution� and
acceptability� leading to a generic system architecture supporting strategy�based development
processes� Figure ��� gives a general view of the architecture�

This architecture is a sophisticated implementation of the functions given in the last
section� We introduce data structures that represent the state of the development of an
artifact� This ensures that the development process is more �exible than would be possible
with a naive implementation of these functions in which all intermediate results would be
buried on the run�time stack� The system architecture can be used to advantage� so that it
is not necessary to �rst solve a given subproblem completely before starting to solve another
one�

Two global data structures represent the state of development� the development tree and
the control tree� The development tree represents the entire development that has taken
place so far� Nodes contain problems� information about the strategies applied to them� and
solutions to the problems as insofar as they have been determined� Links between siblings
represent dependencies on other problems or solutions�

The data in the control tree are concerned only with the future development� Its nodes
represent uncompleted tasks and point to nodes in the development tree that do not yet
contain solutions� The degrees of freedom in choosing the next problem to work on are also
represented in the control tree� The third major component of the architecture is the strategy
base� It represents knowledge used in strategy�based problem solving via strategy modules�

A development roughly proceeds as follows� the initial problem is the input to the system�
It becomes the root node of the development tree� The root of the control tree is set up to
point to this problem� Then a loop of strategy applications is entered until a solution for the
initial problem has been constructed�

To apply a strategy� �rst the problem to be reduced is selected from the leaves of the
control tree� Secondly� a strategy is selected from the strategy base� Applying the strategy
to the problem entails extending the development tree with nodes for the new subproblems�
installing the functions of the strategy module in these nodes� and setting up dependency
links between them� The control tree must also be extended according to the dependencies
between the produced subproblems�

As soon as the solution to a subproblem generated by the strategy has been developed�
it is tested for local acceptability� Checking each solution for local acceptability immediately

��	� System Architecture ���

v

information
external

problem
initial

accept
local

accept
local

development tree control tree

strategy selection

strategy base

apply

assemble

dependencies
setup

explainaccept

assemble

dependencies
setup

explainaccept

Figure ���� General view of the system architecture

after its construction ensures that the user is informed of a failure at the earliest possible
moment�

If a strategy immediately produces a solution and does not generate any subproblems�
or if solutions to all subproblems of a node in the development tree have been found and
tested for local acceptability� then the functions to assemble and accept a solution are called$
if the assembling and accepting functions are successful� then the solution is recorded in the
respective node of the development tree� Because the control tree contains only references
to unsolved problems� it shrinks whenever a solution to a problem is produced� and the
problem�solving process terminates when the control tree vanishes� The result of the process
is not simply the developed solution � instead� it is a development tree where all nodes contain
acceptable solutions� This data structure provides valuable documentation of the development
process� which produced it� and can be kept for later reference�

In the following� we describe the data structures of the generic system architecture and
the data and control �ow in more detail�

���� The Structure of Development and Control Trees

We describe the internal structure of the development and the control tree� and their inter�
action with the strategy base�

Development Tree

Figure ��� sketches a development tree� The arcs indicate that a problem is reduced by a
strategy� The number of successor nodes of a node coincides with the number of subproblems
generated by the strategy� Pointed arcs between sibling nodes indicate that the problem
corresponding to the node from where the arc starts depends on the problem or solution of
the node where it points to� The shaded node indicates that the corresponding problem has

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

already been solved�

Figure ���� A development tree

In the development whose corresponding development tree is shown in Figure ���� the
original problem was reduced by a strategy producing three subproblems� The problem
corresponding to the leftmost successor of the root node must be solved �rst� whereas the
other two subproblems are independent of one another� After having solved the �rst problem
directly �the shaded node has no children�� we reduced the problem corresponding to the
second successor of the root node by another strategy� which generates three subproblems
that have to be solved in a �xed order from left to right�

Two strategies are involved in processing one node of the development tree� a creating and
a reducing strategy� Figure ��� shows the internal structure of a node of the development tree
and its relation to the creating and reducing strategies� The �ow of information is indicated
by pointed arcs�

accept
local

accept
local

reducing strategy

creating strategy

assemble

dependencies
setup explainaccept

explanation

explain

dependencies on siblings

setup

problem

solution

accept

assemble

children

...... ...

... ...

local_accept

assemble

dependencies
setup explainaccept

Figure ��
� Structure of a node in the development tree

A node contains a problem and its solution� and references to its children and to siblings
it depends on� Furthermore� it contains the functions needed to set up the problem and
determine its solution� These functions stem from the strategy modules involved�

Let a particular node belong to the subproblem p of the creating strategy� Then the
corresponding strategy module provides the set�up function setup p� The dependency pointers

��	� System Architecture ���

are obtained from the depends on component of the strategy module�
The reducing strategy produces the children of a development node� It is therefore re�

sponsible to provide the functions that build the solution� check its acceptability and possibly
provide an explanation� The same strategy plays a dual role for the children nodes� for them
it is the creating strategy�

The development tree as a data structure contains all information about the process�
the unsolved problems and the result of the current development� Thus it is the basis to
browse and provide views of developments� switch between developments� and analyze them
for replay and reuse�

Control Tree

The purpose of the control tree is to keep track of unsolved problems and their dependencies�
It provides a basis to choose the next problem to reduce� Figure ��� shows how the nodes of
the control tree point to unsolved nodes in the development tree�

v

Figure ���� Relation between development and control trees

There are two kinds of branchings in the control tree that stem from the dependencies
between the development nodes� They indicate whether siblings have to be solved in a �xed
left�to�right order or if they may be solved in an arbitrary order� The �normal� branching in
the left subtree of the control tree in Figure ��� represents a �xed order in which the problems
have to be solved� On the other hand� the triangle v in the upper branching represents an
arbitrary order for the two children of the root� The leaves of the control tree point to
unreduced problems� The shaded leaves may be tackled in the next step�

As far as possible� selection of the next problem should be left to the developer� When
selecting a strategy to reduce a particular problem� it is usually not obvious if the strategy
will succeed in producing a solution� Therefore developers might try to tackle the �hardest�
subproblem �rst and reduce it until they can decide if a solution is possible� Then they might
concentrate on the next �hard� problem in some other branch of the development� In this
way� the architecture supports focusing the development on the critical tasks �rst�

All information the control tree represents is contained in the development tree� Still� for
e�ciency reasons� it is useful to maintain control information explicitly� The development
tree grows with each strategy application while the control tree shrinks whenever a solution
is found� Without an explicit control tree� the set of reducible nodes would have to be re�
computed for each strategy application�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

���� Data Flow

The data �ow diagram in Figure ��� describes how the global data structures are manipulated�
The main control �ow is a loop of strategy applications� Upon each entrance of the loop body�
a backtrack point is set� The strategy application cycle consists of selecting a problem and a
strategy� reducing that problem by the strategy� and assembling solutions�

ct
dt BPinitialize

dt and ct
initial

problem
current
node

select
reducible

node

select
strategy

strategy
baseheuristics

user
decision

user
decision

ct
dt

reduce
node

assemble
solutions

dt : development tree

ct : control tree

BP : backtrack point

dt
output

strategy

ct empty ?

ct non-empty ?

Figure ���� Data �ow diagram for the architecture

Node selection

The set of reducible leaves can be determined by considering the control tree�s two kinds of
branchings� The reducible leaves of a tree with normal root branching are the reducible leaves
of the leftmost subtree� For a triangle branching� they are the union of the sets of reducible
leaves of all subtrees� Users may choose from the set of reducible leaves� The chosen node
becomes the current node� It is possible to enhance �exibility of node selection and try to
set up problems that depend on incomplete solutions� Such problems are not in the set of
reducible leaves determined from the control tree�

Strategy selection

Like selecting a node� choosing a strategy is typically a user decision� which may be assisted
by heuristics� For example� some strategies are applicable only to problems with certain
properties� One heuristic might be to search the strategy base for strategies particularly
suited for the current problem�

Node reduction

Node reduction extends the development tree and the control tree at the current node accord�
ing to the selected strategy� The strategy module�s subpr and depends on components pro�
vide information how many children nodes must be created and which dependency pointers be�
tween them have to be established� The function setup p and the predicate local accept�cor p�
are entered in the children nodes for each subproblem p� and according to the role as reducing
strategy for the current node� the assemble� accept and explain functions are entered in that
node�

���� Related Work ���

Solution assembly

After node reduction� the extended development and control trees are searched for solutions
to assemble� If the selected strategy creates no subproblems� the solution to the current
node can be immediately determined� assemble is called for the current node� and the accept
test of the reducing strategy and the local accept test of the creating strategy are applied�
If one of them fails� the most recent cycle of problem selection and strategy application is
undone� The system backtracks to the state of development before selection of the current
node� symbolized by the dashed arrow in Figure ����

If the solution is acceptable� explain �lls in the explanation �eld of the current node �cf�
Figure ����� The current node of the control tree is deleted� If the parent node of the deleted
one has no other children� the process of solution assembly is recursively applied to that node�

Even if a solution is acceptable for the selected strategy� it may be inadequate as part
of the solution to a problem higher up in the development tree� Any failure of an accept or
local accept predicate during recursive solution assembly therefore causes a backtrack� where
the most recent strategy application is undone�

Backtracking may be initiated by the users as well� e�g� if they decide that a strategy
application leads nowhere because the generated subproblems cannot be solved� User�driven
backtracking is possible during both node and strategy selection�

The loop of strategy applications terminates when the control tree is empty� yielding a
development tree in which all nodes have successfully been solved� Its root contains the
solution to the initial problem�

This architecture guarantees the greatest possible �exibility in strategy�based problem solving�
The user can always obtain an overview of the state of development and the context in which a
certain problem has to be solved� The modular implementation of the strategy base facilitates
incorporating new strategies in a routine manner� The architecture is independent of the
kind of development activity that is to be supported� and so can be re�used for di	erent
instantiations of the strategy framework�

��� Related Work

Our work relates to knowledge representation techniques and process modeling in classical
software engineering� and to tactical theorem proving�

Knowledge�Based Software Engineering �KBSE�

This discipline seeks to support software engineering via the use of arti�cial intelligence tech�
niques� It comprises a variety of approaches to speci�cation acquisition and program syn�
thesis� such as those discussed in �Lowry and Duran� ����� and �Lowry and McCartney�
������ The strategy framework could also be subsumed under this �eld� because a knowledge
representation mechanism is its central concept�

A prominent example of KBSE� whose aims closely resemble our own� is the Programmer�s
Apprentice project �Rich and Waters� ������ There� programming knowledge is represented
by clich�es� which are prototypical examples of the artifacts in question� e�g�� programs� require�
ments documents� or designs� each of which can contain schematic parts� The programming

��	 Chapter �� Strategies � A Generic Knowledge Representation Mechanism

task is performed by �inspection�� i�e�� by choosing an appropriate clich
e and customizing it
by combining it with other clich
es� instantiating its schematic parts� and making structural
changes to it� These activities are performed using high�level editing commands� The assump�
tion underlying the Apprentice approach is that a library of prototypical examples provides
better user support than the representation of general�purpose knowledge� Our position is to
prefer general�purpose knowledge because clich
es depend to a large extent upon the applica�
tion domain� This makes it di�cult to set up a clich
e library� which is su�ciently complete
that it does not need to be extended to accommodate each new problem to be solved�

Representation of Design and Process Knowledge

Wile �Wile� ����� presents the development language Paddle� which is similar in many ways to
conventional programming languages� Paddle�s control structures are called goal structures�
and its programs provide a means of expressing developments� i�e�� of describing procedures
for transforming speci�cations into programs� Since carrying out a process speci�ed in Paddle
involves executing the corresponding program� one disadvantage of this procedural represen�
tation of process knowledge is that it enforces a strict depth��rst left�to�right processing of
the goal structure� This restriction also applies to other� more recent approaches to represent
software development processes by process programming languages �Osterweil� ����$ Shepard
et al�� ������

Potts �Potts� ����� aims at capturing not only strategic but also heuristic aspects of
design methods� He uses Issue�Based Information Systems �IBIS� �Conclin and Begeman�
����� as a representation formalism for design methods� IBIS representing heuristics tend to
be specialized for particular application domains� The strategy framework� in contrast� aims
at representing general� domain independent problem solving knowledge�

In the project KORSO �Broy and J�ahnichen� ������ the product of a development is
described by a development graph� The nodes of the development graph are speci�cation
modules or program modules whose static composition and re�nement relations are expressed
using two kinds of vertices� There is no explicit distinction between �problem nodes�� whose
contents are not completely known� and �solution nodes�� Unlike development trees� KORSO
development graphs do not re�ect single development steps� A branching in a development
tree maps to a subgraph in a development graph in which process information � such as
dependencies between subproblems � cannot be represented�

Tactical Theorem Proving�

Tactical theorem proving was �rst employed in Edinburgh LCF �Milner� ������ The idea
behind tactical theorem proving is to interactively construct goal�directed proofs by backward
chaining from input goals to su�cient subgoals� Tactical theorem proving is also used in
modern theorem provers� e�g�� in the generic interactive theorem prover Isabelle �Paulson�
���
�� in the veri�cation system PVS �Dold� ������ and in KIV �Heisel et al�� ������ the
theorem proving shell underlying the program synthesis system IOSS that will be presented
in Chapter �� Unlike our system architecture� theorem proving systems like Isabelle or PVS
usually do not maintain data structures equivalent to development trees� and so it becomes
the users� responsibility to record their proof steps textually outside of the system�

Although the goal�directed� top�down approach to problem solving is common to both
tactics and strategies� there are some important di	erences between them� Tactics are pro�

���� Summary ���

grams that implement �backward� application of logical rules� They are monolithic pieces of
code� and all subgoals are set up at their invocation� Dependencies between subgoals can only
be expressed by the use of metavariables� which allow one to leave �holes� in subgoals that
can ��lled� during proofs of other subgoals by uni�cation on metavariables� Dependencies
not schematically expressible using metavariables cannot be realized by tactics� Since tac�
tics perform only goal reduction� in tactical theorem proving there are no equivalents of the
assemble and accept functions of strategies� Such equivalents are not actually necessary for
the tactic approach because problems and solutions are identical except for instantiation of
metavariables� By contrast� problems and solutions of strategies may be expressed in di	erent
languages� and the composition of solutions by assemble may not be expressible schematically�

Another important di	erence between the strategy framework and tactical theorem prov�
ing concerns the role of search� on the one hand� and tacticals or strategicals� respectively�
on the other� In tactical theorem proving� proof search is promising because the theorem is
known and need not be constructed� The purpose of strategy�based development� however�
is to construct an artifact of the software development process in the �rst place� and this
renders searching a hopeless enterprise� Consequently� the Or and Fail tacticals that are
used to program search are unnecessary in the context of strategy�based development� In
addition� the Repeat construct is realized di	erently in the two frameworks� While a proper
loop construct is necessary in search procedures� the Repeat strategical performs only one
step of a loop$ its purpose is therefore to impose restrictions determining which strategies may
actually be applied� Only the Then tactical or strategical is useful in both paradigms� Its
utility derives from the fact that larger steps can be performed in proofs and developments�

We conclude� therefore� that strategy�based development and tactical theorem proving
� which are indeed based on similar ideas � are actually quite di	erent in their practical
applications�

��� Summary

The concept of a strategy is designed to provide machine support for the application of formal
techniques in software engineering� Strategies serve to formally represent knowledge that is
informally expressed as agendas or knowledge that is described in text books�The de�nition of
strategies relies on the notion of a relation� which re�ects the fact that di	erent applications
of the same strategy to a problem may lead to di	erent subproblems and produce di	erent
solutions� Strategies do not necessarily permit full automation of a development task� but
rather provide guidance for the development process and validation of the resulting product�
Strategies also leave a considerable degree of freedom in their application�

The most important properties of the strategy framework are�

Methodological support

In using formal techniques� it is important not to leave developers with a mere formalism
and no guidance how to use it� In contrast to other approaches� where tools deal with single
documents and not with the process aspect of a development� the strategy framework aims
at providing methodological support for software engineers� Making explicit not only depen�
dencies� but also independencies� of problems in strategies allows for the greatest possible
�exibility in the development process�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

Genericity

The de�nition of strategies and the system architecture have the de�nitions of problems�
solutions� and acceptability as generic parameters� The resulting generic nature of strategies
makes it possible to support quite di	erent development activities� including� for example�
speci�cation acquisition and program synthesis�

Uniformity

The concept of a strategy provides a uniform way of representing development knowledge�
which is independent of the development activity that is performed and also of the formal
technique that is used in the development� The concept of a strategy gives rise to a uniform
mathematical model of problem solving in the context of software engineering� Methods are�
moreover� uniformly represented as sets of strategies$ di	erent methods can be combined
freely as long as they rely on the same instantiation of the strategy framework�

Di	erent instantiations of the strategy framework rely on the same principles� When
conducting increasingly more development activities with strategies� software engineers can
still use their previously acquired skills in strategy�based development$ indeed� they need
not learn entirely new ways to proceed in developing software� Finally� when we strive for
integrated tool support for di	erent software engineering activities� it is more promising to
integrate di	erent implemented instances of the strategy framework into a system with a
wider range of support� than attempting to combine totally unrelated systems�

Reuse

Strategies make development knowledge explicit� Knowledge represented in terms of strategies
can be communicated to others� can be enhanced according to new experiences and insights�
and can be reused both in di	erent developments and by di	erent persons�

Machine support

The strategy framework provides concepts for machine�supported development processes� and
the uniform modular representation of strategies makes these development concepts imple�
mentable� The general system architecture derived from the formal strategy framework gives
guidelines for implementing support systems for strategy�based development� Representing
the state of development by the data structure of development trees is essential for the prac�
tical applicability of the strategy approach� The practicality of the developed concepts is
demonstrated by the existence of the implemented program synthesis system IOSS� which
will be described in Chapter ��

Documentation

The development tree not only supports the development process� but is also useful after
the development is �nished because it documents the manner in which solutions to input
problems were developed and can so be used as a starting point for later modi�cations to the
product�

���� Summary ��

Semantic properties

The notion of acceptability of a solution with respect to a problem captures the semantic
properties that must be satis�ed by the developed products� Semantic constraints are� on the
one hand� captured by the general de�nition of acceptability that is part of every instantia�
tion of the strategy framework� On the other hand� stronger acceptability conditions taking
context information into account can be stated for individual strategies�

In an implementation� the functions local accept and accept are the only components of a
strategy module that are concerned with semantic properties� This encapsulation of semantic
properties enhances con�dence in the development tool because only these functions have to
be veri�ed to ensure that the tool truly guarantees acceptability of the produced solutions�

Formality

By de�ning strategies formally we were able to establish a theory of strategy�based problem
solving� We proved that strategies and strategicals conform to our intuition about problem
solving� and we also de�ned a problem solving algorithm that was proven to lead to acceptable
solutions�

Stepwise automation

Introducing the concept of a heuristic function� and using such functions in distinguished
places in the development process� we have achieved a separation of concerns� the essence
of the strategy � i�e�� its semantic content � is carefully isolated from the question of replac�
ing user interaction by semi� or fully automatic procedures� Indeed� gradually automating
software development processes amounts to making only local changes in heuristic functions�

Scalability

Using strategicals� increasingly more elaborate strategies can be de�ned� until strategies grad�
ually approximate the sizes and kinds of development steps that are actually performed by
software engineers� When combined with the availability of stepwise automation facilities�
this contributes to the scalability of this particular approach to software development�

Customizibility

To incorporate a new method into a support system� the strategy base need only be ex�
tended by the new strategies� This involves only local changes� and does not a	ect existing
components� Similar comments apply to the automation of parts of the development process�

More work is necessary if the notion of problem� solution� or acceptability has to be
changed� In these cases� all strategies must be revised� but the clear modularization of
strategy implementations still helps in identifying precisely which code requires changes�

A necessary prerequisite for any successful work with strategies is familiarity with the
formalisms involved� To use an instantiation for speci�cation acquisition� a good knowledge
of the speci�cation language to be used is necessary� To develop programs with IOSS� the
user should be familiar with Gries� method for developing correct programs �Gries� ������
But under no circumstances is it necessary that the user be a researcher in the area of formal
techniques to pro�tably apply strategies�

��� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

��
 Further Research

Future improvements will mainly concern the process of applying strategies and making the
system architecture even more �exible and powerful� Of course� all further enhancements
must be such that the acceptability of the generated solutions can always be guaranteed� In
particular� we intend to work on the following topics�

Application of strategies de	ned with strategicals� The current de�nitions of strategy
modules and of the abstract problem solving algorithms� and the current design of the
system architecture assume that a strategy is de�ned as a set of constituting relations�
To apply a strategy that is de�ned with strategicals� it would be necessary to �unfold�
the de�nition of the strategy to obtain the set of its constituting relations� This un�
folding would have to be done for each individual strategy� which is not economical�
Instead� either algorithms should be developed that automatically do the unfolding� or
the problem solving algorithms and the system architecture should be changed so that
they can deal with strategies that are de�ned with strategicals� without the need to
unfold the de�nitions of these strategies�

Incomplete solutions� The architecture as it is designed currently allows the users to reduce
a problem only when all problems it depends on are completely solved� This style of
problem solving is not always realistic� In speci�cation acquisition� for example� it is
unrealistic to assume that the subproblems generated by a strategy can be solved one
after another �see Chapter ��� Hence� the process that implements problem solving
with strategies must allow speci�ers to work on problems even if the solutions on which
they depend are not yet completely known� Technically� we can achieve this e	ect
by propagating incomplete solutions� When the developer wants to work on a �later�
subproblem� the assemble functions contained in the strategy modules �see Section
������ are executed� with dummy values in place of solutions� which have not yet been
developed� As soon as a change in an earlier problem(solution occurs� the assemble
functions must be re�executed to propagate the results of the changes into later problem
de�nitions� When a subproblem is �nally solved� both the assemble and accept functions
must be executed�

Replay mechanisms� Sometimes a developer might want to change the solution to a previ�
ous subproblem� even if that solution is already complete and has been propagated into
subsequent problems and solutions� Currently� changing completed solutions to sub�
problems is only possible by backtracking� But then� all intermediate steps that were
performed after the revised solution was completed are lost and have to be repeated�
To make revisions of solutions more comfortable� a replay mechanism is needed that
automatically tries to repeat the development steps between the development of the
revised solution and state of development before the revision�

Exploratory developments� The current architecture does not well support users who
�rst want to try out several alternatives to solve a problem before deciding on the
best way to solve it� Exploring di	erent alternatives is only possible with backtracking
or performing entirely di	erent developments to solve the same problem� To support
exploratory development� the system architecture could allow developers to introduce
branches in the development� which would result in several �parallel� development trees

��
� Further Research ���

for the same development� Finally� the developer could select the best development and
discard the alternative development trees�

Reuse of developments� The strategy framework supports reuse of development knowl�
edge that is represented in terms of strategies� To support also reuse of complete devel�
opments� we must develop mechanisms to combine previously generated development
trees� Such combination mechanisms must ensure that� for example� di	erent pieces of
information that by chance have the same name are not identi�ed�

Support more phases of software development� It is our aim to eventually support all
phases of the software development process with strategies� Besides the four instantia�
tions presented in this work� we speci�cally intend to investigate possible instantiations
of the strategy framework for requirements engineering and for testing�

Integrate di�erent instances of the strategy framework� For now� di	erent instanti�
ations of the strategy framework lead to di	erent independent support systems for
di	erent software engineering activities� We are currently investigating ways in which
di	erent instances of the system architecture can be combined$ �rst ideas are reported
in Chapter �� An integration of several instances of the strategy framework into a single
support system would provide integrated tool support for larger parts of the software
lifecycle�

Record design decisions� In the current system architecture� the development tree docu�
ments the development process� But it only documents which development steps have
been taken� not why they were taken� It would be a simple adjustment to allow the
users to give reasons for their choices of strategies in natural language� and store these
reasons in the development tree�

�	� Chapter �� Strategies � A Generic Knowledge Representation Mechanism

Chapter �

Strategy�Based Program Synthesis

This chapter presents an instantiation of the strategy framework that supports the synthesis
of totally correct imperative programs from speci�cations that are expressed as formulas of
�rst�order predicate logic� This instantiation is implemented in a prototype system IOSS
�Integrated Open Synthesis System�� The implementation of IOSS follows the system archi�
tecture presented in Section ��
�

Other programming paradigms can also be supported by strategies� A di	erent instanti�
ation of the strategy framework� supporting the synthesis of functional instead of imperative
programs� is described in �Heisel� ���
��

We �rst de�ne the generic parameters of the strategy framework and then present some
example strategies� After describing the implemented prototype system IOSS� we summarize
and point out further research� Like Chapter �� this chapter uses results from �Heisel� ���
$
Heisel et al�� ����b$ Heisel et al�� ����a$ Heisel� ����c��

��� Problems� Solutions� Acceptability and Explanations

In de�ning the generic parameters of the strategy framework� we use a Z�like notation� but
we do not formalize the syntax and semantics of formulas and programs� For syntactic
combinations of formulas� we use the subscript �s�� e�g� �s and�s � To refer to the semantics
of formulas� we use predicates like valid and satis�able�

Problems

Problems are speci�cations of programs� expressed in terms of preconditions and postcondi�
tions� which are themselves formulas of �rst�order predicate logic� To aid focusing on the
relevant parts of the task� the postcondition is divided into two parts� namely the invariant
and the goal� In addition to these we have to specify which variables may be changed by
the program �result variables�� which variables may only be read �input variables�� and which
variables must not occur in the program �state variables�� The state variables are used to
store the values of variables before execution of the program for reference of this value in its
postcondition� The function free yields the free variables of a formula� The predicate valid
refers to the semantics of a formula and expresses its logical validity�

�
�

�	� Chapter �� Strategy�Based Program Synthesis

ProgProblem
pre� goal � inv � First Order Formula
res � inp� state � �Variable

disjoint hres � inp� statei
free�pre �s goal �s inv� � res � inp � state
valid�pre �s inv�

Solutions

Solutions are programs in an imperative Pascal�like language� Besides� solutions contain an
additional precondition and an additional postcondition� �These conditions are additional to
the pre� and postconditions of contained in a problem�� If the additional precondition is
not equivalent to true� then the developed program can only be guaranteed to work if both
the originally speci�ed precondition and the additional precondition hold� The additional
postcondition gives information about the behavior of the program� in that it describes how
the goal is achieved by the program� To exclude trivial solutions� the additional precondition
is required to be distinct from false�

ProgSolution
prog � Program
apr � apo � First Order Formula

satis�able�apr�

Acceptability

A solution is acceptable with respect to a problem if and only if the program it contains is
totally correct with respect to both the original and the additional pre� and postconditions�
does not contain state variables �function vars�� and does not change input variables �function
asg�� Checking for acceptability of a solution amounts to proving veri�cation conditions on
the constructed program�

correct for � ProgSolution� ProgProblem

 pr � ProgProblem$ sol � ProgSolution �
sol correct for pr
�
�valid�pr �pre �s sol �apr �s hsol �progi�pr �goal �s pr �inv �s sol �apo�� �
vars�sol �prog�� pr �state # � �
asg�sol �prog�� pr �inp # ��

The formula pre �s hprogipost is a formula of dynamic logic �Goldblatt� ������ a logic
designed for proving properties of imperative programs� This formula denotes the total cor�
rectness of program prog with respect to precondition pre and postcondition post �

Explanations for solutions are provided as formal proofs in dynamic logic� In IOSS� proofs
are represented as tree structures that can be inspected at any time during development�

���� Strategies for Program Synthesis �	�

��� Strategies for Program Synthesis

We present four strategies� The �rst one replaces the goals of programming problems by
stronger or equivalent ones� With the second� we can develop compound statements� The
third can be used to develop loops� Using the Then strategical� we combine these strategies
to yield a fourth strategy� more powerful than either of its constituents� for developing loops
together with their initialization�

The notation we use is semi�formal and resembles Z� The type Value denotes the disjoint
union of the schema types ProgProblem and ProgSolution� whose members are denoted by
bindings� i�e�� by lists of pairs of the form attribute � attribute value�

���� The strengthening strategy

This strategy is used to incorporate knowledge about the data structures occurring in problem
descriptions into the synthesis process� The idea is to replace the goal of a programming
problem by a stronger one� i�e�� a formula which entails the old goal in the model under
consideration� Examples of the domain�speci�c knowledge that is used to strengthen goals
are facts about the natural numbers� e�g�� that the sum over an empty range of indices is zero�

The strategy produces one subproblem� which is a transformation of its input problem�

strengthening # fstr pr � str solg

where str pr is de�ned by

IA str pr # fP initg
OAstr pr # fP str � S strg
str pr # f t � scheme str pr�Value j

� g � inv pr � First Order Formula j
free�inv pr� � t�P init��res # �� �
valid�g �s inv pr �s t�P init��goal� �

�let var pr ## �� var � First Order Formula j
valid�t�P init��pre �s inv pr �s var�� �

t�P str� # h pre� t�P init��pre�
goal � g �
inv � t�P init��inv �
res� t�P init��res � �free�g� n �t�P init��inp � t�P init��state���
inp� t�P init��inp�
state� t�P init��state i� �

t�S str� correct for t�P str�g

The constituting relation str pr has P init as its only input attribute� Its output attributes
are the strengthened problem P str and its solution S str � We de�ne constituting relations
by stating conditions on their member tuples�

Note the existential quanti�er in the de�nition� It indicates that external information is
necessary to set up the problem for P str � In the implemented strategy of IOSS� the user
is asked to provide the stronger goal g � The system automatically determines the invariant
parts inv pr of the precondition �i�e�� parts that contain no result variables�� which may be

�		 Chapter �� Strategy�Based Program Synthesis

necessary to show that solving the problem with goal g indeed su�ces to solve the input prob�
lem of the strategy� The formula var pr can be determined automatically from t�P init��pre
and inv pr �

Hence� an existential quanti�er in the de�nition of a constituting relation indicates that
external information is necessary to de�ne some of the attribute values� Sometimes� user
interaction is needed to obtain the external information� In other cases� the external infor�
mation can be computed automatically� The � operator� indicates that the de�ned value can
be determined uniformly from other known values�

The strengthening strategy generates the veri�cation condition

g � inv pr � t�P init��goal

This means that the conjunction of the new goal g and the selected parts inv pr of the
precondition must entail the original goal t�P init��goal in the model under consideration�
This model has to be speci�ed by appropriate axioms� The rules of dynamic logic that
guarantee correctness of the developed programs can be found in �Heisel� ���
��

The value of P str depends of the value of P init and the external information� Only the
goal and res components of the value of P str di	er from those of P init � The component
t�P str��goal is the new goal g � and any variables newly introduced in g are classi�ed as
result variables� The value of S str must be acceptable for the value of P str �

The second constituting relation of the strengthening strategy de�nes the �nal solution�
i�e�� the value of S �nal �

IA str sol # fS strg
OAstr sol # fS �nalg
str sol # f t � scheme str sol�Value j t�S �nal� # t�S str�g

The solution to the original problem coincides with the solution to the strengthened problem�

���� The protection strategy

This strategy is based on the idea that a conjunctive goal can be achieved by a compound
statement� The part of the goal achieved by the �rst statement must be an invariant for the
second one� The strategy produces two subproblems and is de�ned as follows�

protection # fprot �rst � prot second � prot solg

where prot �rst is de�ned by

�In contrast to the de�nition of the � operator in Z� we do not the require the predicate to determine a
unique value� We interpret � as the Hilbert operator of higher�order logic� which selects one �xed value of the
predicate�s extension�

���� Strategies for Program Synthesis �	�

IA prot �rst # fP initg
OAprot �rst # fP �rst � S �rstg
prot �rst # f t � scheme prot �rst�Value j

� g� � First Order Formula �
�let g� ## �� g� � First Order Formula j valid�t�P init��goal �s g� �s g��� �

t�P �rst� # h pre� t�P init��pre�
goal � g��
inv � true�
res� t�P init��res � free�g���
inp� t�P init��inp � �t�P init��res n free�g����
state� t�P init��state i� �

t�S �rst� correct for t�P �rst�g

The precondition for the �rst statement is the same as for the original problem� The invariant
of the original problem may be invalidated in achieving goal g�� hence the inv component of
the value of P �rst is true� Only the variables occurring free in g� may be changed by the
program to be developed and are thus classi�ed as result variables$ the other result variables
of P init become input variables for P �rst � The state variables remain unchanged�

Again� an existential quanti�er indicates that external information is necessary to set up
the problem for P �rst � In the implemented strategy of IOSS� the user is asked to indicate
the goal for the �rst problem� The constituting relation prot second is de�ned by

IA prot second # fP init �P �rst � S �rstg
OAprot second # fP second � S secondg
prot second # f t � scheme prot second�Value j

�let g� ## �� g� � First Order Formula j
valid�t�P init��goal �s t�P �rst��goal �s g��� �

t�P second� # h pre� t�P �rst��goal �s t�S �rst��apo�
goal � g� �s t�P init��inv �
inv � t�P �rst��goal �
res� t�P init��res �
inp� t�P init��inp � �free�t�S �rst��apo�

n�t�P init��res � t�P init��state���
state� t�P init��state i� �

t�S second� correct for t�P second� �
valid�t�P �rst��goal �s t�S �rst��apo �s t�S second��apr �g

The goal for P second can be determined automatically� It consists of that part g� of the
original goal that was not achieved by solving the problem P �rst � together with the invariant
of P init � The invariant for P second is the goal of P �rst � which is also a precondition for
P second � Another precondition for P second is the additional postcondition guaranteed by
S �rst �

The result variables for P second are the same as those of the original problem� Its
input variables are the input variables of P init � together with all variables newly introduced
in solving P �rst �these occur in t�S �rst��apo�� It is necessary to classify these variables
because� in the de�nition of programming problems� we stated that each variable must be
classi�ed� free�pre �s goal �s inv� � res � inp � state� The state variables again remain
unchanged�

�	� Chapter �� Strategy�Based Program Synthesis

Not only is the solution S second required to be acceptable for P second � but the post�
condition established by S �rst must also entail the additional precondition of S second �
Note that this second condition is a local acceptability condition for S second � If it is not
ful�lled� then a precondition� which is necessary for the program contained in S second to es�
tablish the postcondition stated in P second � cannot be guaranteed� and S second � although
acceptable for P second in isolation� cannot be part of a solution to the original problem
P init �

The constituting relation prot sol speci�es the way in which the �nal solution to a problem
is assembled from the solutions of its subproblems� Here� the �nal program is the sequential
composition of two programs developed in solving subproblems of the original problem�

IA prot sol # fS �rst � S secondg
OAprot sol # fS �nalg
prot sol # f t � scheme prot sol�Value j

t�S �nal� # h prog� t�S �rst��prog $ t�S second��prog �
apr � t�S �rst��apr �
apo� t�S second��apo i g

���� The loop strategy

This strategy enables the construction of a while loop� It is applicable only when the goal
contains no quanti�ers because the goal serves as the termination test of the loop� The loop
strategy generates exactly one subproblem and is given by

loop # floop body � loop solg

where loop body is de�ned by

IA loop body # fP initg
OA loop body # fP loop� S loopg
loop body # f t � scheme loop body�Value j

boolean expr�t�P init��goal� �
� bf � � � Term$ t� � Variable$ �� Term� Term$
loop inv � First Order Formula j

well founded ordering����� �
t� �� �t�P init��res � t�P init��inp � t�P init��state� �
valid�t�P init��pre �s loop inv� �
valid�t�P init��inv �s loop inv �s �s�t�P init��goal��s � � bf � �
t�P loop� # h pre� t�P init��inv �s loop inv �s �s�t�P init��goal� �s t� #s bf �

goal � bf � t��
inv � t�P init��inv �s loop inv �
res� t�P init��res �
inp� t�P init��inp�
state� t�P init��state � ft�g i �

t�S loop� acceptable for t�P loop�g

To set up the problem P loop� a bound function bf and a well�founded ordering � on the
carrier set of bf are needed� as well as a constant � that is minimal with respect to �� The

���� Strategies for Program Synthesis �	

invariant of the loop to be developed consists of the invariant of the original problem and
a formula loop inv that usually contains invariant parts of the precondition t�P init��pre�
�e�g�� ranges of variables�� In IOSS� both loop inv and bf must be provided by the user�
although for loop inv the system does suggest candidates� An appropriate ordering� however�
can often be inferred from the sort of the bound function� which is � in many cases�

The goal of problem P loop is then to decrease the bound function� i�e� to make progress
towards termination of the loop� while maintaining the invariant� To record the value of the
bound function� a new state variable t� is introduced� The input and result variables are the
same for P loop as for P init �

The overall solution generated by the loop strategy is a loop with the negation of the
original goal t�P init��goal as the loop condition and the program that results in solving
P loop as the loop body� Accordingly� loop sol is de�ned by

IA loop sol # fP init �P loop� S loopg
OA loop sol # fS �nalg
loop sol # f t � scheme prot sol�Value j

�let loop inv ## �� loop inv � First Order Formula j
valid�t�P loop��inv � t�P init��inv � loop inv�� �

t�S �nal� # h prog�while not t�P init��goal do t�S loop��prog od�
apr � t�P init��pre �s t�S loop��apr �
apo� loop inv i �g

The formula loop inv can be determined automatically � it is precisely the same formula as
in loop body �

���� A Combined Strategy

Gries� approach to the development of correct programs �Gries� ����� deals primarily with
the development of loops� For while loops� the approach can be expressed by the agenda
shown in Table ���� Let a precondition P and a postcondition R be given� Recall that the
formula P � hprogiR of dynamic logic denotes the total correctness of program prog with
respect to the precondition P and the postcondition R� The program developed with the this
agenda has the form init $ while not C do body od� The veri�cation conditions given in the
agenda guarantee that the developed loop is totally correct with respect to the given pre� and
postconditions�

Combining the strategies introduced in the previous sections� we can formalize the agenda
of Table ��� as a strategy� First� the strengthening strategy must be applied to replace the
goal of the original problem with the loop invariant and the negation of the loop condition�
The conditions I and C must be supplied as external information� where� for the development
of the invariant� the heuristics given by Gries �Gries� ����� can be employed� Second� the
protection strategy must be applied� The �rst statement of the compound generated by the
protection strategy is the initialization of the loop that establishes the invariant� The second
part of the compound consists of the loop itself which is developed with the loop strategy�

We use the Then strategical to de�ne a new while strategy that encompasses these steps�

while # Then�strenthening �P str �Then�protection�P second � loop��

where P str is the only subgoal generated by the strengthening strategy� and P second is the
problem to develop the second part of the compound generated by the protection strategy�

�	� Chapter �� Strategy�Based Program Synthesis

No� Step Veri�cation Condition

� Develop a loop invariant I by weak�
ening the postcondition R appropri�
ately�

R � I

� Develop a loop condition C such
that upon termination the desired
result is true�

� C � I � R

� Develop the initialization init of the
loop such that it establishes the in�
variant�

P � hinitiI

 Develop a bound function bf on a
set with a well�founded ordering�
such that bf is bounded from below
as long as the loop has not termi�
nated�

well founded ordering����� � �C �
� � bf �

� Develop the loop body body such
that the bound function is decreased
while the invariant is maintained�

I � ht� �# bf $ bodyi�I � bf � t��

Table ���� Agenda for developing while loops

Strategies de�ned with Then perform larger development steps than their component
strategies� Thus� strategies can gradually approximate the complexity of development steps
performed by human developers in practice� More strategies for program synthesis can be
found in �Heisel� ���
��

��� IOSS� An Implemented Program Synthesis System

The program synthesis system IOSS is a research prototype that was built to validate the
concept of strategy and the system architecture developed for their machine�supported appli�
cation� Currently� it supports the application of the program development methods described
in �Gries� ����� and �Dershowitz� ������ Because the interfaces of strategy modules are
presented uniformly� Gries� and Dershowitz� methods can be combined freely�

IOSS is an instantiation of the architecture described in Section ��
� which uses the in�
stantiation given in Section ���� The basis for the implementation of IOSS is the Karlsruhe
Interactive Veri�er �KIV�� a shell for the implementation of proof methods for imperative
programs �Heisel et al�� ������

After giving an overview of the strategy base of IOSS� we describe its graphical user
interface and show how existing software tools have been reused and integrated to implement
IOSS�

���� The Strategy Base

A number of interactive� semi�automatic and fully automatic strategies have been imple�
mented� In the current version� they are oriented toward programming language constructs�

Three strategies solve a problem directly� one for developing the empty program skip �skip

���� IOSS� An Implemented Program Synthesis System �	�

strategy�� two for developing assignments �manual assignment and automatic assignment
strategy��

Two strategies can be applied to modify a problem� the strengthening strategy� which
we presented in Section ������ and the state variable strategy� which introduces a new state
variable for some result variable�

Three strategies are available for developing compound statements� one corresponds to
the rule for compound statements in the Hoare calculus �intermediate assertion strategy�� the
two others are based on Dershowitz� approach for conjunctive goals �Dershowitz� ������ The
disjoint goal strategy can be applied if the goal can be divided into two independent subgoals�
Two subgoals are independent if the set of result variables that must be changed to achieve
one of the subgoals are disjoint from the set of result variables that must be changed to
achieve the other subgoal� The protection strategy presented in Section ����� can be applied
when the subgoals are not independent as required for the disjoint goal strategy�

Two strategies can be used to develop conditionals� the conditional strategy re�ects the
rule for conditionals of the Hoare calculus� the disjunctive conditional applies if the goal is of
disjunctive form�

Since the while strategy de�ned in Section ����
 is not yet implemented� loops must be
developed using the loop strategy of Section ����� in combination with the strengthening and
protection strategies�

Higher�level strategies like strategies for the development of divide�and�conquer algorithms
or re�usable procedures have been de�ned� but are not yet implemented� A complete descrip�
tion of all de�ned and implemented strategies can be found in �Heisel� ���
$ Heisel� ������

���� The Interface

Figure ��� shows the graphical user interface of IOSS� The main window displays the current
development task� represented by the development tree on the left�hand side of the window�
and the current programming problem� which appears on the right�hand side of the window�
The tree graphically represents the process and the state of the program development� Each
node is labeled with the name of the strategy� which has been applied to it� The state of the
node is color coded� showing at a glance whether it is reducible� or solved� etc�

A node is selected by simply clicking it with the mouse� If that node is reducible� it
becomes the current node� and its problem speci�cation is shown on the right�hand side of
the window� Any node can be selected for the purpose of inspecting it� but only reducible
nodes can become the current node� A node can be inspected via the View menu� A separate
window pops up for each node� and several nodes can be inspected at the same time�

The explanation �i�e�� proof� for the synthesized solution � as far as it has been constructed
� is accessible via the View menu� too� IOSS combines the explanations for each strategy
application to form a coherent proof that � once the development process is completed �
veri�es the developed program�

The strategy base of IOSS is accessible via the Edit menu� A strategy is applied to the
current node by invoking the respective menu entry� In Figure ��� the menu is shown in the
center of the window� It is possible for any menu to be kept on the screen at an arbitrary
position� This allows developers to quickly access frequently used features such as the strategy
base� Whenever a strategy requires user input� the user is prompted for it in a window� IOSS
also provides features to manipulate the graph� The user can� for example� re�scale the tree
or hide subgraphs�

��� Chapter �� Strategy�Based Program Synthesis

Figure ���� The IOSS interface

���� Experience with Re�Use and Integration

Technically speaking� IOSS is not one single program� It makes use of a number of software
packages to realize what the user perceives as IOSS� The implementation of IOSS has been
carried out in two steps� First� the kernel system has been implemented as an instance of the
architecture described in Section ��
� Second� a graphical user interface has been designed
and implemented on top of the kernel system�

The Kernel System

The Karlsruhe Interactive Veri�er �KIV� �Heisel et al�� ����� is a shell for the implementa�
tion of proof methods for imperative programs� It provides a functional Proof Programming
Language �PPL� with higher�order features and a backtrack mechanism� Assertions about pro�
grams can be formulated in dynamic logic �Heisel et al�� ������ The language for programs
itself is a Pascal�like language with while�loops and recursive procedures� KIV serves for the
implementation of the IOSS kernel� its data structures� and strategy modules�

Strategies are implemented as collections of PPL functions in separate modules� and� as
a result� new strategies can be incorporated into IOSS in a routine way� A template �le for
new strategies currently supports incorporating of new strategies$ for the future� we envision
tool support relieving the implementor of everything other than handling the characteristics
of the newly implemented strategy�

A severe restriction of KIV is its command�line interface� There is no reasonable way to
bring into e	ect the potential to inspect the state of development and to take advantage of
the freedom of choice provided by the architecture� A more sophisticated was needed to fully

���� IOSS� An Implemented Program Synthesis System ���

exploit the bene�ts of the strategy framework and the associated system architecture�

The Graphical Interface

Since we had very limited resources in terms of person�power to realize the interface� we
decided to rely as much as possible on existing software packages and toolkits� The interface
was to be built with minimal changes to the kernel system� We needed a means to transfer
data from KIV to whichever interface systemwe would use� For the visualization of the state of
development� we needed a graph layout system� Moreover� we wanted to avoid programming
on a level such as the X Window Toolkit� since this is a tedious� time�consuming task�

With the following packages we found just what we needed�

Tcl � A simple� extensible scripting language providing generic programming facilities� Each
application can implement new features as Tcl commands �Ousterhout� ���
��

Tk � An extension to Tcl providing a toolkit for the X Window System� Tk extends the
core Tcl facilities by commands for building user interfaces� It hides much detail C
programmers must address when constructing a user interface �Ousterhout� ���
��

expect � An extension to Tcl�Tk designed to control interactive programs using standard
terminal I(O� For the controlled programs� expect takes over the part of the user
�typing� commands and interpreting output �Libes� ������

TkSteal � An extension to Tk to integrate stand�alone X applications in a Tk�built interface
�Delmas� ���
��

daVinci � A generic visualization system for directed graphs �Fr�ohlich and Werner� ������

ExpectTcl daVinci

Tk
TkSteal

IOSS-Kernel

Figure ���� System integration for the IOSS interface

Figure ��� illustrates the integration of these packages to construct the graphical interface
for IOSS� expect controls the command�line interface of KIV and the application interface
of daVinci� TkSteal provides �interface sugar� for the graphical interface� It integrates
daVinci with the other parts of the IOSS interface�

We think it is remarkable how little e	ort was required to build the interface� It took
only one person�month to build it in its current shape� Only ��� lines of code needed to be
written in Tcl� ��� lines of code of additional code had to be written in PPL�

For a more complete description of IOSS� which also contains example developments� the
reader is referred to �Heisel et al�� ����a��

��� Chapter �� Strategy�Based Program Synthesis

��
 Related Work

The strategy framework in general� and IOSS in particular� make it possible to integrate a
variety of methods for program synthesis� provided they can be expressed in its basic for�
malism� The synthesis systems CIP �CIP System Group� ������ PROSPECTRA �Ho	mann
and Krieg�Br�uckner� ����� and LOPS �Bibel and H�ornig� ���
�� in contrast� are all designed
to support speci�c methods� Their authors did not intend to integrate these methods with
other ones� nor are these systems customizable� Moreover� the support of activities other
than program synthesis was not a design goal for any of these systems�

The approach underlying KIDS �Smith� ����� is to �ll in algorithm schemas by construc�
tive proofs of properties of the schematic parts� This is achieved using highly specialized code�
called design tactics� of which at least one is de�ned for each schema� There is no general
concept of a design tactic� and no notion of how to incorporate a new one into the system�
Information about the development process is maintained implicitly� so that� working with
KIDS� it is hard to keep track of where one is in a development� There is a logging facility and
a replay facility� but these provide no possibility of browsing the state of development� Since
design tactics are linearly programmed� there is no way to change the order of independent
design steps or to �interleave� the applications of tactics�

��� Summary

In this chapter� we have presented a �rst instantiation of the strategy framework that supports
the synthesis of totally correct imperative programs� This instantiation demonstrates that
the strategy framework can be pro�tably employed in program synthesis� Moreover� we have
described a prototype system that implements the instantiation for program synthesis� This
prototype shows that carrying out development tasks with strategies is feasible�

IOSS in its current version is useful for teaching students the systematic development
of provably correct programs� However� the currently available strategies are relatively low�
level� This makes program synthesis with IOSS a time�consuming and highly interactive task�
Consequently� IOSS is not yet applicable for the development of industrial�scale programs�

IOSS was built to serve as a proof of concept� rather than as a full��edged development
tool� In particular� the following facts became apparent�

� Because of the uniform modular representation of strategies� an integration of di	erent
methods for program synthesis becomes possible� In IOSS� the methods of Gries and
Dershowitz can be combined freely�

� The strategy approach leads to open systems that can be improved gradually� Such an
improvement can be the routine incorporation of new strategies� the replacement of an
interactive heuristic function by a semi� or fully automatic one� or the combination of
existing strategies into more powerful ones� using strategicals�

� Implemented systems that support an instance of the strategy framework can be built
with relatively little e	ort� using freely available software packages�

���� Further Research ���

��� Further Research

IOSS has the potential to be developed further into a tool that can be used to tackle more re�
alistic program development tasks than this is currently the case� The following improvements
would make IOSS considerably more powerful�

Selection of strategies� More support could be provided for the users of IOSS in select�
ing the strategy to be applied to the current problem� Whereas positively proposing
candidate strategies seems a very ambitious aim� it is easier to exclude those strategies
that cannot be applied to the current problem� e�g�� because they require a problem of
a speci�c syntactic form that does not match the form of the current problem�

Automation� Although the strategy framework provides a high potential for automation�
most of the strategies available in IOSS are interactive� To better exploit the potential
for automation� we need to build up libraries that contain theories for frequently used
data structures� KIDS �Smith� ������ for example� heavily relies on such libraries�

More strategies� More powerful strategies should be incorporated into IOSS� Candidates
are strategies that are equivalent to the design tactics available in KIDS� Strategies for
the synthesis of divide�and�conquer algorithms are already de�ned�

Replay mechanisms� It happens that during the synthesis of a program� di	erent parts
of the program are developed in almost the same manner� We need mechanisms that
support the adaptation and reuse of sequences of development steps�

Programming language� The programming language supported by IOSS should be made
more expressive� e�g�� by incorporating powerful procedural constructs� or introducing
dynamic data structures� such as linked lists�

Proof support� The theorem prover of KIV� which is used to prove the veri�cation condi�
tions generated by IOSS� is not very sophisticated� For instance� there is no built�in
theory of ordering relations� The prover should be parameterized with theories� and
rewriting techniques should be incorporated�

Safety invariants� When we implement software for safety�critical systems as speci�ed in
Chapter �� then safety cannot be guaranteed in the intermediate states that occur when
a program that implements a system operation is executed� The speci�cation only
states that the state before and the state after execution of the system operation are
safe� This situation can be improved under the condition that sequences of assignments
are considered to be su�ciently fast� In this case� we can require a �safety invariant�
to hold before and after each sequence of assignments� Then the system can be in an
unsafe state only for the time that is needed to execute the longest assignment sequence
occurring in the implementation� With little e	ort� IOSS can be extended to deal with
such safety invariants�

��	 Chapter �� Strategy�Based Program Synthesis

Chapter �

Strategy�Based Speci�cation Acquisition

The instantiation of the strategy framework discussed in the previous chapter presupposes
the existence of a formal speci�cation for the program to be developed� However� developing
the speci�cation may be at least as di�cult as transforming it into an executable program�
Since formal speci�cation languages are often di�cult to handle� developers need support
to use them appropriately� Strategies for speci�cation acquisition not only propose possible
orders in which the di	erent parts of speci�cations can be developed� but also provide valuable
validation mechanisms for the resulting speci�cations�

In Chapter �� we have presented an agenda for speci�cation acquisition� which integrates
all activities that must be carried out to develop a speci�cation smoothly into traditional
software processes� Some of these activities �Steps �� �� and
� are not carried out with
formal techniques$ others �Steps
 and �� can only be performed after the speci�cation has
been developed� Therefore� this chapter concentrates on Step � of the agenda of Chapter ��
namely the transformation of the requirements into a formal speci�cation�

The pragmatic relaxations of speci�cation discipline proposed there are re�ected in the
de�nitions of problems� solutions� and acceptability of the instantiation� Chapter � presents an
instantiation of the strategy framework for the combination of Z and real�time CSP de�ned in
Chapter �� If restrictions of the speci�cation language are to be ignored� we can� for example�
de�ne acceptability of Z speci�cations as type correctness because it can be checked by tools�
Then� the speci�cation of Section ��
�� is acceptable� Leaving out details� on the other hand�
does not show up in the de�nition of an instantiation of the framework� but only in individual
speci�cation developments�

In this chapter� we �rst introduce the concept of a speci�cation style in Section ����
Speci�cation styles are di	erent manners in which speci�cations can be developed� We then
present the de�nitions of problems� solutions� and acceptability we use to instantiate the
strategy framework for speci�cation acquisition in Section ���� In Section ���� we de�ne
strategies associated with the styles introduced in Section ���� These are used in an example�
where we present the development of a speci�cation of the Unix �le system in Section ��
�
Finally� in Section ���� we show how Z speci�cations developed with the instance of the
strategy framework of this chapter can be transformed into IOSS programming problems� As
usual� we close with a discussion of related work� a summary of the achieved results� and
directions for further research� The instantiation of the framework and some of the strategies

���

��� Chapter
� Strategy�Based Speci�cation Acquisition

presented here are taken from �Heisel� ����c�� The concept of style is explained in more
detail in �Souqui�eres and Heisel� ������ The example and some re�ections on speci�cation
languages can be found in �Heisel� ����b��

�� The Concept of a Speci�cation Style

Di	erent speci�cation languages are distinguished by the language constructs they o	er to
their users� For each speci�cation language� we can �nd requirements on or aspects of systems
we want to specify that are supported very well and others that can be expressed only in a
clumsy way or not at all� For example� algebraic languages do not support the speci�cation
of state�based systems very well$ on the other hand� the generic constructs o	ered by the
language Z leave much to be desired� In this way� speci�cation languages encourage the use
of some constructs and discourage the use of others� As a result� they implicitly represent
certain speci�cation styles� because speci�ers proceed di	erently� according to the speci�cation
language they use�

In contrast to this situation� we strongly advocate orienting the development of a speci�
�cation on the problem� not on the speci�cation language that is used� When developing a
formal speci�cation� we should ask ourselves the following questions�

� Does the system to be built have a global state that is changed by some operations�

� Is it suitable to abstractly describe properties of �parts of� the system to be speci�ed�

� Is it possible to combine and adjust existing speci�cations to obtain a speci�cation for
�parts of� the new system�

Depending on the answers to these questions� a speci�er will follow di	erent paths to develop
a speci�cation� We propose to de�ne these di	erent approaches to developing speci�cations
as speci�cation styles and support them in a systematic way� i�e�� by agendas and strategies�
Such de�nitions make styles explicit� instead of representing them implicitly by speci�cation
languages� The previous questions correspond to the state�based� algebraic� and reuse styles�

A speci�cation style describes a certain �spirit� in which a speci�cation is set up� For
example� the aim of the reuse style is to reuse speci�cations contained in a library whenever
possible� Of course� we usually cannot expect to set up a new speci�cation exclusively using
existing speci�cations of a library� Library items will have to be modi�ed� and certain parts
will have to be developed from scratch� Hence� a style is nothing strict� but it will have to
be combined with other styles� Styles are used locally� i�e�� even within one development�
one switches between di	erent styles� It is therefore not reasonable to identify styles with
speci�cation languages�

Speci�cation styles can be described as sets of strategies� Strategies that belong to a
particular style are to a large extent independent of the speci�cation language to be used�
That is� the strategies associated with a particular style will de�ne the same number of
subproblems with the same dependencies for the same purpose independent of the choice of
the speci�cation language$ only the speci�cation expressions that are generated as solutions
will look di	erent� In �Souqui�eres and Heisel� ������ we show that� in performing the same
steps� we can obtain �equivalent� speci�cations in di	erent languages� This shows that� to a
large extent� the development process can be driven exclusively by the problem�

��� Problems� Solutions� and Acceptability ��

In the following� we de�ne the notions of problems� solutions� and acceptability for speci�
�cation acquisition� and then present strategies that are associated with di	erent styles�

�� Problems� Solutions� and Acceptability

The instantiation of the strategy framework which we now present can be used in developing
speci�cations in Z� This instance integrates well with the instance for IOSS� because Z sup�
ports the explicit modeling of states� Z speci�cations are usually implemented in imperative
languages� such as the one used in IOSS� and Z operation schemas are easily transformed into
programming problems for IOSS �see Section �����

In contrast to program synthesis� where problems and solutions are purely formal objects�
speci�cation acquisition transforms informal requirements into formal speci�cations� A prob�
lem to be solved will therefore contain a natural language description of the purpose of the
speci�cation to be developed�

In addition� the successive development of a speci�cation requires knowledge about the
parts of the speci�cation that have already been developed� Since problems should contain
all information needed to solve them� problems must contain expressions of the chosen spec�
i�cation language � in our case� Z�

Finally� a problem contains a schematic Z expression that can be instantiated with an
appropriate concrete Z expression� The schematic Z expression speci�es the syntactic class
of the speci�cation fragment to be developed� as well as how the fragment is embedded in its
context �see e�g� Section ����� below�� These considerations lead us to the basic types

!SynZ �Text �SchematicZ "

Semantically valid Z speci�cations are a subset of the syntactically correct ones� To be
able to state meaningful acceptability conditions� which capture the role of a speci�cation
fragment in its context� Z expressions are associated with syntactic classes� e�g�� speci�cation�
schema� schema list � These syntactic classes are sets of Z expressions� The empty string
 is
a syntactically correct Z expression�

SemZ � � SynZ
SyntacticClass � ���SynZ �

 � SynZ

We will use the following syntactic classes whose names are self�explanatory� The class
speci�cation is the most general one�

speci�cation� free type� ax def �
schema� schema list �
declaration list � predicate� ident � SyntacticClass

Each schematic Z expression is associated with the syntactic class of Z expressions with
which it can be instantiated� The function NL concatenates two Z expressions� As in the Z
reference manual� it means �new line�� Since concatenating two arbitrary Z expressions does
not always yield a syntactically correct Z expression� the function NL is necessarily partial�
The empty speci�cation
 is a neutral element with respect to NL�

��� Chapter
� Strategy�Based Speci�cation Acquisition

syn class � SchematicZ � SyntacticClass
instantiate � SchematicZ � SynZ	 SynZ
NL � SynZ � SynZ	 SynZ

 schem expr � SchematicZ �
 v � syn class schem expr �
�schem expr � v� � dom instantiate

 spec � SynZ �
�spec�
� � dom NL� spec NL
 # spec �
�
� spec� � dom NL�
 NL spec # spec

A speci�cation problem consists of the parts mentioned before� i�e�� a requirement� ex�
pressed in natural language� the parts of the speci�cation already developed� and a schematic
Z expression� As an integrity condition� we require that each Z expression belonging to the
syntactic class associated with the schematic Z expression can be combined with the speci��
cation already developed�

SpecProblem
req � Text
context � SynZ
to develop � SchematicZ

 expr � SynZ j expr � syn class to develop �
�context � instantiate�to develop� expr�� � dom� NL �

Solutions are Z expressions�

SpecSolution ## SynZ

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr �to develop� and the combination of pr �context with the instantiated schematic
expression yields a semantically valid Z speci�cation�

spec acceptable for � SpecSolution� SpecProblem

 sol � SpecSolution$ pr � SpecProblem �
sol spec acceptable for pr
�
sol � syn class�pr �to develop� �
pr �context NL instantiate�pr �to develop� sol� � SemZ

In practice� it is useful to de�ne SemZ to be the set of Z expressions which are accepted by
available tools� such as the Fuzz type checker �Spivey� ����a��

�� Strategies for Speci�cation Acquisition

Apart from some general�purpose strategies� we present strategies for the state�based� al�
gebraic� and reuse styles� As usual� we use a semi�formal Z�like notation to describe these
strategies� neither formalizing the syntax and semantics of Z� nor giving de�nitions for all
functions and predicates we use� The type Value denotes here the disjoint union of the
schema types SpecProblem and SpecSolution� and its members are denoted by bindings� as in
Chapter ��

��� Strategies for Speci�cation Acquisition ���

����� General�Purpose Strategies

These strategies are independent of a particular speci�cation style� They are needed in almost
every speci�cation development� because they solve a speci�cation problem directly�

The terminate Strategy

This strategy� which does not generate any subproblems� allows the user to type in some
speci�cation text�

terminate # fterm solg� where
IA term sol # fP initg
OA term sol # fS �nalg
term sol # f t � scheme term sol�Value j

� sol � SpecSolution j sol spec acceptable for t�P init� � t S �nal # solg

As in Chapter �� the existential quanti�er indicates that external information is needed to
determine the value t S �nal � In an implementation� the user would be asked to type in
a speci�cation fragment� The condition sol spec acceptable for t�P init� ensures that only
speci�cation fragments that are admissible in the context speci�ed by the input problem are
accepted by the strategy�

The empty Strategy

This strategy generates the empty speci�cation
� It will be used to terminate strategies that
are de�ned with the Repeat or Lift strategicals� and to skip optional parts of speci�cations�

empty # fempty solg� where
IA empty sol # fP initg
OAempty sol # fS �nalg
empty sol # f t � scheme empty sol�Value j

t S �nal #
 �
 spec acceptable for t�P init�g

����� Strategies for the State�Based Style

The state�based style of speci�cation should be applied if a state�based system has to be
speci�ed� Here� we must specify the legal states of the system and the operations that de�ne
how the system state may evolve�

We present three strategies associated with the state�based style� the state based strat�
egy� which de�nes a top�level method for specifying state�based systems� the develop schema
strategy� which is used to develop a single schema� and a strategy for developing lists of
schemas� which is de�ned in terms of the strategicals Lift and Repeat�

The manner of specifying a system that is captured in the state based strategy is inde�
pendent of the speci�cation language that is used� In �Souqui�eres and Heisel� ����$ Heisel�
����b� it is shown how the same manner of speci�cation can be applied using an algebraic
speci�cation language� The two other strategies� however� refer to the schema construct of Z�
They would have no counterpart in an instantiation of the strategy framework for speci�cation
acquisition that uses a speci�cation language other than Z�

��� Chapter
� Strategy�Based Speci�cation Acquisition

The state based strategy

One of the factors that contribute to the relatively widespread acceptance of Z in industry is
the existence of a method �Potter et al�� ����� that gives guidance for its use� This method
recommends that the following process � which we express in terms of the agenda shown
in Table ��� � is followed when developing Z speci�cations� However� as already noted� the
method is also useful when a di	erent language is used�

No� Step Validation Conditions

� Develop the global de�nitions�

� Develop the global state and the ini�
tial state�

There must exist an initial state�

� Develop the the system operations� No operation has precondition false�

Table
��� Agenda for developing state�based systems

To perform Step � of this agenda� i�e�� to develop the system operations� another agenda�
shown in Table ���� can be given� If Step � is performed with the agenda of Table ���� its
associated validation condition is automatically satis�ed�

No� Step Validation Conditions

� Develop the operations for the nor�
mal case�

� Develop the operations for error
cases�

� De�ne total operations� combining
the operations for the normal and
the error cases�

Each so de�ned operation has precon�
dition true�

Table
��� Agenda for developing operations

The state based strategy� which we now de�ne� captures the top�level agenda of Table
��� for developing Z speci�cations� To be more general� we allow a fourth step that can be
used to complete the speci�cation� Since the state based strategy is a top�level strategy� its
input problem must permit the development of expressions of the syntactic class speci�cation�
Hence� we have

state based # fglobal defs � system state� system ops � other defs � state based solg

where global defs is de�ned by

IA global defs # fP initg
OAglobal defs # fP global � S globalg
global defs # f t � scheme global defs�Value j

syn class�t�P init��to develop� # speci�cation �
t�P global� # h req� t�P init��req � �specify global de�nitions��

context � t�P init��context �
to develop� sp � speci�cationi �

t�S global� spec acceptable for t�P global�g

��� Strategies for Speci�cation Acquisition ���

Using the concatenation function for text� denoted ���� a natural�language text that describes
the purpose of the new subproblem P global is added to the informal requirements component
req � The schematic expression to develop is denoted by sp � speci�cation� This notation means
that a Z expression belonging to the syntactic class speci�cation must be developed� and the
instantiation function is the identity� The constituting relation system state is de�ned by

IA system state # fP init � S globalg
OAsystem state # fP state� S stateg

system state # f t � scheme system state�Value j
t�P state� # h req� t�P init��req � �specify global system state��

context � t�P init��context NL t�S global��
to develop� state def � schema listi �

t�S state� spec acceptable for t�P state� �
t�S state� �#
g

To de�ne P state� the global de�nitions S global are added to the context component of
P init � The system state must be de�ned as a non�empty list of schemas� The constituting
relation system ops is de�ned by

IA system ops # fP init �P state� S stateg
OAsystem ops # fP ops � S opsg
system ops # f t � scheme system ops�Value j

t�P ops� # h req� t�P init��req � �specify system operations��
context � t�P state��context NL t�S state�
to develop� ops def � schema listi �

t�S ops� spec acceptable for t�P ops� �
t�S ops� �#
g

Like the system state� the operations that may change this state are de�ned by schemas� The
empty list of operations is not permitted� The constituting relation other defs is de�ned by

IA other defs # fP init �P ops � S opsg
OAother defs # fP other � S otherg
other defs # f t � scheme other defs�Value j

t�P other� # h req� t�P init��req � �other de�nitions��
context � t�P ops��context NL t�S ops�
to develop� others � speci�cationi �

t�S other� spec acceptable for t�P other�g

No assumptions can be made on the other de�nitions necessary to complete the speci�ca�
tion� Hence the speci�cation fragment that can be developed to solve P other may have the
syntactic class speci�cation� and no additional acceptability conditions for S other besides
spec acceptable for can be stated�

The constituting relation state based sol assembles the �nal solution� obtained from the
solutions to the subproblems� and states acceptability conditions that can be checked only
when all partial solutions are known�

��� Chapter
� Strategy�Based Speci�cation Acquisition

IA state based sol # fS global � S state� S ops � S otherg
OAstate based sol # fS �nalg
state based sol # f t � scheme state based sol�Value j

t�S �nal� # t�S global� NL t�S state� NL t�S ops� NL t�S other� �
t�S global� does not contain state or operation schemas �
t�S state� contains a state schema S that is not imported by any

other schema in t�S state� and an initial state schema for S �
the set of initial states is non�empty �

t�S ops� contains at least one operation schema �
none of the operations de�ned in t�S ops� have precondition falseg

A schema S is a state schema if it has neither inputs nor outputs if and there are other schemas
which import it� There must not be variable declarations of the kind x � S � i�e� declaration of
variables that have the schema type S � Note that this condition can be checked only in the
context of the other parts of the speci�cation� A schema is an operation schema if it imports
a state schema with the �� &� or * notation�

Applying the state based strategy to a speci�cation problem guarantees that the developed
speci�cation roughly conforms to the recommended Z method� The acceptability conditions
of the state based strategy refer not only to the syntax of the developed speci�cation � e�g��
a list of schemas being non�empty � but also to its semantics� e�g� in distinguishing state and
operation schemas� More detailed acceptability conditions can be stated in the strategies that
are used to solve the problems generated by the state based strategy�

The de�ne schema Strategy

This is a simple strategy� which can be used to de�ne a schema in two steps� �rst the
declaration part and then the predicate part are de�ned� The de�ne schema strategy requires
that solutions of the syntactic class schema are permitted� It is given by

de�ne schema # fde�ne decls � de�ne pred � schema solg

where de�ne decls is de�ned by

IA de�ne decls # fP initg
OAde�ne decls # fP decls � S declsg
de�ne decls # f t � scheme de�ne decls�Value j

syn class�t�P init��to develop� � schema �
� n � ident �

t�P decls� # h req� t�P init��req � �specify declaration part of schema��
context � t�P init��context
to develop�make schema�n� decls � declaration list � true�i �

t�S decls� spec acceptable for t�P decls�g

Here� we have used the function make schema instead of the graphical schema notation� The
schematic expression t�P decls��to develop captures the information that a Z expression be�
longing to the syntactic class declaration list must be developed� and that the instantiation
function� which embeds the developed solution S decls into a a schema� is make schema�
This function is applied to the name n of the schema� which must be provided as external

��� Strategies for Speci�cation Acquisition ���

information� the developed expression S decls and the predicate true� The trivial predi�
cate true must be used as long as the predicate part of the schema is not developed� The
constituting relation de�ne pred is de�ned by

IA de�ne pred # fP init �P decls � S declsg
OAde�ne pred # fP pred � S predg
de�ne pred # f t � scheme de�ne pred�Value j

�let n ## �� n � ident j
t�P decls��to develop # make schema�n� decls � declaration list � true�� �

t�P pred� # h req� t�P decls��req � �specify predicate part of schema��
context � t�P init��context
to develop�make schema�n� t�S decls�� pred � predicate�i� �

t�S pred� spec acceptable for t�P pred�g

Acceptability of the solution t�S pred� requires that the developed predicate refer only to the
declarations made in t�S decls� and to the global de�nitions of the context t�P init��context �
The constituting relation schema sol combines the declaration part and the predicate part
of the schema�

IA state based sol # fS decls � S predg
OAstate based sol # fS �nalg
state based sol # f t � scheme state based sol�Value j

t�S �nal� # make schema�t�S decls�� t�S pred��g

An Iterative Strategy

The subproblems P state and P ops generated by the state based strategy can be solved by
repeated application of the strategy de�ne schema� To relieve strategy users of the task of
selecting the same strategy several times in a row� we de�ne a new strategy that generates
lists of schemas instead of just one schema� According to the de�nitions of Section ���� we
can de�ne

de�ne schema list #
Repeat�Lift�de�ne schema� p down� p combine� s combine�� p rep� empty�

where p rep is a problem attribute newly introduced by Lift and empty is the terminating
strategy that generates the empty speci�cation
� see Section ������ The other arguments of
Lift are de�ned as follows�

p down ## ��pr � SpecProblem j syn class�pr �to develop � schema list� �
hreq� pr �req � context� pr �context � to develop� sch � schemai�

p combine ## ��pr � SpecProblem$ sol � SpecSolution j
syn class�pr �to develop� � schema list � sol � schema �
hreq� pr �req � �de�ne more schemas��
context � pr �context NL sol �
to develop� pr �to developi�

s combine ## NL

��	 Chapter
� Strategy�Based Speci�cation Acquisition

where p down converts the problem of de�ning a list of schemas into the problem of de�ning a
single schema� the function p combine incorporates a developed schema into the context part
of a problem� and the function s combine concatenates two speci�cations� thereby allowing
the concatenation of a given schema with an existing list of schemas�

The requirements for the arguments of Lift �see page ������ are ful�lled� First� the func�
tion p combine is injective� Secondly� if we �rst develop a schema S � then this schema is added
to the context component of the original problem P init by the function p combine� When we
then develop a schema list sl that is acceptable for the combined problem p combine�P init �
S�� the de�nition of the predicate spec acceptable for gives us

�p combine�P init � S���context NL sl � SemZ

Since �p combine�P init � S���context # P init �context NLS � we have

P init �context NL S NL sl � SemZ

and hence �because NL is associative� s combine�S � sl� spec acceptable for P init �
De�ning the strategy de�ne schema list with strategicals has two advantages over de�n�

ing it from scratch� namely that the existing strategy de�ne schema is reused� and that the
user need not manually select the same strategy over and over again� The only possible de�
velopment steps left after application of de�ne schema list are to develop one more schema
or to terminate the iteration�

����� Strategies for the Algebraic Style

The algebraic style of speci�cation should be applied if a system or aspects of a system are
to be de�ned in an abstract way� by stating properties� The algebraic style supports the
de�nition of data types and functions on these types� Functions are de�ned by giving their
signatures and axiomatizing their properties�

In Z� this style of speci�cation is associated with the syntactic constructs of axiomatic and
generic boxes� and free types� All of the de�nitions of Chapter � belong to this �algebraic
sublanguage� of Z�

In the following� we present the adt strategy� which can be used to de�ne an abstract data
type consisting of constructor functions and other functions� Other strategies associated with
the algebraic style� which we do not de�ne here� but which are used in the example of Section
��
� include the following�

� The strategy de�ne generic construct produces the subproblems to specify the decla�
ration part and the predicate part of a generic box� the syntactic construct of Z that is
used to de�ne generic constructs� It is de�ned similarly to the strategy de�ne schema�
The list of generic parameters is obtained as external information�

� The strategy de�ne global function is de�ned similarly to the de�ne schema and de�
�ne generic construct strategies� It generates an axiomatic box� and the subproblems
consist of de�ning the declaration and the predicate parts of the box�

The adt strategy captures a language�independent approach to the development of ab�
stract data types� An instantiation of the strategy framework that supports another speci��
cation language than Z would need a similar strategy� The counterparts of the de�ne gener �
ic construct and de�ne global function strategies� however� would probably look di	erent in

��� Strategies for Speci�cation Acquisition ���

an alternative instantiation of the strategy framework� This is because other languages may
follow other principles than Z� where we often de�ne constructs consisting of a declaration
part and a predicate part�

The adt Strategy

This strategy captures the de�nition of an abstract data type in the following manner� �rst�
we must de�ne how the members of the data type are constructed� i�e�� we must de�ne the
constructor functions of the abstract data type� For this purpose� the free type construct of
Z is suitable� The de�nition of the abstract data type is continued by de�ning more functions
that take members of the type as their arguments or yield members of the type as their
results� Finally� some more de�nitions may be made to complete the type speci�cation� The
adt strategy is de�ned by

adt # fconstructor defs � function defs � other axdefs � adt solg

where constructor defs is de�ned by

IA constructor defs # fP initg
OAconstructor defs # fP constr � S constrg
constructor defs # f t � scheme constructor defs�Value j

t�P constr� # h req� t�P init��req � �specify ADT constructors as free type��
context � t�P init��context �
to develop� adt � free typei �

t�S constr� spec acceptable for t�P constr�g

The constructor functions of the abstract data type must take the form of a free type de�ni�
tion� The constituting relation function defs is de�ned by

IA function defs # fP init � S constrg
OA function defs # fP fct � S fctg
function defs # f t � scheme function defs�Value j

t�P fct� # h req� t�P init��req � �specify functions on ADT��
context � t�P init��context NL t�S constr��
to develop� fcts � ax def i �

t�S fct� spec acceptable for t�P fct� �
t�S fct� must refer to S constrg

Non�constructor functions that take members of the de�ned type as their arguments or yield
members of the de�ned type as their result must be de�ned axiomatically� The syntactic
class ax def is de�ned in such a way that the empty speci�cation
 is a member of it� and
that state and operation schemas �as described in the de�nition of the state based strategy
in Section ����� above�� are not allowed� The constituting relation other axdefs is de�ned by

��� Chapter
� Strategy�Based Speci�cation Acquisition

IA other axdefs # fP init �P fct � S fctg
OAother axdefs # fP other � S otherg
other axdefs # f t � scheme other defs�Value j

t�P other� # h req� t�P init��req � �other de�nitions��
context � t�P fct��context NL t�S fct�
to develop� others � speci�cationi �

t�S other� spec acceptable for t�P other� �
t�S other� must not contain state or operation schemas g

The constituting relation adt sol assembles the �nal solution by concatenating the solutions
to the subproblems�

IA adt sol # fS constr � S fct � S otherg
OAadt sol # fS �nalg
adt sol # f t � scheme adt sol�Value j

t�S �nal� # t�S constr� NL t�S fct� NL t�S other�g

����� Strategies for the Reuse Style

Reusing speci�cations is a non�trivial task� It is not realistic to assume that a speci�cation
can be reused just by including it without modi�cation into a new speci�cation or simply
instantiating its generic parameters� Instead� we must expect to change the speci�cation we
intend to reuse�

A strategy that allows for the modi�cation of a generic speci�cation for the purpose of
reuse is the use generic spec strategy� which we de�ne below� Other strategies associated
with the reuse style� which we do not de�ne here� but which are used in the example of Section
��
� include the following�

� The combine strategy generates two subproblems� The �rst is to specify an arbitrary
number of component speci�cations� These may either be reused or developed from
scratch� The second subproblem is to specify how the components are combined� The
combine strategy is associated with the reuse style because it is normally used to combine
speci�cations that already exist�

� The directly reuse strategy allows its users to reuse a generic speci�cation by instanti�
ating its generic parameters�

The principles underlying all of these strategies are language independent� Hence� similar
strategies would also be needed to support speci�cation acquisition in languages other than
Z�

The use generic spec Strategy

The use generic spec strategy takes into account that� in order to successfully reuse an
existing generic speci�cation� it may be necessary� �rst� to change the generic speci�cation�
and� second� to change the instantiated �previously changed� speci�cation� The subproblems
it generates consist of selecting an existing generic speci�cation� adjusting it� de�ning the
actual parameters to instantiate it� and de�ne the actual instantiated speci�cation� which
also may involve further changes� The strategy is de�ned by

��� Strategies for Speci�cation Acquisition ��

use generic spec # fselect spec� adjust spec� actual params � instantiate spec�
generic spec solg

where select spec is de�ned by

IA select spec # fP initg
OAselect spec # fP generic� S genericg
select spec # f t � scheme select spec�Value j

syn class�t�P init��to develop� # speci�cation �
t�P generic� # h req� t�P init��req � �select a generic speci�cation��

context � t�P init��context �
to develop� sp � speci�cationi �

t�S generic� spec acceptable for t�P generic� �
t�S generic� is genericg

The solution S generic of the problem P generic may have the syntactic class speci�cation�
and it must be generic� The constituting relation adjust spec is de�ned by

IA adjust spec # fP init � S genericg
OAadjust spec # fP add � S addg
adjust spec # f t � scheme adjust spec�Value j

t�P add� # h req� t�P init��req � �adjust generic speci�cation��
context � t�P init��context NL t�S generic��
to develop� add spec � speci�cationi �

t�S add� spec acceptable for t�P add�g

To de�ne P add � the identi�ed generic speci�cation S generic is added to the context� If
the generic speci�cation needs no adjustments� the empty speci�cation can be developed for
S add � The constituting relation actual params is de�ned by

IA actual params # fP init �P add � S addg
OAactual params # fP params � S paramsg
actual params # f t � scheme actual params�Value j

t�P params� # h req� t�P init��req � �specify actual parameters��
context � t�P add��context NL t�S add�
to develop� params � speci�cationi �

t�S params� spec acceptable for t�P params� �
t�S params� �#
g

The actual parameters that will be used to instantiate the adjusted generic speci�cation
must not be empty� Since di	erent syntactic forms of the parameter speci�cations are pos�
sible� the syntactic class of the solution S params is speci�cation� The constituting relation
instantiate spec is de�ned by

��� Chapter
� Strategy�Based Speci�cation Acquisition

IA instantiate spec # fP init �P params � S paramsg
OA instantiate spec # fP inst � S instg
instantiate spec # f t � scheme instantiate spec�Value j

t�P inst� # h req� t�P init��req � �instantiate adjusted generic speci�cation with
actual parameters��

context � t�P params��context NL t�S params�
to develop� inst � speci�cationi �

t�S inst� spec acceptable for t�P inst� �
t�S inst� �#
 �
t�S inst� is concreteg

The instantiated speci�cation S inst must not be empty or contain generic parameters� The
constituting relation generic spec sol assembles the �nal solution by concatenating the de�
veloped parts� There are no additional acceptability conditions�

IA generic spec sol # fS generic� S add � S params � S instg
OAgeneric spec sol # fS �nalg
generic spec sol # f t � scheme generic spec sol�Value j

t�S �nal� # t�S generic� NL t�S add� NL t�S params� NL t�S inst�g

�
 Speci�cation of the Unix File System

We now use the strategies presented in the previous section to develop a speci�cation of the
user�s view of the Unix �le system� The system to be speci�ed is a tree of �les and directories�
where the root and the inner nodes of the tree are directories� and the leaves are either �les
or empty directories� The user can navigate in this tree� add and remove directories and �les�
and access information stored in the system� Each user has a home and a working directory�

An overview of the development is given in Figure ���� The numbers shown in the nodes
of the development tree correspond to the order in which the problems are solved� In the
upper parts of the nodes� the problems to be solved are indicated� and the reducing strategies
are shown in the lower parts of the node�

The initial problem P� for the speci�cation task has the form

P� # hreq � �Speci�cation of the Unix �le system��
context �
�

to develop� sp � speci�cationi

The numbering of the problems in the text coincides with the numbering of the nodes in
Figure ����

Since the tree of �les and directories together with the home and working directories form
a system state� we start with the state�based style to develop the top�level speci�cation and
apply the state based strategy� The �rst subproblem generated by the state based strategy
is to develop the global de�nitions�

P� # hreq � �Speci�cation of the Unix �le system$ specify global de�nitions��
context �
�

to develop� sp � speci�cationi

�	� Speci�cation of the Unix File System ���

0 file system
Unix

state-based

3
adjust

combine

generic spec
instantiate

terminate

generic spec

...

specify
components

directly
reuse

...

1
definitions
global

8
define

operations
define

definitions
other

emptylift(use_gen-
eric_spec..)

system state

def. schema
list

def. schema
list

constructors
define

terminate

functions
define

definitions
other

empty

global defs.
more

empty

specify
combination

def_gen_box)
REPEAT(LIFT

2
select

terminate

generic spec

define global
function

9 15

6
parameters
def. actual

terminate LIFT(adt, ...)

global defs
more

7 10

4 5 11 13 1412

Figure
��� Development tree for speci�cation of Unix �le system

We �rst must de�ne the tree structures that will be part of the system state� These trees are
characterized by the fact that each node has a name� a content� and an arbitrary number of
successors� We assume that a speci�cation of such trees� where the content of the nodes �as
opposed to their names� is a generic parameter� is available for reuse in our library� Hence� the
use generic spec strategy will be applicable� However� we should not reduce problem P� with
the use generic spec strategy� because we certainly will have to make other global de�nitions�
Therefore� we reduce problem P� with with a lifted version of use generic spec� This leaves
us the freedom to add more global de�nitions afterwards� The strategy for reducing P� is

Lift�use generic spec� p down� p combine� s combine�

where

p down # �� pr � SpecProblem j syn class�pr �to develop� # speci�cation � pr�

�
� Chapter
� Strategy�Based Speci�cation Acquisition

p combine # �� pr � SpecProblem$ sol � SpecSolution j
syn class�pr �to develop� # speci�cation �
hreq� pr �req � �more global de�nitions��
context � pr �context NL sol �
to develop� pr �to developi�

s combine # NL

The function p down is the identity on those speci�cation problems that admit the develop�
ment of a solution that belongs to the syntactic class speci�cation� because P� requires the
development of an item of class speci�cation and the use generic spec strategy yields an item
of this class� The syntactic class speci�cation is the most general one� and it is closed under
the function NL � The function p combine incorporates a developed speci�cation fragment
into the context part of a problem� and the function s combine is the concatenation function
on speci�cations�

That the functions p down� p combine and s combine ful�ll the requirements for the
arguments of the Lift strategical follows by a similar argument to the one for the strategy
de�ne schema list on page ��
�

When we apply the above strategy to P�� we get the problem P� as the value of the
attribute P generic�

P� # hreq � �Speci�cation of the Unix �le system$ specify global de�nitions$
select a generic speci�cation��

context �
�
to develop� sp � speci�cationi

This problem can be solved by a strategy similar to the terminate strategy� di	ering only in
the implementation of the corresponding heuristic function� Instead of being asked to type
in a speci�cation� the user may select a speci�cation from a library� We select the generic
speci�cation

NAMED TREE !X " ##
ff � seq���NAME �X j

hi � dom f
� �
 path � seq� �� j path � dom f �

front path � dom f
� �last path �# �� front path � hlast path � �i � dom f ��g

which we have already explained in Section ��
�� on page ��� For NAMED TREE !X "� several
functions� e�g�� to select a child or the leaves of the tree� are de�ned �the function child named
can be found in Section ��
���$ for a more detailed presentation� see �Heisel� ����b�� The above
generic de�nition� together with the prede�ned functions on named trees� form the solution
S� of problem P��

The next problem to work on is the second subproblem� P add � generated by the use gener �
ic spec strategy� It consists of adjusting named trees to our purposes�

P� # hreq � �Speci�cation of the Unix �le system$ specify global de�nitions$
adjust generic speci�cation��

context � S��
to develop� add spec � speci�cationi

�	� Speci�cation of the Unix File System �
�

We now have to combine named trees with paths� which allow us to use names to navigate
in named trees� To this end� we reduce P� with the strategy combine� which was outlined in
Section ����
� and which� like use generic spec� is associated with the reuse style� To develop
the solution S� for P�� the subproblem P� to specify the component speci�cations must be
solved� We use the strategy directly reuse� which has been brie�y described in Section ����
�
to instantiate non�empty sequences with the actual parameter NAME �

PATH ## seq�NAME

To solve the subproblem P� of combining named trees with paths� we have to de�ne several
functions and predicates that take named trees as well as paths as their arguments� To do
so� we apply the strategy

Repeat�Lift�de�ne generic construct � p down� p combine� s combine�� p rep� empty�

which is de�ned similarly to the strategy de�ne schema list of Section ������ The strategy
de�ne generic construct was brie�y sketched in Section ������ One of the de�nitions we
develop in this way is the predicate is existing path of that decides if a given path exists in
a given tree�

!X "
is existing path of � PATH�NAMED TREE !X "

 t � NAMED TREE !X "$ p � PATH �
p is existing path of t �

�head p # name of tree t �
�tail p �# hi � �� t� � children t � tail p is existing path of t����

Let S� denote the concatenation of the de�nition of paths and the de�nitions of the functions
and predicates that establish the combination of named trees with paths� The next problem
to solve is the de�nition of the actual parameters to instantiate the extended de�nition of
named trees�

P� # hreq � �Speci�cation of the Unix �le system$ specify global de�nitions$
specify actual parameters��

context � S� NLS��
to develop� params � speci�cationi

With the terminate strategy� we de�ne the solution S� of P��

UNIX NODE ��# dir j �le�FILE�

where we do not present the development of the type FILE � which denotes �les� This type can
either be de�ned as a given type or a free type� distinguishing e�g� text �les and binary �les�
The last subproblem P
 of P� generated by the use generic spec strategy is to instantiate
the adjusted generic de�nition with an actual parameter� Again using terminate we solve P

by typing in the following de�nition of directories�

DIRECTORY � �NAMED TREE !UNIX NODE "

 d � DIRECTORY $ p � PATH j p is existing path of d
�
 adr � dom d �

�second�d adr� � ran �le � adr � leaves d� �
namelist�subtrees �object at in�p� d��� � iseqNAME

�
� Chapter
� Strategy�Based Speci�cation Acquisition

The set of directories� DIRECTORY � is a subset of NAMED TREE !UNIX NODE "� In a
directory� �les may only occur as leaf nodes� and all children of a given node must have
di	erent names�

The concatenation of the solutions S�� S�� S� and the de�nition of directories forms a
preliminary solution S� of problem P�� There still is one open subproblem of P�� namely
the subproblem P�� to de�ne further global de�nitions� It was generated because we used
a lifted version of use generic spec� As already explained in Section ���� it is unrealistic to
assume that we can foresee all necessary global de�nitions in advance� Since the speci�cation
developed so far su�ces to de�ne the system state� we leave P�� open and start working on
the second subproblem generated by the state based strategy� P�� We will come back to P��

when developing the system operations�

P� # hreq � �Speci�cation of the Unix �le system$ specify global system
state��

context � S��
to develop� state def � schema listi

The system state consists of a directory tree� a path leading to the home directory� and a
path leading to the working directory� Both paths must exist in the root directory� and they
must lead to directories� not to �les� For an initial state� we require a directory tree and a
home directory as inputs� The working directory is set to the home directory by default�

Using the strategy de�ne schema list of Section ������ we develop the following two
schemas� which form the solution S� of problem S��

OneUserView
root � DIRECTORY
home dir � PATH
working dir � PATH

home dir is existing path of root
second�object at in�home dir � root��hi�� # dir
working dir is existing path of root
second�object at in�working dir � root��hi�� # dir

InitOneUserView
OneUserView �

newdir� � DIRECTORY
newhd� � PATH

root � # newdir�
home dir � # newhd�
working dir � # newhd�

The next problem P� is to de�ne the system operations�

P� # hreq � �Speci�cation of the Unix �le system$ specify system operations��
context � S� NLS��
to develop� ops def � schema listi

�	� Speci�cation of the Unix File System �
�

Like P�� we reduce this problem with the strategy de�ne schema list � Of the many Unix
commands� we only de�ne the command cd that changes the working directory� The command
cd can be called with varying numbers and types of parameters� The strong typing of Z forces
us to de�ne several schemas to cope with the di	erent parameter constellations of cd � If no
argument is supplied to cd � the working directory is set to the home directory by default� If
an absolute path is supplied to cd � the working directory is set to this path� provided it is a
legal one� Legal means that the path exists in the directory and that it leads to a directory�
not to a �le� Hence� with two repetitions of the strategy de�ne schema� we obtain the two
operations

cd def
&OneUserView

root � # root
home dir � # home dir
working dir � # home dir

cd abs
&OneUserView
p� � PATH

p� is existing path of root
second�object at in�p�� root��hi�� # dir
root � # root
home dir � # home dir
working dir � # p�

There is a third version of cd � which takes a relative path� i�e� a path starting at the
current working directory� as its argument� Since this version of cd also allows upward
movement in the directory tree �using the notation ����� we must de�ne a data type called
DISPLACEMENT that can be combined with paths to yield paths� Hence� we have to go
back to the last open subproblem P�� of P�� which has been generated by a lifted version of
the use generic spec strategy�

P�� # hreq � �Speci�cation of the Unix �le system$ more global de�nitions��
context � S��
to develop� sp � speci�cationi

Since DISPLACEMENT is an abstract data type� we now switch to the algebraic style and
apply the adt strategy of Section ����� to de�ne displacements� But because we do not know if
this will be the last global de�nition� we use a lifted version of adt that de�nes one additional
subproblem�

Lift�adt � p down� p combine� s combine�

where p down� p combine and s combine are de�ned as in the strategy that we used to reduce
P�� see page ����

�
	 Chapter
� Strategy�Based Speci�cation Acquisition

The �rst subproblem P�� that is generated by this reduction is to de�ne the constructors
of the abstract data type with a free type� With the terminate strategy� we give the de�nition

DISPLACEMENT ��# empty d
j d�PATH�
j � � ��DISPLACEMENT �NAME�
j ����DISPLACEMENT�

The empty displacement empty d is a displacement� Paths are embedded into displacements
via the function d � Combining a displacement with a name using the function � yields a new
displacement� Given a displacement dp� ���dp yields a new displacement� All displacements
can be obtained by application of these functions�

The next subproblem P�� to be solved is to de�ne non�constructor functions on the ab�
stract data type� We reduce this problem by the strategy de�ne global function described in
Section ������ which is also associated with the algebraic style� The function we need combines
paths and displacements�

jj � PATH �DISPLACEMENT	 PATH

 p � PATH $ n � NAME $ dp � DISPLACEMENT �
p jj empty d # p �
p jj d hni # p � hni �
p jj �dp�n� # �p jj dp� � hni �
hni jj ����dp� # hni jj dp �
�p � hni� jj ���dp # p jj dp

No other de�nitions are necessary to de�ne displacements� Hence� we solve the third sub�
problem P�� by the empty strategy� The concatenation of the free type de�nition and the
de�nition of the function jj forms a preliminary solution S�� to the problem P�� �there is still
one open subproblem P��� generated by Lift�� and the concatenation S� NLS�� forms a new
preliminary solution to the problem P�� This new preliminary solution must be propagated
into the problem P�� which yields�

P �

� # hreq � �Speci�cation of the Unix �le system$ specify system operations��
context � S� NLS�� NL S��
to develop� ops def � schema listi

The new solution S� NLS�� is also propagated into all subproblems of P�� Now that the
de�nition of displacements has become visible in node � of the development tree and all its
successors� we can de�ne the third version of the cd command�

cd rel
&OneUserView
dp� � DISPLACEMENT

�working dir jj dp�� is existing path of root
second�object at in�working dir jj dp�� root��hi�� # dir
root � # root
home dir � # home dir
working dir � # working dir jj dp�

��� Connecting Instantiations �
�

If a displacement is supplied to cd � the new working directory is computed as the absolute
path yielded by combining the old working directory with the given displacement�

This de�nition concludes our speci�cation �at least for the purposes of this chapter�� All
other open problems �the open subproblems of P�� and P�� as well as the fourth subproblem
P�� generated with the state based strategy� can be solved with the empty strategy�

�� Connecting Instantiations

We now take a �rst step toward the combination of di	erent instances of the strategy frame�
work� We show how speci�cations developed with the instance of this chapter can be trans�
formed into programming problems� as they are de�ned in Chapter �� Directly proceeding
from the speci�cation to the implementation phase of software development� however� is only
possible in cases where the speci�cation contains data types that can easily be mapped onto
the data types available in conventional programming languages� An instance of the strategy
framework that supports the re�nement of Z speci�cations� i�e�� the re�nement of the abstract
data types to data types available in programming languages� is not yet de�ned�

The combination of Z and IOSS can be achieved easily� since both formalisms allow
for states and have concepts to deal with changing values of variables� Z speci�cations can
mechanically be translated into IOSS programming problems�

Four kinds of variables occurring in a Z schema have to be considered �not to be confused
with the variable classi�cation of IOSS programming problems� see page �
��� Input variables
are the ones decorated with ���� Output variables are the variables decorated with �%��
State variables are the variables of the global state schema� All other variables are auxiliary
variables� With this classi�cation� the translation of a Z schema into an IOSS programming
problem proceeds as follows�

� Each input variable of the Z schema becomes an input variable of the corresponding
problem�

� Each output variable of the Z schema becomes a result variable of the problem�

� Each variable x of the Z state schema becomes an input variable if the schema predicate
entails x # x ��

� Otherwise x becomes a result variable� and a new state variable x� is generated for x if
x occurs in the schema predicate�

� Each auxiliary variable becomes a result variable�

� The precondition of the IOSS problem is the precondition of the Z schema plus an
equation x # x� for each state variable x� generated as described above�

� The invariant of the IOSS problem is the invariant of the Z schema de�ning the system
state�

� The goal of the IOSS problem consists of those conjuncts of the schema predicate that
depend on result variables of the IOSS problem� where primed state variables of the
schema have to be replaced by plain variables and plain state variables of the schema
have to be replaced by the corresponding state variables of the IOSS problem� Auxiliary
variables remain unchanged�

�
� Chapter
� Strategy�Based Speci�cation Acquisition

As an example� we consider the transformation of the operation schema OpReleaseSucceed
of Section ������ The programming language of IOSS allows for enumeration types� so that a
data re�nement is not necessary� Recall the de�nition of this schema�

OpReleaseSucceed
&InertGasSystem
Sensors $ Actuators

mode # RELEASE SUCCEED

�consistency # NO � mode� # INCONSISTENCY�
�consistency # YES �

�reset button� # PRESSED � mode� # NORMAL� �
�reset button� # NOT PRESSED � mode� # RELEASE SUCCEED��

where

InertGasSystem
mode �MODE
warning timer � � � �WARNING DURATION
release check timer � � � �CHECK DURATION
release bank A� release bank B � OPEN CLOSED
warning light � LIGHT STATUS
warning beeper � BEEP STATUS

mode �# RELEASE INITIATED �
release bank A # release bank B # CLOSED

mode #WARNING � warning timer � �
mode # RELEASE INITIATED � release check timer � �� warning light # ON
mode �� fWARNING �RELEASE INITIATED � INCONSISTENCYg

� warning light # OFF
mode # NORMAL� warning beeper # NOT BEEPING

Sensors
InertGasSystem
bank selector� � BANK SELECTOR STATUS
request button� � BUTTON STATUS
reset button� � BUTTON STATUS
inhibit button� � BUTTON STATUS
�re detector��� �re detector�� � DETECTION STATUS
gas detector� � DETECTION STATUS

�re detector � DETECTION STATUS
consistency � YES NO

�re detector # DETECTION �
�re detector�� # �re detector�� # DETECTION

consistency # NO �
mode �# RELEASE INITIATED � gas detector� # DETECTION

��� Related Work �

Actuators
InertGasSystem �

release bank A%� release bank B % � OPEN CLOSED
warning light % � LIGHT STATUS
warning beeper % � BEEP STATUS
mode% �MODE

release bank A% # release bank A�

release bank B % # release bank B �

warning light % # warning light �

warning beeper % # warning beeper �

mode% # mode�

From the invariant of the schema InertGasSystem it follows that in the mode RELEASE �
SUCCEED � both timers are zero� the warning light is o	� but the beeper is on� The only
possible successor modes are RELEASE SUCCEED � NORMAL and INCONSISTENCY �
Hence� according to the de�nition of the system operations corresponding to these successor
states �see pages
� and ���� only the variables mode� warning light and warning beeper of the
state schema InertGasSystem can change their values� Following the preceeding translation
rules� we obtain the following programming problem�

input variables� bank selector�� � � � � gas detector��
warning timer � release check timer � release bank A� release bank B

result variables� release bank A%� � � � � mode%�
mode� warning light � warning beeper �
�re detector � consistency

state variables� mode�� warning light�� warning beeper�
precondition� mode # mode� � warning light # warning light�

� warning beeper # warning beeper� � mode # RELEASE SUCCEED
invariant� predicate of InertGasSystem
goal� ��re detector # DETECTION �

��re detector�� # DETECTION � �re detector�� # DETECTION ��
� �consistency # NO �

�mode� �# RELEASE INITIATED � gas detector� # DETECTION ��
� �consistency # NO � mode # INCONSISTENCY�
� �consistency # YES �

��reset button� # PRESSED � mode # NORMAL�
� �reset button� # NOT PRESSED � mode # RELEASE SUCCEED��

� � � � see ACTUATORS

The synthesis of a program forOpReleaseSucceed can be found in �Heisel and S�uhl� ����a��
and another example of a speci�cation transformation and the synthesis of the program that
implements the transformed speci�ctation is presented in �Heisel� ����a��

�� Related Work

Souqui�eres and L
evy �Souqui�eres� ����$ Souqui�eres and L
evy� ����� have developed an ap�
proach to speci�cation acquisition whose underlying concepts have much in common with

�
� Chapter
� Strategy�Based Speci�cation Acquisition

the ones presented here� Speci�cation acquisition is performed by solving tasks � The agenda
of tasks is called a workplan and resembles our development tree� Tasks can be reduced by
development operators similar to strategies� Development operators� however� do not guar�
antee semantic properties of the product� Therefore� incomplete reductions and a variable
number of subtasks for the same operator can be are possible� In �Souqui�eres and Heisel�
������ language�independent development operators for the various styles are presented�

Johnson and Feather �Johnson and Feather� ����� take a transformational approach to
supporting the speci�cation process� Starting out from a simple initial speci�cation� evolution
transformations are applied� These may change the semantics of the speci�cation and add
more detail to it� Compared to these� speci�cation styles and strategies are concepts of a
higher level of abstraction and closer to human reasoning�

In �Woodcock and Larsen� ������ several support systems for formal speci�cation tech�
niques � mostly for VDM and Z � are presented� Apart from some theorem provers� these
can be divided into two classes� the �rst class performs type�checking or other analyses of a
given speci�cation� These systems cannot be used to set up a speci�cation� The second class
provides editing facilities for the language they support� Editors do not provide a process
model and cannot support design decisions�

�
 Summary

In this chapter� we have introduced an approach to machine�supported speci�cation acquisi�
tion� which provides methodological support for speci�ers and validation mechanisms for the
developed speci�cations� In particular�

� We have introduced the concept of a speci�cation style� Speci�cation styles capture
di	erent approaches to the development of a speci�cation� In one speci�cation� several
styles may be needed to specify di	erent components� This clearly shows that it is not
satisfactory to identify styles with speci�cation languages� Instead� speci�cation styles
are to a large extent language�independent�

� We have shown that speci�cation styles can be represented as sets of strategies� and we
have given examples of strategies that are associated with the state�based� algebraic�
and reuse speci�cation styles�

� By way of an example� we have shown that strategy�based speci�cation acquisition is
feasible� The strategies keep track of the activities to be performed and guarantee that
the developed solutions satisfy the general acceptability predicate as well as additional
strategy�speci�c acceptability conditions that capture context�dependent integrity con�
traints for speci�cations�

� We have demonstrated that the Lift and Repeat strategicals can be pro�tably em�
ployed in speci�cation acquisition� Using the Lift strategical� we can develop an in�
de�nite number of di	erent speci�cation fragments� Combining the Repeat strategical
with the Lift strategical is useful when the same strategy has to be applied several
times�

� Finally� we have shown how di	erent instances of the strategy framework can be com�
bined� The solutions to speci�cation problems developed with the instance for speci�

��� Further Research �
�

�cation acquistion can be transformed into programming problems of the instance for
program synthesis�

�� Further Research

The work presented in this chapter merits further research on the following subjects�

More speci	cation styles� The speci�cation styles we considered here do not cover all
useful speci�cation styles that should be supported� For example� an object oriented
speci�cation style is also of advantageous� More of these speci�cation styles should be
identi�ed and expressed as sets of strategies�

More instances for speci	cation acquisition� To gain more knowledge about the extent
to which speci�cation styles are language�independent� other instances of the strategy
framework should be de�ned that support languages other than Z� It could then be
investigated how strategies for Z can be transformed in a systematic way into strategies
that support other languages�

Instance for re	nement� To bridge the gap between the instance of the strategy framework
of this chapter and the one used for IOSS� an instance that supports the re�nement of Z
speci�cations should be de�ned� When such an instance exists� an integration of three
instances� ranging from speci�cation over re�nement to program synthesis� is promising�

More strategies� It is not yet clear to what extent the speci�cation strategies de�ned so
far are complete� More case studies should be conducted to �nd additional strategies
that are widely applicable�

Implementation� The instance of the strategy framework presented in this chapter is not yet
implemented� Hence� the bene�ts of strategy�based speci�cation acquisition cannot yet
be fully exploited� An implemented system could also help to convince other researchers
and practitioners to start working with strategies�

��� Chapter
� Strategy�Based Speci�cation Acquisition

Chapter 	

Strategy�Based Speci�cation of

Safety�Critical Software

In this chapter� we present a third instance of the strategy framework� As for the instance
of Chapter �� its purpose is to support the development of formal speci�cations� However�
we now consider the task to specify software for safety�critical applications as described in
Chapter ��

The agendas of Chapter � will be transformed into strategies� Such a transformation
follows general principles� which we describe in Section ���� In Section ���� we instantiate
the generic parameters of the strategy framework� using the combination of Z and real�time
CSP introduced in Chapter �� In Sections ��� and ��
� we present strategies formalizing the
agendas of Sections ��� and ��
� respectively� A summary and directions to further research
conclude the chapter�

��� From Agendas to Strategies

The transformation of agendas into strategies can be expressed as a �meta�agenda� because
� regardless of the particular agenda to be formalized � the same decisions have to be taken�
The meta�agenda is summarized in Table ����

Step � Decide which steps of the agenda become subproblems of the strategy�

To decide on the subproblems generated by the strategy� we consider the steps of the agenda
to be formalized one by one� The result of each step is a speci�cation fragment� Each
step can be captured in a strategy in three ways� First� if it cannot be forseen how the
speci�cation fragment being the result of the step looks like or how it is obtained� then the
step is transformed into a subproblem�

Secondly� if the speci�cation fragment always has the same shape� but user interaction
will be necessary to set it up� then the step will not correspond to a subproblem� but there
will be an existentially quanti�ed expression in the de�nition of a constituting relation that
needs the result of the step as its input� An example is the decision on the operational modes
of a system�

���

��� Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

No� Step Validation Conditions

� Decide which steps of the agenda be�
come subproblems of the strategy�

� Decide on the schemes of the consti�
tuting relations�

The dependency relation induced by
the schemes of the constituting rela�
tions must be consistent with the de�
pendencies of steps of the agenda�
Only attributes corresponding to steps
of the agenda that become subprob�
lems occur in the schemes of the con�
stituting relations�

� De�ne the constituting relations� All steps of the agenda must be treated�

Table ���� Agenda for transforming agendas into strategies

Thirdly� if the information needed to generate the speci�cation fragment being the result of
the step is already contained in the speci�cation developed so far and need only be collected�
then the step will not correspond to a subproblem� but constituting relations needing the
result of the step as an input will contain a let expression de�ning the speci�cation fragment
in terms of the speci�cation fragments developed previously� An example is step � of the
passive sensors architecture� see page
�� where the Z control operation is routinely de�ned
as a case distinction on the operational modes�

Step � Decide on the schemes of the constituting relations�

For each step of the agenda that is transformed into a subproblem of the strategy� we use
two attribute names� one for the problem� and one for the corresponding solution� Indepen�
dent subproblems should be gathered in a single constituting relation� To keep the strategy
de�nition as simple as possible� the �clusters� of independent subproblems de�ned by each
constituting relation should comprise as many subproblems as possible�

Validation Condition ��� The dependency relation induced by the schemes of the consti�
tuting relations must be consistent with the dependencies of steps of the agendas�

If steps i and j of the agenda are both transformed into subproblems� then an arrow from
node i to node j in the dependency diagram of the agenda means that the constituting
relation crj that contains the attributes de�ned for step j as its output attributes has at least
one of the attributes de�ned for step i as an input attribute� If step i does not correspond
to a subproblem� but step j does� then crj will contain an existential proposition or a let
expression asserting the existence of the result of step i �

Validation Condition ��� Only attributes corresponding to steps of the agenda that become
subproblems occur in the schemes of the constituting relations�

This condition requires that only for those steps of the agenda that become subproblems
attribute names are chosen� The steps that do not become subproblems do not occur in any
scheme of any constituting relation�

���� Problems� Solutions� and Acceptability ���

Step � De�ne the constituting relations�

To de�ne a constituting relation� we must provide constraints on all its output attributes�
Problem attributes must be given concrete values� which may refer to the values of the input
attributes and to external information if necessary� Since solutions are generated by strategy
applications� they are usually not de�ned �except for strategies that generate no subprob�
lems�� but constrained by local acceptability conditions� To de�ne the local acceptability
conditions� we must check if the corresponding step of the agenda has validation conditions
associated with it that can be expressed formally� These validation conditions become the
local acceptability conditions for the solution attribute�

Validation Condition ��� All steps of the agenda must be treated�

This condition is necessary for the strategy to be a faithful formalization of the agenda�

��� Problems� Solutions� and Acceptability

The de�nition of problems� solutions� and acceptability resembles the de�nition of Chapter ��
We do not develop Z expressions� however� but expressions of the combined language de�ned
in Chapter �� which consists of Z and real�time CSP� In the following de�nitions� the su�x
�Z�CSP� refers to the combined language� the su�x �Z� refers to the Z part of a combined
speci�cation� and the su�x �CSP� refers to the real�time CSP part of a speci�cation�

As in Chapter �� we introduce basic types for the syntactically correct expressions of the
combined language� for natural�language text� and for schematic expressions of the combined
language�

!SynZ �CSP �Text � SchematicZ �CSP "

Semantically valid combined speci�cations are a subset of the syntactically correct com�
bined speci�cations� As in Chapter �� expressions of the combined language are associated
with syntactic classes that are sets of expressions of the combined language� The empty string

 is a syntactically correct Z�CSP expression�

SemZ �CSP � �SynZ �CSP
SyntacticClass � ���SynZ �CSP�

 � SynZ �CSP

We will use the following syntactic classes whose names are self�explanatory� The class
Z �CSP �speci�cation is the most general one�

Z �CSP �speci�cation� ident � SyntacticClass

Z �speci�cation�Z �ax def �Z �enum type def � SyntacticClass

CSP �speci�cation�CSP�process expr �CSP �pred def �
CSP �alphabet def � SyntacticClass

Each schematic Z�CSP expression is associated with the syntactic class of Z�CSP expres�
sions with which it can be instantiated� The partial function NL concatenates two Z�CSP

��	 Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

expressions� As in the previous chapter� the empty speci�cation
 is a neutral element with
respect to NL�

syn class � SchematicZ �CSP� SyntacticClass
instantiate � SchematicZ �CSP � SynZ �CSP	 SynZ �CSP
NL � SynZ �CSP � SynZ �CSP	 SynZ �CSP

 schem expr � SchematicZ �CSP �
 v � syn class schem expr �
�schem expr � v� � dom instantiate

 spec � SynZ �CSP �
�spec�
� � dom NL� spec NL
 # spec �
�
� spec� � dom NL�
 NL spec # spec

A speci�cation problem again consists of a requirement� expressed in natural language� the
parts of the speci�cation already developed� and a schematic Z�CSP expression� Each Z�CSP
expression belonging to the syntactic class associated with the schematic Z�CSP expression
must be combinable with the speci�cation already developed�

SafProblem
req � Text
context � SynZ �CSP
to develop � SchematicZ �CSP

 expr � SynZ �CSP j expr � syn class to develop �
�context � instantiate�to develop� expr�� � dom� NL �

Solutions are Z�CSP expressions�

SafSolution ## SynZ �CSP

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr �to develop� and the combination of pr �context with the instantiated schematic
expression yields a semantically valid Z�CSP speci�cation�

saf acceptable for � SafSolution� SafProblem

 sol � SafSolution$ pr � SafProblem �
sol saf acceptable for pr
�
sol � syn class�pr �to develop� �
pr �context NL instantiate�pr �to develop� sol� � SemZ �CSP

��� A Strategy for the Passive Sensors Architecture

With this instantiation of the strategy framework� we can de�ne a strategy that formalizes
the agenda for the passive sensors architecture given in Section ���� Recall the de�nition of
the agenda� which is repeated in Table ���� We follow the agenda of Table ��� to transform
this agenda into a strategy�

���� A Strategy for the Passive Sensors Architecture ���

No� Step Validation Conditions

� Model the sensor values and actu�
ator commands as members of Z
types�

� Decide on the operational modes of
the system�

� De�ne the internal system states
and the initial states�

The internal system state must be an
appropriate approximation of the state
of the technical process�
The internal state must contain a vari�
able corresponding to the operational
mode�
Each legal state must be safe�
There must exist legal initial states�
The initial internal states must ade�
quately re�ect the initial external sys�
tem states�

 Specify an internal Z operation for
each operational mode�

The only precondition of the operation
corresponding to a mode is that the
system is in that mode�
For each operational mode and each
combination of sensor values there
must be exactly one successor mode�
Each operational mode must be reach�
able from an initial state�
There must be no redundant modes�

� De�ne the Z control operation�

� Specify the control process in real�
time CSP�

� Specify further requirements if nec�
essary�

Table ���� Agenda for the passive sensors architecture

Step �� Decide which steps of the agenda become subproblems of the strategy

Step � of Table ��� should become a subproblem because several types will have to be de�ned�
This could be done� e�g�� with an iterated strategy� For Step � no separate subproblem is
generated� because the user only needs to decide on the operational modes of the system�
which are then collected in a Z enumeration type� Steps � and
 are larger development
tasks that certainly should become subproblems� Steps � and �� however� are performed in
a routine way� merely instantiating schematic expressions of Z or CSP� Hence� they do not
become separate subproblems� We need to introduce a subproblem for Step �� because we
know nothing about the further requirements or how they are developed�

��� Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

Step �� Decide on the schemes of the constituting relations

Using the information of Step � and the dependency diagram of the passive sensors agenda�
we build the largest possible clusters of steps to be treated in the constituting relations�
Figure ��� displays the results of Steps � and �� The steps marked with an asterisk are the
ones for which no separate subproblems are set up� The steps that are combined in the same
constituting relation are indicated by shaded ovals� The names of the attributes de�ned for
the various steps are given with the de�nition of the constituting relations�

1

4

2

3

6

5

7

*

*

*

Figure ���� Strategy for passive sensors architecture

The clusters corresponding to the constituting relations respect the dependencies of the
steps of the agenda� Hence Validation Condition ��� is ful�lled�

Step �� De�ne the constituting relations

In the strategy passive sensors we de�ne now� the names of the constituting relations refer
to the step numbers of the agenda�

As usual� we use a semi�formal Z�like notation to describe strategies� neither formalizing
the syntax and semantics of Z�CSP� nor giving de�nitions for all functions and predicates
we use� The type Value denotes the disjoint union of the schema types SafProblem and
SafSolution� and its members are denoted by bindings� as in Chapter ��

passive sensors # fstep �� steps ���� step
� steps ������ pass solg

where step � is de�ned by

IA step � # fP initg
OAstep � # fP sens�act � S sens�actg
step � # f t � scheme step ��Value j

syn class�t�P init��to develop� # Z �CSP �speci�cation �
t�P sens�act� # h req� t�P init��req � �Model the sensor values and actuator

commands as members of Z types���
context � t�P init��context �
to develop� type defs � Z �ax def i �

t�S sens�act� saf acceptable for t�P sens�act�g

A natural�language text taken from the agenda describes the purpose of the new subproblem
P sens�act $ it is added to the informal requirements component req using the concatenation
function ��� for text� The schematic expression to develop is denoted by type defs � Z �ax def �
This notation means that type de�nitions must be developed that are expressed as axiomatic
de�nitions in Z� The constituting relation steps ��� is de�ned by

���� A Strategy for the Passive Sensors Architecture ��

IA steps ��� # fP init � S sens�actg
OAsteps ��� # fP state� S stateg
steps ��� # f t � scheme steps ����Value j

��modes � Z �enum type def �
t�P state� # h req� t�P init��req � �De�ne the internal system states and

the initial states���
context � �t�P init��context� NL t�S sens�act� NLmodes �
to develop� state def � Z �speci�cationi� �

t�S state� saf acceptable for t�P state� �
t�S state� �#
 �
t�S state� contains a state schema S that

has a component of the type de�ned by modes
and is not imported by any other schema in t�S state�
and an initial state schema for S �
the set of initial states is non�empty g

The existential quanti�er indicates that a heuristic function is used to obtain the enumeration
type de�ning the operational modes� To de�ne P state� the types de�ning the sensor values
and actuator commands contained in the solution S sens�act and the type de�ned by modes
are added to the context component of P init � The solution S state is constrained only to the
syntactic class Z �speci�cation because introducing new global de�nitions may be necessary
for de�ning the system state schema� see Section ������ The local acceptability conditions
for S state capture those validation conditions associated with Step � that can be shown
formally� The constituting relation step
 is de�ned by

IA step
 # fP init �P state� S state� S sens�actg
OAstep
 # fP ops � S opsg
step
 # f t � scheme step
�Value j

t�P ops� # h req� t�P init��req � �Specify an internal Z operation for
each operational mode���

context � t�P state��context NL t�S state�
to develop� ops def � Z �speci�cationi �

t�S ops� saf acceptable for t�P ops� �
�let Modes ## �� enum type � Z �enum type def j

t�P state��context # t�P init��context NL t�S sens�act� NLenum type�$
mode ## �� id � ident j the state schema de�ned in t�S state� contains

id � Modes as a component� �
t�S ops� contains an operation schema named mOp for each mode m

de�ned by Modes �
for each operation mOp� mode # m � pre mOp �
for each operational mode and each combination of sensor values

there is exactly one successor mode �
each operational mode is reachable from an initial state �
there are no redundant modes�g

The system operations are de�ned in Z� As for the de�ning the system state� global de�nitions
may be necessary� The local acceptability conditions for S ops capture those validation
conditions associated with Step
 that can be shown formally� The type de�ned by Modes �

��� Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

which is needed to express the local acceptability conditions for S ops � is the last speci�cation
fragment in t�P state��context � The constituting relation steps ����� is de�ned by

IA steps ����� # fP init �P ops � S opsg
OAsteps ����� # fP other � S otherg
steps ����� # f t � scheme steps ������Value j

� INTERVAL � � �
�let z control op ## �� s � schema j

s conforms to the schematic expression given in Step �� page
��$
csp control proc ## �� proc � CSP �speci�cation j

proc conforms to the schematic expression given in Step �� page
��
with wait interval INTERVAL�$

env ass ## �� ass � CSP �pred def j
ass conforms to the schematic expression given in Step �� page
��$

sens�act ass ## �� ass � CSP �pred def j
ass conforms to the schematic expression given in Step �� page
�� �

t�P other� # h req� t�P init��req � �Specify further requirements if necessary���
context � �t�P ops��context� NL t�S ops� NL z control op NL

csp control proc NL env ass NL sens�act ass
to develop� others � Z �CSP �speci�cationi� �

t�S other� saf acceptable for t�P other�g

The � operator yields an item satisfying the given condition� The expressions z control op�
csp control proc� env ass and sens�act ass can be automatically generated using the infor�
mation contained in t�P ops��context and t�S ops�� and the constant INTERVAL that has
to be supplied by the user� No assumptions can be made on the other de�nitions necessary to
complete the speci�cation� Hence the speci�cation fragment that can be developed to solve
P other may have the syntactic class Z �CSP �speci�cation� and no additional acceptability
conditions for S other besides saf acceptable for can be stated� The constituting relation
pass sol assembles the �nal solution� using the context component of P other � where all
developed speci�cation fragments are collected� and the solution S other �

IA pass sol # fP init �P other � S otherg
OApass sol # fS �nalg
pass sol # f t � scheme pass sol�Value j

�let sol ## �� s � SafSolution j t�P other��context # t�P init��context NL s� �
t�S �nal� # sol NL S other�g

All steps of the agenda are taken into account in one of the constituting relations� Hence�
validation condition ��� of the meta�agenda is ful�lled�

��
 A Strategy for the Active Sensors Architecture

Recall the agenda for the active sensors architecture� which we repeat in Table ���� Again� we
proceed according to the meta�agenda of Table ��� in transforming the agenda into a strategy�

��	� A Strategy for the Active Sensors Architecture ���

No� Step Validation Condition

� Model the sensors as CSP events or
members of Z types�

� Decide on auxiliary processes�

� Decide on the operational modes of
the system and the initial modes�

 Set up a mode transition relation�
specifying which events relate which
modes�

All events identi�ed in Step � and all
modes de�ned in Step � must occur in
the transition relation�
The omission of a successor mode for a
mode�event pair must be justi�ed�
All modes must be reachable from an
initial mode� and there must be no re�
dundant modes�

� Model the actuator commands as
members of Z types or CSP events�

� De�ne the internal system states
and the initial states�

The internal system state must be an
appropriate approximation of the state
of the technical process�
Each legal state must be safe�
There must exist legal initial states�
For each initial internal state� the con�
troller must be in an initial mode�

� Specify a Z operation for each event
that can cause a mode transition�

These operations must be consistent
with the mode transition relation�

� De�ne the auxiliary processes iden�
ti�ed in Step ��

The alphabets of these processes must
not contain external events or events
related to the Z part of the speci�ca�
tion�

� Specify priorities on events if neces�
sary�

The priorities must not be cyclic�

�� Specify the interface control pro�
cess�

All prioritized external events and all
internal events must occur as initial
events of the branches of the interface
control process�
The interface control process must be
deterministic�
The preconditions of the invoked Z op�
erations must be satis�ed�

�� De�ne the overall control process� The auxiliary processes must communi�
cate with the interface control process�

�� De�ne further requirements or envi�
ronmental assumptions if necessary�

Table ���� Agenda for the active sensors architecture

��� Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

Step �� Decide which steps of the agenda become subproblems of the strategy

There are four steps for which subproblems are not necessary� Step � yields just a set of
internal events that must be given by the user� Similarly to the passive sensors strategy� to
perform Step �� the user must give the operational modes of the system and point out the
initial modes� This information is then transformed into a Z enumeration type and a subset of
this type� Third� the process de�ning the priorities on events� which is the result of Step �� can
be generated automatically from the information which event has priority over which other
events� This information will again be obtained from the user� Finally� the overall control
process being the result of Step �� can be set up automatically according to the schematic
expressions given in the agenda on page ���

Step �� Decide on the schemes of the constituting relations

As for the active sensors strategy� we use the information of Step � and the dependency
diagram of the active sensors agenda to determine the largest possible clusters of steps to be
treated in the constituting relations� Figure ��� displays the results of Steps � and �� Again�
the names of the attributes de�ned for the various steps are given with the de�nition of the
constituting relations�

7

11 129 10

8

6, 4

2

3

1

5

*

*

* *

Figure ���� Strategy for active sensors architecture

Step �� De�ne the constituting relations

As for the passive sensors strategy� the names of the constituting relations refer to the step
numbers of the agenda�

active sensors # fsteps ���� steps ����
��� step �� steps ������� steps ������ act solg

where step ��� is de�ned by

IA steps ��� # fP initg
OAsteps ��� # fP sens � S sens �P act � S actg
steps ��� # f t � scheme steps ����Value j

syn class�t�P init��to develop� # Z �CSP �speci�cation �

��	� A Strategy for the Active Sensors Architecture ���

t�P sens� # h req� t�P init��req � �Model the sensors as CSP events or
members of Z types���

context � t�P init��context �
to develop� sensor defs � Z �CSP �speci�cationi �

t�P act� # h req� t�P init��req � �Model the actuator commands as
members of Z types or CSP events���

context � t�P init��context �
to develop� actuator defs � Z �CSP �speci�cationi �

t�S sens� saf acceptable for t�P sens� �
�� ext events � CSP �alphabet def $ sol � Z �CSP �speci�cation �

t�S sens� # sol NL ext events�
t�S act� saf acceptable for t�P act�g

The modeling of the sensors and actuators may use Z as well as real�time CSP� Therefore�
t�P sens��to develop and t�P act��to develop have syntactic class Z �CSP �speci�cation� The
solution t�S sens� must contain the de�nition of a set of events External Events � as described
in Section ��
��� page ��� Because we will refer to this set in one of the other constituting
relations� we require that the de�nition of External Events is the last speci�cation fragment
contained in t�S sens�� The constituting relation steps ����
�� is de�ned by

IA steps ����
�� # fP init � S sensg
OAsteps ����
�� # fP mode trans � S mode trans �P state� S stateg
steps ����
�� # f t � scheme steps ����
���Value j

�� int events � CSP �alphabet def $ modes � Z �enum type def $
init modes � Z �ax def j

init modes de�nes a subset of the type de�ned by modes �
t�P mode trans� #

h req� t�P init��req � �Set up a mode transition relation� specifying
which events relate which modes���

context � t�P init��context NL t�S sens� NLmodes NL init modes
NL int events �

to develop� trans rel � Z �speci�cationi �
t�P state� #

h req� t�P init��req � �De�ne the internal system states and the
initial states���

context � t�P init��context NL t�S sens� NLmodes NL init modes
NL int events �

to develop� state def � Z �speci�cationi
�
t�S mode trans� saf acceptable for t�P mode trans� �
�let ext events ## �� alph � CSP �alphabet def j

� sol � Z �CSP �speci�cation � t�S sens� # sol NL alph� �
all events contained in the alphabet de�ned by ext events

and all modes contained in the type de�ned by modes occur in
t�S mode trans�� �

in the mode transition relation de�ned by t�S mode trans� each mode
must be reachable from an initial mode de�ned by the set init modes
and there must be no redundant modes �

��� Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

t�S state� saf acceptable for t�P state� �
t�S state� �#
 �
t�S state� contains a state schema S that is not imported by any

other schema in t�S state� and an initial state schema for S �
the set of initial states is non�empty�g

To de�ne the problems corresponding to Steps
 and � of the agenda� we need the result of
Steps �� �� and �� The solution S sens for Step � is an input attribute of the constituting
relation steps ����
��� the results of Steps � and � are obtained by heuristic functions� The
internal events int events are last added to the context� because we will need them in a
later constituting relation� The formalizable validation conditions of Steps
 and � have
become local acceptability conditions for the solutions t�S mode trans� and t�S state�� The
acceptability conditions for t�S mode trans� refer to the external events de�ned earlier� whose
de�nition is the last part of t�S sens�� The constituting relation step � is de�ned by

IA step � # fP init �P state� S state� S mode trans � S actg
OAstep � # fP ops � S opsg
step � # f t � scheme step ��Value j

t�P ops� # h req� t�P init��req � �Specify a Z operation for each event
that can cause a mode transition���

context � t�P state��context NL t�S mode trans� NL t�S state�
NL t�S act�

to develop� ops def � Z �speci�cationi �
t�S ops� saf acceptable for t�P ops� �
the operations de�ned by t�S ops� must be consistent with the state transition

relation de�ned by t�S ops�g

As can be seen in Figure ���� Step � needs the results of Steps ��
� and � as an input� The
corresponding solution attributes are input attributes for the constituting relation step ��
The operations must be de�ned in Z� and the validation condition associated with Step
� is expressed as a local acceptability condition for t�S ops�� The constituting relation
steps ������ is de�ned by

IA steps ������ # fP init �P ops � S opsg
OAsteps ������ # fP aux � S aux �P int ctrl � S int ctrlg
steps ������ # f t � scheme steps �������Value j

t�P aux� # h req� t�P init��req � �De�ne the auxiliary processes identi�
�ed in Step ����

context � t�P ops��context NL t�S ops�
to develop� aux proc � CSP �speci�cationi �

�� priority � CSP �pred def j priority de�nes non�cyclic priorities on events �
t�P int ctrl� #

h req� t�P init��req � �Specify the interface control process���
context � t�P ops��context NL t�S ops� NL priority
to develop� interface control � CSP �process expri �

���� Summary ���

t�S aux� saf acceptable for t�P aux� �
t�S int ctrl� saf acceptable for t�P int ctrl� �
�let int events ## �� alph � CSP �alphabet def j

� sol � Z �CSP �speci�cation � t�P state��context # sol NL alph� �
the union of the alphabets of all processes de�ned in t�S aux�

is a subset of the events de�ned in int events �
all priorized external events and all events de�ned in int events must occur

as initial events of the branches of the interface control process de�ned by
t�S int ctrl� �

the process de�ned by t�S int ctrl� must be deterministic �
the preconditions of the invoked Z operations must be satis�ed��g

To de�ne the problem P aux corresponding to Step �� the values of the attributes P ops and
S ops su�ce� To de�ne the problem P int ctrl � on the other hand� the process de�ning the
priorities on events must be obtained using a heuristic function� The local acceptability con�
ditions of both t�S aux� and t�S int ctrl� refer to the internal events de�ned earlier� whose
de�nition is the last speci�cation fragment contained in t�P state��context � The constituting
relation steps ����� is de�ned as in the passive sensors architecture by

IA steps ����� # fP init �P int ctrl � S int ctrl � S auxg
OAsteps ����� # fP other � S otherg
steps ����� # f t � scheme steps ������Value j

�let ctrl proc ## �� proc � CSP �speci�cation j
proc conforms to the schematic expression given in Step ��� page ��� �
t�P other� #

h req� t�P init��req � �Specify further requirements if necessary���
context � t�P int ctrl��context NL t�S aux� NL t�S int ctrl� NLctrl proc
to develop� others � Z �CSP �speci�cationi� �

t�S other� saf acceptable for t�P other�g

The constituting relation act sol assembles the �nal solution� using the context component of
P other � where all developed speci�cation fragments are collected� and the solution S other �

IA pass sol # fP init �P other � S otherg
OApass sol # fS �nalg
pass sol # f t � scheme pass sol�Value j

�let sol ## �� s � SafSolution j t�P other��context # t�P init��context NL s� �
t�S �nal� # sol NL S other�g

��� Summary

The results of this chapter are the following�

� A meta�agenda shows how agendas can be transformed into strategies in a fairly routine
way�

� We have presented a third instance of the strategy framework�

� We have used this instance and the meta�agenda to de�ne strategies that capture the
agendas developed in Chapter �� thus making them amenable to machine support�

��	 Chapter �� Strategy�Based Speci�cation of Safety�Critical Software

��� Further Research

Further work on strategy�based speci�cation of safety�critical software concerns the following
points�

Implementation� The instantiation of the strategy framework presented in this chapter and
the strategies for the two architectures should be implemented�

Case studies� This implementation should be used to perform case studies with the goal to
compare working with the agendas on paper on the one hand and using the implemented
strategies on the other hand� An important question is how restrictive a strategy should
be to obtain the best balance between user guidance and �exibility�

Machine support for results of Section ��
� Most of the research problems stated in
Section ��� have an implementable counterpart� When concepts for the solutions of
the problems stated there are developed� they deserve implementation in the strategy
framework�

Chapter

Strategy�Based Development of Software

Architectures

We now transform the agendas de�ned in Chapter
 into strategies� after having de�ned an
appropriate instance of the strategy framework� As in Chapter �� the transformation follows
the meta�agenda of Section ���� Before we close the chapter with a summary and directions
to future research� we compare the four di	erent instantiations of the strategy framework
presented in Chapters ����

��� Problems� Solutions� and Acceptability

The de�nitions of problem� solutions� and acceptability we present now can also be used for
the development of LOTOS speci�cations for purposes other than architectural design�

As in Chapters � and �� we introduce basic types for syntactically correct LOTOS expres�
sions� for natural�language text� and for schematic LOTOS expressions�

!SynLOTOS �Text � SchematicLOTOS "

Semantically valid LOTOS speci�cations are a subset of the syntactically correct LOTOS
speci�cations� To be able to state meaningful acceptability conditions� which capture the role
of a speci�cation fragment in its context� LOTOS expressions are associated with syntactic
classes� These syntactic classes are sets of LOTOS expressions� The empty string
 is a
syntactically correct LOTOS expression�

SemLOTOS � � SynLOTOS
SyntacticClass � ���SynLOTOS�

 � SynLOTOS

Before we introduce the syntactic classes we will use in the strategy de�nitions� we sum�
marize the syntax of the LOTOS constructs we generate as architectural descriptions using
our strategies� see �Bolognesi and Brinksma� ������ A top�level speci�cation in LOTOS has
the form

���

��� Chapter �� Strategy�Based Development of Software Architectures

specification name �gate list��parameter list�� functionality

type definition list

behaviour

behavior expression

where

type definition list

process definition list

endspec

The syntactic classes occurring in this expression are set in italics teletype� The keyword
specification only occurs on the top�level of a speci�cation� To guarantee hierarchical
compositionality of our architectural descriptions� we will only develop LOTOS expressions
of the form

behavior expression

where

type definition list

process definition list

We call the corresponding syntactic class spec body � A process de�nition has the form

process name �gate list��parameter list �� functionality �	

behavior expression

where

type definition list

process definition list

endproc

We will use the syntactic classes introduced above� and the class predicate that comprises the
predicates that guard behavioral expressions�

spec body �
behavior expression�
process de�nition list � process de�nition�
type de�nition list � gate list � parameter list
predicate� name� functionality � SyntacticClass

Each schematic LOTOS expression is associated with the syntactic class of LOTOS ex�
pressions with which it can be instantiated� The partial function NL concatenates two LOTOS
expressions� The empty speci�cation
 is a neutral element with respect to NL�

syn class � SchematicLOTOS� SyntacticClass
instantiate � SchematicLOTOS � SynLOTOS	 SynLOTOS
NL � SynLOTOS � SynLOTOS	 SynLOTOS

 schem expr � SchematicLOTOS �
 v � syn class schem expr �
�schem expr � v� � dom instantiate

 spec � SynLOTOS �
�spec�
� � dom NL� spec NL
 # spec �
�
� spec� � dom NL�
 NL spec # spec

���� Strategies for the Repository Style ��

A speci�cation problem again consists of a requirement� expressed in natural language�
the parts of the speci�cation already developed� and a schematic LOTOS expression� Each
LOTOS expression belonging to the syntactic class associated with the schematic LOTOS
expression must be combinable with the speci�cation already developed�

ArchProblem
req � Text
context � SynLOTOS
to develop � SchematicLOTOS

 expr � SynLOTOS j expr � syn class to develop �
�context � instantiate�to develop� expr�� � dom� NL �

Solutions are LOTOS expressions�

ArchSolution ## SynLOTOS

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr �to develop� and the combination of pr �context with the instantiated schematic
expression yields a semantically valid LOTOS speci�cation�

arch acceptable for � ArchSolution�ArchProblem

 sol � ArchSolution$ pr � ArchProblem �
sol arch acceptable for pr
�
sol � syn class�pr �to develop� �
pr �context NL instantiate�pr �to develop� sol� � SemLOTOS

��� Strategies for the Repository Style

As usual� we use a semi�formal Z�like notation to describe strategies� neither formalizing
the syntax and semantics of LOTOS� nor giving de�nitions for all functions and predicates
we use� The type Value denotes the disjoint union of the schema types ArchProblem and
ArchSolution� and its members are denoted by bindings�

Table ��� repeats the the agenda for the repository style� Recall that the steps have to
be performed in the given order� To transform this agenda into a strategy� we carry out the
steps given in Table ����

Step �� Decide which steps of the agenda become subproblems of the strategy

Step � of the agenda of Table ��� need not become a subproblem� because the overall archi�
tectural description can be assembled using the results of the �rst two steps�

Step �� Decide on the schemes of the constituting relations

We will have one constituting relation for Step �� one constituting relation for Step �� and
one constituting relation to assemble the �nal solution�

��� Chapter �� Strategy�Based Development of Software Architectures

No� Step Validation Conditions

� De�ne the types shared memory �
id � index and value �

The type shared memory must be de�
�ned according to the schema given in
Section
����� The type id must con�
tain a constant for nobody �

� De�ne the component processes� Each component process must be either
a read� a write� or a read(write process�

� Assemble the overall architectural
description according to the com�
munication pattern of the repository
style�

The processes must communicate with
the shared memory according to their
being a read� write or read(write pro�
cess� as described in the communica�
tion pattern�

Table ���� Agenda for the repository architectural style

Step �� De�ne the constituting relations

rep arch # fde�ne types � de�ne components � rep solg

where de�ne types is given by

IA de�ne types # fP initg
OAde�ne types # fP types � S typesg
de�ne types # f t � scheme de�ne types�Value j

syn class�t�P init��to develop� � spec body �
t�P types� # h req� t�P init��req � �De�ne the types shared memory � id �

index and value ���
context � t�P init��context �
to develop� type defs � type de�nition listi �

t�S types� arch acceptable for t�P types� �
t�S types� contains the de�nition of a type shared memory conforming

to the schema given in Section
����� page �� �
t�S types� contains the de�nition of a type id with a constant for nobody g

In contrast to the usual LOTOS semantics� we not only regard speci�cation bodies� but
also lists of type de�nitions and lists of process de�nitions as valid LOTOS speci�cations�
Therefore� it is not necessary to embed the type de�nition list type defs into a speci�cation
body with a trivial behavioral expression� The constituting relation de�ne components is
given by

IA de�ne components # fP init � S typesg
OAde�ne components # fP comps � S compsg
de�ne components # f t � scheme de�ne components�Value j

t�P com� # h req� t�P decls��req � �De�ne the component processes���
context � t�P init��context NL S types �
to develop� comp procs � process de�nition listi �

t�S comps� arch acceptable for t�P comps� �
t�S comps� �#
 �
each member of the list t�S comps� de�nes a read� a write� or

a read(write processg

���� Strategies for the Repository Style ���

The constituting relation rep sol is de�ned by

IA rep sol # fP init � S types � S compsg
OArep sol # fS �nalg
rep sol # f t � scheme rep sol�Value j

�let shared mem def ## �� proc � process de�nition j
proc conforms to the schematic process de�nition given on page ���$

behav ## �� bexp � behavior expression j
bexp conforms to the communication pattern given on page ��� �

t�S �nal� # behav where S types NL shared mem def NLS comps �
t�S �nal� arch acceptable for t�P init��g

The � operator yields an item satisfying the given condition� In an implementation� we would
have functions computing shared mem def and behav �

To perform Step � of the agenda of Table ���� we had de�ned another agenda in Chapter
�
which we repeat in Table ���� The steps of Table ��� must be performed in the given order�
We transform this agenda into a strategy� again following the steps of the meta�agenda�

No� Step Validation Conditions

� Decide if the component is a read�
write� or read(write process�

� De�ne the component as a process� The process de�nition must contain the
patterns for the chosen kind of compo�
nent�

Table ���� Agenda to develop components for a repository architecture

Step �� Decide which steps of the agenda become subproblems of the strategy

Step � of the agenda of Table ��� needs only user interaction� No subproblem is necessary�

Step �� Decide on the schemes of the constituting relations

We will have one constituting relation for Step �� and one constituting relation to assemble
the solution generated by the strategy�

Step �� De�ne the constituting relations

rep comp # fde�ne component � rep comp solg

where de�ne component is de�ned by

IA de�ne component # fP initg
OAde�ne component # fP comp� S compg

��� Chapter �� Strategy�Based Development of Software Architectures

de�ne component # f t � scheme de�ne component�Value j
syn class�t�P init��to develop� � process de�nition �
� ind � fread �write� read writeg �

t�P comp� # h req� t�P init��req � �De�ne the component as a ind process���
context � t�P init��context �
to develop� comp def � process de�nitioni �

t�S comp� arch acceptable for t�P comp� �
t�S comp� conforms to the pattern for the process of the kind indicated by

ind � see page ��g

The constituting relation rep comp sol is de�ned by

IA rep comp sol # fS compg
OArep comp sol # fS �nalg
rep comp sol # f t � scheme rep comp sol�Value j t�S �nal� # t�S comp�g

The solution of problem P comp can be either a subsystem that is an instance of some
architectural style� or a simpler process� In the �rst case� problem P comp would be reduced
by a strategy subarch that generates the subproblem to develop a solution of syntactic class
spec body and embeds the solution into a process de�nition� The subproblem generated by the
subarch strategy would then be reduced with a top�level strategy associated with the chosen
style� For routine development of sub�architectures� combinations of the subarch strategy and
the top�level strategies associated with the various architectural styles can be de�ned using
the Then strategical�

For the second case� a strategy develop process de�nition would be useful that generates
the subproblems to de�ne the behavior part of the process de�nition and its local de�nition
part� This strategy would be de�ned similarly to the de�ne schema strategy of Section ������

To solve the subproblem P comps generated by the rep arch strategy� we can iterate rep comp
using the strategy

Repeat�Lift�rep comp� p down� p combine� s combine�� p rep� empty�

where p rep is a problem attribute newly introduced by Lift and empty is the terminating
strategy that generates the empty speci�cation
� The other arguments of Lift are de�ned
as follows�

p down ## ��pr � ArchProblem j syn class�pr �to develop� � process de�nition list �
hreq� pr �req �
context � pr �context �
to develop� comp def � process de�nitioni�

p combine ##
�� pr � ArchProblem$ sol � ArchSolution j

syn class�pr �to develop� � process de�nition list � sol � process de�nition �
hreq� pr �req � �de�ne more component processes��
context � pr �context NL sol �
to develop� pr �to developi�

s combine ## NL

���� Strategies for the Pipe�Filter Style ���

The function p down converts the problem of de�ning a list of processes into the problem of
de�ning a single process� the function p combine incorporates a developed process de�nition
into the context part of a problem� and the function s combine concatenates two speci�ca�
tions� thereby allowing the concatenation of a given process de�nition with an existing list
of process de�nitions� Proving that the requirements for the application of Lift are ful�lled
proceeds as in Section ������ page ��
�

��� Strategies for the Pipe	Filter Style

To develop architectures conforming to the pipe(�lter style� we have the agenda repeated in
Table ���� whose steps must be performed in the given order� In transforming the agenda
into a strategy we proceed as usual�

No� Step Validation Conditions

� De�ne the �lters one by one� Each �lter must ful�ll the conditions
stated in the component characteristics
part of the style characterization�

� Assemble the �lters according to the
pattern given in the communication
pattern part of the style characteri�
zation�

The architectural description must ful�
�ll the constraints stated in the con�
straints part of the style characteriza�
tion�

Table ���� Agenda for the pipe��lter architectural style

Step �� Decide which steps of the agenda become subproblems of the strategy

Assembling the developed �lters in the way prescribed by the communication pattern of
the pipe(�lter architectural style characterization is a routine task� Hence� there will be no
subproblem corresponding to Step � of the agenda shown in Table ����

Step �� Decide on the schemes of the constituting relations

Consequently� we will de�ne one constituting relation for Step �� and one to assemble the
�nal solution�

Step �� De�ne the constituting relations

p�f arch # fde�ne �lters � p�f solg

where de�ne �lters is de�ned by

IA de�ne �lters # fP initg
OAde�ne �lters # fP �lt � S �ltg

��� Chapter �� Strategy�Based Development of Software Architectures

de�ne �lters # f t � scheme de�ne �lters�Value j
syn class�t�P init��to develop� � spec body �
t�P �lt� # h req� t�P init��req � �De�ne the �lters one by one���

context � t�P init��context �
to develop� �lt defs � process de�nition listi �

t�S �lt� arch acceptable for t�P �lt� �
each member of the list t�S �lt� ful�lls the conditions stated in the
component characteristics part of the style characterization� see page ��g

The constituting relation p�f sol is de�ned by

IA p�f sol # fS �ltg
OAp�f sol # fS �nalg
p�f sol # f t � scheme p�f sol�Value j

�let behav ## �� bexp � behavior expression j
bexp conforms to the schematic behavioral de�nition given on page ��� �

t�S �nal� # behav where t�S �lt� �
t�S �nal� ful�lls the constraints stated in the style characterization on page ��g

To perform Step � of the agenda of Table ���� we had de�ned another agenda� which we repeat
in Table ��
� The steps � and � of Table ��
 are independent of one another� We transform
this agenda into a strategy� again following the steps of the meta�agenda�

No� Step Validation Conditions

� Decide on the pipes that connects
the �lter with other �lters�

� Decide on the gates of the �lter with
the environment�

� De�ne the �lter as a process� The process must ful�ll the conditions
stated in the characteristics part�

Table ��	� Agenda to develop components for a pipe��lter architecture

Step �� Decide which steps of the agenda become subproblems of the strategy

Steps � and � of the agenda of Table ��
 will not correspond to subproblems because their
results are simple gate lists that must be given by the user�

Step �� Decide on the schemes of the constituting relations

Consequently� we will de�ne one constituting relation corresponding to Step �� and one to
assemble the �nal solution�

Step �� De�ne the constituting relations

p�f comp # fde�ne component � p�f comp solg

��	� Strategies for the Event�Action Style ���

where de�ne component is de�ned by

IA de�ne component # fP initg
OAde�ne component # fP comp� S compg
de�ne component # f t � scheme de�ne component�Value j

syn class�t�P init��to develop� � process de�nition �
� pipe list � ext gate list � gate list �

t�P comp� # h req� t�P init��req � �De�ne the �lter as a process���
context � t�P init��context �
to develop� comp def � process de�nitioni �

t�S comp� arch acceptable for t�P comp� �
gatelist�t�S comp�� # pipe list � ext gate list �
t�S comp� ful�lls the conditions stated in the component characteristics part

of the style characterization� see page ��g

The function gatelist yields the list of gates of a process de�nition� The constituting relation
p�f comp sol is de�ned by

IA p�f comp sol # fS compg
OAp�f comp sol # fS �nalg
p�f comp sol # f t � scheme p�f comp sol�Value j t�S �nal� # t�S comp�g

To solve the subproblem P �lt generated by the p�f arch strategy� we can iterate p�f comp
using the strategy

Repeat�Lift�p�f comp� p down� p combine� s combine�� p rep� empty�

where all arguments of Lift except p�f comp are de�ned as in the previous section�

��
 Strategies for the Event�Action Style

Table
�� repeats the agenda de�ned in Chapter
� whose steps must be performed in the
given order�

No� Step Validation Conditions

� De�ne the type event �

� De�ne pairs� consisting of a predi�
cate on the type event and a pro�
cess de�ning the corresponding ac�
tion�

Each action process must communicate
with the event manager and de�ne the
reaction to the events that ful�ll the
de�ned predicate�

� De�ne the process Event Manager

and assemble the overall architec�
tural description according to the
communication pattern�

The de�nition of the event manager
must conform to the pattern given in
the component characteristics� and it
must be consistent with Step ��

Table ���� Agenda for the event�action architectural style

��	 Chapter �� Strategy�Based Development of Software Architectures

Step �� Decide which steps of the agenda become subproblems of the strategy

The de�nition of the process Event Manager can be assembled from the results of the �rst
two steps� Therefore� the third step of the agenda of Table ��� does not require the de�nition
of separate subproblem�

Step �� Decide on the schemes of the constituting relations

Two of the constituting relations correspond to the steps � and �� and the third de�nes the
�nal solution�

Step �� De�ne the constituting relations

e�a arch # fde�ne events � de�ne components � e�a solg

where de�ne events is de�ned by

IA de�ne events # fP initg
OAde�ne events # fP events � S eventsg
de�ne events # f t � scheme de�ne events�Value j

syn class�t�P init��to develop� � spec body
t�P events� # h req� t�P init��req � �De�ne the type event ���

context � t�P init��context �
to develop� event def � type de�nition listi �

t�S events� arch acceptable for t�P events�g

The constituting relation de�ne components is de�ned by

IA de�ne components # fP init � S eventsg
OAde�ne components # fP comps � S compsg
de�ne components # f t � scheme de�ne components�Value j

t�P com� # h req� t�P decls��req � �De�ne the component processes���
context � t�P init��context NL S events �
to develop� comp procs � process de�nition listi �

t�S comps� arch acceptable for t�P comps� �
t�S comps� �#
 �
each member of the list t�S comps� conforms to the component characteristics

of the style characterization� see page ��g

The constituting relation e�a sol is de�ned by

IA rep sol # fP init � S events � S compsg
OArep sol # fS �nalg
rep sol # f t � scheme rep sol�Value j

�� event manager def � process de�nition j
event manager def conforms to the pattern given in the component

characteristics� see page �
� and is consistent withS comps �
�let behav ## �� bexp � behavior expression j

bexp conforms to the communication pattern given on page ��� �
t�S �nal� # behav where S events NL event manager def NLS comps �
t�S �nal� arch acceptable for t�P init��g

��	� Strategies for the Event�Action Style ���

We have used an existential quanti�er to indicate that user interaction may be necessary to
set up the de�nition of the Event Manager process� The other parts of the solution can be
assembled automatically� as indicated by the use of the let construct�

To perform Step � of the agenda of Table ���� we had de�ned another agenda� which we repeat
in Table ���� The steps of Table ��� must be performed in the given order� We transform this
agenda into a strategy� again following the steps of the meta�agenda�

No� Step Validation Conditions

� Decide on the events to be treated�

� De�ne the action to be taken as a
process�

The process de�nition conforms to the
component characteristics given in the
style characterization�

Table ���� Agenda to develop components for an event�action architecture

Step �� Decide which steps of the agenda become subproblems of the strategy

The predicate that de�nes to which events the component process reacts will be given by the
user� Hence� there will only be a subproblem corresponding to Step � of the agenda�

Step �� Decide on the schemes of the constituting relations

Consequently� we will de�ne one constituting relation corresponding to Step �� and one to
assemble the �nal solution�

Step �� De�ne the constituting relations

e�a comp # fde�ne component � e�a comp solg

where de�ne component is de�ned by

IA de�ne component # fP initg
OAde�ne component # fP comp� S compg
de�ne component # f t � scheme de�ne component�Value j

syn class�t�P init��to develop� � process de�nition �
� event type def � type de�nition$ sol � ArchSolution j

t�P init��context # sol NL event type def �
� pred � predicate j

pred is a predicate on the type de�ned by event type def �
�let compname aux � name be a new name �
t�P comp� #

h req� t�P init��req � �De�ne the action to be taken as a process���
context � t�P init��context �

��� Chapter �� Strategy�Based Development of Software Architectures

to develop�
process compname aux � functionality�comp def� �#

� pred 	 �� process instantiation�comp def�
where

comp def � process de�nition
endproci �

t�S comp� arch acceptable for t�P comp� �
t�S comp� ful�lls the conditions stated in the component characteristics part

of the style characterization� see page ���g

The e�a comp strategy is applicable only if the context part of the initial problem contains the
de�nition of an event type� The predicate obtained by a heuristic function must refer to this
type� The new name compname aux can be generated automatically� The solution t�S comp�
of the problem t�P comp� is an expression comp def that must belong to the syntactic class
process de�nition� This process de�nition is embedded in a larger process de�nition that
contains the predicate indicating when the action must be taken� The embedding process
compname aux has the same functionality as the process de�ned by comp def� Its behavior
part only consists of a guarded expression� in case the predicate holds� the process de�ning
the action� which is contained in the local de�nition list of the embedding process de�nition�
is executed� The constituting relation e�a comp sol is de�ned by

IA e�a comp sol # fP comp� S compg
OAe�a comp sol # fS �nalg
e�a comp sol # f t � scheme e�a comp sol�Value j

t�S �nal� # instantiate�t�P comp��to develop� t�S comp��g

The �nal solution is just the instantiation of the schematic expression t�P comp��to develop
with the process de�nition t�S comp�� using the function instantiate introduced in Section
����

To solve the subproblem P comps generated by the e�a arch strategy� we can iterate e�a�
comp using the strategy

Repeat�Lift�e�a comp� p down� p combine� s combine�� p rep� empty�

where all arguments of Lift except embox�a comp are de�ned as in the previous section�

��� Comparing Instantiations of the Strategy Framework

The instantiations of the strategy framework presented in Chapters ��� di	er in several
important respects� The di	erences between program synthesis on the one hand and spec�
i�cation acquisition and software design on the other hand are re�ected in their respective
instantiations� and are visible in the following speci�c phenomena��

�Since we use a speci�cation language to express software designs� we only speak of �speci�cation acquisition�
in the following�

���� Comparing Instantiations of the Strategy Framework ��

Instantiation of generic parameters

Program synthesis leads from a formal speci�cation to a program� Both are formal objects�
and the de�nition of acceptability can establish a formal relation between the two� namely
correctness�

In speci�cation acquisition� such a formal relation is impossible because the requirements
for a software system are described informally� Indeed� speci�cation acquisition actually leads
from informal to formal artifacts in the software engineering process� The general de�nition of
acceptability can therefore refer only to the formal speci�cation� and not to the requirements�
By contrast with program synthesis� where all partial solutions are statements� the partial
solutions in speci�cation acquisition belong to di	erent syntactic classes� and so the general
notion of acceptability is static type correctness� although for individual strategies� stronger
acceptability conditions can be stated� These conditions re�ect the purpose of the di	erent
parts of the speci�cation in the context of a given strategy� requiring� e�g�� that � when
specifying a state�based system � the global de�nition part of a speci�cation should not de�ne
the system state� or that system operations should have satis�able preconditions� Consistency
and completeness criteria can also be stated in the context of particular strategies�

Independent subproblems

In program synthesis� the subproblems generated by a strategy are often independent of each
other� When developing a conditional� for example� the two branches can be developed in
any order or in parallel�

Speci�cation acquisition� on the other hand� proceeds much more incrementally� and so
later parts of a speci�cation usually refer to its earlier parts� To de�ne the operations of a
system� for instance� its state must be known� None of the strategies de�ned for speci�cation
acquisition in Chapter �� or software design in Chapter � accommodates solution of indepen�
dent subproblems� Only the strategy for the active sensors architecture presented in Section
��
 generates independent subproblems�

Incomplete solutions

The fact that subproblems in speci�cation acquisition can depend strongly on one another
has an in�uence on how work with strategies proceeds� Experience has shown that it is
unrealistic to assume that� if problem P� depends on the solution S� of problem P�� then it
will necessarily be possible �rst to solve P� completely and then start working to solve P��
In the state based strategy �see page ����� the de�nition of the state and the operations will
usually make use of the global de�nitions� but we cannot assume that a speci�er foresees all
necessary global de�nitions in advance� The process that implements problem solving with
strategies must therefore allow speci�ers to work on a problem even if the solution it depends
on is not yet completely known� Technically� we can achieve this by propagating incomplete
solutions�

In program synthesis� such a feature would make the problem solving process more �ex�
ible and comfortable� However� it is not required in order to make strategy�based program
synthesis feasible�

��� Chapter �� Strategy�Based Development of Software Architectures

Use of repetition

Frequently� in speci�cation acquisition� several items of the same kind must be developed to
solve a problem� as is the case with in P state and P ops in the state based strategy� Such
development can be supported by the strategicals Repeat and Lift� as described in Section
���� If several items of di	erent syntactic classes have to be developed� as with the global
de�nitions P global of the state based strategy� then this can be achieved using the Lift
strategical without combining it with Repeat�

For program synthesis� repeating a strategy is not as useful as it is in speci�cation acqui�
sition� In developing a program� it is not necessarily helpful to consider it as a concatenation
of items from the syntactic class statement � This is due to the fact that programming prob�
lems provide much more detailed and semantic information than do speci�cation problems�
simply because the former are formal� which the latter are not� In addition� the syntactic
forms of programming problems may already suggest strategies to apply to them� such that
strategy selection can rely more on the speci�c problem in program synthesis than it can in
speci�cation acquisition�

These considerations show that program synthesis on the one hand and speci�cation
acquisition and software design on the other hand are fairly di	erent activities� Strategies
are� however� su�ciently general to support them all�

��� Summary

The results of this chapter are the following�

� We have presented a fourth instance of the strategy framework�

� We have used this fourth instance and the meta�agenda of Section ��� to de�ne strate�
gies that capture the agendas developed in Chapter
� thus making them amenable to
machine support�

� We have compared the di	erent instantiations of the strategy framework� showing that
this framework is su�ciently powerful to support a variety of software engineering ac�
tivities�

��
 Further Research

Further work on strategy�based development of software architecture concerns the following
points�

Implementation� The instantiation of the strategy framework presented in this chapter and
the strategies for the three architectural styles should be implemented�

More strategies� General�purpose strategies as the ones de�ned in Chapter � should be
de�ned for the LOTOS instantiation of the strategy framework�

Integration with existing software� When conducting our case study of Chapter
� we
�rst developed the robot designs and then analyzed and compared the designs using an
existing tool� It should be investigated how existing LOTOS tools can be used during

��
� Further Research ���

the development of a design� First� such tools could be useful to check some of the
acceptability conditions of the strategies� Secondly� they can support an explorative
process of software design�

Comparative Studies� The LOTOS instantiation of the strategy framework could also be
used to specify safety�critical software or for general speci�cation tasks� It should be
investigated how strategies de�ned for one instantiation of the strategy framework�
e�g�� the instantiation of Chapter �� can be transformed into strategies for a di	erent
instantiation� e�g�� the instantiation of this chapter� and to what extent the development
steps are independent of the used speci�cation language�

Machine support for results of Section ��
� Most of the research problems stated in
Section
��� particularly architecture re�nement� have an implementable counterpart�
Therefore� when concepts for the solutions of the problems stated there are developed�
more implementation tasks will arise�

��� Chapter �� Strategy�Based Development of Software Architectures

Chapter ��

Conclusions

In the previous chapters� we have introduced the concepts of an agenda and of a strategy� We
have shown how these concepts can be pro�tably employed in various phases of the software
life cycle� In particular� we have investigated the use of these concepts in the areas of software
speci�cation� design� and implementation� We have presented a general pragmatic approach
to the usage of formal speci�cation techniques� and a specialized approach to the speci�cation
of software for safety�critical applications� Furthermore� we have shown how software design
according to architectural styles can be supported with formal methods in a semantically
sound manner� Program synthesis techniques were also considered� In summary� this work
contributes to the following areas of research�

Methodological support for the application of formal techniques in software engineering

With the concept of an agenda� we have introduced a means for organizing work that has to be
carried out in a particular context� Agendas are obtained in a knowledge engineering process
from domain experts and � if formal techniques are to be applied � from experts in formal
techniques� Their purpose is to capture the knowledge used by the domain experts when
carrying out their tasks� Agendas are speci�c to the task to be performed� not to the formalism
to be used� Therefore� the use of agendas can be smoothly introduced into an organization�
Developers essentially proceed as before� only that the steps to be taken in performing the
task are made explicit� Hence� introducing agendas does not de�skill developers�

The use of agendas to guide the application of formal techniques in software engineering
results in a precise description of the artifacts to be developed and a rigorous means for
validating them� In this way� the application of formal methods in software engineering
contributes to a better quality of the artifacts produced during the software development
process� Informal techniques are not made super�uous� but there is a synergetic e	ect between
formal and informal techniques�

Agendas have much in common with approaches to software process modeling �Hu	�
������ The di	erence is that software process modeling techniques concentrate more on
management activities� e�g�� roles of developers� than on technical issues� In contrast� with
agendas we always develop a document� thus concentrating on technical activities in software
engineering� Furthermore� software process modeling does not place so much emphasis on
validation issues as agendas do�

���

��� Chapter ��� Conclusions

In this work� we have shown that agendas are useful for the speci�cation� design and
implementation phases of the software lifecycle� when formal techniques are used� But also
software development methods that are not based on formal techniques can be supported with
agendas� First� we have set up a preliminary agenda for requirements elicitation� which shows
that also requirements engineering can be supported with the agenda approach� Second�
we have de�ned an agenda for the object�oriented Fusion method �Coleman et al�� ���
��
which provides valuable consistency checks for the various models of the analysis and design
phases that have to be set up during the Fusion process� It seems reasonable to assume that
systematic testing� transformation of speci�cations and programs� and re�engineering can be
supported with agendas as well� The de�nition of concrete agendas for these tasks� however�
remains a task for the future� Potentially� agendas may even be used to guide performing
tasks in other �elds than software engineering�

Currently� more agendas for the speci�cation of safety�critical embedded software are
developed in the German project ESPRESS �ESPRESS�� which is a joint project with partners
from industry� research institutions� and universities� In this project� a combination of Z and
statecharts �Harel� ����� is used instead of the combination of Z and CSP described in Chapter
�� First results have shown that � if the languages used are comparable in their expressive
power� as is the case for CSP and statecharts � the activities constituting the agendas are
the same for di	erent languages$ only the schematic expressions and some of the validation
conditions are di	erent�

Because agendas can be employed whenever there is a systematic way of performing a
software development task� it is clear that agendas can also be de�ned when speci�cation
languages other than Z� CSP� or LOTOS are used� However� further research is necessary
to �nd out to which degree agendas can be oriented solely on the task to be performed�
rather than on the language that is used� For a language�independent agenda� changing the
language in which a document is expressed would e	ect only the schematic expressions and
language�speci�c validation conditions� The steps of the agenda would remain the same�

Application of formal speci�cation techniques

In addition to using agendas� the barriers that currently prevent the application of formal
techniques in software engineering practice can further be lowered by adopting a pragmatic
attitude toward formal techniques� We have shown how formal speci�cation techniques can
be smoothly integrated into traditional processes� and how formal speci�cation discipline can
be relaxed to avoid some of the di�culties that make the application of formal techniques
sometimes tedious� We have shown that legacy systems can bene�t from a formal speci�cation�
too�

Moreover� we have identi�ed di	erent speci�cation styles that make the process of spec�
i�cation acquisition language�independent to a large extent� These styles can be formalized
as sets of strategies�

Safety

To support the formal speci�cation of software for safety�critical applications� we have inves�
tigated the expressional power a formal language suitable for this purpose must possess� We
have de�ned such a language by combining two existing� well�established languages� We have
de�ned a software model for the use of the combined language and have further re�ned this

���

model by reference architectures capturing frequently used designs of safety�critical systems�
For each such reference architecture� we have de�ned an agenda that gives detailed guidance
for developing speci�cations of software components suitable for the architecture and for the
component validation� Besides the application�independent validation mechanisms provided
by the agendas� we have shown how the developed speci�cations can be further validated�
taking properties of the particular application into account� The strategies that were de�ned
corresponding to the agendas make the implementation of a support system for strategy�based
speci�cation of safety�critical software a routine task�

All in all� our approach to supporting the speci�cation of software for safety�critical ap�
plications enhances the safety of the entire technical system� because the embedded software
is speci�ed in a systematic way� the speci�cation has an unambiguous semantics� and the
speci�cation is validated more rigorously than this would be possible with purely informal
speci�cations�

Software Architectures

The de�nition of architectural styles is a means for making software design knowledge explicit
and supporting its reuse by using styles as guidelines for the development of concrete software
designs� We have provided a semantic foundation of architectural styles by characterizing
such styles using patterns over the formal description language LOTOS� A number of agendas
support designers in the development of software architectures conforming to the characterized
styles� The agendas were formalized as strategies� providing a basis for machine�supported
software design�

Our approach to software design leads to standardized� comprehensible� and comparable
designs that have a precise semantics and thus can be analyzed and validated in a rigorous
manner� But not only the result of the design process is improved in comparison to using in�
formal style descriptions or no styles at all� but also the process of developing the architectural
designs is now standardized and comprehensible�

Automated Software Engineering

Agendas are designed to be applied by humans� As already pointed out in Chapter �� the
bene�ts of formal methods can be even better appreciated when they are supported by ma�
chine�

Strategies support the representation and application of software development knowledge
by machine� As they are formally de�ned� they introduce even more preciseness and rigor
into software engineering processes than agendas� Strategies are implementation�oriented�
Detailed implementation guidance is provided in the form of an architecture for support sys�
tems for strategy�based development activities� Strategies also form the basis for automating
portions of software development activities�

The strategy framework is generic� The notions of problems� solutions� and acceptability
can be freely de�ned� In the previous chapters� we have presented four di	erent instances of
the speci�cation framework� covering the speci�cation� design� and implementation phases of
the software life cycle� The existence of these instances shows that the strategy framework is
truly generic� and that strategies are powerful enough to support a wide variety of software
engineering activities� Moreover� we have shown that the formalization of appropriately
engineered knowledge is possible in a routine manner�

��	 Chapter ��� Conclusions

Di	erent support systems implementing di	erent instantiations of the strategy framework
have a strong potential for successful combination� Such combinations can provide integrated
tool support for several consecutive phases of a software life cycle�

Agendas� resulting from our approach to knowledge engineering� and strategies� resulting
from our approach to knowledge representation� lead to a uniform and �exible approach for
supporting the application of formal techniques in software engineering�

Standardization of Products and Processes in Software Engineering

This work supports recent trends in software engineering that attempt to detect patterns of
use and represent connections between software engineering artifacts that go beyond syntax�
Achieving these goals is important for mastering the increasing complexity of software engi�
neering artifacts� The emerging �eld of software architectures �Shaw and Garlan� ����� and
the development of design patterns �Gamma et al�� ����� are prominent examples of this kind
of research�

In the �eld of software architecture� architectural styles �which have been formally charac�
terized in Chapter
� capture frequently used design principles for software systems� Design
patterns have had much success in object�oriented software construction� They represent fre�
quently used ways to combine classes or associate objects to achieve a certain purpose� In the
same way as architectural styles� we have formally characterized design patterns for which
communication between objects is important�� Whereas concrete agendas are very much ori�
ented on the activity they support� the general concept of an agenda is not specialized to an
activity such as software design or a programming paradigm such as object�orientedness� as is
the case for architectural styles and design patterns� Apart from the fact that these concepts
are more specialized in their application than agendas� the main di	erence is that they do
not describe processes but products�

For the application of formal techniques in software engineering� the means for mastering
complexity and for �nding common patterns in di	erent products and di	erent processes are
at least as important as in classical software engineering� Agendas and strategies support the
trends described above because development tasks are performed in a standardized way� This
not only supports developers but also other persons that must understand the development
process and its results� for example� because they must change or further develop the artifact
in question� This standardization also makes certi�cation procedures much more realistic and
meaningful�

In engineering disciplines such as mechanical or civil engineering� it is taken for granted
that the design of a new machine or a new building uses standardized parts and that stan�
dardized processes are followed� Agendas and strategies can surely help us achieve such a
situation�

�Examples are the Facade� Chain of Responsibility�Mediator� Observer� and Strategy design patterns�

Bibliography

Abowd� G�� Allen� R�� and Garlan� D� ������� Using style to understand descriptions of
software architecture� In Notkin� D�� editor� Proceedings of the �rst ACM SIGSOFT
Symposium on the Foundations of Software Engineering� pages ����� ACM Press�

Allan� R� and Garlan� D� ����
�� Formalizing architectural connection� In Proceedings 	�th
Int� Conf� on Software Engineering� ACM Press�

Bibel� W� and H�ornig� K� M� ����
�� LOPS � a system based on a strategical approach to
program synthesis� In Biermann� A�� Guiho� G�� and Kodrato	� Y�� editors� Automatic
Program Construction Techniques� pages ������ MacMillan� New York�

Bidoit� M�� Gaudel� M��C�� and Mauboussin� A� ������� How to make algebraic speci�cations
more understandable� An experiment with the PLUSS speci�cation language� Science
of Computer Programming� ��������

Boehm� B� W� ������� A spiral model of software development and enhancement� IEEE
Computer� ������������

Bolognesi� T� and Brinksma� E� ������� Introduction to the ISO speci�cation language LO�
TOS� Computer Networks and ISDN Systems� �
�������

Brooks� F� P� ������� No silver bullet � essence and accidents of software engineering� Com�
puter� pages ������

Broy� M� and J�ahnichen� S�� editors ������� KORSO� Methods� Languages� and Tools to
Construct Correct Software� LNCS ����� Springer�Verlag�

CIP System Group ������� The Munich Project CIP� Volume II� The Program Transformation
System CIP�S� LNCS ���� Springer�Verlag�

Clements� P� ������� A survey of architecture description languages� In Proceedings of the
�th International Workshop on Software Speci�cation and Design� pages ������ Schloss
Velen� Germany� IEEE Computer Society Press�

Coleman� D�� Arnold� P�� Bodo	� S�� Dollin� C�� Gilchrist� H�� Hayes� F�� and Jeremaes� P�
����
�� Object�Oriented Development� The Fusion Method� Prentice�Hall�

Conclin� J� and Begeman� M� ������� gIBIS� a hypertext tool for exploratory policy discussion�
ACM Transactions on O�ce Informations Systems� ����������

Davies� J� ������� Speci�cation and Proof in Real�Time CSP� Cambridge University Press�

���

��� Bibliography

Davies� J� and Schneider� S� ������� Real�time CSP� In Rus� T� and Rattray� C�� editors� The�
ories and Experiences for Real�Time System Development� World Scienti�c Publishing
Company�

Delmas� S� ����
�� Kidnapping X Applications� Unpublished Paper� TU Berlin�

Dershowitz� N� ������� The Evolution of Programs� Birkh�auser� Boston�

Dold� A� ������� Representing� verifying and applying software development steps using the
PVS system� In Alagar� V� and Nivat� M�� editors� Proc� �th Int� Conference on Algebraic
Methodology and Software Technology� LNCS ���� Springer�Verlag�

ESPRESS� Engineering of safety�critical embedded systems� Project description�
http�((www��rst�gmd�de(�espress�

Fernandez� J�� Garavel� H�� Mounier� L�� Rasse� A�� Rodriguez� C�� and Sifakis� J� �������
A Toolbox for the Veri�cation of LOTOS Programs� In Clarke� L� A�� editor� Proceed�
ings of the 	�th International Conference on Software Engineering ICSE�	�� Melbourne�
Australia� ACM�

Fernandez� J��C� ������� Aldebaran� A tool for veri�cation of communicating processes� Rap�
port SPECTRE C�
� Laboratoire de G
enie Informatique + Institut IMAG� Grenoble�

Fiadeiro� J� and Maibaum� T� ������� A mathematical toolbox for the software architect� In
J�Kramer and A�Wolf� editors� Proc� �th International Workshop on Software Speci�ca�
tion and Design� pages
����� Schloss Velen� Germany� IEEE Computer Society Press�

Fr�ohlich� M� and Werner� M� ������� Demonstration of the interactive graph�visualization
system daVinci� In Proc� DIMACSWorkshop on Graph Drawing� LNCS� Springer�Verlag�

Gamma� E�� Helm� R�� Johnson� R�� and Vlissides� J� ������� Design Patterns � Elements of
Reusable Object�Oriented Software� Addison Wesley� Reading�

Garlan� D�� Allen� R�� and Ockerbloom� J� ������� Architectural mismatch� Why reuse is so
hard� IEEE Software� pages �� ����

Garlan� D�� Kompanek� A�� Melton� R�� and Monroe� R� ������� Architectural Style� An
Object�Oriented Approach� In Submitted for publication�

Garlan� D� and Shaw� M� ������� An introduction to software architecture� In Ambriola� V�
and Tortora� G�� editors� Advances in Software Engineering and Knowledge Engineering�
volume �� World Scienti�c Publishing Company�

Goldblatt� R� �������Axiomatising the Logic of Computer Programming� LNCS ���� Springer�
Verlag�

Gries� D� ������� The Science of Programming� Springer�Verlag�

Halang� W� and Kr�amer� B� ����
�� Safety assurance in process control� IEEE Software�
������������

Hansen� K� M� ����
�� Modelling railway interlocking systems� Available via ftp from
ftp�ifad�dk� directory (pub(vdm(examples�

Bibliography ��

Harel� D� ������� Statecharts� a visual formalism for complex systems� Science of Computer
Programming� ��������
�

Heisel� M� ������� Formale Programmentwicklung mit dynamischer Logik� Deutscher Univer�
sit�atsverlag� Wiesbaden�

Heisel� M� ����
�� A formal notion of strategy for software development� Technical Report
�
���� Technical University of Berlin�

Heisel� M� �����a�� Six steps towards provably safe software� In Rabe� G�� editor� Proceed�
ings of the 	�th International Conference on Computer Safety� Reliablity and Security
�SAFECOMP�� Belgirate� Italy� pages �������� London� Springer�Verlag�

Heisel� M� �����b�� Speci�cation of the Unix �le system� A comparative case study� In
Alagar� V� and Nivat� M�� editors� Proc� �th Int� Conference on Algebraic Methodology
and Software Technology� LNCS ���� pages
���
��� Springer�Verlag�

Heisel� M� �����a�� An approach to develop provably safe software� High Integrity Systems�
�������������

Heisel� M� �����b�� A pragmatic approach to formal speci�cation� In Kilov� H� and Harvey�
W�� editors� Object�Oriented Behavioral Speci�cations� pages
����� Kluwer Academic
Publishers�

Heisel� M� �����c�� Strategies � a generic knowledge representation mechanism for software
development activities� Submitted for publication�

Heisel� M� and Krishnamurthy� B� �����a�� Bi�directional approach to modeling architectures�
Technical Report ������ Technical University of Berlin�

Heisel� M� and Krishnamurthy� B� �����b�� YEAST � a formal speci�cation case study in Z�
Technical Report ������ Technical University of Berlin�

Heisel� M� and L
evy� N� ������� Using LOTOS patterns to characterize architectural styles�
In Bidoit� M� and Dauchet� M�� editors� Proceedings TAPSOFT���� LNCS ���
� pages
�������� Springer�Verlag�

Heisel� M�� Reif� W�� and Stephan� W� ������� Implementing veri�cation strategies in the KIV
system� In Lusk� E� and Overbeek� R�� editors� Proceedings �th International Conference
on Automated Deduction� LNCS ���� pages �����
�� Springer�Verlag�

Heisel� M�� Reif� W�� and Stephan� W� ������� A dynamic logic for program veri�cation� In
Meyer� A� R� and Taitslin� M� A�� editors� Proceedings Logic at Botik� number ��� in
Lecture Notes in Computer Science� pages ��
��
�� Springer�Verlag�

Heisel� M�� Santen� T�� and Zimmermann� D� �����a�� A generic system architecture for
strategy�based software development� Technical Report ����� Technical University of
Berlin�

Heisel� M�� Santen� T�� and Zimmermann� D� �����b�� Tool support for formal software
development� A generic architecture� In Sch�afer� W� and Botella� P�� editors� Proceedings
��th European Software Engineering Conference� LNCS ���� pages �������� Springer�
Verlag�

��� Bibliography

Heisel� M� and S�uhl� C� �����a�� Combining Z and real�time CSP for the development of
safety�critical systems� Submitted for publication�

Heisel� M� and S�uhl� C� �����b�� Formal speci�cation of safety�critical software with Z and
real�time CSP� In Schoitsch� E�� editor� Proceedings 	�th International Conference on
Computer Safety� Reliability and Security� pages ���
�� Springer�Verlag�

Hinchey� M� G� and Jarvis� S� ������� Concurrent Systems� Formal Development in CSP�
McGraw�Hill�

Hoare� C� ������� Communicating Sequential Processes� Prentice Hall�

Ho	mann� B� and Krieg�Br�uckner� B�� editors ������� PROgram Development by SPECi�
�cation and TRAnsformation� the PROSPECTRA Methodology� Language Family and
System� LNCS ���� Springer�Verlag�

H�orcher� H��M� and Peleska� J� ������� Using formal speci�cations to support software testing�
Software Quality Journal�
�
��

Houston� I� and King� S� ������� CICS project report� Experiences and results from the use
of Z in IBM� In VDM��	� Formal Software Development Methods� Symposiom of VDM
Europe� Noordwijkerhout� LNCS ���� pages �������� Berlin� Springer�Verlag�

Hu	� K� ������� Software process modelling� In Fuggetta� A� and Wolf� A�� editors� Software
Process� number
 in Trends in Software� chapter �� pages ���
� Wiley�

ITSEC ������� Information technology security evaluation criteria� Commission of the Euro�
pean Union�

Jackson� M� and Zave� P� ������� Deriving speci�cations from requirements� an example� In
Proceedings 	�th Int� Conf� on Software Engineering� Seattle� USA� pages ����
� ACM
Press�

Jacky� J� ������� Specifying a safety�critical control system in Z� IEEE Transactions on
Software Engineering� �������������

Johnson� W� L� and Feather� M� S� ������� Using evolution transformations to construct
speci�cations� In Lowry� M� R� and McCartney� R� D�� editors� Automating Software
Design� pages �� � ��� AAAI Press�

Jones� C� B� ������� Systematic Software Development using VDM� Prentice Hall�

Kanellakis� P� C� ������� Elements of relational database theory� In van Leeuwen� J�� editor�
Handbook of Theoretical Computer Science� volume B� chapter ��� pages ����������
Elsevier�

Krishnamurthy� B� and Rosenblum� D� S� ������� Yeast� A general purpose event�action
system� IEEE Transactions on Software Engineering� ��������
������

Leveson� N� ������� Software safety� Why� what� and how� Computing Surveys� ��������������

Leveson� N� ������� Software safety in embedded computer systems� Communications of the
ACM� �
�����
�
��

Bibliography ���

Leveson� N� ������� Safeware� System Safety and Computers� Addison�Wesley�

Libes� D� ������� expect� Scripts for controlling interactive processes� Computing Systems�

����

Lowry� M� and Duran� R� ������� Knowledge�based software engineering� In Barr� A�� Cohen�
P�� and Feigenbaum� E�� editors� The Handbook of Arti�cial Intelligence� chapter ���
pages �
������ Addison�Wesley� Reading� MA�

Lowry� M� R� and McCartney� R� D�� editors ������� Automating Software Design� AAAI
Press� Menlo Park�

Luckham� D�� Kenney� J�� Augustin� L�� Vera� J�� Bryan� D�� and Mann� W� ������� Speci�ca�
tion and analysis of system architecture using Rapide� IEEE Transactions on Software
Engineering� ���
����������

McDermid� J� and Pierce� R� ������� Accessible formal method support for PLC software
development� In Rabe� G�� editor� Proceedings of the 	�th International Conference on
Computer Safety� Reliablity and Security �SAFECOMP�� Belgirate� Italy� pages ��������
London� Springer�Verlag�

Milner� R� ������� Logic for computable functions� description of a machine implementation�
SIGPLAN Notices� ������

Milner� R� ������� A Calculus of Communicating Systems� LNCS ��� Springer�Verlag�

Moriconi� M� and Qian� X� ����
�� Correctness and composition of software architectures� In
Wile� D�� editor� Proceedings of the second ACM SIGSOFT Symposium on Foundations
of Software Engineering� pages ��
���
� ACM Press�

Moser� L� E� and Melliar�Smith� P� ������� Formal veri�cation of safety�critical systems�
Software � Practice and Experience� ��������������

Mukherjee� P� and Stavridou� V� ������� The formal speci�cation of safety requirements for
storing explosives� Formal Aspects of Computing� ����������

Osterweil� L� ������� Software processes are software too� In �th International Conference on
Software Engineering� pages ����� IEEE Computer Society Press�

Ousterhout� J� K� ����
�� Tcl and the Tk Toolkit� Addison�Wesley�

Paulson� L� C� ����
�� Isabelle� LNCS ���� Springer�Verlag�

Peleska� J� ������� Formal Methods and the Development of Dependable Systems� University
of Kiel� Habilitation thesis�

Potter� B�� Sinclair� J�� and Till� D� ������� An Introduction to Formal Speci�cation and Z�
Prentice Hall�

Potts� C� ������� A generic model for representing design methods� In International Confer�
ence on Software Engineering� pages �������� IEEE Computer Society Press�

��� Bibliography

Ravn� A�� Rischel� H�� and Hansen� K� ������� Specifying and verifying requirements of
real�time systems� IEEE Transactions on Software Engineering� ������
�����

Rich� C� and Waters� R� C� ������� The programmer�s apprentice� A research overview� IEEE
Computer� pages ������

Shaw� M� and Garlan� D� ������� Software Architecture� IEEE Computer Society Press� Los
Alamitos�

Shepard� T�� Sibbald� S�� and Wortley� C� ������� A visual software process language� Com�
munications of the ACM� ���
�����

�

Smith� D� R� ������� KIDS� A semi�automatic program development system� IEEE Transac�
tions on Software Engineering� ���������
���
��

Souqui�eres� J� ������� Aide au D�eveloppement de Speci�cations� Th�ese d�Etat� Universit
e de
Nancy I�

Souqui�eres� J� and Heisel� M� ������� Expression of style in formal speci�cation� In Samson�
W� B�� editor� Proceedings Software Quality Conference� pages ������ ISBN � ������ ��
�� University of Abertay Dundee�

Souqui�eres� J� and L
evy� N� ������� Description of speci�cation developments� In Proc� of
Requirements Engineering ��
� pages ��������

Spivey� J� M� �����a�� The fuzz manual� Computing Science Consultancy� Oxford�

Spivey� J� M� �����b�� The Z Notation � A Reference Manual� Prentice Hall� �nd edition�

S�uhl� C� ������� Eine Methode f�ur die Entwicklung von Softwarekomponenten zur Steuerung
und Kontrolle sicherheitsrelevanter Systeme� Master�s thesis� Technical University of
Berlin�

Weber� M� ������� Combining Statecharts and Z for the design of safety�critical systems� In
Gaudel� M��C� and Woodcock� J�� editors� FME ��� � Industrial Bene�ts and Advances
in Formal Methods� LNCS ����� pages �������� Springer�Verlag�

Wile� D� S� ������� Program developments� Formal explanations of implementations� Com�
munications of the ACM� ���������������

Williams� L� ����
�� Assessment of safety�critical speci�cations� IEEE Software� pages ������

Wirsing� M� ������� Algebraic speci�cation� In von Leeuwen� J�� editor� Handbook of The�
oretical Computer Science� volume B� Formal Models and Semantics� pages ��������
Elsevier�

Woodcock� J� and Larsen� P�� editors ������� FME ��
� Industrial�Strength Formal Methods�
number ��� in Lecture Notes in Computer Science� Springer�Verlag�

Zave� P� and Jackson� M� ������� Conjunction as composition� ACM Transactions on Software
Engineering and Methodology� ��
������
���

Appendix A

Summary of Z Notation

Sets

Basic types
 !TYPE��TYPE�� � � � �TYPEn"

Variable declaration
 x � TYPE

Powerset
 �X # fY j Y � X g

Finite subsets
 �X # fY j Y � X � Y �niteg

Number of members of 	nite sets
)X

Cartesian product
 X �Y # f�x � y� j x � X � y � Y g

Notation for sets
 fDecls j Pred � Exprg
denotes the set of all Expr that satisfy Pred � based on the variables declared in Decls

Predicates

Connectives
 � ��������

Quanti	ers

Decls j Pred� � Pred� �
Decls � �Pred� � Pred��
�Decls j Pred� � Pred� � �Decls � �Pred� � Pred��
�� � � � � there exists exactly one

���

��� Appendix A� Summary of Z Notation

Relations

Binary relation
 X �Y # ��X � Y �

Member of a relation
 x 	
 y # �x � y�

Let R � X �Y � S � X �T � Y �Q � Y � Z �

Domain of binary relation
 domR # fx � X j �� y � Y � x 	
 y � R�g

Range of binary relation
 ranR # fy � Y j �� x � X � x 	
 y � R�g

Inverse of binary relation
 R� # fx � X $ y � Y j x 	
 y � R � y 	
 xg

Domain restriction
 S � R # fx � X $ y � Y j x � S � x 	
 y � Rg

Range restriction
 R � T # fx � X $ y � Y j y � T � x 	
 y � Rg

Domain subtraction
 S � R # fx � X $ y � Y j x �� S � x 	
 y � Rg

Range subtraction
 R � T # fx � X $ y � Y j y �� T � x 	
 y � Rg

Composition
 R �Q # fx � X $ y � Y $ z � Z j x 	
 y � R � y 	
 z � Q � x 	
 zg

Functions

Lambda expressions
 �Decls j Pred � Expr
denotes a function� mapping each �composed� value of the type contained in the decla�
ration Decls that satisfy the predicate Pred to the value determined by the expression
Expr �

Partial functions
 X	Y # fR � X�Y j
 x � X $ y � z � Y � x 	
 y � R � x 	
 z � R �
y # zg

Total functions
 X �Y # ff � X 	Y j dom f # X g

Injektive partial functions
 X
 Y # ff � X 	 Y j
 x�� x� � dom f � fx� # fx� � x� #
x�g

Injektive total functions
 X �Y # �X
�Y � �X�Y �

Partial onto functions
 X �Y # ff � X 	Y j ran f # Y g

Total onto functions
 X �Y # �X �Y � � �X �Y �

Bijective total functions
 X �Y # �X �Y � � �X �Y �

Finite partial functions
 X �Y # ff � X 	Y j dom f � �X g

Finite partial injections
 X �Y # �X �Y � � �X
Y �

Overriding
 Let f � g � X 	Y � f � g # ��dom g�� f � � g

���

Sequences

Representation
 seqX # ff � ��X j dom f # ���)f g

Example
 ha� b� ci # f� 	
 a� � 	
 b� � 	
 cg

Nonempty sequences
 seq �X # seqX n fhig

Injective sequences
 iseqX # seqX � ��
X �

Functions on sequences
 � head s selects �rst element of s

� last s selects last element of s

� tail s contains all elements of s except the �rst one

� front s contains all elements of s except the last one

� s � t is the concatenation of s and t

� rev s is the reverse of s

Axiomatic Descriptions

They introduce global variables whose values may be restricted� Notation�

Decls

Preds

Example�

table length � �

table length � ����

introduces the global variable table length and restricts its value to be less than or equal to
����� The predicate part of an axiomatic de�nition is optional�

Free Type De�nitions

Free types are algebraically de�ned data types�

T ��# c� j � � � j cn j d��E�� j � � � j dm�Em�

is an abbreviation for

!T "

��	 Appendix A� Summary of Z Notation

c�� � � �cn � T
d� � E��T

� � �

dm � Em � T

hfc�g� � � � � fcng� rand�� � � � � randmi partition T

The ci are the constants of the type$ the dj are its constructors� i�e� total injective functions
from Ej to T � The constants and the values yielded by the constructor functions are all
disjoint� and each member of the type is either one of the constants or in the range of one of
the constructor functions�

Global Abbreviations

An abbreviation de�nition introduces a new global constant� Name ## Expr � Example�
Even ## fe � � j � n � � � � � n # eg

Local Abbreviations

In the let�expression let x� ## E�$ � � � $ xn ## En � E the variables x�� � � � � xn are
local$ their scope includes the expression E � but not the expressions E�� � � � �En that are the
right�hand sides of the local de�nitions�

Schema Notation

Schemas are the structuring mechanism of Z� They have a name and consist of a declaration
and a predicate part� In the declaration part� local names are introduced� The predicate part
can be used to restrict the values of the schema components declared in the declaration part�
The syntactic form of a schema is�

SchemaName
Decls

Preds

or alternatively

SchemaName b# !Decls j Preds "

Schema Inclusion

If a schema name S� occurs in the declaration part of another schema S � then all declarations
of S� become visible in S � and the predicates of S� and S are conjoined� Names occurring in
both schemas must have the same type$ they are then identi�ed�

���

Schema Decoration

The schema decoration S � of a schema S is obtained by replacing all declared variables
v�� v�� � � � in S by their �primed� versions v ��� v

�

�� � � � � This is done in the declaration as well
as in the predicate part�

The & notation uses schema decoration and inclusion� for a schema S � &S is de�ned as�

&S
S
S �

S and S � denote the state before and after execution of an operation� respectively� The
postcondition of an operation is usually expressed by equations of the form v � # � � �v � � ��
where v is declared in S �

The schema *S says that the values of the declared variables are not changed�

*S
&S

NoChange

State and Operation Schemas

Schemas are used to de�ne the global state of a system as well as the operations working on
that state� A state schema introduces the components of the state and integrity constraints
de�ning the legal system states�

State
x� � Type�
� � �

xn � Typen

integrity constraints

An operation schema usually imports the state schema and its decorated version �&State��
Inputs of an operation are marked with ���� outputs are marked with �%�� The predicate part
of an operation schema states the precondition of an operation� how the system state evolves�
and what conditions the output must ful�ll�

��� Appendix A� Summary of Z Notation

Operation
&State
input� � Typei
output % � Typeo

precondition
post state
outputs

Schema Types

Each schema de�nes a type� If the declaration part of a schema consists of the declarations
x� � T�$ � � � $ xn � Tn then the corresponding type is denoted �x� � T�$ � � � $ xn � Tn�� The
members of the schema type are bindings z # hx� � v�� � � � � xn � vni� with components
z �xi # vi �

