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Chapter 1

Methodological Support for the Application
of Formal Techniques

Methodological support for the application of formal techniques in software engineering is the
motto for this entire work. We use the term “formal techniques” instead of the more common
term “formal methods”, because we find the term “formal method” to be a misnomer. A
formal notation with a mathematically rigorous semantics is often called a formal method.
In comparison with notational and semantic issues, methodological aspects are frequently
neglected in the research on formal techniques. In our opinion, this fact is one of the greatest
obstacles that hinders the transfer of formal techniques from academic environments into
software engineering practice. The word “technique” does not suggest that there exists a
method for guiding the application of the formalism in question.

The aim of this work is to demonstrate how formal techniques can be profitably employed
in software engineering. We do not treat the whole software engineering process and consider
all known formal techniques, but show areas where formal techniques can improve the quality
of products or processes in software engineering. For this purpose, we describe some impor-
tant and typical situations and show what can be gained by applying formal techniques in
these situations. Examples are the development of safety-critical systems, where formal spec-
ification techniques contribute to the overall system safety, and software architectures, where
a formal characterization makes it possible to reuse previously acquired design knowledge in
a semantically sound way.

Using formal techniques, we can positively guarantee that the product of a development
step of the software engineering process enjoys certain semantic properties. In this respect,
formal techniques can lead to an improvement in software quality that cannot be achieved by
traditional techniques alone. However, formal techniques are no panacea. Even if a program is
proven correct with respect to its specification, this does not mean that it will perform to the
satisfaction of its users. The specification may not capture the requirements adequately, the
performance of the program may be unsatisfactory, or the compiler or the operating system
that are needed to execute the program may contain errors. Hence, informal methods as they
are applied in traditional software engineering — and especially informal validation techniques
such as testing — are still indispensable, and we propose to complement traditional techniques
by formal ones, not to replace them.
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1.1 Benefits of Formal Techniques

There are three areas where the benefits of formal techniques become particularly apparent:
quality improvement, machine support, and reuse.

Quality improvement

Since the artifacts of the software engineering process that are expressed formally have a
well-defined and unambiguous semantics, this semantics can be used to assess their quality.
Not only syntactic, but also semantic properties of the artifact can be checked and eventually
guaranteed. This offers a strong potential for quality improvement. If semantic properties of
an artifact are specified and demonstrated, then there are fewer possibilities for misconcep-
tions, contradictions, and omissions than is the case for classical methods of quality assurance,
such as reviews and testing. It could be demonstrated that a system is specified in such a
way that certain safety constraints cannot be violated, or a program can be proven correct
with respect to a formal specification.

Machine support

Supporting parts of the software development process by machine enforces the representation
of the documents to be produced or processed in a formal syntax. If this syntax has no
rigorous semantics, only limited machine support can be provided. Taking semantics into
account, machine support can cover a wider range of activities, namely the ones that are
concerned with those properties of a product which cannot be expressed with reference to its
syntax alone. A formal, machine-supported proof of properties of the developed product can
be conducted, or test cases can automatically be generated and the results evaluated.

Reuse

A necessary condition for reusing previously acquired knowledge about software engineering
is that the knowledge is represented in some way. Using formal techniques to represent devel-
opment knowledge supports reuse: First, a formal document that represents some knowledge
has an unambiguous semantics. Hence, it is clear what the document represents, and the in-
tended way of reuse and the situations in which the document can be reused can be expressed
in an unambiguous manner. Second, reuse is normally achieved by constructing libraries that
contain reusable entities. Finding an appropriate library item is difficult if no meaning is
associated with it. Again, it is the fact that formally defined documents have a semantics
that makes reuse more goal-directed and thus more promising. Software design principles can
be represented by (formally defined) architectural styles, or program libraries can be anno-
tated with specifications, which describe the function of the program at a much higher level
of abstraction than the program itself.

1.2 Making Formal Techniques Applicable for Non-Experts

A major drawback of formal techniques is that they are not easy to apply. Users of formal
techniques need an appropriate education. They have to deal with lots of details, and often
they are left alone with a mere formalism without any guidance on how to use it.
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While nothing can be done about the first two points, it is definitely possible to provide
guidance for the users of formal techniques. Indeed, this is the main goal of the work presented
here. We consider appropriate guidance as a necessary condition for the practical applicability
of formal techniques. This work presents two concepts that realize such guidance. The first
concept, called an agenda, is informal and supports the application of formal techniques
without the need for machine support. The second concept is called a strategy. It is a
formalization of agendas, and its purpose is to make the knowledge represented in agendas
amenable to machine support.

1.2.1 Agendas

An agenda is a list of activities to be performed when carrying out some task in the context of
software engineering. Agendas contain informal descriptions of the activities and sometimes
schematic expressions of a formal notation that can be instantiated in carrying out the activity.
The activities listed in an agenda may depend on each other. Usually, they will have to be
repeated to achieve the goal, like in the spiral model of software engineering.

As one of the major reasons for applying formal techniques is to guarantee semantic
properties of an artifact, the activities of an agenda may have validation conditions associated
with them. These validation conditions state necessary semantic conditions, which the artifact
must fulfill in order to serve its purpose properly. The purpose of the artifact is always clear
in the context of an agenda, because the agendas are defined to make explicit tried and tested
approaches to tackle some particular class of problems. Since the verification conditions that
can be stated in an agenda are necessarily application independent, the developed artifact
should be further validated with respect to application dependent needs.

Following an agenda gives no guarantee of success. Agendas cannot replace creativity, but
they can tell the user what needs to be done and can help avoid omissions and inconsistencies.
Their use lies in an improvement of the quality of the developed products and the possibility
for reusing the knowledge incorporated in an agenda.

1.2.2  Strategies

Strategies are a formally defined concept. They model software development tasks as prob-
lem solving processes. A strategy specifies how to reduce a given problem to a number of
subproblems, how to assemble the solution of the original problem from the solution to the
subproblems, and what semantic conditions a solution must fulfill to be an acceptable solu-
tion to the problem. The definition of strategies is generic with respect to the definitions of
problems, solutions, and acceptability. Hence, strategies can serve to formalize a wide variety
of software engineering activities.

When comparing an agenda and a strategy that are defined to support the same devel-
opment task, it turns out that most of the steps of the agenda correspond to subproblems
generated by the strategy.

Strategies can be combined to perform larger and more sophisticated development steps.
They can be implemented and supplied with a generic architecture for systems supporting
strategy-based problem solving. Hence strategies lead to machine supported development pro-
cesses. In comparison to agendas, the formalization provided by strategies further enhances
product quality (e.g. by formal proofs) and reusability.
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Agendas and strategies are designed to better exploit the potential benefits formal techniques
can achieve than would be possible without methodological support. They lead their users
through different stages of the development, relieve them of tedious bookkeeping tasks, and
propose or enforce validations of the developed product.

The development of agendas and strategies that support some software development task
needs collaboration between experts on formal techniques and those parties who will be ap-
plying a formal technique. In a first knowledge engineering phase, experts and users jointly
define agendas for the development task. It is the responsibility of the users to make their
knowledge explicit and to identify the steps that must be taken when performing the develop-
ment task. Users and formal techniques experts can then work together and relate the results
of the different steps identified to the formalism to be used.

After the knowledge engineering phase that leads to agendas is finished, it is the exclusive
task of the experts to formalize the agendas as strategies. Although it cannot be expected of
sufficiently trained users of formal techniques to be able to define strategies, they should be
able to successfully work with agendas or strategies.

1.3 Overview

This work consists of two parts. The first part is centered around the concept of an agenda.
We present agendas for different development tasks and different contexts. The second part
is centered around the concept of a strategy. In the first part, we provide methodological
support for different areas of software engineering by defining agendas. In the second part,
we define strategies corresponding to the agendas of the first part. These strategies make the
application of the methods represented by the agendas supportable by machine. The chapters
and their interrelations are illustrated in Figure 1.1.

The top layer of the figure shows the methodological part, where we set up agendas for
different specification and design approaches. In the second part, whose subject is to support
the application of formal techniques by machine, these agendas are mapped to the strategy
framework shown in the bottom layer of the figure. The strategy framework consists of the
formal definition of strategies, complemented by a system architecture. Chapters 6-9 present
different instantiations of this generic framework. For the instantiation for program synthesis
(Chapter 6), an implemented support system called Integrated Open Synthesis System (I0SS)
exists.

The methodological part focuses particularly on formal specification techniques for several
reasons. First, the presence of a formal specification is a necessary prerequisite for supporting
other development activities with formal techniques. It is not only the basis for an imple-
mentation but also helps in maintaining the developed software.

Secondly, there is a tendency to perform large parts of the software development within
the specification language. Specifications are subject to refinements aimed at making the
transition from a refined design specification to an executable program almost a routine task.

Finally, formal specification techniques are nearest to practical application in industry.

Formal specification techniques can be applied in many domains and in many different
ways. All these application areas have their own methodologies. Specifically, we consider the
areas of safety-critical software and software architecture.



1.3. Overview

2 R
Q@“’Zg\‘\“ o e
.\CP~ 12y \\0(\ 0 % ,\\)&

o ‘(((o\ o s ‘6\‘?’0
Part | S Sy
Methodology ch. 2 ch.3 ch. 4

Specification Design
) S e o .
S Q\S\“’\\\ eé\‘\oac‘,o@a \,e\o?(:o\\}‘e oS \K\?’%\e
’éc"e,' (\P& A", -g’b\ o° g‘(\(\ ,%as 6‘3“
e@i'__ '6’\\0 '&c-’e ,C;‘\\\ 3%6 =) S \e,() ‘36\
6“3\ ec’\\\o =) © 2 S © e 5»\&?‘0%
£ 5\‘3\ 0\6 6\‘6\ o’\c"o
Ch.7 Ch. 8 Ch.9 Ch. 6
Specification Design Implementation e
Part Il _ , _ _ s
rategies: eneric Knowledge Representation Mechanism -
Strateg AG K ledge Rep tation Mech P
Machine SR il i
System Architecture

Support Y

Support Systems 0SS

Figure 1.1: Overview of chapters and their interrelation

In most chapters, we use the specification language 7 (Spivey, 1992b). A summary of the
7 notation is given in Appendix A. While Z is useful in the contexts under consideration,
it must be noted that our methodologies could also be defined and profitably applied in
conjunction with other formal specification languages.

In the following, we outline the contents of each chapter.

Chapter 2

We describe the process of developing formal specifications in some generality and represent
it as an agenda. This agenda shows how formal specification techniques can be integrated in
traditional software development processes. It is relatively abstract because we cannot make
specific assumptions about the kind of software system to be developed.

One step in the agenda is the transformation of (informal) requirements into a formal
specification. To overcome some difficulties arising in the practical usage of formal specifi-
cation techniques, we propose to perform this step in a pragmatic way. We argue that the
transition from informal requirements to a formal specification should not be made too early,
that it is not necessary to formally specify every detail, that different formalisms should be
combined where appropriate, and that sometimes it may be useful not to adhere to limitations
imposed by the formal specification language. This pragmatic approach also helps to deal
with legacy systems.

The chapter shows that the application of formal techniques is not a question of “all or
nothing”. Instead, there are several degrees of formality. Many of the benefits of formal
techniques still occur when they are applied in a pragmatic way. This approach and the
guidance provided by the agenda help to overcome some of the difficulties that arise when
formal techniques are newly introduced into an organization.
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Chapter 3

In this chapter, we no longer consider specification processes in general but concentrate on
the specification of software for safety-critical applications. We consider the requirements
a specification language must fulfill in order to be suitable for this purpose and show that
a combination of the formal languages Z and real-time CSP fulfills these requirements. To
obtain methodological support for the application of the combined language, we introduce a
software model that is refined to different reference architectures representing frequently used
designs of safety-critical systems. Specific agendas complement the reference architectures
to guide specifiers in the development of software components for the architectures. These
agendas are fairly detailed, and validation conditions are associated with many of the steps.
The validation conditions are, of course, independent of a particular application. To further
validate the developed specification, safety-related and liveness properties of the specification
should be proven. A definition of refinement enables steps toward an implementation.

The chapter shows that the agendas guiding the development of an artifact in the software
development process can be quite precise, if the context of development is limited to a certain
application area. This is of great importance if non-experts are to apply formal techniques. We
are convinced that following an agenda and showing all the associated validation conditions
leads to a better quality of the developed specifications and the software implemented on
their basis.

Chapter 4

Not only the specification, but also the design of software systems can be supported with
formal techniques. Software architectures make design principles for software systems explicit.
Classes of architectures that follow common principles are called architectural styles. In this
chapter, we show how the formal description language LOTOS can be used to define software
architectures and how patterns over LOTOS can serve to characterize architectural styles.
The benefit of using LOTOS for architectural descriptions is not only the formality of the
language, but also the availability of tools for analysis and animation.

We characterize styles by giving characteristics of the involved processes, a top-level com-
munication pattern, and constraints that are sufficient conditions for a concrete architectural
description to be an instance of a given style. The purpose of the style characterizations is
not only to clarify the meaning of styles, but also to form the basis for defining agendas that
support the development of concrete architectures. Three style characterizations and their
corresponding agendas are presented and illustrated by an example.

With this chapter, we contribute to a systematic design of software systems and to a
semantic foundation of architectural styles.

Chapter 4 concludes the first part of this work, which is concerned with the methodological
aspects of formal techniques. In this part, we demonstrate that different development ac-
tivities and different formalisms can be supported by agendas. The purpose of agendas is
to contribute (i) to a better acceptance of formal techniques by software engineers by giving
detailed guidance and (ii) to a better quality of the developed product by stating validation
conditions. Thus, agendas help to apply formal techniques independently of machine support.

The second part is devoted to the development of concepts for the machine-supported
application of formal techniques. Applying formal techniques with machine support further
enhances their acceptance and the quality of the developed products, because, due to the
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amount of detail that must be handled, the application of formal techniques without machine
support tends to be error-prone.

Chapter 5

This chapter presents a formal definition of strategies in 7. Strategies represent development
knowledge used to perform different software engineering activities. The development of an
artifact is modeled as a problem solving process. Hence, the definition of strategies is based
on relations between problems and solutions to these problems. Since it is an important
goal for us to guarantee semantic properties of the developed product, the solutions that
are developed must always be acceptable for the corresponding problem. The definition of
acceptability captures the semantic requirements on the solution.

Strategies can be combined to obtain more powerful strategies using strategicals, which are
functions that take strategies as their arguments and yield strategies as their result. Moreover,
strategies support stepwise automation of development tasks. We already noted that, because
the concept of a strategy is generic, strategies can profitably be employed in several different
phases of the software life cycle.

The definition of strategy is complemented by a generic system architecture that serves
as a template for the implementation of support tools for strategy-based problem solving.

The strategy framework provides a uniform approach to the representation of software
development knowledge and its machine supported application.

Chapter 6

This chapter presents an instance of the strategy framework that supports the synthesis of
provably correct imperative programs. A methodology for program synthesis is not presented
in the first part of this work. This topic is treated in detail in an earlier work (Heisel, 1992).

An implemented prototype system for strategy-based program synthesis exists, whose
features and implementation are discussed. The instance of the strategy framework that
supports program synthesis also serves to compare program synthesis with the activities that
are formalized in the following chapters.

Chapter 7

Chapter 7 presents an instantiation of the strategy framework that supports the development
of specifications in the language Z. In its generality, it matches Chapter 2, although the
strategies presented focus only on one step of the agenda of Chapter 2. First, we introduce the
notion of a specification style. These styles represent different approaches to the development
of a formal specification. For each of the styles, we give a set of strategies associated with that
style. An example of a specification acquisition shows how the development of a specification
can be driven by styles. Finally, we sketch how different instances of the strategy framework
can be combined.

Chapter 8

Chapter 8 presents a “meta-agenda” that shows how agendas can be formalized as strategies
in a routine way. This meta-agenda is then used to define strategies for the agendas of Chapter

3.
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Chapter 9

In Chapter 9, the agendas defined in Chapter 4 are transformed into strategies. Subsequently,
the four instantiations of the strategy framework presented in Chapters 6-9 are compared.
It turns out that strategies are powerful enough to represent several different development
activities that use different formalisms. Chapter 10 summarizes and assesses what has been
achieved.

In summary, the goal of this work is to show that the difficulties in introducing and applying
formal techniques in software engineering are not insurmountable. By way of several impor-
tant and practically relevant examples, we demonstrate that — for well-defined development
activities — it is possible to supply comprehensive guidance to the users of formal techniques.
It is no longer necessary for developers to be confronted with a mere formalism without guide-
lines on how to use it. Instead, they can use agendas that tell them what to do in which order
and how to validate the developed product.

This work not only presents concrete methodologies that show precisely how to apply
formal techniques in different contexts, but also gives special consideration to the definition of
adequate concepts for the machine supported application of the developed methodologies. An
implemented support system relieves the developers of tedious bookkeeping tasks and enforces
the fulfillment of certain semantic conditions of the product, thus solving two important
problems that normally arise in the use of formal techniques.
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METHODOLOGY






Chapter 2

A Pragmatic Approach to Formal
Specification

In this chapter, we argue that the application of formal specification techniques need not be
a question of “all or nothing”. The choice is not to either apply formal techniques completely
rigorously and as intended by their designers, or not at all. The “all or nothing” standpoint
would mean that the introduction of formal techniques necessitates a complete revision of the
software development process. It is clear that organizations usually are neither willing nor
capable to undergo such drastic changes.

Instead, we vote for a smooth introduction of formal techniques into software engineer-
ing. This can be achieved by taking a pragmatic attitude. To motivate what we mean by
a pragmatic approach, we first discuss the benefits and drawbacks of formal specification.
The pragmatic approach then consists of relaxing formal specification discipline in order to
overcome the identified drawbacks. Our pragmatic approach to formal specification also helps
to deal with legacy systems.

In theory, the advantages of formal specification techniques over conventional ones are
well known:

e The problem is analyzed in more detail and thus better understood.

e The formal specification is an unambiguous and (hopefully) complete starting point for
the implementation of a software system.

e The formal specification documents the behavior of the system.

o It can be used to select test cases and to determine if the results of the test cases coincide
with the expected behavior.

e It makes maintenance and evolution of the system easier.

e Systems implemented from formal specifications often contain fewer defects.

In practice, however, formal specification techniques are not widely applied for the following
reasons:

11
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1. The formal nature of specification languages may make their use difficult, especially if
the semantics is not easily comprehensible.

2. Formal specification languages can be as rich as programming languages and have a
similarly steep learning curve.

3. There is no single specification language that is equally well suited for all kinds of
systems and all aspects of an individual system, just as there is no one true programming
language for all tasks.

4. It takes longer and is more expensive to develop a formal specification than to specify
a system with conventional methods.

Are these really valid arguments against formal specification', and if so, what can be done
to lessen their disadvantages? Point 4 cannot be regarded as a drawback because a greater
effort in the earlier phases of software development may pay off in later phases and need not
lead to an overall increase of costs (Houston and King, 1991).

The difficulties mentioned in points 1 and 2 cannot be completely overcome. But pro-
gramming languages are formal languages too, and there is no argument against programming
just because one has to learn one or more programming languages with non-trivial seman-
tics. Specification languages with useful, semantically clean and intuitively clear concepts are
needed. Such languages would make the introduction of formal specification techniques into
software engineering practice much easier. Existing specification languages are not altogether
bad, but all of them leave something to be desired, and unnecessarily so, as we have argued
elsewhere (Heisel, 1995b).

Even carefully designed languages have their strengths and weaknesses. We cannot expect
to find one single general-purpose specification language that suits all needs equally well.
Hence, point 3 is a very serious one. One idea is to use several formalisms instead of one. When
such a combination is done with care, a “hybrid” specification will be clearer, shorter and
more comprehensible than a specification in only one language that is clumsy in parts because
the language does not allow some relevant parts to be expressed elegantly and concisely. We
would even go further and recommend not using formal specification techniques at all for
those aspects of a system that just cannot be formally specified in a satisfactory way?. These
aspects need not necessarily be non-functional, as shown in the example of Section 2.4.2.

With these ideas, we seek to bridge the gap between the theoretical benefits of and the
practical problems with formal specification techniques. The choice is not to either apply
them in a puristic way or not at all. Instead, there are varying degrees of formality.

However, to make formal specification techniques more widely applicable, it does not
suffice to consider only those activities in software development that deal with formal objects.
Before we can write down some formal text, we should have an idea of what we want to write
down. This means that a detailed requirements elicitation is a very important prerequisite to
making the application of formal specification techniques successful.

In Section 2.1, an overview is given of what we understand to be a pragmatic approach
to formal specification when a new system is built. More often, however, legacy systems have
to be used and maintained. Here, formal specification techniques can be of help, too, as is

!By formal we mean all those specifications where the language is given a formal semantics.
2What “satisfactory” exactly means depends not only on the problem and the language but also on the
individual specifier.
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No.| Phase Validation
1 | Define all relevant notions of the ap-
plication domain.

2 | Define the requirements for the sys- | Every important aspect of the applica-
tem to be built. tion domain and the system must be
expressible.

For each of the defined notions a state-
ment for the system should be made.

3 | Convert the requirements in a prag- | All relevant aspects of the system must
matic way into a formal specifica- | be expressed appropriately.

tion.
The specification must be more ab-
stract than code.

4 | Set up a mapping between the re- | Each requirement must show up in the
quirements and the formal specifi- | specification.

cation.
Each part of the specification must be-
long to a requirement.

5 | Validate the specification. Besides inspecting the specification,
use as many of the following mecha-
nisms as appropriate: checklists, ani-
mation, proof of properties, testing.

Table 2.1: Agenda for specification acquisition

explained in Section 2.2. In Sections 2.3 through 2.6, the various activities that make up
the pragmatic approach to formal specification are presented in more detail and illustrated
by examples. The main focus is on demonstrating how formal specification discipline can
be relaxed in order to overcome the intrinsic problems of formal specification techniques as
mentioned above. Finally, we discuss what is gained by using this pragmatic approach, and
point out directions for further research. This chapter is an adaptation of the paper (Heisel,

1996b).

2.1 Specifying New Systems

In the following, we give an agenda for our approach, i.e. a list of the activities that have to
be performed. Some of the activities are complemented by means for validating their results.
The single steps should not be considered as isolated phases with no feedback between each
other. They should be partially carried out in parallel and are likely to be repeated, as in
the spiral model of software engineering (Boehm, 1988). A “later” activity can reveal errors
or omissions in an “earlier” phase. A overview of the agenda is given in Table 2.1. The
dependencies between the phases are shown in Figure 2.1. Phase ¢ depends on phase j if the
result of phase j is needed to perform phase i. We now explain the phases one by one.

Phase 1 Define all relevant notions of the application domain.
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Figure 2.1: Dependencies of phases

It must be possible to talk about all relevant aspects of the system. For this purpose, all
phenomena that might be of interest must be given names and be informally described as
precisely as possible. Jackson and Zave (Jackson and Zave, 1995) call this a designation set.
In the context of software architectures, one may define criteria that are relevant for these
systems, see Section 2.3 and (Heisel and Krishnamurthy, 1995a).

Phase 2 Define the requirements for the system to be built.

The notions defined in Phase 1 provide a language in which the requirements can be expressed.
If some requirement or some phenomenon concerning the system cannot be expressed, then
the application domain was not investigated carefully enough, and we have to go back to
Phase 1. Conversely, in order not to forget some requirements, we should make sure that
for each of the relevant notions a statement for the new system is made (this may be the
statement that some phenomenon will not be treated at all).

Phase 3 Convert the requirements in a pragmatic way into a formal specification.

By “pragmatic” we mean that we should not always adhere to the ideal of purely formal
specification but take the freedom to make a specifier’s life easier. In our past work on
and with formal specification, we applied the following relaxations of formal specification
discipline®.

1. Combine different formal or semi-formal specification techniques if one formalism alone
is not powerful enough to express all relevant parts of the specification elegantly.

2. If the specification would be as low-level as program code, refrain from specifying these
details formally but use conventional specification techniques and document the program
code in a particularly detailed way.

3. Ignore restrictions of the specification language if it is clear how to give the requirement
a semantics.

Of course, all the above relaxations must be applied with great care because they are poten-
tially dangerous: a specification where several formalisms are combined may be inconsistent.
Incomplete formal specifications may result in an insufficient understanding of the parts not
formally specified and thus lead to a wrong implementation. Indeed, this relaxation should
mostly be applied for legacy systems, see Section 2.2. Finally, when we write down illegal
expressions of a specification language, we must make sure that these expressions have a well-
defined semantics, which should be explained carefully in the accompanying text of the formal
specification. Section 2.4 presents some examples and sketches how to apply the relaxations
“safely”.

FOther persons may come up with different relaxations, according to their experience.
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Phase 4 Set up a mapping between the requirements and the formal specification.

Such a mapping shows where and how each requirement is reflected in the formal specification.
It helps to make the specification complete. When the system must be adjusted to new
requirements, the specification should be changed before the code. The mapping shows where
the changes have to be made. An example is given in Section 2.5.

Phase 5 Validate the specification.

This step is very important because, usually, customers only have a vague idea of what
the system should do. Formal specifications can be validated more rigorously than informal
ones because they can be checked for inconsistencies or incompleteness with formal proof
techniques. Possible techniques to apply are animation, proof of properties, and testing.

Again, the different phases are not independent of each other. Especially Phase 5 will have
an effect on Phases 1 and 2. After several rounds in a spiral consisting of the above phases,
the specification should stabilize, with a high probability that the requirements are complete,
the specification captures them adequately, and that customers and developers understand
equally well what the system is supposed to do.

2.2 Dealing with Legacy Systems

Building a new system entirely from scratch is not always possible or desirable. Often, legacy
systems have to be used and maintained. But also for existing code, it is very useful to have
a formal specification. It documents the behavior of the system and helps in maintenance
and evolution.

If the legacy system exhibits some unexpected behavior, it is more feasible to seek the
explanation for the behavior in a formal specification than in the code because the specification
is more abstract and usually much shorter. Using reverse engineering techniques, the formal
specification can help in locating code that deals with a certain aspect of the given system.
Thus, when a formal specification is available, it is no longer necessary to search through the
entire code to make changes in a legacy system, see (Heisel and Krishnamurthy, 1995a) and
Section 2.5.

To deal with legacy systems, the approach described in the previous section has to be
adjusted. Phase 1 does not change. In Phase 2, not the requirements are formulated but the
behavior of the system as far as it is known. Phases 3 and 4 are as before. In Phase 5, the
formal specification is used to generate test cases. Horcher and Peleska describe how this can
be done systematically (Horcher and Peleska, 1995). These test cases should be run in order
to check if the results of Phases 2 and 3 coincide with the actual behavior of the system.

Phase 1 Define all relevant notions of the application domain.

Phase 2 Describe the behavior of the legacy system as far as it is known.
Phase 3 Convert this description in a pragmatic way into a formal specification.
Phase 4 Set up a mapping between the description and the formal specification.

Phase 5 Use the formal specification to generate test cases and validate the assumptions.
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As when building new systems, it can be expected that the last phase reveals errors in
earlier ones and that several iterations are necessary.

We see that specifying new systems and dealing with legacy systems are quite similar
activities. The following sections that explain the various phases in more detail can thus
serve to illustrate both of them. Of course, the specification of the legacy system exclusively
documents its behavior. To understand the implementation with all its possible optimizations
and “tricks”, more effort is necessary.

2.3 Phases 1 and 2: Definitions and Requirements/Behavior

These phases consist mainly of informal activities. The resulting documents may be informal
or semi-formal. They serve to form a basis for the development of a formal specification.
Their purpose is to gain a thorough understanding of the problem domain and relate this to
the requirements for or the description of a concrete system. Without such an understanding,
it is hopeless to work on setting up formal specifications. But of course these phases are also
important when traditional methods are applied.

We illustrate the informal definition of the notions relevant for a software system by the
description of event-action systems (Krishnamurthy and Rosenblum, 1995). Such systems
wait for events to occur (e.g. it is Friday 5 p.m. and the boss is logged in) and then take
an action (e.g. send an email to all group members that there will be a group meeting at
5.30 p.m.). Such a pair, consisting of an event pattern and a corresponding action, is called
specification and is not to be confused with formal specifications. The areas of application of
event-actions systems include calendar and notification systems, computer network manage-
ment, and software process automation. Some of the criteria that characterize event-action
systems (Heisel and Krishnamurthy, 1995a) are®:

e Matching style

Matching event patterns against occurring events is the heart of each event-action sys-
tem. Event patterns can be complex expressions of so-called primitive events. When an
event pattern is only partially matched, it is possible to either consider the whole event
pattern as unmatched (transient matching) or mark the matched events and only wait
for those events that were not yet matched (perpetual matching).

e Context
This means that not only the event itself but also the context in which it occurs is taken
into account, e.g. the event must be caused by a certain user or a certain machine.

e Grouping specifications
Is it possible to group logically related specifications together and refer to them as a
whole?

e Handling unmatchable specifications
Can the system detect and eliminate specifications that can never be matched?

These criteria provide a language in which the requirements for newly designed event-action
systems can be expressed (e.g. the system should consider context and allow for grouping

*We will give a formal characterization of the event-action architectural style in Chapter 4. The criteria we
mention here will be part of the specification of the event manager component and the type that defines events.
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specifications, but unmatchable specifications are not considered). They also contribute to
make the requirements complete: for each criterion, a decision should be made. If the set of
criteria is complete, then so are the requirements. We will come back to this example and
show some of the formalizations of the criteria in Sections 2.4.2 and 2.5.

2.4 Phase 3: Pragmatic Approach

The purpose of relaxing formal specification discipline is to show that formal techniques need
not be straightjackets that leave little freedom to their users. The relaxations may convince
potential users to start experimenting with them.

2.4.1 Combining Different Specification Techniques

The combination of different specification techniques is certainly the most important means to
make a specifier’s life easier. It directly addresses the drawback mentioned in the beginning
of this chapter that there is no single ideal specification language. We illustrate it by an
example, where algebraic and model-based specifications are combined. In Chapter 3, this
technique is also applied. There, Z and real-time CSP are used to specify different aspects of
safety-critical systems.

The European Commission has defined the so-called Information Technology Security
Fvaluation Criteria, 1TSEC (ITSEC, 1991). These criteria define security levels against
which information technology systems can be evaluated. As an example, we consider the
formalization of the ITSEC functionality class F-C1. Its description in natural language is as
follows:

“The TOFE shall be able to distinguish and administer access rights between each
user and the objects which are subject to the administration of rights, on the basis
of an individual user, or on the basis of membership of a group of users, or both.
It shall be possible to completely deny users or user groups access to an object.”

Here ‘TOE’ means Target of FEvaluation, i.e. the product to be evaluated. For the formal
specification of security functionality classes, the clearest and most abstract specification is
algebraic. For the systems to be certified, however, Z is more appropriate. It must be shown
that the Z specification of a particular system is a correct “refinement” of the algebraic one.
This can be established by working from both ends: doing algebraic refinements of the abstract
specification, and performing “abstractions” on the 7 specification until the refined algebraic
specification and the abstracted 7 specification can be related by a one-to-one mapping of
the involved constructs.

To formally specify F-C1, we use the algebraic specification language PLUSS® (Bidoit
et al., 1989). This language was designed to make formal specifications resemble natural-
language text. Accordingly, names of functions or predicates may consist of several words.
The argument positions are indicated by “_”. Quantifiers and connectives have a nonstandard,
yvet obvious, syntax. The keyword proc indicates that the specification is generic, and the
symbol “x” denotes the Cartesian product. Each axiom is given a name for later reference.

5 Any other algebraic specification language could be used as well, as long as it allows for genericity, first-order
formulas as axioms, and has a loose semantics.
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The semantics of a PLUSS specification is loose, i.e. it consists of all 3-algebras that satisfy
the axioms, where X is the signature of the specification.

Taking the above description of the functionality class F-C1 as a starting point, we come
up with the following PLUSS specification:

proc I'-C'1(object, user, group)
predicate
user_allowed access to_ : user x object
user_denied access to_ : user * object
group_allowed access to_ : group * object
group_denied access to_ : group * object
_associated with_ : user * group
grant_access to_ : user * object
axioms
uc : (user u allowed access to o & user u denied access to o) is false
gc : (group g allowed access to o & group g denied access to o) is false
ga : grant u access to o =
((user u allowed access to o or
(exists g1 : group.(u associated with g, & group g1 allowed access to 0)))
& user u denied access to o is false
& (exists g @ group.(u associated with g,
& group gy denied access to o)) is false )
where u : user, g : group, o : object

end F-C'1

This specification clarifies the ambiguities contained in the natural language description, e.g.
what happens if a user is allowed access individually who at the same time is member of
a group that is denied access. It defines a global predicate grant_access to_ deciding if a
user is granted access to an object or not. Access may only be granted if there is positive
but no negative information concerning the user. The user must either be granted access di-
rectly (predicate user_allowed access to_) or via a group (predicate group_allowed access to_).
Additionally, the user may neither be denied access directly (formalized by the predicate
user_denied access to_), nor be member of a group that is denied access (predicate group_-
denied access to_). This formalization represents a “conservative” approach: in case of any
doubt, access is denied. If the conservative policy is considered too restrictive, it is always
possible to define the predicate group_denied access to_ to be false everywhere.

Let us suppose that the access control mechanism of Unix is to be evaluated against the
above requirement. In Unix, each file belongs to a user and is associated with exactly one
group. The permission mode of a file consists of three parts: the access rights of the user, the
group, and the others. The tokens r,w,x stand for the rights to read, write, or execute the
file, respectively. The token “-” means that the corresponding access right is denied.

This means that the access information is stored locally with each Unix object, not globally
as in the PLUSS specification. The most natural way to specify the Unix access control
mechanism is not algebraically but model-based since the access information is stored in a
global system state. A formal specification of the Unix access control mechanism in 7 can be
found in (Peleska, 1995).

Therefore, the task is to show that a model-based specification of a concrete access control
mechanism captures security requirements that are specified algebraically, i.e. that it is a
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correct refinement. For algebraic as well as model-based specifications, there are notions of
refinement. However, it is not clear what it means that a model-based specification is a
refinement of an algebraic one. To make the transition between the algebraic and the model-
based world as smooth as possible, we introduce an intermediate specification. It is stated in
7 and is an abstraction of the Unix access control mechanism. The parameters of the PLUSS
specification are introduced as basic types.

[USER, GROUP, OBJECT]

The access information is stored together with the respective object, like in Unix. We
abstract, however, from the different possible access rights and treat users and groups sym-
metrically, as in the algebraic specification. The information about which groups a user is
associated with is also localized.

— ZObject

o: OBJECT

pos_user, neg_user : F USER
pos_group, neg_group : F GROUP

pos_user N neg_user = &
pos_group N neg_group = &

User

|7 userid : USER

assoc_with : F GROUP

The following schema specifies when a user is granted access to an object.

_ GrantAccess
u? 1 User
z0? : ZObject

(u?.userid € z0?.pos_user V
(Fg1 : GROUP o (g1 € (u?.assoc_with N zo?.pos_group))))
u?.userid ¢ zo?.neg_user
= (g2 : GROUP e (g3 € (u?.assoc_with N zo?.neg_group)))

It must now be shown that if the Z schema grants a user access to an object then this
must comply with the abstract predicate grant_access to_. The algebraic notion of refinement
by model inclusion (Wirsing, 1990) requires us to do the following:

1. Provide a signature morphism from the abstract entities to the concrete ones.
2. Apply the signature morphism to the axioms of the abstract specification.

3. Show that the formulas obtained in this way are theorems of the concrete theory.
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In this special case, the refinement is relatively simple. The algebraic specification consists
solely of predicates. All of these except grant_access to_ are “auxiliary predicates” that do not
belong to the “user interface” of the specification. These auxiliary predicates are represented
by sets in the abstract Z specification. This is justified because a predicate and its extension
can be regarded equivalent. In the general case, however, more research is needed to define
a mapping between the algebraic semantics based on universal algebras to the Z semantics
based on sets. The signature morphism is as follows:

group +— GROUP
user +— User
object +—  ZObject
user_allowed accessto_ —  Au: User; zo : ZObject o u.userid € zo.pos_user
user_denied accessto_ +—  Au: User; zo : ZObject ® u.userid € zo.neg_user
group_allowed accessto_ +—  Ag: GROUP; zo : ZObject ® g € zo.pos_group
group_denied accessto_ — Ag: GROUP; zo : ZObject @ g € zo.neg_group
_associated with_ —  Au : User; g: GROUP e g € u.assoc_with
grant_accessto_ +—  GrantAccess

In this signature morphism, we have only changed the name of the predicate that makes
up the user interface of the specification. The internal predicates have been replaced by
their extensions. In this way, we have made sure that GrantAccess can be used instead of
grant_access to_ without any restrictions, provided GrantAccess fulfills the axioms stated for
grant_access to_. This can easily be shown to be the case.

In this example, the desire to combine different formalisms arose because the formal
specifications had different levels of abstraction. For abstract properties, algebraic techniques
are the most natural, and for the specification of concrete realizations, model-based techniques
are appropriate.

Many more useful combinations of different specification techniques are conceivable. Weber
(Weber, 1996) combines Statecharts (Harel, 1987) and Z for the design of safety-critical
systems. Zave’s and Jackson’s (Zave and Jackson, 1993) multiparadigm specifications are
combinations of partial specifications expressed in different languages. In Chapter 3, we
present a combination of Z and real-time CSP in detail.

2.4.2 Leaving out Details

Formal specifications need not be useful in every situation; sometimes it is more important
to keep the specification concise and easily comprehensible. In (Heisel and Krishnamurthy,
1995b), the specification of an existing event-action system called YEAST (Yet another Event
Action Specification Tool) is given. As already mentioned in Section 2.3, matching of events
against event-action-specifications is very important for such systems. Starting out from
so-called primitive events, the event language of YEAST allows one to build complex event
expressions, using the connectors then (sequencing), and (conjunction), and or (disjunction).

Matching of composite events can be defined in terms of matching of primitive events
relatively easily. A specification of matching for primitive events, however, would be no
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more abstract than the code itself and would make the formal specification much longer and
less comprehensible. Therefore, matching of primitive events is not included in the formal
specification but only described in the system documentation. For the formal specification of
matching, this means that we declare a matching predicate on primitive events, but do not

define it.
‘ _matches_: (EVENT x TIME) «— (EVENT x TIMFE)

The further specification of the matching process can now make use of this predicate, even
though its meaning is not contained in the formal specification.

This relaxation to formal specification discipline can be applied in those cases where
a formal specification would not be an abstract description of system behavior but only a
different notation for a program.

2.4.3 lIgnoring Restrictions

We expect that almost everybody who has some experience in formal specification techniques
has encountered situations of surprise and annoyance, where it seemed obvious how to write
down some formal expression, only that the designers of the formal notation had not foreseen
the respective situation and hence excluded this possibility. Sometimes, it is advisable to
disregard such language restrictions. We illustrate such a situation by a specification of the
Unix file system, which will be presented in more detail in Section 7.4.

The Unix file system presents itself to the user as a tree where each node has a name and
an arbitrary number of successors. A specification of such trees should be present in some
library for re-use, where the content of the nodes (as opposed to their names) should be a
generic parameter. It appears straightforward to define such trees as a free type in Z:

[NAME]

NAMED_TREE[X] 1= If (NAME x X
| node(NAME x seq NAMED_TREE[X]))

Although it is semantically sound as long as X is not instantiated with a type or set depend-
ing on NAMED_TRFEF, this specification is invalid because free types in connection with
genericity are not allowed in Z. For the subsequent specification, it has to be decided if this
(unnecessary) restriction of the Z language should be ignored and the rest of the specification
should use the generic free type definition. In this case, we decided against it because Z type
checkers reject the above type definition; hence, tool support would be lost for the entire
specification.

Instead, we chose an alternative definition based on sets. Named trees are finite partial
functions from sequences of positive natural numbers into the Cartesian product NAME x X.

NAMED_TREE[X] ==
{f :seqN; =+ NAME x X |
() € dom f
A (¥ path :seq; Ny | path € dom f e
Sfront path € dom f
A (last path # 1 = front path ~ (last path — 1) € dom f))}
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This definition models trees as functions mapping “addresses” to the content of the node
under the respective address. Each node consists of a name and an item of the parameter
type X. The empty sequence is the address of the root. The length of an address sequence
coincides with the depth of the node in the tree. Hence, an address can only be valid if its
front is also a valid address. The number ¢ denotes the i-th subtree. If there is an i-th subtree
for ¢ > 1 then there must also exist an ¢ — 1-th subtree.

In comparison to free types, this definition looks quite complicated. Although the opera-
tions on named trees can be defined elegantly, this shows how much more incomprehensible
specifications can become when the specification language does not support the features best
suited for the situation at hand.

To specify a function selecting a successor of a node with a given name, we gave the
following specification:

=[X]
child_named : NAMED_TREE[X] x NAME + NAMED_TREE[X]

Vn: NAME; { : NAMED_TREE[X] e
(n € names(subtreest) = (t, n) € dom(child_named))
A child_named(t, n) € childrent
A name_of _tree(child_named(t,n)) = n

Again, there are problems with genericity. The above specification of the function child_named
is semantically invalid in Z because in the reference manual it is required that “the predicates
must define the values of the constants uniquely for each value of the formal parameters.”,
(Spivey, 1992b, p. 80). This is not the case here, because if there is more than one child with
the given name, child_named selects an arbitrary one. However, we do not see any difficulties
with a definition like this. On the contrary, it has the advantage to give an implementor the
greatest possible freedom: if it is more efficient to search the list of subtrees from the back to
the front instead of vice versa, it should be possible to do so.

“Legal” possibilities would be to either define child_named as a relation instead of a
function or give an unambiguous definition. Both of these do not cover our intention, namely
to state that of the several functions satisfying the specification we do not care which one
is implemented. Since this specification clearly has a a well-defined semantics and no type
checker can find the “violation”, it is possible to stick to this “illegal” specification without
loosing tool support.

2.5 Phase 4: Mapping between Requirements/Description and Specifica-
tion

The effort to record where in the specification the various requirements or features of a
system are reflected is worthwhile, because such a mapping serves several purposes. First,
it helps us understand the formal specification, starting from an intuitive understanding
of the requirements or system features. Second, it may help to detect misconceptions in
case the intuitive understanding of the system contradicts the corresponding parts in the
formal specification. Third, changes in the system usually first manifest themselves in the
requirements. The mapping helps us find out what effects the change in the requirements has
on the formal specification and indirectly on the code. If a change is very hard to accomplish
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in the formal specification, it can be expected that changing the code would be difficult, too.
Fourth, in case the correspondence between specification and code is not available, it helps
to detect those parts of the code implementing a certain feature of the system.

To illustrate this mapping, we come back to the example of Sections 2.3 and 2.4.2, the
YEAST case study. We demonstrate how the criterion of grouping specifications is reflected
in the formal specification. The schema defining the global system state is

__ SpecState
specs : F Spec
specMap : LABEL —~ Spec
groups : GNAMFE «+— LABFL

specMap = {s : specs o s.label — s}
ran groups C dom specMap

Specifications can be referred to using labels. This is reflected by the injective partial function
specMap. The group component of the schema records which specification belongs to which
groups via labels.

Other components of the formal specification onto which the criterion of grouping spec-
ifications is mapped include all operations having arguments or results of type GNAME
or changing the groups component. Once we know that GNAME and group represent the
grouping mechanism, these other components can be found automatically because they are
characterized purely syntactically. In case the grouping mechanism is to be changed, the
mapping gives all parts of the formal specification that have to be considered.

YEAST was formally specified only after it has been implemented. Therefore, this case
study serves well toillustrate the treatment of legacy systems. For these systems, the mapping
between criteria (i.e. the informal description of the system) and the specification is especially
useful because it helps to locate the criterion in the code®.

In order to locate those parts of the YEAST code that implement the grouping mechanism,
we used the mapping from the criterion to the formal specification (which points out all
relevant user operations) to generate test cases that should trigger the code associated with
specification grouping. All of these were executed with various inputs. Different reverse
engineering tools made it possible to pinpoint the set of functions implementing specification
groups. Only 22 functions out of 262 were executed more than once. Some of these were
library and other utility functions. This left only a handful of functions that had to be
considered. For more details, see (Heisel and Krishnamurthy, 1995a).

2.6 Phase 5: Validation of the Specification

For legacy systems, the validation is easier than for systems that are not yet implemented
because the implementation is available. In principle, even a formal verification would be
possible that establishes the consistency of the specification and the code.

For new systems, specifications can only be validated informally because no formal relation
can be established between the necessarily informal requirements and a formal specification.

5For newly designed systems, the mapping between the formal specification and the code could be recorded
from the beginning.
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Validating specifications is very important because, as Brooks (Brooks, 1987) stated: “For
the truth is, the client does not know what he wants”. As possible validation techniques we
mentioned animation, proof of properties, and testing.

For animation, an executable prototype is built that makes it possible to “try things
out”. This possibility is very helpful in the elicitation of the “real” requirements. Elsewhere
(Heisel, 1995b), we have argued that formal specifications should be as abstract as possible and
that they should not introduce any implementation bias. Such specifications are usually non-
constructive and hence not executable. However, the possibility of animating the specification
is so valuable that we consider it worthwhile to perform a few refinement steps in order to
make the specification executable.

Proving properties of the specification (e.g. that two operations are inverses of each other)
or showing that in certain situations something undesirable cannot happen also enhance con-
fidence in the specification and contribute to its understanding. The problem with this tech-
nique may be to find the relevant properties to be proven. In a more concrete context, like the
specification of safety-critical systems (see Chapter 3), or software design using architectural
styles (see Chapter 4), detailed validation guidelines can be given.

Finally, specifications can be tested almost like code. Test cases (that must be selected
anyway) can be used to check if the specification captures the expected behavior of the system
for these cases.

2.7 Summary

Our work aims at supporting the introduction and application of formal techniques in system
specification and development. We take a pragmatic viewpoint of formal techniques. They
should not be applied under all circumstances but only in situations where it is clear what is
gained by their application. To achieve this aim, we must (i) show how formal specification
techniques can be integrated in the traditional software engineering process, and (ii) show
how the undeniable drawbacks of formal techniques can be dealt with.

Integration in traditional software processes

The application of formal techniques can only be successful when it is well prepared. This
means that those phases of the software process where formal techniques cannot be applied
are not to be neglected. On the contrary, requirements analysis must be performed at least as
thoroughly as in a traditional process. Our approach gives a guideline how to proceed: first
create a suitable language, and then use it to express all relevant requirements or facts about
the system. It clearly does not suffice to hand a formal language description to specifiers and
then expect them to be able to write formal specifications. Not only the formal techniques
themselves have to be learned, but also how formal techniques can smoothly be integrated in
the process model to be followed.

Relaxations of formal specification discipline

Our pragmatic approach to using formal specification techniques directly addresses the prob-
lems described earlier.

e If a formal specification technique not suitable to specify certain aspects of a system,
and is suitable for other aspects, then different formalisms should be combined.
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o If formally defining every detail would enlarge the specification disproportionally and
make it harder to comprehend, then some aspects of the system should not be formally
specified at all.

e If it is clear how some aspect of the system could be specified but the chosen formalism
is too weak, then appropriately commented “illegal” specifications should be considered.

The proposed relaxations are most valuable in situations where formal techniques would
otherwise be rejected because a complete specification using a single formalism would be too
long, too complicated, or too expensive to develop. Of course, all these relaxations have
to be used with care. It must always be demonstrated that the resulting specifications are
semantically sound.

One might object that such a “pragmatic” specification does not enjoy the advantages
of formal specifications as enumerated at the beginning of this chapter any longer. Even
if this were true, a “pragmatic” specification would still lead to a better analysis of the
system, contain fewer ambiguities and better document the system behavior than an informal
specification does. Even in connection with formal techniques, there are better choices than
“all or nothing”.

However, it need not always be true that “pure” specifications are superior to “pragmatic”
ones. Consider the case of the embedded safety-critical systems, which we will discuss in detail
in Chapter 3. Rejecting the combination of Z with another formalism means that important
aspects of safety-critical systems cannot be formally specified at all or only in an unsatisfactory
way.

In summary, our approach has the following benefits:

e An agenda makes explicit the tasks to be performed and their interdependencies.

e The relaxations of formal specification discipline recommended for transforming require-
ments into formal specifications (if necessary) contribute to making the specification less
complicated and better comprehensible.

e Validating the specification helps to make the specification complete and conforming
more closely to the wishes of the customers.

e When requirements change, the mapping between requirements and formal specification
shows where changes have to be made in the formal specification. The corresponding
code can be found with reverse engineering techniques.

2.8 Further Research

The pragmatic approach can be further elaborated in the following ways:

Method for requirements engineering. The elicitation of the requirements was only de-
scribed very briefly. We intend to develop agendas for requirements engineering. They
should be defined such that the application of formal specification techniques is well
prepared.
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Combination of algebraic and model-based specifications. The example of a combi-
nation of the algebraic language PLUSS and the model-based language 7 we presented
in Section 2.4.1 was a simple case, where we considered only predicates, which can
be identified with their set-theoretic extensions. More research is needed to develop a
general notion of refinement between algebraic and model-based languages.

Integration of semi-formal methods. In this and the following chapter, we consider the
combination of different formal specification languages. It is also promising to con-
sider the combination of semi-formal, e.g. graphical notations with formal ones. This
would make it possible to gradually enrich traditional techniques with formal elements.
The tasks here are to develop such combinations and to develop agendas for existing
combinations, e.g. (Weber, 1996).

Other relaxations. More experience should be gained concerning useful relaxations of for-
mal specification discipline.

Reverse engineering. To successfully adapt and maintain legacy systems, reverse engineer-
ing techniques must be applied. Methods and agendas for this purpose remain to be
developed.



Chapter 3

Specification of Safety-Critical Software with
/ and Real-Time CSP

Although every software-based system potentially benefits from the application of formal
methods, their use is particularly advantageous in the development of safety-critical systems.
These are systems whose malfunctioning can lead to accidents resulting in loss of property or
danger for human lives. The potential damage operators and developers of a safety-critical
system have to envisage in case of an accident may be much greater than the additional costs
of applying formal methods in system development. It is therefore worthwhile to develop
formal methods tailor-made for the development of safety-critical systems.

Most safety-critical systems are reactive. This means they do not just perform data
transformations, like payroll systems. Instead, they are not intended to terminate, and their
behavior depends on stimuli coming from the environment and their internal state which
usually is an approximation of the state of the environment. Frequently, they have to fulfill
real-time requirements.

From these characteristics, it follows that two aspects are important for the specification
of software for safety-critical systems. First, it must be possible to specify behavior, i.e. what
happens in the system in which order, how the system reacts to incoming events, and what
signals it sends to the environment under which conditions. The specified behavior must
additionally take place sufficiently fast. This is a crucial requirement for the system and thus
should be expressed in the specification. Second, complementing the behavioral specification,
the structure of the system’s data state and the operations that change this state must be
specified.

Both of these parts are of equal importance, and a specification that ignores one of them
would not be satisfactory. Process algebras offer appropriate constructs to specify behavior.
With some extensions, also real-time requirements can be expressed. Model-based specifi-
cation languages are suitable to specify the data-oriented part of the system. Since they
allow the legal states of the system to be explicitly and elegantly specified, they are to be
preferred over algebraic languages in this context. A combination of a process algebra and a
model-based specification language yields a suitable language for the specification of software
for safety-critical systems.

We choose to combine the specification notation 7Z with the process algebra real-time CSP
(Davies, 1993) which adds real-time constructs to CSP (Hoare, 1985). Both languages are

27
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fairly well known and frequently used. Other such combinations, however, (e.g. VDM (Jones,
1990) and CCS (Milner, 1980)) would also be conceivable. Although with the language
LOTOS, a combined language already exists, we do not use it because the specification
language contained in LOTOS is a simple algebraic language that is less appropriate than 7
for the data-oriented part of the specification.

A combination of two different specification languages must be given a common seman-
tics; otherwise, combined specifications cannot be regarded as completely formal. Once this
is achieved, we obtain a specification language tailored for the modeling of safety-critical
systems.

A mere language, however, does not suflice to improve product quality. A methodology
for its application that provides specifiers with guidance on how to construct specifications
is indispensable. We provide such a methodology by identifying frequently used designs of
safety-critical systems. These designs are expressed as reference architectures, and for each
architecture we give an agenda that can be followed to develop an instance of the architecture.

The validation of a specification is as important as a controlled process for its development.
Therefore, our approach also contains guidelines for this purpose. In the agendas, general
validation criteria are stated that are independent of concrete applications, referring only
to the chosen architecture. Furthermore, two different kinds of properties are important for
safety-critical systems, namely safety-related and liveness properties. Examples are assertions
that the system cannot stay longer than a certain time in a certain state, that the violation
of a safety constraint is noticed within some time limit, that certain conditions exclude each
other, or that certain conditions always occur together. Our method encourages specifiers to
identify and demonstrate such properties.

The main focus of this chapter is on the development of the specification and its validation.
A formal specification is a necessary prerequisite for the usage of formal methods in the
development process. Later phases like design and implementation can only be supported
by formal methods in presence of a formal specification. But formal specifications are not
only necessary for exploiting the benefits of formal techniques. Often, it is even sufficient to
develop a formal specification and perform the subsequent development steps with traditional
methods to obtain a considerable gain in product quality (Houston and King, 1991).

Nevertheless, our approach also offers formal support for the later phases of the software
development process. A notion of refinement for specifications in the combined language is
defined, and how code can be synthesized for the Z part of a combined specification is shown
in Chapter 6 and Section 7.5.

In the following, we first make explicit what kind of system we want to specify with our
methodology (Section 3.1). This gives us a structure and the vocabulary to adequately model
this kind of system. We then present the common language to be used in Section 3.2. The
reference architectures and the corresponding agendas presented in Sections 3.3 and 3.4 make
use of the language. How to further refine the specifications developed with the help of the
agendas is explained in Section 3.5. A discussion of the approach, a summary and further
research directions conclude the chapter. This chapter further elaborates concepts presented
in (Heisel, 1995a; Heisel, 1996a; Heisel and Siihl, 1996b; Heisel and Siihl, 1996a; Siihl, 1996).
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3.1 System Model

The purpose of the systems we want to consider is to control some technical process, where
the control component is at least partially realized by software, see Figure 3.1 and (Leveson,
1995). Such a system consists of four parts: the technical process, the control component,
sensors to communicate information about the current state of the technical process to the
control component, and actuators that can be used by the control component to influence the
behavior of the technical process.

The control component may consist of several sub-components, some of which can be
realized with software. In the following, we focus on the software-based parts of the control
component. A software-based control component affects certain process variables (manipu-
lated variables) by sending commands to actuators. By evaluating the current state of certain
process variables which are measured by sensors (controlled variables), the control component
approximates the current state of the technical process to verify the effect of the commands
sent to the actuators (feedback control) and to determine further commands to be sent. It
is very important that the image of the state of the technical process that is built up in the
software control component is sufficiently accurate and up-to-date. In the following, we will
call this state the internal state, because it is internal to the software control component; the
state of the technical process we will call the external state.

The behavior of the technical process does not only depend on internal conditions within
the process, e.g. the state of the manipulated variables, but it is also influenced by external
disturbances. The basic objective of process control is to achieve the process control function
in spite of disturbances from the environment.

Safety can be defined as the property of a system to be free from accidents or losses
(cf. (Leveson, 1995)). It follows that a software component which is considered in isolation
cannot be unsafe because it is not directly able to cause a loss event. Safety is a property
of a whole system in the context of its environment rather than a property of a separate
system component. A method concerned with software development for safety-critical systems
must aim at system safety and can only be evaluated in this respect. Hence, the following
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subsystems of a safety-critical system must be modeled to contribute to system safety:

e all parts of the process-control component, i.e. software components, mechanical and
electrical components, and interfaces to human operators,

e sensors, determining the projection of the technical process state to the internal state
of the control component, and

e actuators, which realize the execution of commands given by the control component
within the technical process.

Another desirable property of software systems is correctness. What is the relationship
between safety and correctness? The latter is defined as the property of a software component
to fulfill the relation between inputs and outputs prescribed in the component specification.

One might consider safety to be a weaker requirement than correctness. Leveson (Leveson,
1986) states “We assume that, by definition, the correct states are safe.” However, safety
concerns have an influence on what is considered a correct state. For example, incorrect
measurements of process variables or the failed realization of given commands by the actuators
are normally not relevant in the context of correctness. To achieve system safety, on the other
hand, the thorough examination of the above situations is a necessary condition.

This leads to differences in the modeling of a system. If correctness in the usual sense of the
word is striven for, the environment in which the system operates, hardware failures, and the
credibility of inputs are of no interest. In contrast, to achieve system safety, the environment
must explicitly be modeled, too. It is necessary to try to detect hardware failures, and not
only the specified relation between input and output values must be guaranteed. It must also
be checked if the input values can represent a possible situation in the real world, e.g. by
consistency checks on different sensors and by redundant arrangements of sensors.

The approaches to guarantee correctness on the one hand and safety on the other hand
do not differ in a technical, but in a methodological way: in the end, safety requirements are
expressed as functional requirements, and safety is guaranteed by developing software that is
correct with respect to the safety requirements.

3.2 A Language to Specify Safety-Critical Software

In general, the control component of a safety-critical system is a reactive system, which is
characterized as being mainly event-triggered. It continuously reacts to events occurring
within the environment by invoking internal operations and subsequently emitting resulting
events into the environment. Hence, two aspects of the software component must be specified
in an adequate way: First, how does it react to events, and second, how is its internal state
defined, and how can it evolve? Accordingly, we split the specification of a software component
into two parts.

1. In the dynamic part the reactive behavior of the software component is specified, i.e. its
reaction to the occurrence of events within the technical process (detected by sensors)
which is realized by invoking internal operations and giving commands to the actuators.
In this part, real-time requirements and the ordering of events are crucial.
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2. In the functional part the invariant properties and the structure of the possible internal
system states, i.e. data structures, are specified, as well as the operations applied to
these states . Operations on the internal state are defined by relations between inputs,
outputs, and the internal system states before and after the execution of the respective
operation.

The specification languages 7 and real-time CSP provide constructs to adequately express
both aspects. Before we can show how the two languages are combined, we give a brief
description of the language real-time CSP.

3.2.1 The Language Real-Time CSP

Real-time CSP (Davies, 1993; Davies and Schneider, 1995) is a language to model the com-
municating behavior of real-time systems. It adds real-time constructs to CSP (Hoare, 1985;
Hinchey and Jarvis, 1995). The following definitions are mostly taken from (Davies and
Schneider, 1995).

A process denotes the behavior pattern of a component of a real-time system. Fuvents
mark important points in the history of a process at which a process may communicate or
interact. The set of events a process can engage in is called its alphabet.

Events are atomic and instantaneous, i.e. their occurrence takes no time. Processes need
not compete for resources. This property is called maximal parallelism. The property of max-
imal progress says that internal events occur as soon as possible. Communication between
processes is synchronous, i.e. each communication event requires the simultaneous participa-
tion of the involved processes.

Syntax of Real-Time CSP

Process expressions of real-time CSP are built from the following syntactic constructs:

Prefix: a — P first accepts event a and subsequently behaves as process P.

External Choice: P O () behaves either identical to process P or () where the environment
might influence this choice by accepting a certain initial event.

Internal Choice: P M @ behaves either identical to process P or () where the environment
can neither influence nor observe the choice.

Channel Input: ¢?z — P(z) first is ready to receive an arbitrary value z from channel ¢
and afterwards behaves as the parameterized process P(z).

Channel Output: clv — P first is ready to write the value v to the channel ¢ and subse-
quently behaves equal to process P.

Parallel Composition: P || ) has the processes P and () as parallel subprocesses.

Hiding: P \ A behaves as P, except that all events contained in the event set A are hidden
from the environment, i.e. they become internal.

Sequential Composition: P; () first behaves as process P until its termination and after-
wards behaves as process ).
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Conditional: (if b then P else @ fi) behaves as P if the predicate b is true. Otherwise it
behaves as Q).

Interrupt: P A () behaves as P until the environment offers an initial event of ). From
then on, P is discarded and the process behaves as ).

Atomic Process: Skip accepts the termination event before releasing control; Stop never
engages in any event.

Wait: Wait t does not accept any event for the first ¢ time units and afterwards is ready to
accept the termination event before releasing control.

Timeout: P >{t} @ is initially prepared to behave as P, but if no events have occurred
within ¢ time units, it begins to behave as () instead.

Timed-Interrupt: P {t} @) behaves as P for ¢ time units, and then behaves as Q.

Semantics of Real-Time CSP

Different semantic models have been developed for CSP. Each process is associated with the
set of observations that can be made during its execution. In the traces model, an observation
is a sequence of events:

traces : CSP — P(seq EVENTYS)

In this model, however it is impossible to specify non-deterministic behavior: the processes
P O ¢ and P M ¢ cannot be distinguished. This leads to the failures-divergences model,
where two semantic functions are defined:

failures : CSP — P(seq EVENTS x P EVENTYS)

maps a process onto a set of pairs, consisting of a trace and a set of events, called a refusal.
A pair (tr, ref) is a failure of process P if P may perform ¢r and then refuse every event in

ref.
divergences : CSP — P(seq EVENTS)

A trace tr is a divergence of P if P may engage in an unbounded sequence of internal events
after performing tr.

For real-time CSP, a timed failures model is defined. This model associates with each
process term a set of timed failures which represents possible observations of the process. A
timed failure consists of a timed trace and a timed refusal. A timed trace is a sequence of
timed events, where each timed event is a pair of an event and the time instant at when it
was observed. A timed refusal is a set of timed events. In the case when the corresponding
timed trace has been observed, an event can be refused by the system at a time instant if the
corresponding pair is a member of the timed refusal.

timed failures : RT_CSP — P(seq TimedEvents x P TimedEvents)
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Behavioral Specifications

Two different styles of specifying the reactive behavior of systems in real-time CSP can
be distinguished. First, a term of the syntax of real-time CSP can be given to model the
dynamic behavior in a constructive manner which is amenable to further refinement. Second,
predicates can be used to constrain the set of possible behaviors. This is a more abstract
way of specification. Both approaches are semantically equivalent and can thus be combined
arbitrarily. The syntax for behavioral specifications is

Process sat Spec(o)

Its semantics is that all observations associated with the process must satisfy the specified
predicate:

Process sat Spec(o) <
Vo : OBSERVATIONS e o € semantic function [ Process] = Spec(o)

Specification of Timing Properties

The following specification macros allow one to state requirements concerning timed obser-
vations in a concise way. We would like to express that some event happens at some time
instant, or that the process or its environment are prepared to engage in an event at some
time instant.

The function o yields the set of events occurring in a trace or refusal. With 1, we restrict
the traces or refusals we consider to a certain time interval. We can then give a formal
definition of an event e happening at time ¢ or being refused at this time, relative to a trace
tr and refusal ref. To make assertions about a process, we must universally quantify over the
timed failures associated with the process.

eatt(tr,ref) & e€o(lr 1t t])
eref t (tr,ref) < e € o(ref 1 [t, t])

If a process accepts event e at time ¢, this is expressed by the predicate
e live t (tr,ref) < e at t (tr,ref) vV = (e ref t (tr, ref))

The event happens at time t or it is not refused by the process.
An event e is accepted by the environment of the process at time ¢ if it happens at ¢ or
is refused by the process.

e open t (tr,ref) < e at t (tr, ref) V e ref t (ir, ref)

This concludes our presentation of real-time CSP. We now define a software model that leads
to a suitable combination of the two languages.

3.2.2 Software Model

To achieve a suitable combination of both parts of the formal specification of a software
component formulated in Z and real-time CSP, we propose the software model shown in
Figure 3.2.
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Figure 3.2: Software Model

1. The innermost component which is expressed in Z specifies the functional aspects, i.e.
the structure and the properties of the valid internal system states as well as the re-
quirements for system operations.

2. Around this innermost component, a CSP process specifies the reactive behavior, i.e.
the absorption of values provided by the sensors, the invocation and termination of
internal operations, and the transmission of the operation results to the actuators.

3. The outermost component models the required behavior of the sensors and actuators.
It offers the possibility to specify fault tolerance mechanisms, e.g. the redundant ar-
rangement of sensors and actuators. The sensors and actuators can be modeled in Z or
in real-time CSP. This depends on the particular application®.

Both the 7 specification and the sensors and actuators form the environment of the CSP
process.

Informally, the relation between the elements of the 7 part and the CSP part of a formal
specification can be explained as follows, see also Figure 3.3. For each system operation Op
specified in the Z part which is intended to be externally available, the CSP part is able to refer
to the events Oplnvocation and OpTermination, whose occurrences represent the invocation
of the system operation Op by the software component and its termination, respectively. The
two events mark the execution interval of an operation. This makes it possible to specify
requirements for the maximal duration in terms of assumptions about the environment which
constrain the availability of these events, see Section 3.3. Alternatively, if the duration of the
execution is negligible, only one event OpFzecution is used to represent the execution of the
operation Op.

'In Section 3.3.2, a redundancy mechanism is specified in Z. In Section 3.4, priorities on sensor messages are
specified in real-time CSP.
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For each input in? : Type of a system operation Op, there is a communication channel in
within the CSP part onto which an input value possibly derived from sensor measurements
is written before operation invocation. The alphabet of this channel is identical to the type
of the operation input.

Analogously, for each output out! : Type of a system operation, there is a communication
channel out in the CSP part from which the output value of the operation is read after
termination and possibly used to derive commands to the respective actuator.

The dynamic behavior of a software component may depend on the current internal system
state. To take this requirement into account, a process of the CSP part is able to refer to the
current internal system state via predicates which are specified in the Z part by schemas.

These links between both parts contribute to a clear separation of the functional aspects
from the dynamic aspects of the system.

The connection between the CSP part and the specification of the intended behavior of
the sensors and actuators is as follows. The CSP part is linked with every sensor via a
communication channel from which the measured values of the respective sensor are read.
Analogously, the CSP part is connected to every actuator via a communication channel onto
which the commands to the respective actuator are written.

Furthermore, the specification of communication channels in terms of CSP processes makes
it feasible to model aspects of a distributed communication, for example the delay of trans-
mission or the redundant arrangement of unreliable communication channels.

3.2.3 Common Semantic Model

In this section, we outline the formal definition of the semantics associated with a combined
specification as explained informally in the previous sections. The basis of this definition is
the semantic function of the timed failures model of real-time CSP, which we mentioned in
Section 3.2.1.

To define a semantic function for the combined language consisting of 7Z and real-time
CSP, we must define the set of all possible observations of a system specified in the combined
language. In this context, apart from traces and refusals, a third component is of importance,
namely the evolution of the internal system state within the observation interval. Hence an
observation for a combined specification is a tuple consisting of a timed trace, a timed refusal,
and a timed state. A timed state is defined as a function that maps every time instant of the
observation interval to the observed system state.

The 7 part of a specification is characterized by a state schema State, an initial state
schema InitState, a set of external operation schemas Opl,..., OpN, and a set of predicates
on the internal system state Predl,..., PredM. The CSP part of a specification is charac-
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terized by a term of real-time CSP and a predicate of the timed failures model. The set
RESTR_RTCSP_PROCESS contains all process terms of real-time CSP that do not allow
subprocesses to perform an event concerning the execution of a system operation (and con-
sequently to cause a state change) in parallel with other subprocesses that either perform an
operation event or evaluate a predicate on the internal system state?. Furthermore, the set
TF_PREDICATE contains all predicates of the timed failures model. Thus the signature of
our semantic function is as follows.

timed failures states : SCHEMA x SCHEMA x P SCHEMAX
P SCHEMA X RESTR_RTCSP_PROCESS x TF_PREDICATE—+
P((seq TimedEvents X P TimedLvents) x (TIME - STATES))

A possible observation ((tr, ref), tstate) of the behavior of the specified system can be inter-
preted in the following sense: the timed failure (¢r, ref) consisting of the timed trace ¢r and
the timed refusal ref is defined by the semantic function timed failures as a possible obser-
vation of the CSP process, and the timed state tstate maps each instant of the observation
interval to an internal system state. This internal system state must be one of the states that
can be reached at the respective time instant, starting from an initial state and proceeding in
accordance with the operation events as well as their assigned input and output values which
are recorded in the timed trace tr up to the considered time instant. The formal definition
of the function timed failures states can be found in (Siihl, 1996).

3.3 The Passive Sensors Architecture

There are several ways to design safety-critical systems, according to the manner in which
activities of the control component take place, and the manner in which system components
trigger these activities. We express two of these different approaches to the design of safety-
critical systems as reference architectures. The first architecture, which is the subject of
this section, assumes that sensors are passive measuring devices. The second architecture,
presented in Section 3.4, assumes that sensors can cause interrupts in the control component.

For each of the reference architectures, we define an agenda. The agendas describe the
steps to be taken to specify software control components suitable for the reference archi-
tectures. They provide schematic expressions of Z or real-time CSP that only need to be
instantiated, and state validation obligations that should be fulfilled. Our general approach
to the specification of safety-critical software is to first decide on the architecture of the sys-
tem for which a software control component must be specified, and then to follow the steps
of the corresponding agenda.

The two architectures we present cover frequently used design principles of safety-critical
systems. However, the aim of this work is not to completely cover the area of specification
of safety-critical systems, but to show that detailed guidance can be provided to specifiers
of software systems, under the condition that special contexts are considered, which stem
from particular application areas. Consequently, other reference architectures for the design
of safety-critical systems are useful, too. An example is a reference architecture for dis-
tributed systems, where each component may have its own private state. These additional

2We do not give a formal definition of RESTR_RTCSP_PROCESS but only note that in the specifications

developed with our method at most one process of a parallel composition refers to the 7 part of the specification.
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reference architectures could be supported in a similar way as the ones presented in this chap-
ter. Furthermore, concrete safety-critical systems need not be “pure” instances of predefined
architectures. When necessary, reference architectures can be combined as appropriate.

For both reference architectures we present, we assume that it is appropriate to distinguish
several operational modes of the system. Within distinct modes, which can model different
environmental or internal conditions, the behavior of the system — and thus the control com-
ponent — may be totally different. For instance, an elevator might assume different operational
modes when moving up, moving down, not moving with the door open, and not moving with
the door closed. Depending on the mode, the reaction of the elevator to a pressed button will
be different.

In the passive sensors architecture, all sensors are passive, i.e., they cannot trigger activities of
the control component, and their measurements are permanently available. This architecture
is often used for monitoring systems, i.e., for systems whose primary function is to guarantee
safety. Examples are the control component of a steam boiler whose purpose it is to ensure
that the water level in the steam boiler never leaves certain safety limits (see (Heisel, 1996a;
Siihl, 1996)), and an inert gas release system, whose purpose is to detect and extinguish fire.
We present a specification of the latter as an example of the passive sensors architecture in
Section 3.3.2.

Figure 3.4 shows the structure of a software control component associated with the passive
sensors architecture. Such a control component contains a single control operation, which is
specified in Z, and which is executed at equidistant points of time. The sensor values v
coming from the environment are read by the CSP control process and passed on to the Z
control operation as inputs. The Z control operation is then invoked by the CSP process, and
after it has terminated, the CSP control process reads the outputs of the Z control operation,
which form the commands ¢ to the actuators. Finally, the CSP control process passes the
commands on to the actuators.

sensor values

real-time CSP
s?v

i?

ControlOperationinvocation

internal =1 control

system Operation
state =

ControlOperationTermination

Actuators

e i + 0?c

actuator commands

Figure 3.4: Software Control Component for Passive Sensors Architecture
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The passive sensors architecture is suitable only for systems where all actuators are able
to perform the commands given by the control component at arbitrary time instants, and for
which it can be guaranteed that executing the control operation at equidistant time instants
suffices to obtain a sample rate that is high enough to provide all relevant information about
changes of the external system state.

3.3.1 Agenda for the Passive Sensors Architecture

An agenda gives instructions on how to proceed in the specification of a software-based
control component for systems as described in Section 3.1, according to a chosen reference
architecture. It consists of several steps, some of which have validation obligations associated
with them. The steps need not be carried out exactly in the given order. Some of them
are independent of each other. In the following, we give a graphical representation of the
dependencies between the different steps for each agenda we present.

The validation obligations given in an agenda state only validation mechanisms that are
independent of concrete applications. Usually, the specifications developed according to an
agenda should be validated further, taking the specifics of the application into account. Such
further validation will usually consist of mathematical proofs, where safety-related as well as
liveness properties of the specification are demonstrated.

The agenda for the passive sensors architecture is summarized in Table 3.1. The depen-
dencies between the steps are shown in Figure 3.5.

IS S e
N <E/

Figure 3.5: Dependencies of steps of agenda for passive sensors architecture

We now explain the steps one by one.

In the first step, we model the sensor values and actuator commands, i.e. the interface of
the software component with its environment. Since for the architecture of passive sensors,
the sensors are mere measuring devices, the measurement values of the sensors must be
modeled as members of appropriate types in Z. These types coincide with the alphabets of
the channels that are used by the CSP control process to read the sensor values coming from
the environment of the software component. Analogously, we have to define types that model
the actuator commands, which are an output of the Z control operation. Again, these types
coincide with alphabets of communication channels in of the CSP control process.

Step 1 Model the sensor values and actuator commands as members of Z types.

The defined types depend on the technical properties of the sensors and actuators. If the
sensor is a thermometer, the corresponding type will be a subset of the integers. If the sensor
can only distinguish a few values, the corresponding type will be an enumeration of these
values. The same principles are applied to model the actuators.
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No.| Step Validation Conditions
1 | Model the sensor values and actu-
ator commands as members of 7
types.
2 | Decide on the operational modes of
the system.
3 | Define the internal system states | The internal system state must be an
and the initial states. appropriate approximation of the state
of the technical process.
The internal state must contain a vari-
able corresponding to the operational
mode.
Each legal state must be safe.
There must exist legal initial states.
The initial internal states must ade-
quately reflect the initial external sys-
tem states.
4 | Specify an internal Z operation for | The only precondition of the operation
each operational mode. corresponding to a mode is that the
system is in that mode.
For each operational mode and each
combination of sensor values there
must be exactly one successor mode.
Each operational mode must be reach-
able from an initial state.
There must be no redundant modes.
5 | Define the Z control operation.
6 | Specify the control process in real-
time CSP.
7 | Specify further requirements if nec-
essary.
Table 3.1: Agenda for the passive sensors architecture
We assume that the controller is always in one of the operational modes Model, ..., ModeK

that are defined with respect to the needs of the technical process.

Step 2 Decide on the operational modes of the system.

The operational modes are defined as an enumeration type in Z. If possible, a fail-safe mode

should be defined. The system can then switch to this mode when safety can no longer be

guaranteed.

MODE = Model | ...| ModeK

Next, the legal internal states of the software component must be defined by means of a Z

schema.
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Step 3 Define the internal system states and the initial states.

The components of the internal state must be defined such that, for each time instant, they
approximate the state of the technical process in a sufficiently accurate way. The internal state
must contain all information that is relevant to control the technical process. The specifier
must decide if the sensor values are components of the state or if they are incorporated only
indirectly as inputs of operations. The components must suffice to characterize the operational
modes of the system.

The state invariant defines the relations between the components. It comprises the safety-
related requirements as well as the functional properties of the legal states. It can be set up
by one party, treating functional as well as safety-related requirements. Another possibility
is to set up two specifications, a functional and a safety specification by different parties
and then show that the safety requirements are entailed by the functional specification. The
latter approach can be used to double-check the safety requirements, or it may be enforced
by certification procedures or safety standards.

Initial states must be specified, too. Here, the specifier must decide if it is necessary to
define the initial states in terms of real sensor values or if default values for the components
suffice.

A suitable definition of the internal state is crucial for the safety of the system. Therefore,
we have several validation obligations.

Validation Condition 3.1 The internal system state must be an appropriate approxrimation
of the state of the technical process.

This condition cannot be proven formally. It is a reminder for the specifier to carefully
reconsider the definition. The specifier must be convinced that the internal state represents
all important aspects of the state of the technical process.

Validation Condition 3.2 The internal state must contain a variable corresponding to the
operational mode.

This variable mode will be used to define the Z control operation.

Validation Condition 3.3 Fach legal state must be safe.

This condition need only be shown if the state invariant does not directly contain the safety-
related requirements, as in the second scenario discussed previously, where the safety and
functional requirements are set up by different parties.

Validation Condition 3.4 There must exist legal initial states.

If this condition were not true, our state definition would be erroneous.

Validation Condition 3.5 The initial internal states must adequately reflect the initial ex-
ternal system states.

System safety can only be guaranteed if, on initialization of the system, the internal state
faithfully reflects reality.
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We must now specify how the state of the system can evolve. When new sensor values are
read, the internal state must be updated accordingly.

Step 4 Specify an internal Z operation for each operational mode.

Each of these Z operations specifies the successor mode of the current mode and the commands
that have to be given to the actuators, according to the sensor values. It is normally useful
to define separate schemas for the sensor values and actuator commands according to the
following schematic expressions Sensors and Actuators. The internal Z operations then import
these schemas.

Sensors = [SystemState; input1? : STypel; ... ; inputN7? : STypeN |
(consistency conditions | redundancy mechanisms) |

The types of the different inputs have been defined in Step 1. If necessary, the predicate part
of the schema should contain the specification of consistency checks concerning the sensor
measurements in relation to the internal system state. Therefore, the Sensors schema may
import the state schema SystemState. Moreover, in the Sensors schema, redundancy mech-
anisms can be specified, e.g., the arrangement of several identical sensors and the derivation
of a unique value from a set of measured values of the same controlled variable.

Actuators = [SystemState’; output1! : ATypel; ... ; outputM' : ATypeM |
(derivation of commands) ]

In the Actuators schema, the derivation of commands from the current internal system state,
i.e., the state after the internal operation has terminated, is specified.

Validation Condition 4.1 The only precondition® of the operation corresponding to a mode
is that the system is in that mode.

This condition requires that the specifier not only takes the normal functioning of the system
into account, but also considers the situation where an inconsistency between the sensor values
and the internal system state is detected. We recommend to define a consistency condition
for each operational mode and then define the internal operation by case distinction on this
consistency condition.

Validation Condition 4.2 For each operational mode and each combination of sensor val-
ues there must be exactly one successor mode.

There must be at least one successor mode, because otherwise situations could arise that are
not taken care of by the specification of the control component. The internal state would no
longer faithfully reflect the external state, and safety could no longer be guaranteed.

There must be at most one successor mode, because otherwise the system would be non-
deterministic. Although determinism is not a necessary condition for safety, in the most cases
it will enhance comprehensibility of the specification.

®The formal definition of a precondition in Z also includes the state invariant and the requirement that the
inputs are members of the specified sets. These conditions, however, are preconditions of all operations working
on the system state and legal inputs. Therefore, we do not state them explicitly.
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Validation Condition 4.3 Fach operational mode must be reachable from an initial state.

Unreachable modes indicate a specification error. FEither the mode is not necessary and
should be eliminated, or the mode transition relation — which results from the definition of
the internal operations — is erroneous.

Validation Condition 4.4 There must be no redundant modes.

There should be no two modes that cannot be distinguished, i.e. where the system behaves

identically. Eliminating redundant modes makes the specification simpler and more compre-
hensible.

The central control operation defined in Z is a case distinction according to the operational
modes.

Step 5 Define the Z control operation.

For this operation, we give a schematic expression to be instantiated. By importing the
schemas Sensors and Actuators the operation has all inputs from the sensors at its disposition,
and it is guaranteed that all actuator commands are defined. The inputs and the current
operational mode determine the successor mode which is specified by the internal operations

OpModel .

— ControlOperation
ASystemState
Sensors; Actuators

mode = Model = OpModel
AN
mode = ModeK = OpModeK

This concludes the specification of the functional view of the system using 7. It remains to
define the behavior of the system using real-time CSP.

Step 6 Specify the control process in real-time CSP.

Again, we can provide schematic expressions to aid building the specification. First, the
system must be initialized, establishing an initial state. If the initial state schema requires
sensor values, these have to be read first. We give the schematic expression for the case where
the initialization is performed with default values.

ControlComponent = SystemlInitFExecution — ControlComponentrgapy

The behavior of the process ControlComponentrpapy (see Figure 3.4) is cyclic and is mod-
eled by a recursive process definition. Before invoking the control operation, all associated
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input values are read from the respective sensor channels (sensorl,..., sensorN) in par-
allel. This is modeled using the parallel composition operator ||. When the control op-
eration has terminated, all output values are written to the respective actuator channels
(actuatorl, ..., actuatorM) in parallel.

ControlComponentppapy = p X
((sensorl?valueS1 — inputllvalueS1 — Skip || ... ||
sensorN TvalueSN — inputN'valueSN — Skip);
ControlOperationInvocation — ControlOperationTermination —
(outputl?valueAl — actuatorllvalueAl — Skip || ... ||
outputM ?value AM — actuatorM'valueAM — Skip)

|
Wait INTERVAL); X

If the control operation is not time-critical, we can write ControlOperationFxecution instead
of Control OperationInvocation — ControlOperationTermination.

The constant INTIRVAL must be chosen small enough, so that it is guaranteed that the
internal system state is always sufficiently up-to-date.

The execution time of the process ControlComponentrpspy is the maximum of the ex-
ecution time of the Z control operation and the constant INTEFRVAL. Since we want the
control operation to be executed every INTEFRVAL time units, we must state the requirement
that the execution time of the control operation is at most INTEFRVAL time units. We can
formally express this requirement by limiting the maximal time distance between the invo-
cation and the termination of the control operation to INTERVAL time units. Moreover,
the invocation of the control operation must be possible at any time. This is expressed as a
predicate Environmental Assumption®:

Environmental Assumption =
(Vt:]0,00); tr : seq TimedEvents; ref : P TimedEvents |
(tr, ref) € timed failures [ ControlComponent] e
SystemInit Execution open t (tr, ref) A
ControlOperationInvocation open t (tr, ref) A
ControlOperationInvocation at t (tr, ref) = (3t : (¢, t + INTERVAL] ®
Vi [t',t + INTERVAL] e ControlOperationTermination open t"(tr, ref)))

Furthermore, we require that each sensor is always able to send a measured value to the
controller and that each actuator is always able to receive an arbitrary command from the
controller:

“Recall that the environment of the real-time CSP process consists of the sensors and actuators and the Z part
of the specification.
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SensorActuatorAssumption =
(Vt:]0,00); tr : seq TimedEvents; ref : P TimedEvents |
(tr, ref) € timed failures [ ControlComponent] e
(Fvalue : STypel o sensorl.value open t (tr, ref)) A

(Fvalue : STypeN o sensorN .value open t (tr, ref))
A
(V value : ATypel o actuatorl.value open t (tr, ref)) A

(V value : ATypeM e actuatorM .value open t (tr, ref)))

To summarize, the specification of the control process in real-time CSP consists of the
definition of the process ControlComponent and the behavioral specifications Fnvironmental-
Assumption and SensorActuatorAssumption. We see that both styles of specifying behavior
in real-time CSP (as process terms and as predicates) are useful and should be combined as
appropriate.

Step 7 Specify further requirements if necessary.

Additional requirements depending on particular applications can be stated in this step.

3.3.2 Example: The Inert Gas System

The following case study is a variant of a specification problem used in (McDermid and
Pierce, 1995). The software controller of an inert gas release system, which is operated from
the control room of a plant, is to be specified. The task of this system is to detect fire in
one of the machine rooms of the plant and to extinguish a detected fire with the help of inert
gas. The sensors are passive, always allowing the controller to request the current value of
the controlled process variable. The only control operation is executed at equidistant time
instants.

Step 1: Model the sensors values and actuator commands as members of Z types

To detect the event of a fire in a certain machine room, the software controller of the inert
gas system makes use of two redundantly arranged sensors (fire_detector1?, fire_detector2?)
that are able to detect the presence of smoke. The controller only assumes the existence of
fire if both sensors report smoke simultaneously. This redundancy mechanism will be defined
in Step 5. The gas sensor (gas_detector?) serves to observe if inert gas really escapes into the
machine room after the gas release has been initiated. Thus, it realizes feedback control. For
these sensors, we define the type DETECTION_STATUS.

There are two banks of extinguishant, bank A and bank B. By means of a bank selector
switch (bank_selector?) within the control room, the operator is able to select one of them
or to deselect both by choosing the INHIBIT position of the switch. This yields the type
BANK_SELECTOR_STATUS.

Inside the control room there is an inhibit switch (inhibit_button?), which —if in the inhibit

position — prevents a fire alarm being automatically triggered somewhere in the plant. The
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Figure 3.6: Operational modes of inert the gas system

This yields the following type definitions:

operator can by-pass such a global inhibit by pressing the request button (request_button?).
Moreover, the operator can abort the release of gas and reset the inert gas system at any
time by pressing the reset button situated in the control room (reset_button?). The states of
buttons are modeled by the type BUTTON_STATUS.

The controller guides the escape of inert gas from the two banks by means of two actuators
(release_bank_A!, release_bank_B!). Their status is captured by the type OPEN_CLOSED.
To inform the persons in the machine room that a release of gas will take place soon, that a
release of gas is currently happening, that a release has taken place recently, or that a gas leak
was detected, a warning light (warning_light!) can change between the states ON, OFF, and
FLASHING. The warning beeper (warning_beeper!) serves a similar purpose acoustically.

DETECTION_STATUS ::= DETECTION | NO_DETECTION
BANK_SELECTOR_STATUS ::= BANK_A | BANK_B | INHIBIT

BUTTON_STATUS ::= PRESSED | NOT_PRESSED

OPEN_CLOSED ::= OPEN | CLOSED

LIGHT_STATUS := ON | OFF | FLASHING
BEEP_STATUS ::= BEEPING | NOT_BEEPING

Step 2: Decide on the operational modes of the system

MODE ::= NORMAL | AUTOMATIC_REQUESTED
| WARNING | RELEASE_INITIATED | RELEASE_FAILED
| RELFASE_SUCCEEDED | INCONSISTENCY

The operational modes of the inert gas system are defined in the following data type MODFE
and the possible transitions between them are depicted in Figure 3.6.
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Step 3: Define the internal system states and the initial states

We define the abstract states of the software controller in the schema InertGasSystem. The
main component is the state variable mode representing the current operational mode. Fur-
thermore, the controller must have at its disposal two timer components which are initialized
with the duration of the warning period or the checking period and subsequently decrease
their values until reaching zero. Hence, we need some more global definitions before we can
define the state schema.

The constant WARNING_DURATION represents the duration of an interval after an
automatic or manual request during which the persons in the machine room are warned
before the release of inert gas actually takes place. The duration of the period during which
the system tries to detect escaping gas after the initiation of gas release before assuming a
failure is represented by the constant CHECK _DURATION. Finally, the length of the time
interval between two consecutive executions of the control operation is characterized by the

constant EXECUTION_INTERVAL.

WARNING_DURATION : Ny
CHECK _DURATION : Ny
EXECUTION_INTERVAL : Ny

WARNING_DURATION mod EXECUTION_INTERVAL =0
CHECK _DURATION mod EXECUTION_INTERVAL =0

It is required that the warning and check durations are multiples of the time distance between
two consecutive executions of the control operation.

The timer components are represented by the state variables warning_timer and check-
_timer, respectively. The other state components define the current states of the actuators
as assumed by the controller.

—_InertGasSystem
mode : MODFE
warning_timer : 0.. WARNING_DURATION
release_check_timer : 0 .. CHECK _DURATION
release_bank_A, release_bank_B : OPEN_CLOSED
warning_light : LIGHT_STATUS

warning_beeper : BEEP_STATUS

mode # RELEASE_INITIATED =

release_bank_A = release_bank_B = CLOSED
mode = WARNING < warning_timer > 0
mode = RELEASE_INITIATED < release_check_timer > 0

< warning_light = ON
mode ¢ { WARNING, RELEASE_INITIATED, INCONSISTENCY }

& warning_light = OFF

warning_light = FLASHING < mode € { WARNING, INCONSISTENCY'}
mode = NORMAL < warning_beeper = NOT_BEEPING

Only in the mode RELFASE_INITIATED a release of gas from bank A or bank B is possible
if the selector switch is in the corresponding position. The warning timer is only set (i.e.
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has a strictly positive value) in the mode WARNING, and the release check timer is only set
in the mode RELFASE_INITIATED. The warning light is ON when inert gas is released,
and it is flashing in the warning period before the gas release and in the INCONSISTENCY
mode. The warning beeper is always beeping outside the NORMAL mode.

The initial operational mode of the system is the NORMAL mode.

—InertGasSystemInit
InertGasSystem’

mode’ = NORMAL

We now have to show some validation conditions. As already mentioned, condition 3.1
is a matter of judgment. As required by validation condition 3.2, the state schema contains
the variable mode corresponding to the operational mode of the system. Since the purpose
of the whole system is to detect unsafe situations in the plant and to deal with these, the
safety-related requirements coincide with the functional requirements. Hence, condition 3.3 is
trivially satisfied. The initialization of the system with the NORMAL mode is consistent with
the state invariant. Therefore, validation condition 3.4 is fulfilled. It is safe to initialize the
system in this way, because a possible fire during initialization of the system will be detected
as soon as the first sensor values are delivered. Hence, validation condition 3.5 is also satisfied.

Step 4: Specify an internal Z operation for each operational mode

As recommended, we first define schemas for the sensors and actuators, where we use the
names for the sensors and actuators as introduced in Step 1.

There is a consistency condition between the current state of the controller, i.e. the current
operational mode, and the incoming sensor values. An inconsistency exists if and only if the
controller is not in the mode RELFASE_INITIATED (and consequently not releasing inert
gas) but the gas sensor is reporting the detection of escaping gas. This is represented by the
component consistency. This condition allows the controller to detect leaks in the gas banks.
To define consistency, we need the type YES_NO.

YES_NO == YES | NO

__Sensors
InertGasSystem

bank_selector? : BANK_SELECTOR_STATUS
request_button? : BUTTON_STATUS

reset_button? : BUTTON_STATUS

inhibit_button? : BUT'TON_STATUS

fire_detector1?, fire_detector2? : DETTECTION _STATUS
gas_detector? : DETECTION _STATUS

fire_detector : DETECTION_STATUS

consistency : YES_NO

fire_detector = DETECTION <
fire_detector1? = fire_detector2? = DETFECTION

consistency — NO <
mode # RELEASE_INITIATED A gas_detector? = DETECTION
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All outputs of the system are collected in the Actuators schema. The operator of the inert
gas system is informed about the state of the system (mode!).

_ Actuators
InertGasSystem’

release_bank_A!, release_bank_B': OPEN_CLOSED
warning_light! : LIGHT_STATUS

warning_beeper! : BEEP_STATUS

mode! : MODFE

release_bank_A! = release_bank_A’
release_bank_B! = release_bank_B’
warning_light! = warning_light’
warning_beeper! = warning_beeper’
mode! = mode’

We are now able to define the operations for the modes shown in Figure 3.6 one by one.
Under normal environmental conditions, i.e., if there has been no fire detection by the

sensors and no manual request by the operator, the controller is in the mode NORMAL. No
inert gas is released, and the visual or auditory signals are switched off.

— OpNormal
AlnertGasSystem
Sensors; Actuators

mode = NORMAL

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(request_button? = PRESSED = mode’ = WARNING) A
(request_button? = NOT_PRESSED =
(fire_detector = DETECTION =
mode' = AUTOMATIC_REQUESTED) A
(fire_detector = NO_DETECTION = mode’ = NORMAL))))

If both redundantly arranged sensors report the detection of smoke, the controller changes
to the mode AUTOMATIC_RFEQUESTED. 1If the request button is pressed in the mode
NORMAL there is a transition into the mode WARNING. If the reset button is pressed, a
transition from any mode to the mode NORMAL is the consequence.

In the case of an automatic request, the WARNING mode can only be entered if the
global inhibit switch is not set.
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— OpAutomaticReq
AlnertGasSystem
Sensors; Actuators

mode = AUTOMATIC_REQUESTED

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(inhibit_button? = PRESSED = mode’ = AUTOMATIC_REQUESTED) A
(inhibit_button? = NOT_PRESSED =
mode’ = WARNING A warning_timer’ = WARNING_DURATION)))

In the mode WA RNING which lasts exactly WARNING_DURATION time units, the warning
light is flashing to inform the persons in the machine room about the following release of
inert gas to give them the possibility to leave the danger area. After this warning period has
elapsed, there is a transition into the mode RELFASFE_INITIATED. At each execution of
the control operation in the mode WARNING, the warning timer either has to be reduced
by EXECUTION_INTERVAL or, if the controller leaves the WA RNING mode, has to be set

to zero to fulfill the state invariant.

— OpWarning
AlnertGasSystem
Sensors; Actuators

mode = WARNING
(warning_timer’ = warning_timer — EXECUTION _INTERVAL
V warning_timer’ = 0)
(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(warning_timer — EXECUTION_INTERVAL > 0 =
mode’ = WARNING) A
(warning_timer — EXECUTION_INTERVAL =0 =
mode’ = RELEASE_INITIATED A
(release_bank_A" = OPEN & bank_selector? = BANK_A) A
(release_bank_B' = OPEN & bank_selector? = BANK_B) A
release_check_timer' = CHECK _DURATION)))

In the RELFEASFE_INITIATED mode, inert gas is released either from bank A or bank B, or
no gas is released if the bank selector switch is in the INHIBIT position. The alarm light is
ON to indicate the potential danger. During a period of CHECK_DURATION time units
it is tested if inert gas is indeed escaping into the machine room. The detection of escaping
gas by the respective sensor will cause a transition into the mode RELFASE_SUCCFEEDED.
If there is no gas detection within this period, a change into the mode RELFEASE_FAILED
results. At each execution of the control operation in the mode RELEASFE_INITIATED the
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check timer either has to be reduced by FXECUTION _INTERVAL or, if the controller leaves
the RELFEASFE_INITIATED mode, has to be set to zero to fulfill the state invariant.

— OpReleaselnitiated
AlnertGasSystem
Sensors; Actuators

mode = RELEASE_INITIATED
(release_check_timer’ = release_check_timer — EXECUTION_INTERVAL
V release_check_timer’ = 0)
(consistency = NO = mode’ = INCONSISTENCY')
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(gas_detector? = DETECTION = mode’ = RELEASE_SUCCEEDED) A
(gas_detector? = NO_DETECTION =
(release_check_timer — EXECUTION_INTERVAL > 0 =
mode’ = RELFEASE_INITIATED A
release_bank_A" = release_bank_A A
release_bank_B' = release_bank_B) N\
(release_check_timer — EXECUTION_INTERVAL =0 =
mode’ = RELEASE_FAILED))))

Being in the mode RELFASE_FAILFED indicates that either the chosen bank is empty or
defective or that the bank selector switch is in the INHIBIT position. Therefore the operator
must have the possibility to change the selector position and to repeat the process of gas
release. This is done by pressing the request button, which causes a transition into the mode

WARNING.

— OpReleaseFailed
AlnertGasSystem
Sensors; Actuators

mode = RELEASE_FAILED

(consistency = NO = mode’ = INCONSISTENCY')
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED =
(request_button? = PRESSED = mode’ = WARNING) A
(request_button? = NOT_PRESSED = mode’ = RELEASE_FAILED)))

The system stays in mode OpReleaseSucceeded until the reset button is pressed or an
inconsistency between the internal system state and the sensor values is detected.
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_ OpReleaseSucceeded
AlnertGasSystem
Sensors; Actuators

mode = RELEASE_SUCCEEDED

(consistency = NO = mode’ = INCONSISTENCY)
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED = mode’ = RELEASE_SUCCEEDED))

If the controller notices an inconsistency in an arbitrary mode it immediately changes to
the mode INCONSISTENCY . No inert gas is released in this mode and the flashing warning
light and warning beep alert the persons in the machine room.

_ OplInconsistency
AlnertGasSystem
Sensors; Actuators

mode = INCONSISTENCY

(consistency = NO = mode’ = INCONSISTENCY')

(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED = mode’ = INCONSISTENCY))

Analysis of these schemas shows that they all contain case distinctions according to the
consistency of the internal state with the sensor values and the environmental conditions as
represented by the sensor values. Hence, validation conditions 4.1 and 4.2 are easily verified.
Inspection of the Z operations also shows that they faithfully represent the state transition
diagram of Figure 3.6. Therefore, conditions 4.3 and 4.4 are also fulfilled.

Step 5: Define the Z control operation

This step simply consists of the instantiation of the generic schema given in the agenda.

— ControlOperation
AlnertGasSystem
Sensors; Actuators

mode = NORMAL = OpNormal
mode = AUTOMATIC_RFEQUESTED = OpAutomaticReq
mode = WARNING = OpWarning
mode = RELEASE_INITIATED = OpReleaselnitiated
mode = RELEASE_FAILED = OpReleaseFailed
mode = RELEASE_SUCCEFEDED = OpReleaseSucceeded
mode = INCONSISTENCY = OplInconsistency
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Step 6: Specify the control process in real-time CSP

According to Step 6 of the agenda, we get the top-level process
ControlComponent = InertGasSystemlInitExecution — ControlComponentrgapy

The definition of the process ControlComponentrgapy also follows the schematic expression
given on page 43 (in the version with a single event ControlOperationExecution), with the mi-
nor syntactic difference that we define separate processes SensorInputs and ActuatorQutputs.

ControlComponentppapy = p X
(SensorInputs;
(ControlOperation Fxecution —
ActuatorQutputs)

|
Wait EXECUTION_INTERVAL); X

The process SensorInputs specifies the reading of sensor values before executing of the control
operation. All sensor values are read in parallel from the corresponding communication
channels. These values are subsequently written to the channels having the identical names
as the inputs of the operation schema.

SensorInputs =
bank_selector_sensor?bs_status — bank_selector!bs_status — Skip

request_button_sensor?rq_status — request_button'rq_status — Skip
reset_button_sensor?rs_status — reset_button!rs_status — Skip
inhibit_button_sensor?ib_status — inhibit_buttonlib_status — Skip
fire_detector1_sensor?fd1_status — fire_detector1\fd1_status — Skip
fire_detector2_sensor? fd2_status — fire_detector2!fd2_status — Skip

gas_detector_sensor?gd_status — gas_detector!gd_status — Skip
The process ActuatorQutputs is defined analogously.

ActuatorQutputs =
release_bank_A7lrbA_status — release_bank_A_actuator'rbA_status — Skip

release_bank_B7rbB_status — release_bank_B_actuator!rbB_status — Skip
warning_light?wl_status — warning_light_actuator'wl_status — Skip
warning_beeper?wb_status — warning_beeper_actuator!wb_status — Skip

mode?m_status — mode_output!m_status — Skip
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As prescribed in the agenda, we define a predicate FnvironmentalAssumption concerning

the environment. We require that the control operation and the initialization operation may

be executed at arbitrary time instants by the controller.

Environmental Assumption =
(Vt:]0,00); tr : seq TimedEvents; ref : P TimedEvents |

(tr, ref) € timed failures [ ControlComponent] e

InertGasSystemInit Execution open t (tr, ref) A
ControlOperationExecution open t (ir, ref))

To express the assumption that each sensor is always able to send a measured value to

the controller and that every actuator is always able to receive an arbitrary command from

the controller, we again instantiate the schematic expression given in the agenda.

SensorActuatorAssumption =
(Vt:]0,00); tr : seq TimedEvents; ref : P TimedEvents |
(tr, ref) € timed failures [ ControlComponent] e

(F value :

BANK_SELECTOR_STATUS e

(bank_selector_sensor.value) open t (tr, ref)) A

(F value :
(F value :
(F value :
(F value :
(F value :

A

(V value :
(V value :
(V value :
(V value :
( : MODE o (mode_actuator.value) open t (tr, ref)))

Y value

BUTTON_STATUS e (request_button_sensor.value) open ¢ (tr, ref)) A
BUTTON_STATUS e (reset_button_sensor.value) open t (tr, ref)) A
BUTTON_STATUS e (inhibit_button_sensor.value) open t (tr, ref)) A
DETECTION _STATUS e (fire_detector1_sensor.value) open t (tr, ref)) A
DETECTION_STATUS e (fire_detector2_sensor.value) open t (tr, ref))

OPEN_CLOSED e (release_bank_A_actuator.value) open t (tr,ref)) A
OPEN_CLOSED e (release_bank_B_actuator.value) open t (tr, ref)) A
LIGHT_STATUS e (warning_light_actuator.value) open t (tr, ref)) A

BEEP_STATUS e (warning_beeper_actuator.value) open t (tr, ref)) A

This concludes the specification of the inert gas system. Step 7 is not necessary. This example

shows that — once a suitable architecture and the necessary operating modes are chosen — the
specification can be set up in a fairly routine way.

Further validation of the specification

Apart from the general validation criteria, we state safety-related and liveness properties

following from the specification.

The specification guarantees the following safety-related properties:

1. Gas leaks are detected and result in an alarm.

2. A gas release can only take place if both of the smoke sensors detect smoke.

3. If a fire is detected, the persons in the danger area have WARNING_DURATION time
units to be evacuated before gas is released. They are visually and acoustically warned

during that time.
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4. If a fire is detected but the release of gas is not successful, this can be noticed by the
operator after CHECK_DURATION time units.

The specification guarantees the following liveness properties:

5. After an unsuccessful gas release, the operator can change the bank selector switch and
manually try to release gas.

6. The system can be brought back to normal operation at any time by pressing the reset
button.

7. At every time instant the operator is able to by-pass a global inhibit (inhibit button is
set) for a certain machine room by pressing the corresponding request button for this
room.

We do not give proofs of these properties here because they follow directly from the specifi-
cation.

3.4 The Active Sensors Architecture

This architecture models systems with only active sensors, i.e., all sensors control a certain
variable of the technical process and independently report certain changes of the controlled
variable to the control component at arbitrary time instants. Such a report immediately
triggers the execution of a handling operation within the control component.

sensor events

real-time CSP

Priority
prioritized events
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Interface Control

auxiliary processes

actuator commands
Figure 3.7: Software Control Component for Active Sensors Architecture

Figure 3.7 shows the structure of a software control component associated with the active
sensors architecture. The CSP part of such a control component consists of three parallel pro-
cesses. A Priority process receives the sensor events from the environment. If several events
occur at the same time, this process defines which of these events is treated with priority.
Depending on the prioritized events passed on from the Priority process, an Interface Control
process invokes a Z operation to update the internal state of the software controller. The Z
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operations do not correspond to operational modes, as in the passive sensors architecture,
but to events that cause transitions between internal modes. The InterfaceControl process
is also responsible for sending actuator commands to the environment. Finally, there may
be auxiliary processes that interact only with the InterfaceControl process, not with the en-
vironment or with the Priority process. The parallel composition of the auxiliary processes
forms the third subprocess of the control component.

The active sensors architecture is suitable for systems whose purpose is different from
merely ensuring safety of a technical process by monitoring it, but which continuously have
to react to user commands or other stimuli from the environment. Examples are elevators
(Siihl, 1996), microwave ovens (Heisel, 1995a), or the gas burner presented in Section 3.4.2.

As for the passive sensors architecture, we first give an agenda and then, following the
agenda, we specify an example system.

3.4.1 Agenda

An overview of the agenda is given in Table 3.2. The dependencies between the steps are
shown in Figure 3.8. Steps 4 and 6 are drawn in the same box because they both depend on
Steps 1-3. Step 9 depends only on Step 4, whereas Step 7 depends on Steps 4, 6, and 5. Step
8 depends on Steps 2, 6 and 7.

Figure 3.8: Dependencies of steps

Step 1 Model the sensors as CSP events or members of Z types.

In the active sensors architecture, sensors trigger operations of the control component. If
a sensor carries a measured value, it is modeled as in the passive sensors architecture. If a
sensor just carries boolean information (i.e., something happens or not), it is modeled as a
CSP event, without a corresponding communication channel. This step yields a set of events
External_Events. If a sensor delivers values of type T over communication channel ¢, then
the set Frternal_FEvents contains events of the form c¢?v, for all v € T.

Step 2 Decide on auxiliary processes.

One can regard these auxiliary processes as subcomponents of the controller that do not need
a state. Examples are timers that are controlled by the software component, and beepers
that have to beep for a number of time units, and are automatically switched off afterwards.
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No.| Step Validation Condition

1 | Model the sensors as CSP events or
members of Z types.

2 | Decide on auxiliary processes.

3 | Decide on the operational modes of
the system and the initial modes.

4 | Set up a mode transition relation, | All events identified in Step 1 and all
specifying which events relate which | modes defined in Step 3 must occur in
modes. the transition relation.

The omission of a successor mode for a
mode-event pair must be justified.

All modes must be reachable from an
initial mode, and there must be no re-
dundant modes.

5 | Model the actuator commands as
members of Z types or CSP events.

6 | Define the internal system states | The internal system state must be an
and the initial states. appropriate approximation of the state

of the technical process.

Each legal state must be safe.

There must exist legal initial states.
For each initial internal state, the con-
troller must be in an initial mode.

7 | Specify a Z operation for each event | These operations must be consistent
that can cause a mode transition. with the mode transition relation.

8 | Define the auxiliary processes iden- | The alphabets of these processes must
tified in Step 2. not contain external events or events

related to the Z part of the specifica-
tion.

9 | Specify priorities on events if neces- | The priorities must not be cyclic.
sary.

10 | Specify the interface control pro- | All prioritized external events and all
cess. internal events must occur as initial

events of the branches of the interface
control process.

The interface control process must be
deterministic.

The preconditions of the invoked Z op-
erations must be satisfied.

11 | Define the overall control process. The auxiliary processes must communi-

cate with the interface control process.

12 | Define further requirements or envi-

ronmental assumptions if necessary.

Table 3.2: Agenda for the active sensors architecture
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The events that are used in the auxiliary processes to communicate with the rest of the
control component must be defined. For timers, these usually are the events start_timer, stop-
_timer and timer_elapsed. This step yields a set of events Internal_Events.

Step 3 Decide on the operational modes of the system and the initial modes.

This step resembles Step 2 of the passive sensors architecture, with the difference that the
modes must be identified in which the controller can be initialized. If possible, a fail-safe mode
should be defined. This step yields an enumeration type MODF as in the passive sensors
architecture.

Step 4 Set up a mode transition relation, specifying which events relate which modes.

This transition relation can be defined in Z, or it can be given as a state transition diagram.
For each operational mode m and each event e (which can be internal or external), it must
be decided on the successor modes that are possible when event e occurs in mode m. It
should also be specified what happens when the sensors report an event that normally cannot
happen in the respective mode (e.g., if the operational mode assumes a door to be open, but
the open_door occurs). Hence, the mode transition relation should be made as complete as
possible, and a justification should be given, if for a pair (m, €) no successor mode is defined.

Validation Condition 4.1 All events identified in Step 1 and all modes defined in Step 3
must occur in the transition relation.

Validation Condition 4.2 The omission of a successor mode for a mode-event pair must
be justified.

Furthermore, all modes should be necessary.

Validation Condition 4.3 All modes must be reachable from an initial mode, and there
must be no redundant modes.

No matter if it is directly expressed in 7 or given as a state transition diagram, Step 4 yields
a relation

transition : (MODE x (Lzternal_Events U Internal_Events)) < MODE

to which we will refer in the following.

Step 5 Model the actuator commands as members of Z types or CSP events.

Those commands that are not determined by Z operations must be modeled as events. The
others are modeled as members of Z types, as in the passive sensors architecture.
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Step 6 Define the internal system state and the initial state.

This step can be performed in the same way as for the passive sensors architecture. We also
have the same validation conditions, plus the condition that the initial internal states must
correspond to some initial mode.

Validation Condition 6.1 The internal system state must be an appropriate approxrimation
of the state of the technical process.

Validation Condition 6.2 Fach legal state must be safe.
Validation Condition 6.3 There must exist legal initial states.

Validation Condition 6.4 For each initial internal state, the controller must be in an initial
mode.

Step 7 Specify a Z operation for each event that can cause a mode transition.

In contrast to the passive sensors specification, we have several externally available Z op-
erations. They do not correspond to the operational modes but to the events that cause
transitions between them, i.e., to the events e € ran(dom transition) of the transition func-
tion defined in Step 4. If (my,e) and (mq,e) for my # my are both in dom transition, it
suffices to define one operation that treats the occurrence of event e.

As in the passive sensors architecture, it is useful to define a schema Actuators that
specifies how the actuator commands that are determined by Z operations are derived from
the internal state. Since the sensors are no longer necessarily modeled as 7 types, it is possible
that the Z operations import only the state and the actuator schemas.

Validation Condition 7.1 These operations must be consistent with the state transition
relation.

The precondition of the operation corresponding to event e must be true for all operational
modes m with (m,e) € dom transition. Furthermore, the successor states defined in the
operation must be consistent with the state transition relation.

Step 8 Define the auziliary processes identified in Step 2.

This step can be performed by defining process terms or by specifying predicates that restrict
the behavior of the respective processes. Timers can be defined as processes beginning with
a start_timer event, followed by a Wait process and a timer_elapsed event. This process can
be interrupted at any time by a stop_timer event.

Timer=puX e
(start_timer — Wait duration; timer_elapsed — X ) A (stop_timer — X)

The auxiliary processes should neither receive external sensor messages nor invoke 7 op-
erations or depend on the internal system state. They should exclusively interact with the
InterfaceControl process, see Figure 3.7.
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Validation Condition 8.1 The alphabets of these processes must not contain external events
or events related to the Z part of the specification.

Step 9 Specify priorities on events if necessary.

To determine if priorities are necessary, we have to analyze the state transition diagram. If
more than one event can occur at the same time when the system is in a certain operational
mode, it must be decided how the system reacts when several events occur simultaneously.
Usually, the event with the highest importance for safety will be treated, whereas the other
ones will be ignored.

Technically, this means to define derived events and a process Priority that relates the
original events with the derived ones®. If we have a high priority event high and a low priority
event low, then the system will only react to the event low if high does not occur at the same
time. Therefore, an event excl_low is derived that occurs at time t exactly when low but not
high occurs at time ¢:

aPriority = {high, low, excl_low}
Priority sat YVt : [0,00); tr : seq TimedFvents; ref : P TimedEvents |
(tr, ref) € timed failures [ Priority] e

high live t (tr, ref) A low live t (tr, ref) A
(excl_low live t (tr, ref) < low at t (tr, ref) A = high at t (tr, ref))

This definition can easily be extended for several events of lower or higher priority, or several
degrees of priority. Basically, Priority implements a partial order on events.

Validation Condition 9.1 The priorities must not be cyclic.

Step 10 Specify the interface control process.

The interface control process handles the prioritized events coming from the sensors. Accord-
ing to the internal or external events that occur, it triggers the execution of Z operations
and sends events to actuators or auxiliary processes. The syntactic form of the process is an
external choice of prioritized events. Each branch of the external choice should be robust, i.e.,
if the sensors send signals that contradict the internal state of the system, then the system
must handle the faulty situation consistently with the state transition relation of Step 4.

5This approach to handling priorities was developed by C. Siihl.
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The interface control process that is executed after the system is initialized can be defined

by

InterfaceControlppapy = p X o
event; —
if {consistency condition)
then (execute event; — 7 — operation) (send events); X
else (emergency shutdown) (send events); Stop fi

O

eventy — ...
O
O

event, — ...

This form is only possible if there is a fail-safe state. Then the system can shut down when
an inconsistency is detected.

All branches are defined similarly. If a branch consists exclusively of events (which
take no time), Wait processes must be introduced to model the time one execution of the
InterfaceControlpgapy takes.

To express the consistency conditions, predicates on the current internal system state
must be defined in Z.

The following validation conditions relate the results of different steps of the agenda.

Validation Condition 10.1 All prioritized external events and all internal events must oc-
cur as initial events of the branches of the interface control process.

To check this condition, the results of Steps 1 and 9 have to be considered.

Validation Condition 10.2 The interface control process must be deterministic.

This validation condition was already explained in Section 3.3. In Step 9, derived events
were defined that guarantee that none of the events that guard the external choice can occur
simultaneously.

Validation Condition 10.3 The preconditions of the invoked Z operations must be satisfied.
This is guaranteed by appropriate consistency conditions guarding the invocation of the Z
operations in the interface control process. Moreover, we must check that in each branch of

the interface control process the Z operation corresponding to the respective event, as defined
in Step 7, is invoked.

Step 11 Define the overall control process.

The process combines the processes defined in Steps 8, 9 and 10. Let Auzy, ..., Auxy be the
auxiliary processes defined in Step 8. Then



3.4. The Active Sensors Architecture 61

ControlComponent = (InterfaceControl || Auzy || ... || Auzy) \ Internal_Events

InterfaceControl = SystemlInit Execution —
(InterfaceControlpgapy || Priority) \
(aPriority \ (External_Events U Internal_Events))

where SystemlInitFxecution establishes an initial internal system state. The internal events
are hidden from the environment, and the prioritized events newly introduced in the alphabet
of the Priority process are hidden from the the other components of the controller (and hence
from the environment).

Validation Condition 11.1 The auxiliary processes must communicate with the interface
control process.

Technically, this means that the alphabets of (Auzy || ... || Auay) and InterfaceControl have
a non-empty intersection.

Step 12 Define further requirements or environmental assumptions if necessary.

Usually, these will be assumptions on the environment and real-time requirements on the
execution time of Z operations.

3.4.2 Example: A Gas Burner

The specification of the software controller of a gas burner illustrates the active sensors
architecture. The specification is a simplified version of the case study presented by Ravn et
al. (Ravn et al., 1993). There are two actuators: The gas actuator controls the emission of
gas and receives commands to start or stop emitting gas at arbitrary time instants from the
controller. The ignition actuator can ignite escaping gas at arbritrary time instants. There are
two sensors. The thermometer sensor measures the temperature in the vicinity of the burner
and actively reports to the controller decreases below and increases above certain points,
indicating a disappearance or an appearance of the flame, respectively. Users can request
the controller to activate or deactivate the burner via the thermostat sensor. These sensor
reports cause an immediate reaction of the controller. The gas burner system is safety critical,
because a persistent escape of unburned gas or a failure to realize a request to deactivate the
flame can lead to major accidents.

Step 1: Model the sensors as CSP events or members of Z types.

According to the informal description of the system, the controller must react to the following
external events, the first two coming from the thermostat, the other two generated by the
thermometer sensor:

FExzternal _Events = {heat_off _request, heat_on_request, flame_on, flame_off }
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Step 2: Decide on auxiliary processes.

For safety reasons, we need two timers. First, a user’s request to start the gas burner may
be served only after a delay of DELAY_DURATION time units to ensure that two differ-
ent attempts to ignite gas are sufficiently separated. Secondly, after the controller has tried
to activate the burner by starting the emission of gas and activating the ignition, it must
be checked whether or not the ignition was successful, because a persistent escape of un-
burned gas is dangerous to the environment. The second timer produces an alarm event after
CHECK_DURATION time units, unless a flame is detected and the timer is reset. As a
result of this step, we have

Internal_Events = {start_timerl, stop_timerl1, timer1_elapsed,
start_timer2, stop_timer2, timer2_elapsed }

Steps 3: Decide on the operational modes of the system and the initial modes.

The operational modes are defined by the type
MODE = IDLFE | DELAY | IGNITION | BURNING | SHUT_DOWN

The initial mode will be mode IDLE.

Step 4: Set up a mode transition relation, specifying which events relate which modes.

The possible mode transitions are illustrated in Figure 3.9.

> ID

flame_off t .
heat_off heat_on
request request

(o] £
! DOWN
BURNING timer2 DELAY
; elapsed
timerl
flame_on elapsed
IGNITION

BurnerActivated:
BurnerOperational

Figure 3.9: Mode transitions of gas burner

In the IDLE mode the controller waits for an activation request without emitting or
igniting gas. With an activation request the controller changes to the DELAY mode, waiting
for DELAY _DURATION time units. This delay is realized by a process Timerl identified
in Step 2. After changing to mode IGNITION  the controller tries to activate the burner by
starting the emission of gas and activating the ignition source. Timer2 is set. If a flame is
detected within CHECK_DURATION time units, the controller changes to the BURNING
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mode in which gas further escapes but the source of ignition is switched off. Otherwise the
controller returns to the IDLE mode. When the flame disappears in the BURNING mode, the
controller changes to the IDLFE mode. Furthermore, a request to deactivate the gas burner
causes a change to the IDLFE mode from every other mode with priority. Each event not
explicitly shown in the diagram causes the system to enter the SHUT_DOWN mode.

The validation conditions 4.1 through 4.3 can easily be checked: All members of Faternal-
_Fvents and MODF occur in Figure 3.9, and for each mode-event pair, a successor mode is
defined. Each mode can be reached and is distinguished from the others.

Step 5: Model the actuator commands as members of Z types or CSP events.

The commands to the actuators depend on the operational mode of the gas burners and
hence will be determined by Z operations. Therefore, the actuator commands are modeled as
members of Z types. Since both commands are binary, one type for both actuators suffices.

YES_NO == YES | NO

Step 6: Define the internal system states and the initial states.

The abstract internal system state of the gas burner controller is specified by the schema
GasBurner. There is one major system variable mode representing the current operational
mode. The other system variables gas, ignition, and flame can be deduced from this system
variable.

_ GasBurner
mode : MODE
gas, ignition, flame : YES_NQO

gas = YES < mode € {IGNITION, BURNING}
flame = YES & mode = BURNING
wnition = YES < mode = IGNITION

After initialization the controller is in the IDLE mode.
GasBurnerInit = [ GasBurner' | mode’ = IDLE ]

Only the specifier can assert that condition 6.1 is fulfilled. Since the safety conditions for
the gas burner cannot be expressed statically but only with respect to the duration of certain
conditions, validation condition 6.2 is vacuously fulfilled (the state at one time instant cannot
be unsafe); we will prove a safety property later. Since the initial state is consistent with
the state invariant and puts the system into the IDLFE mode, which was distinguished as the
initial mode, validation conditions 6.3 and 6.4 are satisfied.

Step 7: Specify a Z operation for each event that can cause a mode transition.

We start with the definition of the Actuators schema. The commands to the actuators can
directly be deduced from the current internal system state.
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__ Actuators
GasBurner!
gas! ign!: YES_NO

gas! = gas’ A ign! = ignition’

The system operations are straightforward. They follow the state transition diagram of Figure
3.9.

HeatOnRequest = [ AGasBurner; Actuators | mode = IDLE A mode’ = DELAY ]

HeatOffRequest = [ AGasBurner; Actuators |
mode € { DELAY , IGNITION, BURNING} A mode’ = IDLE]

Ignition = [ AGasBurner; Actuators | mode = DELAY A mode’ = IGNITION |
IgnitionOK = [ AGasBurner; Actuators | mode = IGNITION A mode’ = BURNING ]
IgnitionFailure = [ AGasBurner; Actuators | mode = IGNITION A mode’ = IDLE]
FlameFailure = [ AGasBurner; Actuators | mode = BURNING A mode’ = IDLE]

ShutDown = [ AGasBurner; Actuators | mode’ = SHUT_DOWN |

These mode transitions are consistent with the state transition diagram of Figure 3.9, as
required in validation condition 7.1.

Step 8: Define the auxiliary processes identified in Step 2.

We define two timers according to the schematic definition of Step 8, page 58.

aTimerl = {start_timer1, stop_timer1, timer1_elapsed }
aTimer2 = {start_timer2, stop_timer2, timer2_elapsed }

Timerl=pX e
(start_timerl — Wait DELAY _DURATION; timerl_elapsed — X))
A (stop_timerl — X)

Timer2=pX e
(start_timer2 — Wait CHECK_DURATION; timer2_elapsed — X))
A (stop_timer2 — X)

where

DELAY _DURATION, CHECK _DURATION : Ny

DELAY _DURATION > CHECK_DURATION
The alphabets of the timers do not contain any event of the set Fxternal_Fvents or any events
related to the Z part of the specification. Hence, validation condition 8.1 is fulfilled.



3.4. The Active Sensors Architecture 65

Step 9: Specify priorities on events if necessary.

The request to turn off the flame has priority over all other events. The events heat_off _request
and heat_on_request cannot occur simultaneously, because they are signals of the same sensor.
Hence, we get the following Priority process:

aPriority = {heat_off _request, flame_on, flame_off , timer1_elapsed, timer2_elapsed,
excl_flame_on, excl_flame_off , excl_timer1_elapsed, excl_timer2_elapsed }

Priority sat YVt : [0,00); tr : seq TimedFvents; ref : P TimedEvents |
(tr, ref) € timed failures [ Priority] e
heat_off _request live t (tr, ref) A
flame_on live t (tr, ref) A flame_off live t (tr, ref) A
timer1_elapsed live t (tr, ref) A timer2_elapsed live t (tr, ref)
A
(excl_flame_on live t (tr, ref) <
flame_on at ¢ (tr, ref) A = heat_off _request at ¢ (tr, ref)) A
(excl_flame_off live t (tr, ref) <
flame_off at t (tr,ref) A — heat_off _request at t (tr, ref)) A
(excl_timerl_elapsed live t (tr, ref) <
timerl_elapsed at ¢ (tr, ref) A = heat_off _request at t (tr, ref)) A
(excl_timer2_elapsed live t (tr, ref) <
timer2_elapsed at ¢ (tr, ref) A = heat_off _request at t (tr, ref))

The priorities defined here are not cyclic, as required by validation condition 9.1.

Step 10: Specify the interface control process

The main control process is specified by the process InterfuceControlppapy. It follows the
schematic expression given previously for Step 10 on page 60, where ¢ is the response time
for the technical components.

InterfaceControlppapy = p X o
heat_off _request — Wait «;
if = BurnerlsDeactivated
then stop_timerl — stop_timer2 — HeatOffRequestFxecution
— ActuatorControl; X
else ShutDownFExecution — ActuatorControl; Stop fi

O
heat_on_request — Wail €;
if BurnerlsDeactivated
then start_timerl — HeatOnRequestFxecution — ActuatorControl; X
else ShutDownFExecution — ActuatorControl; Stop fi
O

excl_flame_on — Wait €;
if IgnitionlsActivated
then stop_timer2 — IgnitionOK Frecution — ActuatorControl; X
else ShutDownFExecution — ActuatorControl; Stop fi
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excl_flame_off — Wail ¢;
if FlamePresent
then FlameFailure Frecution — ActuatorControl; X
else ShutDownFExecution — ActuatorControl; Stop fi

excl_timerl_elapsed — Wait €; start_timer2 — IgnitionFzecution
— ActuatorControl; X

excl_timer2_elapsed — Wait €; IgnitionFailure Fxecution — ActuatorControl; X

The controller reacts to prioritized events. Predicates are used to check for inconsistencies
between the sensor values and the internal system state. To process the events, 7Z operations
are executed and events are sent to the environment of the process. The outputs to the
actuators are defined by the process ActuatorControl. We still need to define the Z predicates
and the process ActuatorControl:

BurnerlsDeactivated = [ GasBurner | mode = IDLF']

BurnerlsActivated = [ GasBurner | mode € { DELAY | IGNITION, BURNING} |

IgnitionlsActivated = [ GasBurner | ignition = YFES']

FlamePresent = [ GasBurner | flame = YES']

ActuatorControl =
gas?Gas — gas_command!Gas — Skip

ignition? Ignition — ignition_command!Ignition — Skip

Conditions 10.1 and 10.2 are satisfied by the definitions of Fzternal_Fvents, Internal _FEvents
and Priority. Validation condition 10.3 is shown by inspecting the predicates and the pre-
conditions of the 7Z operations that are executed after the consistency predicate has been

checked.

Step 11: Define the overall control process

The dynamic behavior of the gas burner controller is defined by the real-time CSP process
GasBurnerControl. It is an instantiation of the schema given in the agenda on page 61.

GasBurnerControl = (Interface Control || Timerl || Timer2) \ Internal_Events

InterfaceControl = GasBurnerInitFEzecution — (InterfaceControlpgapy || Priority)
\{excl_flame_on, excl_flame_off , excl_timerl_elapsed, excl_timer2_elapsed }

Step 12: Define further requirements or environmental assumptions if necessary.
The behavior of the environment of the burner is constrained by the following predicate.

Environmental Assumption =
(Vt:]0,00); tr : seq TimedEvents; ref : P TimedEvents |
(tr, ref) € timed failures [ GasBurnerControl] e
(Y op : Operations e op open t (tr, ref)) A
= (heat_on_request open t(tr, ref) A heat_off _request open t(tr, ref)))
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where

Operations = { HeatOnRequest Execution, HeatOff Request FExecution,
Ignition Fxecution, IgnitionOK Frecution, IgnitionFailure Execution,
FlameFailure Execution, GasBurnerInit Erecution}

The execution of the system operations must be under exclusive control of the control process.
Requests to activate and to deactivate the gas burner must not occur simultaneously.

Proof of a safety constraint

During each interval of DELAY_DURATION time units unburned gas may escape for at
most CHECK _DURATION + € time units. We prove this constraint for our specification.

According to the definition of the state schema GasBurner, unburned gas can escape only
in the IGNITION mode. Hence, within an interval of at most DELAY_DURATION time
units, the total length of all subintervals that begin with the event IgnitionFzecution and end
with an event from the set of operations (marking the end of the ignition phase) must not
exceed CHECK_DURATION + ¢ time units.

The following argument has two parts. First, we show that every period within the
IGNITION mode lasts at most CHECK _DURATION + ¢ time units, which is essentially the
purpose of the Timer2 process. Second, we show that two different periods in the IGNITION
mode are separated by at least DELAY_DURATION time units.

Let ¢ be an arbitrary point in time.

IgnitionFxecution at t

- [InterfaceControlrgapy]
start_timer2 at t

F [Timer2]
(3t': (t,t + CHECK_DURATION] e stop_timer2 at t') V
timer2_elapsed at (t + CHECK_DURATION )

First case:
At": (t,t + CHECK _DURATION] e stop_timer2 at t’
H [InterfaceControlggapy , Priority]
dt': (t,t + CHECK_DURATION] o
IgnitionOK Execution at t' V HeatOffRequest Execution at t’

Second case:
timer2_elapsed at (t + CHECK_DURATION )
H [InterfaceControlggapy , Priority]
IgnitionFailure Execution at (t + CHECK _DURATION + ¢)
V HeatOffRequest Execution at (t + CHECK _DURATION + ¢)
V ShutDownFEzecution at (t + CHECK_DURATION + ¢)
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This argument shows that in all cases, the IGNITION mode is left after at most CHECK -
_DURATION + ¢ time units.

To show that two different periods in the IGNITION mode are separated by at least
DELAY _DURATION time units, we consider two arbitrary points in time, {1 and 2, at
which the event IgnitionFxecution occurred.

t1 < t2 A IgnitionEzecution at t1 A IgnitionEFrecution at 12 A
(Vt:(t1,t2) e = IgnitionExecution at t)

- [possible mode transitions, InterfaceControlrpapy]
dt: (t1,12) e start_timerl at t A mode = DELAY (at t)

(Vt:(t1,t2) e = IgnitionExecution at t)

F [Timerl]
dt:(t1,t2) e (= (3t : [t,t + DELAY_DURATION) e timerl_elapsed at t')) A
(Vt:(t1,t2) e = IgnitionExecution at t)

- [InterfaceControlrgapy]
dt:(t1,t2) e (= (3t : [t,t + DELAY_DURATION) e IgnitionEzecution at t')) A
(Vt:(t1,t2) e = IgnitionExecution at t)

F [predicate logic]
(V' :(t1,t1 4+ DELAY _DURATION) e = IgnitionFEzecution at t')

12> tl+ DELAY_DURATION

As a consequence, there is at most one subinterval of CHECK_DURATION + ¢ time units
during which unburned gas escapes in any interval of at most DELAY_DURATION time
units. Thus the safety constraint is guaranteed by the software controller.

3.5 Refinement

To make stepwise refinement possible for our combined language, we have to define what it
means for a specification of a reactive system consisting of a Z part and a real-time CSP part
to be refined by another such combination. To this end, we can make use of the existing
refinement notions of Z and real-time CSP.

The essential idea of refinement in 7 is that abstract data structures are transformed into
more concrete data structures. The relations between abstract and concrete data types have
to be formally defined by a so-called abstraction relation. For every operation on the abstract
system state, a corresponding operation on the concrete system state has to be defined.

The concrete operation must satisfy two conditions: First, if the corresponding abstract
operation is applicable to an abstract state (i.e. its precondition is fulfilled) then the corre-
sponding concrete operation must be applicable to all concrete states that are related to the
abstract state. Second, if the execution of a concrete operation can result in a certain concrete
state then there must exist an abstract state which is a possible result of the execution of the
corresponding abstract operation and is related to the concrete state (Spivey, 1992b).

In real-time CSP every semantic model maps a term of the process syntax to a set of
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possible observations as described in Section 3.2.3. A process term is refined by another
process term if each possible behavior of the latter is also a possible behavior of the former.

To refine a combined specification, either the Z part or the real-time CSP part is refined
separately. For the Z part, however, the notion of refinement must be strengthened. In the
definition of refinement in 7Z as described above, the refining operation can have a weaker
precondition than the refined operation, i.e. it can be applicable to a system state to which
the latter is not applicable.

If this were admitted, the refining specification would include such behaviors as possible
observations that result from the application of the concrete operation to system states where
the abstract operation is not applicable. These behaviors would not be observable in the
refined specification. To avoid this violation to the notion of refinement, the definition of
operation refinement is adapted in the sense that the precondition of the refining operation
must be equivalent to the precondition of the refined operation. With this adaptation ev-
ery isolated refinement of the Z or the real-time CSP part is a refinement of the combined
specification.

3.6 Related Work

The use of model-based languages like Z or VDM (Jones, 1990) in the area of system safety
is not uncommon. Several case studies use VDM, e.g. the British government regulations for
storing explosives (Mukherjee and Stavridou, 1993), a railway interlocking system (Hansen,
1994), and a water-level monitoring system (Williams, 1994). Mukherjee’s and Stavridou’s
as well as Hansen’s work, however, focus on adequately modeling safety requirements, inde-
pendently of the question of whether software is employed or not. Consequently, they do not
discuss issues specific to the construction of safety-critical software.

Jacky (Jacky, 1995) uses Z to define a framework for safety-critical systems that em-
phasizes safety interlocking. McDermid and Pierce (McDermid and Pierce, 1995) define a
graphical notation based on a variant of statecharts (Harel, 1987) that is translated into Z
for the purpose of mechanical validation. This notation is used to specify and develop soft-
ware for programmable logic controllers. Halang and Kramer (Halang and Kramer, 1994)
also focus on programmable logic controllers. They describe a development process, from
the formalization of requirements to the testing of the constructed program. They use the
specification language Obj and the Hoare calculus, and their choice is motivated by the avail-
able tool support. The specification language Obj is weaker than our combination of Z and
real-time CSP because Obj only allows conditional equations to be stated.

The work presented here is distinguished from these approaches in that it is intended to be
used for systems where the exclusive use of model-based or algebraic specification languages
does not lead to satisfactory results. The expressive power of these languages does not suffice
to specify the behavior of sophisticated real-time systems adequately. Other researchers share
our goal to provide more powerful constructs to express behavioral and real-time requirements.

Ravn et al. (Ravn et al., 1993) use the duration calculus to express functional require-
ments and safety constraints. The duration calculus is a specialized formalism designed to
express requirements on the duration of states. These durations are expressed as integrals.
In contrast, our approach uses less specialized formalisms that are more easily accessible and
more widely used. Weber (Weber, 1996) combines 7 and statecharts for purposes similar to
ours. Since statecharts are a semi-formal specification technique, the resulting specification is



70 Chapter 3. Specification of Safety-Critical Software with Z and Real-Time CSP

not completely formal. Using a formal language like CSP, however, yields completely formal
combined specifications, as shown in Section 3.2.3.

Like our work, Moser’s and Melliar-Smith’s approach to the formal verification of safety-
critical systems (Moser and Melliar-Smith, 1990) comprises the specification, design and im-
plementation phases. They use a reliability model for the processors that execute the program.
This enables them to take computer failures into account, an aspect we do not address. On
the other hand, their approach does not cover the validation of the top-level specification, an
issue that we pay particular attention to.

3.7 Summary

The approach presented in this chapter concentrates on the specification of software for safety-
critical applications. It cannot guarantee that a system whose software controller is imple-
mented from a specification developed according to our approach is free from accidents for
several reasons: first, our validation criteria cannot rule out errors in the specification com-
pletely; second, there may be errors in the implementation; third, there may be errors in the
compiler or the operating system that are used to run the software; fourth, nothing can be
guaranteed about the hardware. For instance, our method does not take processor failures
into account. This last limitation cannot be overcome by means concerning the software
alone. Instead, fault tolerance methods like redundancy have to be applied.

We can expect, however, that there are fewer errors in the specification and the imple-
mentation of safety-critical software if our approach is applied. With the work presented
here, we have provided an elaborate methodology for the formal specification of software for
safety-critical applications:

e The system model underlying most of these applications is taken into account by explic-
itly referring to it in the methodology. It provides a suitable structure and nomenclature
to model safety-critical systems.

e Two formal languages are combined according to the needs arising in the development of
safety-critical systems. Each of the languages in isolation would not be satisfactory; in
combination, however, they provide adequate constructs for the specification of safety-
critical software components. Both languages are well-established.

e The combined language is given a common semantics, making combined specifications
completely formal and providing a basis for formal proof.

o A software model for the combined use of the two languages is defined, yielding a general
framework for the modeling and specification of control components for safety-critical
systems.

e This model is further refined into reference architectures that capture frequent designs
of safety-critical systems. For each of these architectures, an agenda is given. Safety-
related considerations are of particular importance in the agendas.

e The agendas provide detailed guidance, not only for developing specifications of software
controllers matching the reference architectures, but also for validating the developed
specifications. To complement the application-independent validation criteria of the
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agendas, we propose to demonstrate safety-related and liveness properties that neces-
sarily are application-dependent.

e The agendas are sufficiently detailed to allow them to be formalized and their application
by machine to be supported, as demonstrated in Chapter 8.

e Not only the specification phase but also the later phases in software development
are supported: a notion of refinement for combined specifications is defined, and the
semi-automatic synthesis of programs for the Z part of the specification is possible, as
described in Chapters 6 and 7.

3.8 Further Research

In the future, we intend to improve the technical basis of our approach and further elaborate
the methodological part.

Calculus. We want to develop a common calculus for Z and real-time CSP that will allow
us to perform formal proofs on and refinements of combined specifications. An imple-
mentation of this calculus would provide machine support for discharging validation
conditions.

Synthesis for CSP. We want to investigate how program synthesis for the CSP part of a
specification can be supported; of special importance are the real-time requirements.

Partial verification. For relatively small systems, a complete formal treatment certainly
can be recommended because the control software is relatively simple. The cost for a
formal safety proof would be much less than potential damages. For larger systems,
however, a complete formal treatment might not be feasible. In this case, one would
formalize and prove only selected properties of the system and treat the other require-
ments with traditional techniques (partial verification, (Leveson, 1991)). When this
approach is taken, all of the software modules still have to be considered. To reduce
cost further, one might exclude those parts of the software from the verification process
that can be guaranteed to be of no importance for safety. We want to develop guidance
on how to guarantee (i) that a requirement is not safety-critical, and (ii) that a part of
the software is not safety-critical.

Formalism independence. We want to show that our approach can also be used with
other formalisms than the ones chosen here. We believe that the agendas can easily be
adapted. Another formalism for specifying behavior is Petri Nets. We intend to replace
real-time CSP by Petri Nets and investigate how the agendas have to be changed.

Other architectures. We want to consider more reference architectures, especially for dis-
tributed systems.

Structural aspects of specifications. The combination of 7Z and real-time CSP does not
support modularization very well. Language constructs to modularize specifications are
needed.
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Chapter 4

Software Design Using Architectural Styles

Architectural styles are a mechanism to make system design knowledge explicit and thus
amenable to reuse. They characterize designs in terms of the components of a system and
the connectors that enable communication between components (Abowd et al., 1993). An
important question in the field of software architectures is how to represent styles in such
a way that unambiguous criteria can be stated to decide whether a given design conforms
to some style. A second question is how a style representation can help to develop concrete
architectures.

Informal circle-and-line drawings have shown their limitations and, today, the need for
formal languages to represent software architectures has been recognized. New languages for
architectural descriptions have been developed but they are still in a maturing phase and few
are provided with tools (Clements, 1996).

In this chapter, we address the questions of representing architectural styles and sup-
porting the development of style instances in three steps: first, we demonstrate that LO-
TOS (Bolognesi and Brinksma, 1987) is a suitable language to express architectural designs.
Second, we contribute to a clarification of the meaning of architectural styles by characteriz-
ing such styles as LOTOS patterns. Third, we present agendas to support designers in the
development of concrete software architectures.

LOTOS as an Architectural Description Language

LOTOS is a formal description language designed to specify open distributed systems. It
consists of a process algebra similar to CSP (Hoare, 1985) or CCS (Milner, 1980), and an
algebraic specification language that allows the equational definition of data types. Using
LOTOS to express architectural designs has several advantages:

e LOTOS consists of two parts, an algebraic specification language to define data, and a
process algebra to define the behavior of a system. Hence, the communication between
system components in an architecture can be described using the process algebraic
parts of LOTOS, and the algebraic specification language can be used to specify the
data transformations that are performed by the system.

e Architectural descriptions in LOTOS are formal and hence have an unambiguous se-
mantics. They can be subject to proofs and analyses.

73
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e The use of LOTOS makes it possible to use existing tools, like CADP (Caesar/Aldebaran
Distribution Package) (Fernandez et al., 1992), for analysis and animation of architec-
tures defined with it.

e LOTOS is an ISO standard. The use of a standardized language relieves system de-
signers of the burden to learn an extra architectural description language. These can
be quite rich and complex, see e.g. (Luckham et al., 1995).

Style Characterizations

We characterize an architectural style by (i) requirements on the processes specifying the
components of a system, (ii) a communication pattern defining its top-level behavior, and
(iii) constraints, which provide sufficient conditions for an architectural description to be an
instance of the style. These conditions can be checked mechanically.

Our style characterizations clarify the meaning of an architectural style by making its
essence explicit.

Design Support

Starting from the style characterizations, we can define agendas for the development of in-
stances of the styles. The validation conditions associated with the agendas refer to the differ-
ent parts of the style characterizations. Concrete architectures can be developed recursively
in such a way that subsystems of a system can again be instances of styles. Furthermore, the
architectural descriptions can be analyzed and animated using existing tools. No new tools
need to be developed.

In Section 4.1, we explain the general approach we take to express architectural designs
in LOTOS and styles as LOTOS patterns. The approach is illustrated by characterizing
three architectural styles: repository (Section 4.2), pipe/filter (Section 4.3) and event-action
(Section 4.4). In Section 4.5, we present three different designs for a robot, following the
three architectural styles. The tool CADP is used to compare the alternative designs. The
concluding sections discuss our approach in the context of related work and give directions
for further research. This chapter extends the work presented in (Heisel and Lévy, 1997).

4.1 Expressing Architectural Designs and Styles with LOTOS

Architectural designs and styles are usually described in terms of components and connectors
between them. In our approach to represent architectural styles, system components are
modeled as processes. These processes usually perform some data transformation. They
can consist of another architectural description, representing the design of a subsystem. In
this way, hierarchical composition of architectures is possible. Connectors are not separate
syntactic entities but are realized by the kind of communication that takes place between the
component processes.

A LOTOS specification is composed of interacting processes. They can be parameterized
by abstract data types. A process can exchange typed values with another process and call
functions to transform data. Communication between processes in LOTOS is synchronous,
i.e. two processes must participate in a common action at the same time. Gates are used to
synchronize processes and to exchange data. To synchronize, two processes must contain an
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action via the same gate g. To exchange data, one of them must contain an action g 7 v: t
which reads a value v of type t via gate g. The other process must contain an action g ! exp
that writes a value exp of type t onto the gate g. It is also possible to read or write more
than one value in the same action.

We use this kind of communication by rendez-vous to describe the communication between
the components of a system. In LOTOS, data are described using abstract data types with
conditional equations and an initial semantics. Abstract data types are used for describing
process parameters and values exchanged by the processes via gates.

Each architectural description must be a valid LOTOS expression, regardless of the style
it belongs to. It consists of two parts. The behavior part describes the overall behavior of the
architecture, i.e. the interaction of its parts. The local definitions part contains the definition
of the processes involved in the behavior part and the necessary definitions of abstract data
types. The syntactic structure of an architectural description is

behaviour behav_ezpr where local_def list

LOTOS patterns are obtained from LOTOS by abstraction, i.e. by replacing concrete LOTOS
expressions by metavariables. Both parts of an architectural description, i.e., behav_ezpr as
well as local_def _list, can be subject to abstraction. In the following, concrete LOTOS
expressions are set in teletype, and metavariables are set in 1talics teletype.

A characterization of an architectural style consists of

e component characteristics, which describe properties of the involved component
processes;

e 3 communication pattern, which characterizes the top-level behavior of the system
by a LOTOS pattern;

e constraints, which, when fulfilled, guarantee that an architectural description conforms
to the style.

Such representations make style characteristics explicit and form the basis for the definition
of agendas. In the following, we present characterizations of three architectural styles.

4.2 Repository Style

Garlan and Shaw (Garlan and Shaw, 1993; Shaw and Garlan, 1996) describe the repository
style as follows:

“In a repository style there are two distinct kinds of components: a central data
structure represents the current state, and a collection of independent components
operate on the central data store.”

In a first step, we characterize the style with LOTOS patterns. Then we define an agenda that
gives guidelines for the development of concrete architectures conforming to the repository
style.
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4.2.1 Style Characterization

In our modeling, we suppose that the central data structure — the shared memory — contains
data accessible via indices, which select parts of the stored data.

Component Characteristics

We consider three kinds of components operating on the shared memory: components that
only read (part of) the memory, components that only change the memory, and components
that do both. There is no interaction between components: they behave independently and
only communicate with the repository and the environment.
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Figure 4.1: General view of repository style architecture

The three kinds of components are illustrated in Figure 4.1, where the system interface is
represented by black squares. If a component wants to change the shared memory, it sends
the message WR (write request). This causes the shared memory to set a lock. Only then
can the new value be passed, using the gate W (write). If a component wants to read the
shared memory, it sends the message RR (read request). If no lock is set the value is passed
via the gate R (read). It may happen that a value to be written into the shared memory
depends on a value that was read previously. In this case, no other write operation should be
allowed between the read and the write action. For this purpose, the message RWR (read/write
request) is used.

Each process sending a request must also send a unique identification. This prevents other
processes from accessing the memory during a transaction. The process implementing the
shared memory is defined as follows:

process Shared Memory [RR, R, WR, W, RWRI]
(sm: shared_memory, is_locked: BOOL, for_whom: %d): noexit :=
[ is_locked = false ]
-> ( RR ? who: 1id;

R 7 who: 2d 7 j : indez ;
R ! who I get(sm, j);
Shared_Memory [RR, R, WR, W, RWR] (sm, false, for_mobody)

]

WR 7 who: 1id;

Shared_Memory [RR, R, WR, W, RWR] (sm, true, who)
]
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RWR 7 who: 2d;
Shared_Memory [RR, R, WR, W, RWR] (sm, true, who) )
[0 [ is_locked = true ]

-> ( W 7 who: 4d 7 j : indez 7 nv: value [who=for_whom] ;
Shared_Memory [RR, R, WR, W, RWR] (store(sm, j, nv), false, for_mnobody)
a
R ? who: 4d 7 j : tndez ;

R ! who ! get(sm, j);

W ? who: 2d ? nv: value [who=for_whom];

Shared_Memory [RR, R, WR, W, RWR] (store(sm, j, nv), false, for_nobody))
endproc

The process Shared Memory has the gates RR, R, WR, W, RWR and the parameters sm rep-
resenting the memory, is_locked and for_whom. It does not terminate, as indicated by the
keyword noexit. If the lock is not set, either a read request can be served, or the lock can
be set because of a write or read/write request. If the lock is set, either a new value and an
index are read via the gate W, or the part of the repository stored under index j is output
on gate R, followed by reading a new value via gate W. These actions can only take place
if the same process that sent the request participates in them, as expressed by the guard
[who=for_whom]. The new value of the shared memory becomes the new parameter of the
process, and the lock is reset!. The constant for_nobody indicates that access to the shared
memory is not reserved for a particular process.

The process Shared_Memory is the same for all instantiations of the repository architec-
ture, except for the type of information to be stored, and the types used as indices and for
the identification of components. The type shared_memory, which represents the shared
memory, has to be defined algebraically. We need an initial value znit, a function store
changing the shared memory, and a function get reading it. The type definition should follow
the schema

type  SHARED_MEMORY
is INDEX, VALUE

sorts
shared_memory
opns
intt : -> shared_memory
store : shared_memory, index, value —> shared_memory
get : shared_memory, index -> value
eqns

forall sm: shared_memory, jl, j2: index, vl: walue
ofsort wvalue
get (store(sm, ji, vi), jl1) = vi;
not(equiv(jl, j2)) => get(store(sm, ji1, vi), j2) = get (sm, j2);
get (init, j1) = ...;
endtype

where equiv is the equality on indices.

'To keep our presentation concise, we do not allow parallel write or read/write actions on different parts of
the shared memory, i.e. on different indices. The definition of such an optimization is straightforward.
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The types id, tndez and value of the values that can be stored under an index are also
defined algebraically. For the type id, we need an initial value for_nobody, as explained
previously.

Each repository architecture consists of a process Shared_Memory as defined above and
an arbitrary number of independent components. Each of these is either a read process, a
write process or a read/write process.

A read process does not use the gates WR, W, RWR and contains an arbitrary (positive)
number of read behaviors but neither write nor read/write behaviors. A read behavior is
defined by the pattern

RR ! me ;
R ! me ! ind ;
R 7 who: 2d ? v : wvalue [who = mel

where me is the identification of the process and ind is the index to be read.

A write process does not use the gates RR, R, RWR and contains an arbitrary (positive)
number of write behaviors but neither read nor read/write behaviors. A write behavior is
defined by the pattern

WR ! me ;
W ! me ! ind ! v

where v is the new value to be stored under index ind.
A read/write process may use three behavioral patterns. It contains at least one read/write
behavior, or read as well as write behaviors. A read/write behavior is defined by the pattern

RWR ! me ;
R ! me ! ind ;
R 7 who: 2d ? v : wvalue [who = mel

followed, in all the branches of the process, by writing access to the shared memory according
to the pattern

W ! me ! ind ! nv

for the same index ¢nd and a value nv. This condition can be syntactically decided as follows:
Let R/W_Comp be a process whose behavior part contains as a sub-expression the first part of
the read/write pattern, composed via “;” with another behavior expression B. We now define
a predicate write_pattern that is a sufficient condition for B to contain the second part of the

pattern in each of its branches. This is done by a case distinction of the syntactic form of B:

exit: write_pattern(exit(...)) = false
stop: write_pattern(stop) = false

action prefix: B = gay...a,; B’:
If gag...a, =W ' me ' ind ' nv then write_pattern(B) = true;
else write_pattern(B) = write_pattern(B?)

choice or disabling: B = B! [] B2 or B =B1 [> B2:
write_pattern(B) = write_pattern(B1) A write_pattern(B2)
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parallel or sequential composition: B — B1 op B2
with op € {I[g2, ..., gnll, I, |I, >>}:
write_pattern(B) = write_pattern(B1) V write_pattern(B2)

hiding: B = hide g1, ..., gn in B’:
if we{g1, ..., gn} then write_pattern(B) = false;
else write_pattern(B) = write_pattern(B?)

process instantiation: B = P[g1, ..., gn](...):
if we¢{g1, ..., gn}or P invokes R/W_Comp then write_pattern(B) = false;
else write_pattern(B) = write_pattern(PB[g1/g1’, ...,gn/gn’]),
where PB[g1/g1’, ...,gn/gn’] is the behavior expression that defines process P,
where the formal gates g1’, ..., gn’ are replaced by the actual gates g1, ..., gn.

Note that the condition for process instantiation may be too restrictive if P first contains a
write pattern and only then invokes R/W_Comp. Hence, the predicate write_pattern is only a
sufficient condition that the process following the first part of a read/write pattern contains
the second part of the pattern in each of its branches.

The occurrence of the patterns for read and write processes and the first part of a
read/write pattern in a process definition can easily be checked syntactically; hence, we
have shown that we can define sufficient conditions for the component processes to fulfill the
component characteristics, and that these conditions can be checked syntactically.

Communication Pattern

The communication between the shared memory and the independent components is ex-
pressed by the following pattern, where for better readability we use
inductive definition:

“...”7 instead of an

hide BRR, R, WR, W, RWR in
Shared_Memory [RR, R, WR, W, RWR] (init of shared_memory, false, for_nobody)
I[L RR, R, WR, W, RWR ]|
(Component_1[gate_list_1]
[11

11
Component_n [gate_list_n] )

All components behave independently of each other (the operator ||| involves no communi-
cation at all). For every Component_1,its gate_list_i must contain the gates RR and R if
it is a read process and WR and W if it is a write process. A read/write process may contain
RR, R as well as WR, W, or RWR, R and W. The repository and the independent components
must synchronize on these gates, as expressed by the synchronization list |[ RR, R, WR, W,
RWR 1|. The hide clause hides communications via the gates RR, R, WR, W, RWR from the
environment.

Constraints

Constraints are expressed in terms of the two parts of an architectural description, namely
behav_expr and local_def_list, as introduced in Section 4.1. For the repository style,
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we have the constraints that the behav_ezpr must conform to the communication pattern
given above, and that each process occurring in behav_ezpr, except Shared Memory, must
be a read, a write or a read/write process as defined in the process characteristics.

4.2.2 Agendas

The steps that lead to a repository architecture are summarized in Table 4.1. They have to be
performed in the given order, as indicated in Figure 4.2. The guidelines for the development
of architectural descriptions are mostly captured in the style characterization. Hence, the
agenda contains only a few steps.

No.| Step Validation Conditions
1 | Define the types shared_memory, | The type shared_memory must be de-
1d, indez and value. fined according to the schema given in

Section 4.2.1. The type i¢d must con-
tain a constant for_nobody.

2 | Define the component processes. Each component process must be either
aread, a write, or a read /write process.

3 | Assemble the overall architectural | The processes must communicate with
description according to the com- | the shared memory according to their
munication pattern of the repository | being a read, write or read/write pro-
style. cess, as described in the communica-
tion pattern.

Table 4.1: Agenda for the repository architectural style

Figure 4.2: Dependencies of steps for developing repository architectures

Step 1 Define the types shared_memory, id, indez and value.

First, we must decide what kind of information is to be stored in the repository and how it
can be accessed.

Step 2 Define the component processes.

For defining a single component process, we give an agenda in Table 4.2. The steps of this
agenda must be performed in the given order. The second step is very general. This makes
it possible to define one component of a repository architecture as a subsystem according to
some other style. The agenda shown in Table 4.2 can be applied repeatedly.

Step 3 Assemble the overall architectural description according to the communication pat-
tern.

This step can be performed in a routine way. It only must be guaranteed that the right gates
are used for the communication between the repository and the component processes.
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No.| Step Validation Conditions
1 | Decide if the component is a read,
write, or read/write process.

2 | Define the component as a process. | The process definition must contain the
patterns for the chosen kind of compo-
nent.

Table 4.2: Agenda to develop components for a repository architecture

4.3 Pipe/Filter Style

The characteristics of the pipe/filter style are the following (Garlan and Shaw, 1993; Shaw
and Garlan, 1996):

“In a pipe and filter style each component has a set of inputs and a set of outputs.
A component reads streams of data on its inputs and produces streams of data on
its outputs, [...] Components are termed “filters”. The connectors of this style
serve as conduits for the streams, transmitting outputs of one filter to inputs of
another. Hence connectors are termed “pipes”. [...] filters must be independent
entities: in particular, they should not share state with other filters. ”

Garlan et al. (Garlan et al., 1996) additionally state the topological constraint that pipes are
directional and that at most one pipe can be connected to a given “port” of a filter. Figure 4.3
shows an example of a pipe/filter architecture. As can be seen, a filter (in this case Filter_3)
may have several incoming and several outgoing pipes. Cycles are also allowed, see (Garlan

and Shaw, 1993).

v env_1 v env_3 v env_4
_ pipe_13 ] pipe_34 .
Filter 1 f------ - -» Filter 3 F------"1 - Filter 4
] A o JRIN ~ LY
pipe_12 -7 Ss I pipe 54
y e pipe 35 ~{ :
n r i A o
Filter 2 [ PPe23 Filter 5

Figure 4.3: A pipe/filter architecture

4.3.1 Style Characterization

In the LOTOS characterization of this style, a pipe between two filters is a synchronous
communication via some gate.

Component Characteristics

A filter is modeled by a process that takes its inputs from the incoming pipes, transforms
them according to its task, and delivers the results via the outgoing pipes. Communication
with the environment is also possible.
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Hence, a component of this style is not characterized by some specific behavior but by its
gates. These are divided into the lists in_pipe_list, out_pipe_list and env_gate list.
A filter process does not write on gates of its in_pipe_list and does not read from gates
of its out_pipe_list.

Communication Pattern

Two filters communicate via their common pipes. For example, the filters Filter_1 and
Filter_2 in the smallest box of the architecture shown in Figure 4.3 exhibit the communi-
cation behavior

Filter_1[env_1, pipe_12, pipe_13]
| [pipe—_12]|
Filter_2[pipe_12, pipe_23]

When adding the third filter Filter_3 synchronizing with the previous system via the pipes
pipe_13 and pipe_23 connecting it to Filter_1 and Filter_2, the following behavior is
obtained:

( Filter_1 [env_1, pipe_12, pipe_13]
| [pipe—_12]|
Filter_2 [pipe_12, pipe_23] )
| [pipe_13, pipe_23]|
Filter_3 [env_3, pipe_13, pipe_23, pipe_34, pipe_35]

Hence, the general communication pattern of a pipe/filter architecture has the form

hide pipe_list_1, pipe_list_2, ... pipe_list_n-1 in
(... ((Filter_1[gate_list_1] |[pipe_list_1]| Filter_2[gate_list_2])
[[pipe_list_2]| Filter_3[gate_list_3])

|[pipe_list_n-11]|
Filter_n[gate_list_n])

We have used “...” again instead of an inductive definition for better comprehensibility of
the pattern.

Constraints

Again, we state the constraints in terms of the top-level behavior behav_ezpr and the local-
_def_list:

e All synchronization lists (i.e. the values given to pipe_list_1, ..., pipe_list_n-1)
occurring in behav_ezpr are disjoint. This means that a pipe connects only two filters.

e Each gate occurring in some synchronization list of behav_ezpr occurs exactly twice in
the gates of the processes Filter_1, ..., Filter_n defined in local_def_list. This
means that a pipe cannot be re-used as an external gate.
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e Each of the processes that occur in behav_ezpr must conform to the characterization
given above. The gates of a process representing pipes are exactly the ones that occur
in some synchronization list pipe_list_1, ..., pipe_list_n-1. The direction of the

pipe can be determined from the process definition.

Note that, in our definition, pipes and filters have no buffers like in (Abowd et al., 1993),
because — according to the synchronous communication of LOTOS — no data can be lost.
The buffered version — which we consider to be closer to an implementation — could also be

expressed in LOTOS.

4.3.2 Agendas

The agenda to develop a software architecture according to the pipe/filter style is shown in

Table 4.3. The steps must be performed in the order given in the agenda.

pattern given in the communication
pattern part of the style characteri-
zation.

No.| Step Validation Conditions

1 | Define the filters one by one. Each filter must fulfill the conditions
stated in the component characteristics
part of the style characterization.

2 | Assemble the filters according to the | The architectural description must ful-

fill the constraints stated in the con-
straints part of the style characteriza-
tion.

Again, we define an agenda that helps to define a single filter process and that can be
applied repeatedly to perform Step 1 of the agenda for the pipe/filter style in Table 4.4. The

Table 4.3: Agenda for the pipe/filter architectural style

dependencies of the steps are shown in Figure 4.4.

No.| Step Validation Conditions
1 | Decide on the pipes that connects
the filter with other filters.
2 | Decide on the gates of the filter with
the environment.
3 | Define the filter as a process. The process must fulfill the conditions
stated in the component characteristics
part.

4.4

Table 4.4: Agenda to develop components for a pipe/filter architecture

Event-Action Style

According to Krishnamurthy and Rosenblum (Krishnamurthy and Rosenblum, 1995),

“An event-action system is a software system in which events occurring in the

environment of the system trigger actions in response to the events. The triggered

actions may generate other events, which trigger actions, and so on.“
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Bt I
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Figure 4.4: Dependencies of steps for developing a filter

Garlan and Shaw (Garlan and Shaw, 1993) mention that “ The main invariant in this style is
that announcers of events do not know which components will be affected by those events.”

4.4.1 Style Characterization

An event architecture consists of components that react to events. When an event has hap-
pened, actions are carried out and other events may be sent. An event manager is responsible
for distributing all events that have occurred to all components that have to react to that
event. Figure 4.5 shows an example of an event architecture.

S|\ S RESULT1
S Component 1|- - |
) ouTt
L}
[
L
gl
EVENTS Event [---o-oo__ N2 _ RESULT2
- e oo _ ] Component 2 - ->m
Manager [ 777 oUT2
«<-- 1
0 1
1
1
1
P___IN3_ RESULT3
e~ Component 3 - - -+
ouT3

Figure 4.5: An event-action architecture

Component Characteristics

The event manager has the following form?:

process Event_Manager [EVENTS, IN_1, OUT_1,... IN_n, OUT_n] : func :=
receive_event
>> accept e: event in
trigger_actions

endproc

This definition consists of two processes, receive_event and trigger_actions, which are
separated by >>. The accept clause means that an event e is passed from the process
receive_event (via exit clauses) to the process trigger_actions. The event manager
may terminate (func = exit) or not (func = noexit). The data type event must be
defined algebraically. It can be structured to allow the handling of complex events.

?In this definition, there is only one gate EVENTS. The pattern can easily be generalized to allow for several
external gates.
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In the process receive_event, the event manager reads incoming events, either from the
environment via the gate EVENTS or from some other component via some gate OUT_%. The
process receive_event must contain the following pattern:

EVENTS 7 e: event; exit(e)
[1 ouT_1 7 e: event; exit(e)
]
[1 oUT_n 7 e: event; exit(e)

In the process trigger_actions, the event manager distributes the event to the various
components that define the actions to be taken in reaction to the event, according to some
predicates p_j. The process trigger_actions must contain the pattern

[p_1(e)] > IN_1,1 ' e ; ... IN_1,n1 ! e ;
Event_Manager [EVENTS, IN_1, OUT_1, ... IN_n, OUT_n]
]
0 [p_k(e)]l -> IN_k,1 ! e ; ... IN.k,nk ! e ;
Event_Manager [EVENTS, IN_1, OUT_1, ... IN_n, OUT_n]

Each event-action architecture consists of a process Event_Manager as described above
and an arbitrary number of independent components. Each such component Component_ 3
has a gate IN_4 and contains an action

IN_1+ 7 e: event

If the component generates events, it has a gate OUT_%, which is used to send events to the
event manager. In this case, the process behavior contains actions of the form:

ouT_1 ' e

The process does not write on IN_% and does not read from OUT_z.

Communication Pattern

The communication between the event manager and the independent components takes place
according to the pattern

hide IN_1, OUT_1, ... IN._m, OUT_m in
Event_Manager [EVENTS, IN_1, OUT_1, ... IN_n, OUT_n]
|[[Iv_1, OUT_1, ... IN_n, OUT_n]|

( Component_1[IN_1, OUT_1, env_gate_list_1]
11

11
Component_n [IN_n, OUT_n, env_gate_list_n] )
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Constraints

The behav_ezpr and local_def _list making up the architectural description of an event-
action system must satisfy the following constraints:

e behav_ezpr must conform to the communication pattern given above.

e ach of the processes that occurs in behav_ezpr, except Event_Manager, must conform
to the description given in the component characterization.

442 Agendas

Like a repository architecture, an event-action architecture consists of a distinguished com-
ponent — the event manager — and a number of other components that perform independently
of each other and communicate only with the event manager and the environment. Hence,
the agendas are similar to the agendas for the repository style. The top-level agenda is given
in Table 4.5. It must be processed in the given order.

No.| Step Validation Conditions
1 | Define the type event.
Define pairs, consisting of a predi- | Each action process must communicate
cate on the type event and a pro- | with the event manager and define the
cess defining the corresponding ac- | reaction to the events that fulfill the
tion. defined predicate.

3 | Define the process Event_Manager | The definition of the event manager
and assemble the overall architec- | must conform to the pattern given in
tural description according to the | the component characteristics, and it

communication pattern. must be consistent with Step 2.

Table 4.5: Agenda for the event-action architectural style

The validation condition of Step 3 means that for each pair (pred, Component) defined in
Step 2, the process Component must be notified exactly of all events satisfying the predicate
pred, i.e., the definition of the process Event_Manager must contain the expression

[pred(e)] -> ... IN.k ' e ; ... ;
Event_Manager [EVENTS, IN_1, OUT_1, ... IN_n, OUT_n]

where IN_k is the gate used by process Component to communicate with the event manager.
The agenda to develop one component is given in Table 4.6. The steps must be performed

in the given order. Again, the generality of the second step makes it possible to define one

component of a repository architecture as a subsystem according to some other style.

4.5 Example: Design of a Robot

We illustrate the development of instances of architectural styles by designing a robot. This
robot can make the movements shown in Figure 4.6: it can advance by moving its right or
its left leg; it can stand still; and it can smile or not. In the following, we develop three
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No.| Step Validation Conditions
1 | Decide on the events to be treated.
Define the action to be taken as a | The process definition conforms to the
process. component characteristics given in the

style characterization.

Table 4.6: Agenda to develop components for an event-action architecture

PHeeeee

init chg_smile advance advance chg_smile stand chg_smile

Figure 4.6: The movements of the robot

alternative designs, one for each style presented previously. These three designs use the same
robot definition.

The robot can be modeled as an automaton with three states: standing, left_up and
right_up as shown in Figure 4.7. To each state a boolean value is associated indicating
whether the robot is smiling or not. The initial state is standing and smiling.

variable . chg_smile
s: bool standing(s) @ <> stand
stand advance stand
advance
chg_smile(__*@ = — ) chg_smile
left_up(s) advance right_up(s)

Figure 4.7: The robot automaton

The robot is defined by the abstract data type robot where the states are defined as
constants and the movements as transitions from one state to another, except for smiling,
which is defined by a boolean value: true for smiling. For each state a predicate is defined
deciding if the robot is in this state.

type  ROBOT
is BOOLEAN
sorts robot
opns
standing : bool -> robot
left_up : bool -> robot
right_up : bool -> robot
is_standing, is_left_up, is_right_up : robot -> bool
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the_smile : robot —-> bool

init : -> robot

stand, advance, chg_smile : robot -> robot
eqns

forall roro: robot, s : bool

ofsort Dbool
is_standing(standing(s)) = true;
is_standing(left_up(s))
is_standing(right_up(s)) = false;

|
H
©
'_I
©n
)

is_left_up(standing(s)) = false;
is_left_up(left_up(s)) = true;
is_left_up(right_up(s)) = false;
is_right_up(standing(s)) = false;
is_right_up(left_up(s)) = false;
is_right_up(right_up(s)) =

[l
n o
“ K

=]
[

the_smile(standing(s))

the_smile(left_up(s))

the_smile(right_up(s))
ofsort robot

init = standing(true);

stand(roro) = standing(the_smile(roro));

I
©n wn

advance (standing(s)) = right_up (s);
advance (left_up(s)) = right_up (s);
advance (right_up(s)) = left_up (s);

chg_smile (standing(s)) = standing(not(s));

chg_smile (left_up(s)) = left_up (not(s));

chg_smile (right_up(s)) = right_up (not(s));
endtype

The movements are defined by the type mvt with three constants m_stand, m_advance and
m_chg_smile:

type mvt
is boolean
sorts mvt
opns
m_stand, m_advance, m_chg_smile : -> mvt
endtype

The robot will be asked to execute several movements collected in a list. This list is defined
by an abstract data type m_list with a constant empty, a function add adding an element to
the end of the list, a function rm_first removing the first element of a list, a function first
selecting the first element of a list, and a predicate is_empty. A constant init_list is used
to define the list of movements initially given to the robot.

type M_LIST
is BOOLEAN, MVT
sorts m_list

opns
empty_list : -> m_list
add :m_list, mvt -> m_list

rm_first : m_list -> m_list
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is_empty : m_list -> bool

first : m_list -> mvt

init_list : -> m_list
eqns

forall m:mvt, 1lm: m_list
ofsort m_list
rm_first (add (empty_list, m)) = empty_list;
not (is_empty (1m)) => rm_first (add (1lm, m)) =
add (rm_first (1m), m);
init_list = add(add(add(add(add(add(empty_list,
m_chg_smile), m_advance), m_advance), m_chg_smile),
m_stand), m_chg_smile);

ofsort Bool
is_empty (empty_list) = true;
is_empty (add (1lm, m)) = false;
ofsort mvt
first (add (empty_list, m)) = m;
not (is_empty (1m)) => first (add (Im, m)) = first (lm);

endtype

START OUTPUT
| |

Figure 4.8: Interface of robot design

We have the same interface shown in Figure 4.8 for all architectures. The input is the
initial state of the robot together with the movements to be performed. Therefore, a data
type value must be defined as the Cartesian product of the two types robot and m_list.
Its constructor function is called make, and the two selector functions are called the_robot
and the_1ist. This data type will be defined in Section 4.5.1. The gate START is used to
start the simulation, yielding in the following top-level behavior:

START 'make(init of robot,init_list); exit
| [START] |
( behav_ezpr )

The three architectures will result in different definitions of behav_ezpr and the associated
local_def _lust.

45.1 The robot design using the repository style

Our first robot design follows the repository style. Step 1 of the agenda shown in Table 4.1
tells us to first give type specifications for shared_memory, id, indez and value.

The shared memory is to hold the current state of the robot and the list of movements
to be executed, i.e. items of type value. As we just have one value (one robot and its list
of movements) to be stored in the shared memory, we only need one index, which we call
index1. This yields the following type definitions.
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type  SHARED_MEMORY
is INDEX, VALUE
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sorts
shared_memory
opns
init : -> shared_memory
store : shared_memory, index, value —> shared_memory
get : shared_memory, index -> value
eqns

forall sm: shared_memory, jl, j2: index, vi: value

ofsort value

get(store(sm, j1, vi), j1) = vi;
not(equiv(jl, j2)) => get(store(sm, ji, v1), j2) = get (sm, j2);

get(init, ji1)

endtype
type INDEX
is BOOLEAN
sorts
index
opns
indexl : —-> index

equiv: index,index —> bool

eqns

forall ji, j2: index

ofsort bool

equiv(index1,indexl) = true;

endtype

type IDENTIFIER
is BOOLEAN
sorts
id
opns
for_nobody
id_init_sm
id_stand
id_advance

id_chg_smile :

endtype

type VALUE
is ROBOT, M_LIST
sorts
value
opns

id
id
id
id
id

make(init of robot, empty);

make : robot, m_list -> value

the_robot: value -> robot
the_list : value -> m_list

eqns

forall roro: robot, ml: m_list

ofsort robot

the_robot(make(roro, ml)) = roro;
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ofsort m_list
the_list(make(roro, ml)) = ml;
endtype

It can easily be checked that the validation conditions associated with Step 1 of the agenda
are fulfilled: The type shared_memory is defined according to the schema given in Section
4.2.1, and the type id contains a constant for_nobody.

Next, as required in Step 2 of the agenda, we define the component processes of the
architecture. First, we need a write process Init_sm that writes the initial state and the
initial list of movements into the shared memory.

Furthermore, we need three independent components Stand, Chg_Smile and Advance to
execute the corresponding movements. These components try in parallel to access the shared
memory in order to execute the movement they are responsible for. Therefore, they all are
read /write processes. Each of them first reads the list of movements, denoted by the variable
ml. If the first movement is the one it is responsible for, the movement is executed, the robot
state changed (variable roro) and the rest of the movement list is written back in the shared
memory. If the movement cannot be executed by the component that has been granted access,
it writes back the unchanged state in order to unlock the shared memory. This architecture
is illustrated in Figure 4.9.

START OUTPUT

Init_sm Stand Advance | |Chg_Smile

WR RWR W R RWR W R RWR W R
1 1 | I | | I |
1 1

1

Shared Memory

Figure 4.9: The repository architecture for the robot

The component processes are defined as follows.

process Init_sm [START, W, WR] : exit

START ? vv: value;
WR ! id_init_sm;
W ! id_init_sm ! index1 ! vv;
exit
endproc

process Stand [OUTPUT, R, W, RWR] : exit

RWR ! id_stand;

R ! id_stand ! index1 ;

R ? for_whom: id ? v: value [for_whom=id_stand];
(let ml: m_list = the_list(v),
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roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> W ! id_stand ! v ; exit
[ [is_empty(ml)= false] ->
( [first(ml) equal m_stand = true ]
-> QUTPUT ! make(stand(roro), rm_first(ml)) ;
W ! id_stand ! make(stand(roro), rm_first(ml)) ;
Stand [OUTPUT, R, W, RWR]
[ [first(ml) equal m_stand = falsel
-> W ! id_stand ! v ;
Stand [OUTPUT, R, W, RWR]
))

endproc

process Advance [OUTPUT, R, W, RWR] : exit

RWR ! id_advance;
R ! id_advance ! indexl ;
R ? for_whom: id ? v: value [for_whom=id_advance];
(let ml: m_list = the_list(v),
roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> W ! id_advance ! v ; exit
[ [is_empty(ml)= false] ->
( [first(ml) equal m_advance = true ]
-> OUTPUT ! make(advance(roro), rm_first(ml)) ;
W ! id_advance ! make(advance(roro), rm_first(ml)) ;
Advance [OUTPUT, R, W, RWR]
[ [first(ml) equal m_advance = false]
-> W ! id_advance ! v ;
Advance [OUTPUT, R, W, RWR]
))

endproc

process Chg_Smile [OUTPUT, R, W, RWR] : exit

RWR ! id_chg_smile;
R ! id_chg_smile ! indexl ;
R 7 for_whom: id 7 v: value [for_whom=id_chg_smile];
(let ml: m_list = the_list(v),
roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> W ! id_chg_smile ! v ; exit
[ [is_empty(ml)= false] ->
( [first(ml) equal m_chg_smile = true ]
-> OUTPUT ! make(chg_smile(roro), rm_first(ml)) ;
W ! id_chg_smile ! make(chg_smile(roro), rm_first(ml)) ;
Chg_Smile [OUTPUT, R, W, RWR]
[ [first(ml) equal m_chg_smile = false]
-> W ! id_chg_smile ! v ;
Chg_Smile [OUTPUT, R, W, RWR]
))

endproc

The process Init_sm conforms to the pattern for write processes. The other component
processes conform to the pattern for read/write processes. They first lock the shared memory
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and read its content. Subsequently, in each branch of the choice, a write action is performed.
Hence, the validation conditions associated with Steps 2 of the agendas shown in Tables 4.1
and 4.2 are fulfilled. This concludes Step 2 of the agenda for the repository architecture. Step
3 yields the overall behavior of the repository robot and the concrete definition of the process
SM:

START 'make(init of robot,init_list); exit
| [START] |

(

hide RR, R, WR, W, RWR in

SM [RR, R, WR, W, RWR] (init of shared_memory, false, for_mnobody )
IL RR, R, WR, W, RWR ]|
(

Init_sm [START, W, WR]

[11

Stand [OUTPUT, R, W, RWR]

[11

Chg_Smile [OUTPUT, R, W, RWR]

[11

Advance [OUTPUT, R, W, RWR]

)

where

process SM [RR, R, WR, W, RWR] (sm:shared_memory, is_locked:BOOL, for_whom: id)
. noexit

[ is_locked = false ]
-> ( RR ? who: id;
R 7 who: id 7 j1 : index ;

R ! who ! get(sm, j1);
SM [RR, R, WR, W, RWR] (sm, false, for_mobody)
]

WR 7 who: id;
SM [RR, R, WR, W, RWR] (sm, true, who)
]
RWR 7 who: id;
SM [RR, R, WR, W, RWR] (sm, true, who) )

]

[ is_locked = true ]

-> (W ? who: id ? j1 : index ? nv: value [who=for_whom] ;
SM [RR, R, WR, W, RWR] (store(sm, j1, nv), false, for_nobody)
]
R ? who: id 7 j1 : index ;
R ! who ! get(sm, j1);
W ? who: id 7 nv: value [who=for_whom];
SM [RR, R, WR, W, RWR] (store(sm, ji, nv), false, for_mobody) )
endproc

Again, syntactic checks show that the validation condition associated with Step 3 of the
agenda of Table 4.1 is fulfilled: The communication of the component processes takes place
as described in the communication pattern described in Section 4.2.1.
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This architecture has the disadvantage that the system implementation must guaran-
tee fairness, i.e. each component must be given the chance to access the shared memory.
Otherwise, an infinite number of unsuccessful accesses is possible, and the system does not
terminate.

4.5.2 The robot design using the pipe/filter style

In the pipe/filter modeling, we can make sure that each component is given the possibility
to execute its movement if required. The idea is to have a line of filters. Each filter inspects
the movement list. If it can execute the movement, it does so and hands the new robot state
and the new movement list to the next filter. Otherwise, it passes on the unchanged data.
Again, we need an initializing component, called here Init_pf. The architecture is shown in
Figure 4.10. It also shows the gates that are needed for the processes.

STéRT OUTPUT
" PO T e )
Init pf |--- Stand [--» Advance } -»Chg_Smilg- -
1
. P ]

Figure 4.10: The pipe/filter architecture of the robot

For each process, we now proceed according to the agenda of Table 4.4. Process Init_pf
is connected via pipe PO with the other filters and via START with the environment. Its
definition is

process Init_pf [START, PO] : exit
:= START 7 vv: value;

PO ! vv ;

exit
endproc

For the other processes, we proceed analogously and get the definitions

process Stand [PO, P1, P3, OUTPUT] : exit

(PO ? vv: value; exit (vv) )
[]
(P3 7 vv: value; exit (vv) )
>> accept v : value in
(let ml: m_list = the_list(v), roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> (exit)
[J [is_empty(ml)= false] —>
( [first(ml) equal m_stand = true ]
-> OUTPUT ! make(stand(roro), rm_first(ml)) ;
P1 ! make(stand(roro), rm_first(ml)) ;
Stand [PO, P1, P3, OUTPUT]
[J [first(ml) equal m_stand = false]
-> P1 V' v ;
Stand [PO, P1, P3, OUTPUT] ))
endproc
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process Advance [P1, P2, OUTPUT] : exit

P1 7 v: value;
(let ml: m_list = the_list(v), roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> (exit)
[J [is_empty(ml)= false] —>
( [first(ml) equal m_advance = true ]
->  OUTPUT ! make(advance(roro), rm_first(ml)) ;
P2 ! make(advance(roro), rm_first(ml)) ;
Advance [P1, P2, OUTPUT]
[1 [first(ml) equal m_advance = falsel
-> P2 ' v ;
Advance [P1, P2, OUTPUT] ))
endproc

process Chg_Smile [P2, P3, OUTPUT] : exit
P2 7 v: value;
(let ml: m_list = the_list(v), roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> (exit)
[J [is_empty(ml)= false] —>
( [first(ml) equal m_chg_smile = true ]
->  OUTPUT ! make(chg_smile(roro), rm_first(ml)) ;
P3 ! make(chg_smile(roro), rm_first(ml)) ;
Chg_Smile [P2, P3, OUTPUT]
[J [first(ml) equal m_chg_smile = false]
-> P3 ' v ;
Chg_Smile [P2, P3, OUTPUT] ))
endproc

This concludes Step 1 of the agenda given in Table 4.3. Each of the processes conforms to
the component characteristics of Section 4.3.1. According to the style characterization, the
overall behavior of the process is

hide PO, P1, P2, P3 in
( Init_pf [START, PO]

L PO ]I

Stand [PO, P1, P3, OUTPUT]
|L P1, P3 ]I

Advance [P1, P2, OUTPUT]
L P21l

Chg_Smile [P2, P3, OUTPUT] )

This result of Step 2 fulfills the constraints stated in Section 4.3.1: The synchronization
lists [ PO 1, [ P1, P3 ] and [ P2 ] are pairwise disjoint. Gate PO occurs exactly in the
gate lists of the processes Init_pf and Stand. Gate P1 occurs exactly in the gate lists of
the processes Stand and Advance. Gate P2 occurs exactly in the gate lists of the processes
Advance and Chg_Smile. Finally, gate P3 occurs exactly in the gate lists of the processes
Stand and Chg_Smile. Pipe PO has the direction shown in Figure 4.10 because Init_pf only
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writes on it and Stand only reads from it. For the other pipes, the conditions that the gates of
a process representing pipes are exactly the ones that occur in some synchronization list and
that the direction of the pipe can be determined from the process definition can be checked
analogously.

This solution is better than the repository architecture because it always terminates. It is
not ideal, however, because each component must inspect the data, even if it cannot process
them.

453 The robot design using the event-action style

The event-action style can be used to overcome the disadvantages of the previous two archi-
tectures. The event manager inspects the movement list and passes on the data only to the
component that can process them. Events are items of type value. The initial state of the
robot and the movement list are given to the event manager. An initialization component is
not required. This architecture is shown in Figure 4.11.

STéRT OUTPUT
v In_stand_ _ _ I‘
1 I > Stand | -
: ' Out_stand }
_ |
--- In advance '
Event | _-----_-_"- =TT C . > |
Manager [--.. Ot advance [~V [~
11 __In_chg_smile__| —
| SIS ITSTII ST NChg Smile - -
Out_chg_smile

Figure 4.11: The event-action architecture for the robot

Step 1 of the agenda for the event-action style shown in Table 4.5 has already been
performed in Section 4.5.1. According to the agenda of Table 4.6, we decide that the action
Stand must be invoked for all events v where the_1ist(v) is a list that starts with the
movement m_stand. For the actions Advance and Chg_Smile we have analogous predicates.
These independent components communicate with the event manager via the gates In_stand,
In_advance and In_chg_smile, respectively. They pass their result on to the event manager
for further processing. Their definition is

process Stand [OUTPUT, In_stand, Out_stand] : noexit

In_stand 7 v: value;

(let ml: m_list = the_list(v),
roro: robot = the_robot(v)

in OUTPUT ! make(stand(roro), rm_first(ml));
Out_stand ! make(stand(roro), rm_first(ml));
Stand [OUTPUT, In_stand, Out_stand]

)

endproc

process Advance [OUTPUT, In_advance, Out_advance] : noexit
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In_advance 7 v: value;

(let ml: m_list = the_list(v),
roro: robot = the_robot(v)

in OUTPUT ! make(advance(roro), rm_first(ml));
Out_advance ! make(advance(roro), rm_first(ml));
Advance [OUTPUT, In_advance, Out_advancel]

endproc

process Chg_Smile [OUTPUT, In_chg_smile, Out_chg_smile] : noexit

In_chg_smile 7 v: value;

(let ml: m_list = the_list(v),
roro: robot = the_robot(v)

in OUTPUT ! make(chg_smile(roro), rm_first(ml));
Out_chg_smile ! make(chg_smile(roro), rm_first(ml));
Chg_Smile [OUTPUT, In_chg_smile, Out_chg_smile]

endproc
Each definition fulfills the validation condition of Step 2 of the agenda given in Table 4.6

by using appropriate gates to receive and send events. It remains to perform Step 3 of the
agenda given in Table 4.5. The event manager is defined as follows.

process Event_Manager [START, In_stand, Out_stand, In_chg_smile,
Out_chg_smile, In_advance, Out_advance] : exit :=

START ? v: value; exit(v)
[1 Out_stand ? v: value; exit(v)
[1 Out_advance 7 v: value; exit(v)
[ Out_chg_smile 7 v: value; exit(v)

>> accept v: value in
(let ml: m_list = the_list(v), roro: robot = the_robot(v)
in [is_empty(ml)= true ] -> (exit)
[I([is_empty(ml)= false] ->
( [first(ml) = m_stand]
-> In_stand ! v ;
Event_Manager [START, In_stand, Out_stand,
In_chg_smile, Out_chg_smile, In_advance, Out_advance]
[1 [first(ml) = m_advancel
-> In_advance ! v ;
Event_Manager [START, In_stand, Out_stand,
In_chg_smile, Out_chg_smile, In_advance, Out_advance]
[] [first(ml) = m_chg_smile]
-> In_chg_smile ! v ;
Event_Manager [START, In_stand, Out_stand,
In_chg_smile, Out_chg_smile, In_advance, Out_advance] )))
endproc

The event manager contains the patterns required in Section 4.4.1. It invokes the actions
exactly under the conditions stated defined in Step 2 of the agenda of Table 4.5: when the
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first movement to be executed is m_stand, then the event/value is passed via gate In_stand
to the process Stand, and similarly for the other movements.

In accordance with the event-action style characterization, we have the following overall
behavior:

hide In_stand, Out_stand, In_chg_smile, Out_chg_smile, In_advance, Out_advance in
Event_Manager [START, In_stand, Out_stand, In_chg_smile,
Out_chg_smile, In_advance, Out_advance]
| [In_stand, Out_stand, In_chg_smile, Out_chg_smile, In_advance, Out_advance] |
( Stand [OUTPUT, In_stand, Out_stand]

11
Advance [OUTPUT, In_advance, Out_advancel]

11
Chg_Smile [OUTPUT, In_chg_smile, Out_chg_smile] )

Note that the components executing the movements are much simpler now than in the other
architectures.

454 Comparing the three designs with Aldebaran

Under the assumption of fairness for the repository solution, all three LOTOS specifications
exhibit the same behavior to the environment, i.e. a user cannot distinguish implementations
of the three architectures. This can be shown using CADP (Caesar/Aldebaran Distribution
Package) (Fernandez et al., 1992). The tool generates the same following automata mini-
mized with respect to safety equivalence (Fernandez, 1989) (i.e. internal transitions are not
considered) for all the three architectures, where we use the movement list shown in Figure 4.6.

des (0,7,8)
(0,"START !'MAKE (STANDING (TRUE),
ADD (ADD (ADD (ADD (ADD (ADD (EMPTY, M_CHG_SMILE),
M_ADVANCE), M_ADVANCE), M_CHG_SMILE), M_STAND), M_CHG_SMILE))",
2)
(2,"0UTPUT !'MAKE (STANDING (FALSE),
ADD (ADD (ADD (ADD (ADD (EMPTY,
M_ADVANCE), M_ADVANCE), M_CHG_SMILE), M_STAND), M_CHG_SMILE))",
3)
(3,"0UTPUT !'MAKE (RIGHT_UP (FALSE),
ADD (ADD (ADD (ADD (EMPTY,
M_ADVANCE), M_CHG_SMILE), M_STAND), M_CHG_SMILE))",
4)
(4,"0UTPUT !'MAKE (LEFT_UP (FALSE),
ADD (ADD (ADD (EMPTY, M_CHG_SMILE), M_STAND), M_CHG_SMILE))",
5)
(5,"0UTPUT !'MAKE (LEFT_UP (TRUE),
ADD (ADD (EMPTY, M_STAND), M_CHG_SMILE))",
6)
(6,"0OUTPUT !'MAKE (STANDING (TRUE),
ADD (EMPTY, M_CHG_SMILE))",
7)
(7,"0OUTPUT !'MAKE (STANDING (FALSE),
EMPTY)",
1
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This labeled transition system has to be interpreted as follows: the initial state is 0, there are
8 states and 7 transitions. State 1 is a sink state that is entered when the list of movements is
empty. The first transition is from State 0 to State 2, and it is performed when the automaton
outputs the message STANDING (FALSE) and the rest of the movement list. This means that
during this transition the robot has moved to the state where it still stands but is no longer
smiling. This corresponds to the first movement of the list, M_CHG_SMILE, starting from the
initial state, standing and smiling.

The labeled transition systems, minimized with respect to safety equivalence, are the same
for the three architectures:

% aldebaran -sequ robot_repository robot_pipe_filter

TRUE
% aldebaran -sequ robot_repository robot_event
TRUE
% aldebaran -sequ robot_pipe_filter robot_event
TRUE

Stepwise execution of the three alternative architectures is also possible. This shows
that existing LOTOS tools can help to animate and compare architectural descriptions, thus
providing valuable support for their validation.

4.6 Related Work

This work is not the first to formally characterize architectural styles or to use a process
algebra to specify the behavioral aspects of software architectures. Abowd, Allen and Gar-
lan (Abowd et al., 1993) use the specification language 7 to formally define architectural
styles. Concrete designs, however, are described in a different language. Thus, there is no
direct way from a style definition to an instance of the style. Fiadeiro and Maibaum (Fi-
adeiro and Maibaum, 1996) conceive architectural styles as well as architectural description
languages as categories. Their work is language-independent and aims more at a categorical
foundation of software architecture than detailed guidance for designers.

Allan and Garlan (Allan and Garlan, 1994) use CSP to formalize architectural connec-
tion. In their approach, connectors are defined as processes. In contrast to our work where
components are modeled as processes, this yields several de-centralized behaviors in one ar-
chitectural description instead of one central behavioral description characterizing the whole
system, as proposed in this work. Moriconi and Qian (Moriconi and Qian, 1994) use CSP
to show that an architectural description is a correct refinement of another. Both of these
approaches are not concerned with architectural styles but with architectural descriptions in
general. These need not conform to any style.

4.7 Summary

Considering the different style characterizations given in this chapter, we notice that there
are two styles (repository and event-action) that contain a distinguished component (Shared-
_Memory and Event_Manager, respectively). This results in a relatively detailed characteri-
zation of the other components of the architecture because one can state requirements con-
cerning the communication of the other components with the distinguished one. Further
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constraints are not necessary. In contrast, the pipe/filter style does not have a distinguished
component. This allows only for a weak characterization of the components, but leads to
non-trivial constraints concerning the communication between the different components.

Formal descriptions of architectural styles and concrete architectural designs are important
because only architectural descriptions with a formal semantics allows us to precisely answer
the questions stated by Clements (Clements, 1996) on software architecture: What are the
components? How do they behave? What do the connections mean?

In particular, the results of this chapter are:

e We have shown that LOTOS is a language suitable to express individual architectures,
and that LOTOS patterns in combination with constraints are suitable to characterize
architectural styles.

e The style characterizations provide a semantic foundation of architectural styles. Fur-
thermore, they yield sufficient conditions for a given concrete architectural description
to conform to the style.

e Agendas that are based on the style characterizations support the development of in-
stances of the styles.

e The formal nature of the architectural descriptions and the availability of tools makes
it possible to formally analyze and to animate the architectural descriptions. In our
example, we have demonstrated how different designs can be compared.

e Qur approach to expressing architectural descriptions allows for hierarchical composition
of such descriptions.

e Substyles of given architectural styles can be defined by adding further constraints or
adding further detail to the patterns of a style characterization.

Of the “hot research areas” identified by Garlan, Allen and Ockerbloom (Garlan et al., 1995),
our work addresses architectural description, formal underpinnings and role of tools and en-
vironments. This is achieved using only a single formalism (and patterns of it) and existing
tools.

4.8 Further Research

The work presented here forms the basis for future work in several directions:

Architecture refinement. A notion of architecture refinement should be defined, based on
the notion of behavioral equivalence in LOTOS.

Other styles. Besides the three styles characterized here, other architectural styles, e.g.
client-server, are of importance. To make our approach more broadly applicable, these
should also be characterized and provided with agendas.

Alternatives for the algebraic specification language. The example has shown that the
data type parts of the architectural descriptions are somewhat lengthy. Case studies
should be performed to investigate what the architectural descriptions of more realistic
systems look like. If appropriate, one could consider replacing the algebraic specification
language of LOTOS by Z or another more powerful language.



Part 11

MACHINE SUPPORT
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Chapter 5

Strategies — A Generic Knowledge
Representation Mechanism for Software
Development Activities

All efforts to automate software engineering activities and to reuse previously gained expe-
rience must be based on representations of the knowledge possessed by software engineers,
which are easily implementable on machines, and complemented by some process model de-
scribing how to make use of the represented knowledge.

In this chapter, we present precisely such a knowledge representation mechanism, called
strategy. This concept is specifically designed to support the application of formal techniques
in software engineering. Formal techniques make it possible to guarantee semantic properties
of the developed product (this may be a specification, a design, a program, test cases, or
the like). This is in contrast to CASE tools, which usually do not take semantic issues into
account. The notion of a strategy is independent of any particular formalism.

Strategies are used to describe possible steps that may be taken during the development
of an artifact of the software engineering process. A strategy might, for example specify
how to decompose a system design to guarantee a particular property, how to conduct a data
refinement, or how to implement a particular class of algorithms. This is the kind of knowledge
often described in text books or the agendas presented in the first part of this work. The ability
to decide which strategy may successfully be applied in a particular situation, on the other
hand, typically requires human intuition and a deep understanding of the problem under
consideration. While heuristics for selecting strategies are hardly mechanizable, strategies
themselves can, in fact, be implemented.

The basic idea underlying strategies is to conceive software engineering activities as prob-
lem solving processes in which, for each given development problem, an acceptable solution
has to be constructed. The notion of acceptability captures semantic requirements that the
developed products must fulfill. The notion of strategy is generic. Its generic parameters are
the notions of problems, solutions, and acceptability. This means that strategies can be used
to formalize a variety of software development activities.

In problem solving with strategies, problems are solved by reducing them to a number of
subproblems, which are in turn solved by applying strategies. The problem solving process

103
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terminates when the generated subproblems are so simple that they can be solved directly.
The use of strategies to support software engineering activities has the following advan-
tages:

e Development methods formalized by strategies can be combined freely and can be en-
hanced, changed, and adapted to special project contexts in a routine way.

e Strategicals provide ways to define more powerful strategies by combination of existing
ones.

e The parts of a strategy, which guarantee acceptability of solution it generates are well-
isolated. Only these parts have to be verified to obtain trustworthy support systems.

As already mentioned, merely representing development knowledge does not suffice — the
knowledge representation mechanism must therefore be complemented by mechanisms for the
machine supported application of this knowledge. For strategies, this is achieved as follows:

e We give a modular representation of strategies. This representation maps without
difficulty to encapsulation mechanisms of modern programming languages.

e An abstract problem solving algorithm describes how development activities with strate-
gies can be carried out by machine (where appropriate, user interaction will be neces-

sary).

e The parts of the problem solving algorithm in which user interaction can be replaced
by automatic procedures are clearly identified, making stepwise automation possible.

e A generic system architecture provides detailed concepts for implementing support sys-
tems for strategy-based problem solving.

We formally define strategies, strategicals, strategy modules, and the abstract problem
solving algorithm in the language Z (Spivey, 1992b). This provides precise definitions of these
notions, and thus supports reasoning about strategies.

The rest of the chapter is organized as follows. We present a formal definition of strategies
in the specification language 7 in Section 5.1. Section 5.2 introduces strategicals that can be
used to define more powerful strategies from simpler ones. Steps toward an implementation
of strategies are taken in Section 5.3. The system architecture described in Section 5.4 takes
user needs into account. In Section 5.5, we compare strategy-based problem solving with
tactical theorem proving and other related work. Finally, we summarize in Section 5.6 and
give directions for further research in Section 5.7. The results of this chapter are based on
the publications (Heisel, 1994; Heisel et al., 1995b; Heisel et al., 1995a; Heisel, 1996¢)

5.1 Formal Definition of Strategies

As discussed earlier, strategies are used to describe possible steps that can be taken during
the development of an artifact of the software engineering process. Strategies are based on
the reduction of problems to subproblems from whose solutions the strategy synthesizes a
solution to the original problem. The solutions to subproblems are obtained by strategy
applications as well. Finally, the strategy tests if the synthesized solution to the original
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problem is acceptable according to some pre-defined notion of acceptability. In general, the
subproblems generated by a strategy are neither independent of one another nor of solutions
to other subproblems. Hence, the order in which the various subproblems can be set up and
solved is restricted.

We first define the general notion of relation and then introduce specific relations called
constituting relations. Strategies are then defined as sets of constituting relations, which
relate problems to the subproblems needed to solve them, and relate their ultimate solutions
to the solutions of those subproblems. The formal definition of a strategy is expressed in the
specification language Z (Spivey, 1992b).

5.1.1 Definition of Database Relations

Since, in the context of strategies, it is convenient to refer to the subproblems and their
solutions by names, our definition of strategies is based on the the notion of a relation, as
used in the theory of relational databases (Kanellakis, 1990). In this setting, relations are sets
of tuples. A tuple is a mapping from a set of atiributes to the domains of these attributes.
In this way, each component of a tuple can be referred to by its attribute name. In order not
to confuse the domains of attributes with the domains of relations as typically used in Z, we
introduce the type Value to denote attribute values.

[Attribute, Value]

Having introduced Attribute and Value as basic types, we can define tuples as finite partial
functions from attributes to values, where P is the powerset operator:

tuple : P(Attribute ++ Value)

Relations are sets of tuples all of which have the same domain. This common domain is
called the scheme of the relation. Note that, in Z, function applications are written without
parentheses.

relation : P(P tuple)
YV r:relation e Vi, 1y : r @« dom t; = dom #

scheme == (A r : relation o |J{t : r « dom t})

The usual notions of domain restriction and domain subtraction for relations are also needed
for the relations used in database theory.

(=<,—) == (Xattrs : F Attribute; r : relation e {t : r e altrs < t})
(—<a,-) == (Mattrs : F Attribute; r : relation e {t : r e altrs 4 t})

Here, < restricts the domain of a relation to its left argument, and < subtracts its left
argument from the domain of the relation. The operator F .S denotes the set of final subsets
of 5.

A join is a total function combining two relations. The scheme of the joined relation is
the union of the schemes of the given relations. On common elements of the schemes, the
values of the attributes must coincide.
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_ X _: relation X relation — relation

Y ri, o relation e
r1 X ory
= {t : tuple | dom t = scheme ry U scheme ry A
schemery <1t € 1y A schemery <t € 1y}

The join operation is associative and commutative, and so can be extended to finite sets of
relations.

i F relation — relation

Vrels : F relation
(rels = @ A< rels = O)
V
(3 r = relation; rels’ : F relation | r ¢ rels’ A rels ={r}Urels’ e
1 rels = r X (>4 rels’))

5.1.2 Problems, Solutions, Acceptability

Problems and solutions are generic parameters for strategies. The sets Problem and Solution
are defined to be subsets of Value. Acceptability is a relation between problems and solutions.

‘ Problem, Solution : P Value

‘ _acceptable_for_ : Solution «— Problem
The sets ProblemAttribute and SolutionAttribute are countable, disjoint subsets of Attribute.

ProblemAttribute : P Attribute
SolutionAttribute : P Attribute

ProblemAttribute N SolutionAttribute = @
ProblemAttribute — N #£ &
SolutionAttribute — N # &

We use the distinguished attributes P_init and S_final to refer to the initial problem and
its final solution. Moreover, we assume a bijective correspondence cor between problem and
solution attributes.

P_init : ProblemAttribute
S_final : SolutionAtiribute
cor : ProblemAttribute — SolutionAtiribute

cor P_init = 5_final

5.1.3 Constituting Relations

Each strategy will be defined to be a set of constituting relations, representing the depen-
dencies between the subproblems generated by that strategy from any given problem. Their
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schemes consist of arbitrary attributes for problems and solutions, and are divided into input
attributes and output attributes. Constituting relations restrict the values of output attributes,
in relation to given values of the input attributes. Thus, they determine orderings on sub-
problems that must be respected during the problem solving process.

const_rel : P relation

Yer:const_rel @Yt :cr;a: schemecre
scheme cr C (ProblemAttribute U SolutionAttribute) A
(a € ProblemAttribute = t a € Problem) N\
(a € SolutionAttribute = t a € Solution)

1A, OA : const_rel — F Attribute

Ver : const_rel o (IA cr, OA cr) partition scheme cr

Given some relation, it will often be necessary to refer the problem or solution attributes of
its scheme.

problem_attrs == (A r : relation e scheme r N ProblemAttribute)

solution_attrs == (A r : relation e scheme r N SolutionAttribute)

subprs == (Ar : relation e problem_attrs r \ { P_init})
partsols == (A r : relation e solution_attrs r \ {S_final})

The functions subprs and scheme are also for sets of relations:

subprs, : F relation — P ProblemAttribute
scheme, : F relation — P Attribute

YV crs : F relation; t : tuple o
subprss crs = subprs(>1 crs) A
scheme, crs = scheme (4 crs)

It is now possible to define dependency relations on constituting relations. One constituting
relation directly depends on another such relation if one of its input attributes is an output
attribute of the other relation; in this way, each set of constituting relations determines a
direct dependency relation. The depending constituting relation is considered “larger” than
the one on which it depends. For any given set crs of constituting relations, one dependency
relation determined by crs is defined to be the transitive closure of the direct dependency
relation it determines.

_C4—: const_rel < const_rel
C: P const_rel — (const_rel «— const_rel)

Y ery, ery : const_rel; crs 1 P const_rel o
((eryCgerg & OAcery N IA cry # ) A
(C (ers) = {eri, ery : ers | (3 chain : seq crs o head chain = cry A
last chain = crg A (Vi : 1..#chain — 1 e chain i T4 chain(i + 1)))}))
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Instead of writing (cr, er’) € (T ers), we write ¢r Ceps o1’
A set of constituting relations defining a strategy must conform to our intuitions about

problem solving, namely:

1.

7.

The original problem to be solved must be known, i.e. P_init must always be an input
attribute.

. The solution to the original problem must be the last item to be determined, i.e. S_final

must always be an output attribute.

. Each attribute value except that of P_init must be determined in the problem solving

process, i.e., each attribute except P_init must occur as an output attribute of some
constituting relation.

. Each attribute value should be determined only once, i.e. the sets of output attributes

of all constituting relations must be disjoint.

. Each solution to a subproblem is used further, i.e., it occurs as an input attribute of

some constituting relation. (For the subproblems, it is not necessary to state such a
requirement, because they are guaranteed to be used further to generate the solutions
to the subproblems.)

. Each solution must directly depend on the corresponding problem, i.e. if a solution at-

tribute is an output attribute of a constituting relation, then the corresponding problem
attribute must occur in the scheme of this constituting relation. Each subproblem must
therefore be set up before it is solved.

The dependency relation on the constituting relations must not be cyclic.

Finite sets of constituting relations fulfilling these requirements are called admissible. In the
following formal definition of admissibility, each line of the predicate part of the axiomatic
box formalizes one of the previous requirements. The inverse of a relation (or function) r is
denoted r™.

admissible_ : P(F const_rel)

Vers: F const_rel o

admissible crs

<

(Ver,er' sers|er#cr'e
(P_init € scheme cr = P_init € IA cr) A
(S_final € scheme cr = S_final € OA cr) A
(Va: schemes crs \{P_init} @« Jcr’” : crs @ a € OA cr”) A
OAcerNn OAcr’' =D A
(Va: partsols cr o (Fer” :crs @ a € [A er’) A

(a € OA cr = cor™a € scheme cr)) A

S (er Ceps 1))

From this definition it follows that each attribute a except P_init occurs as an output at-
tribute of exactly one constituting relation, and each input attribute of a constituting relation
except P_init must be an output attribute of a smaller relation. This implies that there is

some order in which all attribute values can be determined.
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Lemma 1

Y ers i F const_rel | admissible crs o
(Va:schemes crs \ {P_init} @ 3, cry : crs @ a € OA cry)
A
(Ver:erse IAcer C (U{cr' :ers | er’ Teps cr @ OA(er’)}) U {P_init})

Proof

The first part of the lemma follows from requirements 3 and 4 of the definition of admissibility.
The second part follows from requirements 5 and 7.

5.1.4 Strategies

It is now possible to define strategies as admissible sets of constituting relations that fulfill
certain conditions. An admissible set strat of constituting relations is a strategy if

1. The set scheme, strat contains the attributes P_init and S_final.

2. For each problem attribute of scheme; strat, the corresponding solution attribute is a
member of the scheme, and vice versa.

3. If a member of the relation < strat contains acceptable solutions for all problems except
P_init, then it also contains an acceptable solution for P_init. Thus, if all subproblems
are solved correctly, then the original problem must be solved correctly as well.

The last condition guarantees that a problem that is solved exclusively by application of
strategies is solved correctly. This condition requires that strategies solving the problem
directly must produce only acceptable solutions.

As with admissible constituting relations, each of the above requirements that a strategy
must satisfy corresponds to one conjunct in the formal definition.

strategy : P(F const_rel)

Y strat : strateqy e
admissible strat A
{P_init, S_final} C schemes strat A
(V a : ProblemAttribute ® a € scheme; strat < cor a € schemes strat) N
(Vres 1< strat o
(V a : subprs, strat e (res (cor a)) acceptable_for (res a))
= (res S_final) acceptable_for (res P_init))

Figure 5.1 illustrates the definition of strategies. Here, arrows denote the propagation of
attribute values.

Note that the values of the output attributes of a constituting relation need not be in-
dependent. Strategies will usually be defined in such a way that a subproblem and its cor-
responding solution are output attributes of the same constituting relation, and the solution
fulfills certain requirements derived from the problem.
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strat

—
P_init S fina

Figure 5.1: Definition of strategies

From the definition of strategies it follows that there is at least one member of a strategy
that has P_init as its only input attribute. This means that the problem solving process can
actually be initiated. Moreover, there is exactly one maximal member in a strategy that has
S_final as its only output attribute, and this member depends on all of the other members
of the strategy. In the following, we will often make use of these properties of the maximal
constituting relation.

Lemma 2

Y strat : strateqy e
(Ferg = strat o IA crg = { P_init})
A
(let crpae == (pr: strat | S_final € OAr) e
({S_final} = OA crpge N (Ver @ (strat \ {crpa}) ® ¢r Cstrat ¢Tmaz)))

Proof

The first part of the lemma follows from Lemma 1, together with the fact that ¢ does
not contain cycles. The second part follows from requirements 2, 5 and 7 of the definition of
admissibility for strat.

Renaming attributes (except P_init and S_final) does not change the semantic content

of a strategy. Hence, we can define an equivalence relation _equiv_ on strategies, which will
be used in Section 5.2.1:

_equiv_ : strateqy < strategy

Y straty, straty : strategy o
straty equiv straty
<
(3f : scheme, straty — scheme; straty | f(P_init) = P_init A f(S_final) = S_final e
Ver :straty e 3, cr’ : straty e
IAcr'={a:IAcrefa} NOAcr'={a:OAcrefa} A
(Vt:tuple o t € cr < {a : Attribute; v : Value |a— v €t e far— v} € cr'))
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The definitions presented in this section comprise the theoretical foundation of our ap-
proach. The next sections show how strategies can be combined and how they can be repre-
sented to facilitate their implementation.

5.2 Strategicals

Strategicals are functions that take strategies as their arguments and yield strategies as their
result. They are useful to define higher-level strategies by combining lower-level ones or to
restrict the set of applicable strategies, thus contributing to a larger degree of automation of
the development process.

We define three strategicals that are useful in different contexts. The THEN strategical
composes two strategies. Applications of this strategical can be found in program synthesis.
The REPEAT strategical allows stepwise repetition of a strategy. Such a strategical is useful
in the context of specification acquisition, where several items of the same kind often need
to be developed. To increase applicability of the REPEAT strategical, we also define a LiFT
strategical that transforms a strategy for developing one item into a strategy for developing
several items of the same kind.

5.2.1 The THEN Strategical

The idea of this strategical is to replace one subproblem p generated by strategy strat; by
the subproblems generated by strategy straty. The effect of the THEN strategical is the same
as that obtained by first reducing a problem with strat; and then reducing some generated
subproblem p by strat,. The difference is that p and its corresponding solution cor p are not
generated explicitly. This is illustrated in Figure 5.2.

strat,

THEN(straty, p, strat,)
P init| >@Qsjina

strat, cor p W y
p
% P init S final
Pinit| 'S final 3 @d
ai W

Figure 5.2: The THEN strategical

If p is a subproblem generated by strat;, then in the strategy defined by THEN(straty, p,
straty), p plays the role of P_init, and cor p plays the role of S_final in strat;. The attribute
values for p and cor p are no longer explicitly set up, and so all of the attribute values needed
to define the value of p must be supplied to all constituting relations that rely on the value
of p. Similarly, all attribute values needed to determine the final solution of strat; must be
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supplied to all constituting relations that have cor p as an input attribute. Furthermore, we
must guarantee that all attribute values are determined relative to the same values for p
and cor p, i.e., there must be unique values for p and cor p such that THEN(straty, p, straty)
equals straty U straly, except that the attributes p and cor p are removed from their respective
schemes. This is achieved by joining the members of the two strategies with all members
upon which they depend. The effect of this definition is that the constituting relations that
make up THEN(straty, p, straty) have more input attributes than the ones in strat; and strat,.
Independent subproblems, however, do remain independent.

The following function defines the transformation of the constituting relations that is
necessary to replace p and corp. A constituting relation er is joined with all constituting
relations upon which it depends, and the attributes p and cor p are removed from its scheme.

transformpen, : const_rel x (P const_rel) x ProblemAttribute — const_rel

Y cr, cry @ const_rel; crs : P const_rel; p : ProblemAttribute o
(ery = transformypen (cr, crs, p) <
cr € crs A
p € scheme, crs A
(let lo==pa{r:crs|r Cos cr}e
IA cry = (1A er U scheme lo) \ {p, cor p} A
OAcry = OAer\ {p, corp} A

cry = scheme cry <1, (lo X cr)))

In defining THEN (straty, p, stratz), we must first guarantee that the sets of subproblems gen-
erated by strat; and straty are disjoint by choosing a strategy strat) that is equivalent to strat,
and fulfills this requirement. Then, in strat}, P_init is replaced by p and S_final is replaced
by cor p using the function replace which replaces attribute a,;y by attribute e, in relation
r.

replace : Attribute x Attribute X relation — relation

Y Go1dy Qpew : Attribute; v, r' : relation o
r/ e T@place(aohh Apews T) g
(ao14 & schemer A1’ =r)V
(aota € schemer Ar"={t:r o ({aoa} <) U{anew = tana}})

Each of the resulting constituting relations is then transformed using the function transformrypey.

THEN : strategy X ProblemAttribute X strategy — strategy

Y straty, straty @ strategy; p : ProblemAtiribute o
((straty, p, straty) € dom THEN = p € subprs, straty)
A
(3 strat) : strategy | straty equiv straty A subprss straty N subprs, straty = & o
(let straty , == {cr : straty e replace(S_final, cor p, replace(P_init, p, cr))}
THEN (straty, p, straty)
= {er : straty U straty . e transformyyen (cr, strat; U straty ., p)}))

Whenever THEN (straty, p, straty) is defined, it yields a strategy:
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Lemma 3

V straty, straty : strategy; p @ ProblemAttribute | (straty, p, straty) € dom THEN e
THEN((straty, p, straty) € strategy

The next lemma states that THEN(straty, p, straty) conforms to our intuition: its join contains
exactly those tuples, which can also be obtained by joining strat; and stmtir (where stmtir
is defined as before) and then dropping the values of p and cor p.

Lemma 4

> (THEN(straty, p, straty)) = {p, cor p}<, (> (straty U straty )
where stmtir is defined as in the definition of THEN

Finally, Lemma 5 states that THEN does not introduce any new dependencies, i.e., if two con-
stituting relations of THEN(straty, p, straty) are dependent, also their untransformed versions
are.

Lemma 5

! !
Cry ETHEN(stmtl,p,stmtg) cry = cr EﬁmtlUStm%,r cr

where stmtir is defined as in the definition of THEN and
cry = transformrhen (cr, strat; U straty ., p) A cr{ = transformrpe, (cr', strat; U straty ., p)

Proof

We first prove Lemma 5, where we use the same abbreviations and declarations as introduced
there. Using the fact that C is the transitive closure of T4 with respect to some set of
constituting relations, the lemma follows by an inductive argument from

! !
crygery = cr Estthstmté , cr

The relation eryC ger{ means OA cry N IA cry # @. According to the definition of transformye,,
this is equivalent to

(OA cr’\{p, cor p})
N ((IA er U scheme (b {r : straty U straty . | 1 Cppanusirar; . €71)) \ {p; cor p})

#*
This condition is equivalent to

Ja: Attribute | a ¢ {p,corp} e
a € OAcr' Aa€ (IAerUscheme(ba {r: straty U straty . | 1 CipranUstrary . €T}))

If @ € OAer'N 1A cr, we immediately have cr’ Ty er and hence er’ Ciprar, ustrar) - €. Other-
wise, 7

Jer :{r:straty Ustraty . | r C cr} e a € scheme ¢F

straty Ustmté -
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Since the sets of all output attributes of strat; U stmtir except p and cor p are disjoint, and
since a ¢ {p,cor p}, a cannot be an output attribute of eF. Hence, ¢ € IAeF. This yields
OA er' N IATF # @. Tt follows that

! [— [—
cr' Cq e, where € Tprar Ustrat, €T

which finishes the proof of Lemma 5.

a

We now prove Lemma 3, where we use the same definitions and abbreviations as before.

We have

scheme,('THEN (straty, p, straty))
= (schemes straty \ {p, cor p}) U (scheme; straty \ { P_init, S_final})

where (schemes straty \ {p, cor p}) N (scheme, straty \ { P_init, S_final}) = @. It follows that
the conditions 1 and 2 of the definition of a strategy are fulfilled.

The admissibility of THEN(straty, p, stratz) is fulfilled, as the following argumentation
shows:

e Since transformrype, does not change the property of P_init or S_final being an input
or output attribute of some ¢r € strat;, and since these two attributes do no longer
occur in stmté’r7 the requirements 1 and 2 of the admissibility definition are fulfilled.

e The function transformryp., removes the attributes p and cor p from the input and
output attributes of the constituting relation supplied as its first argument. Since these
attributes are no longer in the scheme of THEN(straty, p, stratz), removing them does
not destroy satisfiability of requirements 3 and 4. Hence, the requirements also hold for
the transformed constituting relations.

e Condition 5 holds because it holds for strat; as well as strat), and because the attribute
cor p that replaces S_final in strat} is an input attribute of a constituting relation of
straty .

e The condition 6 is not changed by transformryp., because the attributes p and cor p are
always removed pairwise from the schemes of the constituting relations.

e We show condition 7 by contraposition. If there were cyclic dependencies in THEN(straty,
p, straty), then, by Lemma 5, there would also be a cyclic dependency in strat; U stmtir.
Since strat; and strat; . both cannot contain cycles (because strat; and stratj are strate-
gies), a cycle in strat; U straty . must contain members of both strat; and straty . It
follows without loss of generality that

Jer : straty e 3 chain : seq(straty U straty ) @ head chain = cr A last chain = cr A
(Vj: 1..#chain — 1 ® chainj T4 chain(j + 1))

Since the cycle must contain members of straty ., there must be a minimal index 7 and
a maximal index k of chain such that
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chain i € straty A chain(i + 1) € straty . A
chain k € straty . A chain(k + 1) € straty

and since p and cor p are the only common elements of strat; and stmté’r7 only these can
be involved in the direct dependencies chain i 4 chain(i+1) and chain k C 4 chain(k +
1).

For index i, cor p € OA(chain i) N IA(chain(i + 1)) is impossible because, in strat; .,
cor p is always an output attribute (it takes the role of S_final in strat}). For index k,
p € OA(chaink) N [A(chain(k 4 1)) is impossible because, in straty ., p is always an
input attribute (it takes the role of P_init in straty). It follows that

p € OA(chain i) N IA(chain(i+ 1)) A cor p € OA(chain k) N IA(chain(k + 1))

Since p € OA(chaini), we get = (¢reprp Cstrat, chain i), where cre,,, is the unique
constituting relation of strat; that contains cor p as an output attribute. Since ¢ was
chosen to be minimal, ¢r Ty, chaini holds. It follows that = (¢reorp Cstraty €T)
holds, since otherwise, by transitivity of Cgspae,, we would have creor p Citraty €7 Cotraty
chain i.

Since cor p € IA(chain(k+1)), we have crepp p Cotrar, chain(k+1). Index k was chosen
to be maximal, which yields chain(k + 1) Cypar, cr. By transitivity of C g, we then
get creorp Cotrar, cr. But this is a contradiction because we had already concluded that
= (¢reorp Cstraty, cr). This completes the proof that THEN(straty, p, straty) contains no
cycles.

It remains to show the correctness of THEN(straty, p, straty), as required by condition 3 of
the definition of a strategy. This follows immediately from Lemma 4, together with the facts
that both strat; and strat) are strategies, and that renaming of attributes does not destroy
correctness.

To prove Lemma 4, we first show that

Ver o straty U straty . | cr # cTpae ® €0 Copran Ustraty, . CTmas
) r
where ¢rpqp, == (pr : straty | S_final € OAr)

Because of Lemma 2, the above condition holds for cr : strat; \ {crya, }- For er @ straty
{¢rmaz2}, we have cr Cstraty  CTmas,2; where ¢rpap0 == (ur: stmtir | corp € OAr). Since
cor p is an input attribute of some cr : straty, it follows that Tmaz,2 CstratyUstrat)  CTmaas
and, by transitivity of Cstraty Ustrat] s the above proposition is shown. 7

This gives us 7

transformhen (Crmaz , Strat; U stmté’r7 p) = {p, cor p}<4, < (strat; U stmtir)

It follows that > (THEN(straty, p, stratz)) C {p, cor p}<, p< (straty U straty ).
For the converse implication, we consider some t € {p, cor p}<, >< (strat; U strat; ) and
show that it is also a member of transformype, (crpmas, strat; U stmté’r7 p). This follows from

V ery : THEN(straty, p, straty) ® scheme cry <t € cry
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which holds because all ¢ry : THEN(straty, p, stratz) are defined to be {p, corp}<4, > crs’
for some ers’ C strat; U stmtir. By the definition of X, if a tuple is in the join of a set of
relations, then its appropriate restriction is in every subset of that set. This concludes the
proof of Lemma 4 (and hence of Lemma 3).

An example of a strategy defined with THEN is given in Section 6.2.4.

5.2.2 The REPEAT Strategical

The first argument of this strategical is the strategy strat to be repeated. Repetition here
means that a subproblem p generated by strat should again be reduced by a finite iteration of
strat or another strategy terminate that does not generate new subproblems. The attribute
p and the strategy terminate are the other arguments of REPEAT. A strategy defined with
REPEAT does not itself perform an iteration but only one step of an iteration. How often
strat is iterated is decided elsewhere, e.g. by the user of an implemented system. The strategy
REPEAT (strat, p, terminate) is distinguished from strat only in that one if its constituting
relations is restricted, as shown in Figure 5.3.

The new constituting relation cry, is a subset of cr,. Problem p is solved either by
terminate or by a finite iteration of strat. The finite iteration is characterized by the fact
that there is a finite sequence of tuples of b strat such that the subproblem p of tuple ¢ is
the initial problem P_init for tuple ¢ + 1; for the solutions, the analogous condition holds.
The last tuple must contain a pair that is a member of b1 terminate.

REPEAT : strategy X ProblemAttribute X strategy — strategy

Y strat, terminate : strategy; p : ProblemAttribute o
((strat, p, terminate) € dom REPEAT
= p € subprs; strat A scheme, terminate = { P_init, S_final})
A
(let cr, == (per :strat | corp € OAcr) e
(let crpep == {t: cr, | {P_init — t p, S_final — t(cor p)} € terminate
V
(In :Ny; ts i seq(>a strat) | #ts =n e
(ts1) P_init =t p A (ts1) S_final = t(cor p) A
(Vi:2..ne(tsi) P_init = (ts(i — 1)) p A
(tsi) S_final = (ts(i — 1)) (corp)) A
{P_init — (tsn) p, S_final — (tsn)(cor p)}
€< terminate)} o
IA cryep = TA cry A
REPEAT (strat, p, terminate) = ((strat \ {cr,}) U {ere,})))

Whenever REPEAT (strat, p, terminate) is defined, it yields a strategy:
Lemma 6

V strat, terminate : strategy; p : ProblemAttribute | (strat, p, terminate) € dom REPEAT e
REPEAT (strat, p, terminate) € strategy
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REPEAT (strat, p, terminate)
strat corp N cor p
Pinit| @ Sfind P init O%S_final
Figure 5.3: The REPEAT strategical
Proof

Since REPEAT (strat, p, terminate) is distinguished from strat only by additional requirements
on membership in its constituting relation cr,, it follows immediately that REPEAT (strat, p,
terminate) is a strategy.

5.2.3 The LIFT Strategical

It is possible that a strategy must be changed to make the REPEAT strategical applicable.
In specification acquisition, for instance, we are face with the problem of defining a list of
7 operations, and we might wish to solve this problem by repeatedly applying a strategy
define_schema that defines one schema. As it is, this strategy cannot serve as an argument
to REPEAT, because it defines only one schema and not a list of schemas — it cannot be
applied to the subproblems it generates, namely the problems to define the declaration part
and to define the predicate part of the schema. We must first “lift” the strategy if we want
to generate a list of schemas rather than a single schema. The “lifted” strategy will generate
in addition to the problems generated by its argument strategy, one problem, which will be
used for the repetition. In addition to a strategy to be repeated, the LIFT strategical requires
the following arguments:

1. a function p_down, which converts a “bigger” problem (e.g., that of developing a list of
schemas), into a “smaller” one (e.g., that of developing one schema),

2. an injective function p_combine, which combines the original problem and a partial
solution to yield a new problem, and

3. afunction s_combine, which combines the solutions of “bigger” and “smaller” problems.

These functions must be defined in such a way that the correctness of the lifted strategy can
be guaranteed:

Y pr : Problem; sol, sol’ : Solution |
sol’ acceptable_for p_down pr A sol acceptable_for p_combine(pr, sol’) o
s_combine(sol', sol) acceptable_for pr

The LIFT strategical is illustrated in Figure 5.4.
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—— = TS ea
P_init S fina B init

LIFT (strat, p_down, p_combine, s combine)

S final

p_down p_combi‘ne s_combi ne

Figure 5.4: The LIFT strategical

The LirT strategical generates two new attributes, p_rep and s_rep, which achieve lifting.
While the argument strategy strat can solve a “smaller” problem, L1rT(strat, p_down, p_com-
bine, s_combine) is used to solve a “bigger” problem. The problem P_init given to L1FT(strat,
p—down, p_combine, s_combine) must therefore be transformed into a “smaller” problem by
the function p_down. With the single exception of the value for S_final, all the attribute
values of strat are determined as required by strat for p_down(P_init). The solution sol
that would have been bound to S_final by strategy strat is propagated into the new problem
p_rep using the function p_combine. Its solution s_rep is combined with the solution sol of
the “smaller” problem using the function s_combine.

As for the THEN strategical, we need to transform the constituting relations of strat. Since
LIFT (strat, p_down, p_combine, s_combine) solves a “bigger” problem, this problem must be
transformed by p_down into a “smaller” one in order to ensure that strat is applicable. The
transformation concerns only those constituting relations whose schema contains P_init.

transformpy : const_rel X (Problem — Problem) —+ const_rel

Y er : const_rel; p_down : Problem — Problem | S_final ¢ scheme cr e
IA(transformpg (cr, p_down)) = 1A cr A
OA(transformp(cr, p_down)) = OA cr A
transformpp (cr, p_down) =
if P_init ¢ scheme cr then cr
else {t : tuple | t & { P_init — p_down(t P_init)} € cr}

The constituting relations of L1FT(strat, p_down, p_combine, s_combine) are the transformed
constituting relations of strat, together with two new ones. The first of these, cr_up, defines
the attributes p_up and s_up for the “lifted” problem and its solution using the function
p—combine. The second, crpy,q, assembles the final solution of the lifted strategy by combining
the solution of the transformed strategy strat with the “bigger” solution s_up.
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LIFT : strategy
X (Problem — Problem)
X (Problem x Solution —~ Problem)
X (Solution x Solution -+ Solution)
—+sirateqy

Y strat : strategy; p_down : Problem — Problem;
p_combine : Problem x Solution — Problem;
s_combine : Solution X Solution — Solution |
(V pr : Problem; sol, sol’ : Solution |
sol” acceptable_for p_down pr A sol acceptable_for p_combine(pr, sol’) e
s_combine(sol’, sol) acceptable_for pr) e
Ip_up : ProblemAttribute; s_up : SolutionAttribute |
cor p_up = s_up A {p_up, s_up} N subprs, strat = &
(let crpe == (per @ strat | OA cr = {S_final}) ®
(let crspey, == {cr @ strat \ {crp,q, } ® transformpp(cr, p_down)};
ias == IA crp, U{P_init}; oas == {p_up, s_up} e
(let cry, == {t : tuple | dom t = ias U oas A
(3sol : Solution |
(IA Ty < t) U{S_final — sol} € crpqy ®
t p_up = p_combine(t P_init, sol) A
t s_up acceptable_for t p_up)};
crfinal == {t : tuple | dom t = { P_init, p_up, s_up, S_final} A
(let sol == (u sol : Solution |
t p_up = p_combine(t P_init, sol)) e
t S_final = s_combine(sol, ts_up))} o
1A cry, = ias N OA cry, = oas A
IA ergpg = {P_init, p_up, s_up} N OA crgng = {S_final} A
LirT(strat, p_down, p_combine, s_combine) = crsuey, U{cryy, crfna})))

The injectivity of the function s_combine guarantees that the tuples of cry, and crg,, are
defined with respect to the same solution sol.
Whenever LIFT(strat, p_down, p_combine, s_combine) is defined, it yields a strategy:

Lemma 7

Y strat : strategy; p_down : Problem —+ Problem;
p_combine : Problem x Solution — Problem;
s_combine : Solution X Solution — Solution |
(strat, p_down, p_combine, s_combine) € dom LIFT e
LiFT(strat, p_down, p_combine, s_combine) € strategy

Proof

The conditions 1 and 2 of the definition of a strategy as well as the conditions 1 and 2 of
the definition of admissibility are easily verified. The other conditions for the admissibility of
LiFT (strat, p_down, p_combine, s_combine) can be verified as follows:



120 Chapter 5. Strategies — A Generic Knowledge Representation Mechanism

e Condition 3 is fulfilled because it is fulfilled for a : scheme, strat \ {S_final} in ¢rs, ey,
for p_up and s_up in cry, and for S_final in crppq.

e Condition 4 holds because it holds for strat and scheme, strat N {p_up, s_up} = @
e Condition 5 holds because it holds for strat and s_rep € IA crppq.

e The condition 6 is fulfilled because it is fulfilled for strat and and {p_up,s_up} C
scheme cryp.

e There are no cycles in LIFT(strat, p_down, p_combine, s_combine). To see this, first
note that there are no cycles in strat. Secondly,

Yer: crsye, ® Cr CLirry CTup

strat,...)
holds because ¢r Cstrat €Tmap for cr @ strat \ {crpq, } and 1A cryqp C 1A cryy. Thirdly,
we have cryy Cg CTfna, and for er @ ers,e,, (cry, ELIFT(stmt,...) cr) is impossible be-
cause OA cry, N scheme; crspe,y, = @. Finally, crgn,a does not depend on any other
constituting relation because S_final does not occur in the scheme of any constituting
relation other than crgpa.

It remains to show the correctness of THEN(straty, p, stratz), as required in condition 3
of the definition of a strategy. For some ¢t € > (LIFT(strat, p_down, p_combine, s_combine)),
which contains acceptable solutions for all subproblems — i.e. that contains members of
the set subprs, strat U {p_up} — we must show that ¢ S_final acceptable_for t P_init holds.
From the definition of transformp;; and the fact that strat is a strategy, it follows that
dsol : Solution e sol acceptable_for (p_down(t P_init)). Since the function p_combine is
required to be injective, the solution that is used in cry,, to define ¢ p_up and the one that is
used in crgpq to define ¢ S_final must be the same. This gives us

sol acceptable_for (p_down(t P_init)) A t s_up acceptable_for p_combine(t P_init, sol)

which, according to the requirements on p_down, p_combine and s_combine is sufficient to
conclude that s_combine(sol, t s_up) = t S_final acceptable_for t P_init holds.

An example of a strategy defined with LIFT and REPEAT is given in Section 7.3.2.

We have now defined strategies formally, and so have specified methods for combining simpler
strategies into more powerful ones. Thus far, strategies have been described in a purely
declarative manner. Our goal, however, is to make strategies applicable for problem solving,
and so, we must ultimately take a more much procedural view of them.

5.3 Problem Solving With Strategies

Strategies and strategicals, as they have been defined thus far, are the conceptual basis
for strategy-based problem solving. To make strategies applicable mechanically, we must
take two further steps: First, we represent strategies as modules that are implementable
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using the encapsulation constructs offered by modern programming languages. Secondly, we
present an abstract algorithm describing the manner in which strategy-based problem solving
is to proceed. This algorithm will be expressed as a set of algebraically defined Z functions,
intended to denote recursive algorithms easily implementable in a functional programming
language. If the algorithm yields a solution to a given input problem, then this solution will
be acceptable.

5.3.1 Modular Representation of Strategies

To render strategies implementable, we must find suitable representations for them, which
are closer to the constructs provided by programming languages than are the relations of
database theory. Implementations of strategies should be independent of each other with
a uniform interface between them. In an implemented support system for strategy-based
problem solving, the implementation of a strategy is a module with a clearly defined interface
to other strategies, as well as the rest of the system. A strategy module comprises the following
items:

e the set subp of subproblems it produces,
e the dependency relation _depends_ on them and their solutions,

e for each subproblem, a procedure setup that defines it, using the information in the
initial problem and the subproblems and solutions it depends on,

e for each solution to a subproblem, a predicate local_accept that checks whether or not
the solution conforms to the requirements stated in the constituting relation of which
it is an output attribute,

e a procedure assemble describing how to assemble the final solution, and

e a test accept of acceptability for the assembled solution.

Optionally, an explain component may be added that explains why a solution is acceptable
for a problem.

In the following, we define a number of functions, each of which has a strategy as its
argument and yields one of the pieces of information described before. That is, each of these
functions defines one component of a strategy module for its argument strategy.

The function subprs, introduced in Section 5.1.4 yields the subproblems generated by a
strategy. The dependency relation must be defined on pairs of problems instead of pairs of
constituting relations:

Depends : strategy — (ProblemAttribute «— ProblemAttribute)

Y strat : strategy; py, p2 : ProblemAttribute | {py, p2} C scheme; strat e
(let cry == (pr: strat | pr € OAT);
crg == (pur:strat | pp € OAr)e
(p1, p2) € Depends(strat) < cry Cgtrar €T2)

It is possible for a combination of values for the input attributes of a constituting relation
to be related to several combinations of values for the output attributes. In this case, the
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basic type EztInfo is used to select one of these combinations. External information can be
derived from user input or can be computed automatically. By means of external information,
relations are transformed into functions.

[FatInfo]

A function that sets up a problem has as its arguments a strategy strat and a subproblem
p of strat that is to be defined. (Setup strat) p takes a tuple and some external information
as its arguments and yields a problem. It is defined with respect to the particular consti-
tuting relation cr, of which p is an output attribute. Each tuple ¢ for which the function
(Setup strat) p is defined contains at least the values of the input attributes of ¢r,. If the
values of the input attributes are consistent with cr,, then the value yielded by the setup
function must also be consistent with cr,. The external information is used to choose among
different possible values that satisfy these conditions.

Setup : strategy — (ProblemAttribute —+ (tuple X FxtInfo — Problem))

Y strat : strategy; p : ProblemAtiribute o
dom (Setup(strat)) = subprs, strat N
(p € subprs, strat =
(3, crp :strat | pe OAcr, o
Vit tuple; i : Extinfo | (t,1) € dom(Setup(strat)(p)) o
domt D [Acr, A
((HAcrp<t) € (IAery)<pery, =
(IAcr, < t) U{p — (Setup(strat)(p))(t,i)}
€ (14 ey U{ph)arer,)))

For the intermediate solutions, we may have local acceptability conditions that are stated
in the constituting relation ¢r; of which the solution is an output attribute. Each tuple in
the domain of (Local_Accept strat) s contains at least the values of the input attributes that
are needed to define the value of s and its corresponding problem cor™s. If the values of the
input attributes and the problem attribute cor™s are consistent with cr,, then the value of s
must also be consistent with cr,.

Local_Accept : strateqy — (SolutionAttribute — (tuple < Solution))

Y strat : strategy; s : SolutionAtiribute o
dom (Local_Accept(strat)) = partsols strat A
(s € partsols(p< strat) =
(3, ers s strat | s € OAcrs o
V¢ : tuple; sol : Solution | (¢, sol) € Local_Accept(strat)(s) e
(let inp == IA cry U{cor™s} e
domt D inp A
((inp < t) € inp <, cry =
(inp < t) U{s — sol} € (inpU{s}) <, cry))))

The conditions for the Assemble function can be expressed similarly.
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Assemble : strategy — (tuple x Extinfo — Solution)

Y strat : strateqy e
3, rimag @ strat | S_final € OA ¢rpyqy @
Vt:tuple; i : Extinfo | (t,1) € dom(Assemble strat) e
dom t = (scheme crpq,) \ {S—final} A
t € {S_final}<4,crp., =
tU{S_final — Assemble(strat)(t,i)} € crpay

A tuple can only be a member of the set Accept strat if it is a member of 1 strat. Thus,
Accept strat will usually represent a sufficient condition for membership in a strategy that can
be checked mechanically.

Accept : strategy — (P tuple)
V strat : strategy e Accept(strat) C (< strat)

A 7 specification does not specify what happens if a function is applied to an argument
that does not lie in the domain of the function, and so an algorithm implementing the function
could reasonably either fail to terminate or report failure. For our problem solving algorithm,
we will require that failure is reported whenever a problem cannot be set up, a solution cannot
be assembled properly, or a partial solution is determined not to be locally acceptable. This
is achieved by defining free types into which problems, solutions, and tuples are embedded,
and which contain error values indicating that some of the previous functions are undefined.
Thus, partial functions are made total by allowing them to return members the free types
other than problems, solutions, or tuples.

total_P = fail _P | ok_P{Problem))
total _S == fail_S | ok_S{Solution))
total_t ::= fail_t | ok_t{(tuple))

Strategy modules are algorithmic descriptions of strategies. A strategy module is obtained
by applying the functions subprs;, Depends, Setup, Local _Accept, Assemble and Accept to a
strategy strat, and making total the functions being the results of Setup and Assemble. An
error value is returned if and only if the corresponding partial function is undefined. Strategy
modules are defined as schema types that resemble record types in programming languages.
The components of schema types are selected with the dot notation, e.g., for a strategy module
sm, we write sm.subp to denote the subproblems generated by the strategy.
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__ StrategyModule
subp : P ProblemAtiribute
_depends_on_ : ProblemAttribute < ProblemAttribute
setup : ProblemAttribute - (tuple X Fxtinfo — total _P)
local_accept : SolutionAttribute — (tuple < Solution)
assemble : tuple X FxtInfo — total 5
accept : P tuple

d strat : strategy o

(subp = subprs, strat A

(—depends_on_) = Depends strat A

local_accept = Local _Accept strat A

accept = Accept strat A

(V p : ProblemAttribute; t : tuple; i : Extinfo e

((t,i) € dom((Setup strat)(p)) < setup(p)(t,i) € ran ok_P) A

(t,1) € dom((Setup strat)(p)) = setup(p)(t, i) = ok_P((Setup strat)(p)(t,i))) A
(t,i) € dom(Assemble strat) < assemble(t, i) € ran ok_S5) A

(t ti) =

,1) € dom(Assemble strat) = assemble(t, i) = ok_S((Assemble strat)(t,i))))))

(
(
( (
( (

A function mod_rep : strateqy— StrategyModule transforms a strategy into a strategy module.

5.3.2  An Abstract Problem Solving Algorithm

In this section, we present an abstract algorithm that describes strategy-based development.
This algorithm is expressed as a set of functions in Z.

Problem solving with strategies usually requires user interaction. The basic type UserInput
comprises all possible user input. User interaction is modeled by giving a sequence of user
inputs to the various functions. If such a sequence is not long enough, the functions are
undefined. This corresponds to the situation where an interactive system expects user input
that has not been supplied.

A heuristic function is a function that converts user input, which is needed to determine
the value of some attribute of a strategy, into external information. Heuristic functions may
depend on the values of other attributes, which are supplied to it as a tuple. Heuristic
functions are those parts of a strategy implementation that can be implemented with varying
degrees of automation, so that they can range from interactive to fully automatic. It is also
possible to automate them gradually by replacing, over time, interactive parts with semi-
or fully automatic ones. Here, we simulate the situation in which a heuristic function is
independent of user input by using a dummy value in the sequence of user inputs.

heuristic_function : StrategyModule x Attribute — (tuple x UserInput - ExtInfo)

The set available_strategies denotes the set of all available strategy modules. The function
choice is used to select, from among the available strategies, a strategy to solve the given
problem.
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available_strategies : P StrategyModule
choice : Problem x (P StrategyModule) x UserInput — StrategyModule

Y p : Problem; sms : P StrategyModule; inp : UserInput | sms # & o
choice(p, sms, inp) € sms

We now can give the top-level problem solving algorithm. Its arguments are a problem and
a list of user inputs. Since solve will be applied recursively, its result must yield not only
a solution but also a user input list. A strategy to be applied to the problem is selected,
and the function apply is called to apply the strategy to the problem. If the application of
this strategy is successful, then the value of the attribute S_final obtained from the tuple
vielded by apply, together with the input list obtained from apply, form the result of the solve
function. Otherwise, another trial is made with the user input list obtained from apply.

solve : Problem x seq UserInput — (Solution x (seq UserInput))

Y pr : Problem; input_list : seq Userlnput e
solve(pr, input_list) =
(let sm == choice(pr, available_strategies, head input_list) e
(let t == apply(pr, sm, tail input_list) e
if first t = fail_t then solve(pr, second t)
else ((ok_t™(first t)) S_final, second t)))

The function apply first calls another function solve_subprs to solve the subproblems
generated by the strategy. It then sets up the final solution and checks it for acceptability.
Each time a failure can occur, this is checked and propagated into the result if necessary.

apply : Problem X StrategyModule x seq UserInput — (total_t X seq UserInput)

Y p : Problem; sm : StrategyModule; input_list : seq Userinput o
apply(p, sm, input_list) =
(let s == solve_subprs({ P_init — p}, sm.subp, sm, input_list) o
if first s = fail_t then (fail_t, second s)
else (let tup == ok_t™(first s);

input_list' == second s
(let ext_info == heuristic_function(sm, S_final)(tup, head input_list') e
(let final_solution == sm.assemble(tup, ext_info) e

if final_solution = fail_S then (fail_t, tail input_list")
else (let s" == tup U {S_final — 0k_S™ final_solution} e
if s’ ¢ sm.accept then (fail_t, tail input_list")
else (ok_t(s'), tail input_list'))))))

The function solve_subprs applies solve recursively to all subproblems contained in its
second argument; its first argument is the tuple consisting of the attribute values generated
so far. The function choose_minimal selects a minimal problem attribute from the set of
unsolved problems. The appropriate setup function defines the corresponding problem, and
its solution, generated by solve, is then checked for local acceptability.
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solve_subprs : tuple X (P ProblemAttribute) x StrategyModule X seq UserInput
—+(total_t x seq UserInput)

Yt : tuple; pas : P ProblemAttribute; sm : StrategyModule; input_list : seq UserInput e
solve_subprs(t, pas, sm, input_list) =
if pas = @ then (ok_t(t), input_list)
else (let p == choose_minimal (sm.(_depends_on_), pas, head input_list) e
(let ext_info == heuristic_function(sm, p)(t, head (tail input_list)) e
(let pv == ((sm.setup)(p))(t, ext_info) e
if pv = fail_P then (fail_t, tail(tail input_list))

else (let new_pr == ok_P~pv e
(let s == solve(new_pr, tail(tail input_list)) o
(let sol == first s; input_list' == second s e

if (tU {p— new_pr}, sol) ¢ sm.local_accept(cor p)

then (fail_t, input_list")

else solve_subprs((t U {p — new_pr, cor p — sol}),
pas \ {p}, sm, input_list')))))))

The following lemmas show that the functions solve, apply and solve_subprs model strategy-
based problem solving in an appropriate way: Whenever solve yields a solution to a problem,
this solution is acceptable.

Lemma 8

V pr: Problem; sol : Solution; iy, iy : seq UserInput | (sol, i3) = solve(pr, iy) o
sol acceptable_for pr

If apply yields a tuple (as opposed to an error value), then this tuple belongs to the join of
some strategy and contains acceptable solutions for all subproblems.

Lemma 9

Y pr: Problem; sm : StrategyModule; iy, i3 : seq UserInput; tt : total_t |
(tt,iz) = apply(pr, sm, 1) A tt € ran ok_t e
Jstrat : strategy | sm = mod_rep strat e
(let t == ok_t~ tt o
t € (> strat) At P_init = pr A
(V p : subprs, strat e t(cor p) acceptable_for(t p)))

Lemma 10 states that, if solve_subprs is called with an argument list satisfying the condi-
tions stated there, then the arguments of the recursive call also fulfill these conditions, i.e.,
solve_subprs preserves certain invariants. Specifically, Lemma 10 asserts the existence of a
strategy such that the domain of the tuple generated so far consists of P_init, together with
those subproblems of the strategy that are not contained in the second argument of the func-
tion and their corresponding solutions. The attribute values of the tuple are consistent with
all constituting relations of the strategy, whose scheme is a subset of the domain of the tuple.
All generated solutions are acceptable for their corresponding problems.
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Lemma 10 For solve_subprs(t, pas, sm, iy), we have the following invariants:

Yt : tuple; pas : P ProblemAttribute; sm : StrategyModule
INV(t, pas, sm)
<
(3 strat : strategy | sm = mod_rep strat e
dom ¢t = {P_init} UU{p : (subprs; strat \ pas) e {p, cor p}} A
(Ver : strat | scheme cr C dom t e scheme cr <t € cr) A
(V p : ProblemAttribute | p € (dom t\ {P_init}) e t(cor p) acceptable_for t p))

Proof

Lemma 8 follows from Lemma 9, and the observation that solve is defined in such a way that
the first component of its result is a tuple ¢ belonging to the strategy implemented by the
chosen strategy module sm.

a

The first part of Lemma 9 follows from the fact that all valid results obtained from apply
(i.e., all results whose the first component is in ran ok_t) satisfy the accept predicate of the
strategy module sm. The definition of StrategyModule entails that for each strategy module
there is a corresponding strategy, whose accept predicate is sufficient to guarantee that a tuple
is a member of the join of the strategy.

The second part of the lemma follows from Lemma 10 and the fact that the invariants
hold for the arguments supplied to solve_subprs in apply.

a

As already shown, there exists a strategy whose modular representation is sm. Since
solve_subprs defines the attribute p, as well as defining cor p, the first invariant stated in
Lemma 10 holds.

The second invariant holds because the values of all problem attributes are defined using
the function sm.setup, which relies on the global function Setup. The function Setup guaran-
tees consistency of its result with the corresponding constituting relation. The new values for
solution attributes are checked for consistency with the corresponding constituting relation
using the predicate sm.local_accept, which relies on the global function Local_Accept.

The third invariant follows by an inductive argument on the maximal depth of the recur-
sion, using Lemma 8 as the induction hypothesis. The base cases are strategies that solve the
problem directly. For these strategies, solve_subprs terminates immediately, and the third
invariant is vacuously true.

From Lemma 10, we can deduce that solve_subprs computes all attribute values other than
S_final in such a way that they are consistent with the constituting relations of the applied
strategy:

pas = @ = t € (strat \ {crmaz})
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where ¢rp,qy, == (pr : strat | S_final € OAr).

In this section, we have transformed purely declarative strategies into more procedural
representations of strategies and used problem solving functions show how such representa-
tions are used to perform strategy-based development. These functions have, however, been
defined in such a way that demonstrating acceptability of developed solutions is facilitated.
They are therefore very abstract and do not take adequate user support into account, as is
necessary for implemented support systems.

5.4 System Architecture

We now define a system architecture that describes how to implement support systems for
strategy-based problem solving. By contrast with the functions of the previous section, this
system architecture takes the user into account and allows for much more flexibility in the
problem solving process than does the abstract algorithm of Section 5.3.2.

The definition of strategies is parameterized by the notions of problem, solution, and
acceptability, leading to a generic system architecture supporting strategy-based development
processes. Figure 5.5 gives a general view of the architecture.

This architecture is a sophisticated implementation of the functions given in the last
section. We introduce data structures that represent the state of the development of an
artifact. This ensures that the development process is more flexible than would be possible
with a naive implementation of these functions in which all intermediate results would be
buried on the run-time stack. The system architecture can be used to advantage, so that it
is not necessary to first solve a given subproblem completely before starting to solve another
one.

Two global data structures represent the state of development: the development tree and
the control tree. The development tree represents the entire development that has taken
place so far. Nodes contain problems, information about the strategies applied to them, and
solutions to the problems as insofar as they have been determined. Links between siblings
represent dependencies on other problems or solutions.

The data in the control tree are concerned only with the future development. Its nodes
represent uncompleted tasks and point to nodes in the development tree that do not yet
contain solutions. The degrees of freedom in choosing the next problem to work on are also
represented in the control tree. The third major component of the architecture is the strategy
base. It represents knowledge used in strategy-based problem solving via strategy modules.

A development roughly proceeds as follows: the initial problem is the input to the system.
It becomes the root node of the development tree. The root of the control tree is set up to
point to this problem. Then a loop of strategy applications is entered until a solution for the
initial problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the leaves of the
control tree. Secondly, a strategy is selected from the strategy base. Applying the strategy
to the problem entails extending the development tree with nodes for the new subproblems,
installing the functions of the strategy module in these nodes, and setting up dependency
links between them. The control tree must also be extended according to the dependencies
between the produced subproblems.

As soon as the solution to a subproblem generated by the strategy has been developed,
it is tested for local acceptability. Checking each solution for local acceptability immediately
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Figure 5.5: General view of the system architecture

after its construction ensures that the user is informed of a failure at the earliest possible
moment.

If a strategy immediately produces a solution and does not generate any subproblems,
or if solutions to all subproblems of a node in the development tree have been found and
tested for local acceptability, then the functions to assemble and accept a solution are called;
if the assembling and accepting functions are successful, then the solution is recorded in the
respective node of the development tree. Because the control tree contains only references
to unsolved problems, it shrinks whenever a solution to a problem is produced, and the
problem-solving process terminates when the control tree vanishes. The result of the process
is not simply the developed solution — instead, it is a development tree where all nodes contain
acceptable solutions. This data structure provides valuable documentation of the development
process, which produced it, and can be kept for later reference.

In the following, we describe the data structures of the generic system architecture and
the data and control flow in more detail.

5.4.1 The Structure of Development and Control Trees

We describe the internal structure of the development and the control tree, and their inter-
action with the strategy base.

Development Tree

Figure 5.6 sketches a development tree. The arcs indicate that a problem is reduced by a
strategy. The number of successor nodes of a node coincides with the number of subproblems
generated by the strategy. Pointed arcs between sibling nodes indicate that the problem
corresponding to the node from where the arc starts depends on the problem or solution of
the node where it points to. The shaded node indicates that the corresponding problem has
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already been solved.
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Figure 5.6: A development tree

In the development whose corresponding development tree is shown in Figure 5.6, the
original problem was reduced by a strategy producing three subproblems. The problem
corresponding to the leftmost successor of the root node must be solved first, whereas the
other two subproblems are independent of one another. After having solved the first problem
directly (the shaded node has no children), we reduced the problem corresponding to the
second successor of the root node by another strategy, which generates three subproblems
that have to be solved in a fixed order from left to right.

Two strategies are involved in processing one node of the development tree: a creating and
a reducing strategy. Figure 5.7 shows the internal structure of a node of the development tree
and its relation to the creating and reducing strategies. The flow of information is indicated
by pointed arcs.

creating strategy

dependencies on siblings

S wup \

problem \
local_accept solution explanation }
e accept explain /
: \ > assemble /
children

reducing strategy

Figure 5.7: Structure of a node in the development tree

A node contains a problem and its solution, and references to its children and to siblings
it depends on. Furthermore, it contains the functions needed to set up the problem and
determine its solution. These functions stem from the strategy modules involved.

Let a particular node belong to the subproblem p of the creating strategy. Then the
corresponding strategy module provides the set-up function setup p. The dependency pointers
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are obtained from the _depends_on_ component of the strategy module.

The reducing strategy produces the children of a development node. It is therefore re-
sponsible to provide the functions that build the solution, check its acceptability and possibly
provide an explanation. The same strategy plays a dual role for the children nodes: for them
it is the creating strategy.

The development tree as a data structure contains all information about the process,
the unsolved problems and the result of the current development. Thus it is the basis to
browse and provide views of developments, switch between developments, and analyze them
for replay and reuse.

Control Tree

The purpose of the control tree is to keep track of unsolved problems and their dependencies.
It provides a basis to choose the next problem to reduce. Figure 5.8 shows how the nodes of
the control tree point to unsolved nodes in the development tree.

Figure 5.8: Relation between development and control trees

There are two kinds of branchings in the control tree that stem from the dependencies
between the development nodes. They indicate whether siblings have to be solved in a fixed
left-to-right order or if they may be solved in an arbitrary order. The “normal” branching in
the left subtree of the control tree in Figure 5.8 represents a fixed order in which the problems
have to be solved. On the other hand, the triangle v in the upper branching represents an
arbitrary order for the two children of the root. The leaves of the control tree point to
unreduced problems. The shaded leaves may be tackled in the next step.

As far as possible, selection of the next problem should be left to the developer. When
selecting a strategy to reduce a particular problem, it is usually not obvious if the strategy
will succeed in producing a solution. Therefore developers might try to tackle the “hardest”
subproblem first and reduce it until they can decide if a solution is possible. Then they might
concentrate on the next “hard” problem in some other branch of the development. In this
way, the architecture supports focusing the development on the critical tasks first.

All information the control tree represents is contained in the development tree. Still, for
efficiency reasons, it is useful to maintain control information explicitly. The development
tree grows with each strategy application while the control tree shrinks whenever a solution
is found. Without an explicit control tree, the set of reducible nodes would have to be re-
computed for each strategy application.
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5.4.2 Data Flow

The data flow diagram in Figure 5.9 describes how the global data structures are manipulated.
The main control flow is a loop of strategy applications. Upon each entrance of the loop body,
a backtrack point is set. The strategy application cycle consists of selecting a problem and a
strategy, reducing that problem by the strategy, and assembling solutions.

user . strategy user
decison | heuristics base decision
initial initialize dledt | cument | selet
problem dt and ct node node strategy
strategy
] reduce | ct |assemble ctempty ? output

dt : development tree node dt | solutions dt
ct : control tree

BP : backtrack point S |

ct non-empty ?

Figure 5.9: Data flow diagram for the architecture

Node selection

The set of reducible leaves can be determined by considering the control tree’s two kinds of
branchings. The reducible leaves of a tree with normal root branching are the reducible leaves
of the leftmost subtree. For a triangle branching, they are the union of the sets of reducible
leaves of all subtrees. Users may choose from the set of reducible leaves. The chosen node
becomes the current node. It is possible to enhance flexibility of node selection and try to
set up problems that depend on incomplete solutions. Such problems are not in the set of
reducible leaves determined from the control tree.

Strategy selection

Like selecting a node, choosing a strategy is typically a user decision, which may be assisted
by heuristics. For example, some strategies are applicable only to problems with certain
properties. One heuristic might be to search the strategy base for strategies particularly
suited for the current problem.

Node reduction

Node reduction extends the development tree and the control tree at the current node accord-
ing to the selected strategy. The strategy module’s subpr and _depends_on_ components pro-
vide information how many children nodes must be created and which dependency pointers be-
tween them have to be established. The function setup p and the predicate local_accept(cor p)
are entered in the children nodes for each subproblem p, and according to the role as reducing
strategy for the current node, the assemble, accept and explain functions are entered in that
node.
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Solution assembly

After node reduction, the extended development and control trees are searched for solutions
to assemble. If the selected strategy creates no subproblems, the solution to the current
node can be immediately determined: assemble is called for the current node, and the accept
test of the reducing strategy and the local_accept test of the creating strategy are applied.
If one of them fails, the most recent cycle of problem selection and strategy application is
undone. The system backtracks to the state of development before selection of the current
node, symbolized by the dashed arrow in Figure 5.9.

If the solution is acceptable, explain fills in the exzplanation field of the current node (cf.
Figure 5.7). The current node of the control tree is deleted. If the parent node of the deleted
one has no other children, the process of solution assembly is recursively applied to that node.

Even if a solution is acceptable for the selected strategy, it may be inadequate as part
of the solution to a problem higher up in the development tree. Any failure of an accept or
local _accept predicate during recursive solution assembly therefore causes a backtrack, where
the most recent strategy application is undone.

Backtracking may be initiated by the users as well, e.g. if they decide that a strategy
application leads nowhere because the generated subproblems cannot be solved. User-driven
backtracking is possible during both node and strategy selection.

The loop of strategy applications terminates when the control tree is empty, yielding a
development tree in which all nodes have successfully been solved. Its root contains the
solution to the initial problem.

This architecture guarantees the greatest possible flexibility in strategy-based problem solving.
The user can always obtain an overview of the state of development and the context in which a
certain problem has to be solved. The modular implementation of the strategy base facilitates
incorporating new strategies in a routine manner. The architecture is independent of the
kind of development activity that is to be supported, and so can be re-used for different
instantiations of the strategy framework.

5.5 Related Work

Our work relates to knowledge representation techniques and process modeling in classical
software engineering, and to tactical theorem proving.

Knowledge-Based Software Engineering (KBSE)

This discipline seeks to support software engineering via the use of artificial intelligence tech-
niques. It comprises a variety of approaches to specification acquisition and program syn-
thesis, such as those discussed in (Lowry and Duran, 1989) and (Lowry and McCartney,
1991). The strategy framework could also be subsumed under this field, because a knowledge
representation mechanism is its central concept.

A prominent example of KBSE, whose aims closely resemble our own, is the Programmer’s
Apprentice project (Rich and Waters, 1988). There, programming knowledge is represented
by clichés, which are prototypical examples of the artifacts in question, e.g., programs, require-
ments documents, or designs, each of which can contain schematic parts. The programming
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task is performed by “inspection”— i.e., by choosing an appropriate cliché and customizing it
by combining it with other clichés, instantiating its schematic parts, and making structural
changes to it. These activities are performed using high-level editing commands. The assump-
tion underlying the Apprentice approach is that a library of prototypical examples provides
better user support than the representation of general-purpose knowledge. Our position is to
prefer general-purpose knowledge because clichés depend to a large extent upon the applica-
tion domain. This makes it difficult to set up a cliché library, which is sufficiently complete
that it does not need to be extended to accommodate each new problem to be solved.

Representation of Design and Process Knowledge

Wile (Wile, 1983) presents the development language Paddle, which is similar in many ways to
conventional programming languages. Paddle’s control structures are called goal structures,
and its programs provide a means of expressing developments, i.e., of describing procedures
for transforming specifications into programs. Since carrying out a process specified in Paddle
involves executing the corresponding program, one disadvantage of this procedural represen-
tation of process knowledge is that it enforces a strict depth-first left-to-right processing of
the goal structure. This restriction also applies to other, more recent approaches to represent
software development processes by process programming languages (Osterweil, 1987; Shepard
et al., 1992).

Potts (Potts, 1989) aims at capturing not only strategic but also heuristic aspects of
design methods. He uses Issue-Based Information Systems (IBIS) (Conclin and Begeman,
1988) as a representation formalism for design methods. IBIS representing heuristics tend to
be specialized for particular application domains. The strategy framework, in contrast, aims
at representing general, domain independent problem solving knowledge.

In the project KORSO (Broy and Jihnichen, 1995), the product of a development is
described by a development graph. The nodes of the development graph are specification
modules or program modules whose static composition and refinement relations are expressed
using two kinds of vertices. There is no explicit distinction between “problem nodes,” whose
contents are not completely known, and “solution nodes”. Unlike development trees, KORSO
development graphs do not reflect single development steps. A branching in a development
tree maps to a subgraph in a development graph in which process information — such as
dependencies between subproblems — cannot be represented.

Tactical Theorem Proving.

Tactical theorem proving was first employed in Edinburgh LCF (Milner, 1972). The idea
behind tactical theorem proving is to interactively construct goal-directed proofs by backward
chaining from input goals to sufficient subgoals. Tactical theorem proving is also used in
modern theorem provers, e.g., in the generic interactive theorem prover Isabelle (Paulson,
1994), in the verification system PVS (Dold, 1995), and in KIV (Heisel et al., 1988), the
theorem proving shell underlying the program synthesis system 0SS that will be presented
in Chapter 6. Unlike our system architecture, theorem proving systems like Isabelle or PVS
usually do not maintain data structures equivalent to development trees, and so it becomes
the users’ responsibility to record their proof steps textually outside of the system.
Although the goal-directed, top-down approach to problem solving is common to both
tactics and strategies, there are some important differences between them. Tactics are pro-
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grams that implement “backward” application of logical rules. They are monolithic pieces of
code, and all subgoals are set up at their invocation. Dependencies between subgoals can only
be expressed by the use of metavariables, which allow one to leave “holes” in subgoals that
can “filled” during proofs of other subgoals by unification on metavariables. Dependencies
not schematically expressible using metavariables cannot be realized by tactics. Since tac-
tics perform only goal reduction, in tactical theorem proving there are no equivalents of the
assemble and accept functions of strategies. Such equivalents are not actually necessary for
the tactic approach because problems and solutions are identical except for instantiation of
metavariables. By contrast, problems and solutions of strategies may be expressed in different
languages, and the composition of solutions by assemble may not be expressible schematically.

Another important difference between the strategy framework and tactical theorem prov-
ing concerns the role of search, on the one hand, and tacticals or strategicals, respectively,
on the other. In tactical theorem proving, proof search is promising because the theorem is
known and need not be constructed. The purpose of strategy-based development, however,
is to construct an artifact of the software development process in the first place, and this
renders searching a hopeless enterprise. Consequently, the OrR and FAIL tacticals that are
used to program search are unnecessary in the context of strategy-based development. In
addition, the REPEAT construct is realized differently in the two frameworks. While a proper
loop construct is necessary in search procedures, the REPEAT strategical performs only one
step of a loop; its purpose is therefore to impose restrictions determining which strategies may
actually be applied. Only the THEN tactical or strategical is useful in both paradigms. Its
utility derives from the fact that larger steps can be performed in proofs and developments.

We conclude, therefore, that strategy-based development and tactical theorem proving
— which are indeed based on similar ideas — are actually quite different in their practical
applications.

5.6 Summary

The concept of a strategy is designed to provide machine support for the application of formal
techniques in software engineering. Strategies serve to formally represent knowledge that is
informally expressed as agendas or knowledge that is described in text books.The definition of
strategies relies on the notion of a relation, which reflects the fact that different applications
of the same strategy to a problem may lead to different subproblems and produce different
solutions. Strategies do not necessarily permit full automation of a development task, but
rather provide guidance for the development process and validation of the resulting product.
Strategies also leave a considerable degree of freedom in their application.
The most important properties of the strategy framework are:

Methodological support

In using formal techniques, it is important not to leave developers with a mere formalism
and no guidance how to use it. In contrast to other approaches, where tools deal with single
documents and not with the process aspect of a development, the strategy framework aims
at providing methodological support for software engineers. Making explicit not only depen-
dencies, but also independencies, of problems in strategies allows for the greatest possible
flexibility in the development process.
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Genericity

The definition of strategies and the system architecture have the definitions of problems,
solutions, and acceptability as generic parameters. The resulting generic nature of strategies
makes it possible to support quite different development activities, including, for example,
specification acquisition and program synthesis.

Uniformity

The concept of a strategy provides a uniform way of representing development knowledge,
which is independent of the development activity that is performed and also of the formal
technique that is used in the development. The concept of a strategy gives rise to a uniform
mathematical model of problem solving in the context of software engineering. Methods are,
moreover, uniformly represented as sets of strategies; different methods can be combined
freely as long as they rely on the same instantiation of the strategy framework.

Different instantiations of the strategy framework rely on the same principles. When
conducting increasingly more development activities with strategies, software engineers can
still use their previously acquired skills in strategy-based development; indeed, they need
not learn entirely new ways to proceed in developing software. Finally, when we strive for
integrated tool support for different software engineering activities, it is more promising to
integrate different implemented instances of the strategy framework into a system with a
wider range of support, than attempting to combine totally unrelated systems.

Reuse

Strategies make development knowledge explicit. Knowledge represented in terms of strategies
can be communicated to others, can be enhanced according to new experiences and insights,
and can be reused both in different developments and by different persons.

Machine support

The strategy framework provides concepts for machine-supported development processes, and
the uniform modular representation of strategies makes these development concepts imple-
mentable. The general system architecture derived from the formal strategy framework gives
guidelines for implementing support systems for strategy-based development. Representing
the state of development by the data structure of development trees is essential for the prac-
tical applicability of the strategy approach. The practicality of the developed concepts is
demonstrated by the existence of the implemented program synthesis system 10SS, which
will be described in Chapter 6.

Documentation

The development tree not only supports the development process, but is also useful after
the development is finished because it documents the manner in which solutions to input
problems were developed and can so be used as a starting point for later modifications to the
product.
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Semantic properties

The notion of acceptability of a solution with respect to a problem captures the semantic
properties that must be satisfied by the developed products. Semantic constraints are, on the
one hand, captured by the general definition of acceptability that is part of every instantia-
tion of the strategy framework. On the other hand, stronger acceptability conditions taking
context information into account can be stated for individual strategies.

In an implementation, the functions local_accept and accept are the only components of a
strategy module that are concerned with semantic properties. This encapsulation of semantic
properties enhances confidence in the development tool because only these functions have to
be verified to ensure that the tool truly guarantees acceptability of the produced solutions.

Formality

By defining strategies formally we were able to establish a theory of strategy-based problem
solving. We proved that strategies and strategicals conform to our intuition about problem
solving, and we also defined a problem solving algorithm that was proven to lead to acceptable
solutions.

Stepwise automation

Introducing the concept of a heuristic function, and using such functions in distinguished
places in the development process, we have achieved a separation of concerns: the essence
of the strategy — i.e., its semantic content — is carefully isolated from the question of replac-
ing user interaction by semi- or fully automatic procedures. Indeed, gradually automating
software development processes amounts to making only local changes in heuristic functions.

Scalability

Using strategicals, increasingly more elaborate strategies can be defined, until strategies grad-
ually approximate the sizes and kinds of development steps that are actually performed by
software engineers. When combined with the availability of stepwise automation facilities,
this contributes to the scalability of this particular approach to software development.

Customizibility

To incorporate a new method into a support system, the strategy base need only be ex-
tended by the new strategies. This involves only local changes, and does not affect existing
components. Similar comments apply to the automation of parts of the development process.
More work is necessary if the notion of problem, solution, or acceptability has to be
changed. In these cases, all strategies must be revised, but the clear modularization of
strategy implementations still helps in identifying precisely which code requires changes.

A necessary prerequisite for any successful work with strategies is familiarity with the
formalisms involved. To use an instantiation for specification acquisition, a good knowledge
of the specification language to be used is necessary. To develop programs with 10SS, the
user should be familiar with Gries’ method for developing correct programs (Gries, 1981).
But under no circumstances is it necessary that the user be a researcher in the area of formal
techniques to profitably apply strategies.
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5.7 Further Research

Future improvements will mainly concern the process of applying strategies and making the
system architecture even more flexible and powerful. Of course, all further enhancements
must be such that the acceptability of the generated solutions can always be guaranteed. In
particular, we intend to work on the following topics:

Application of strategies defined with strategicals. The current definitions of strategy
modules and of the abstract problem solving algorithms, and the current design of the
system architecture assume that a strategy is defined as a set of constituting relations.
To apply a strategy that is defined with strategicals, it would be necessary to “unfold”
the definition of the strategy to obtain the set of its constituting relations. This un-
folding would have to be done for each individual strategy, which is not economical.
Instead, either algorithms should be developed that automatically do the unfolding, or
the problem solving algorithms and the system architecture should be changed so that
they can deal with strategies that are defined with strategicals, without the need to
unfold the definitions of these strategies.

Incomplete solutions. The architecture as it is designed currently allows the users to reduce
a problem only when all problems it depends on are completely solved. This style of
problem solving is not always realistic. In specification acquisition, for example, it is
unrealistic to assume that the subproblems generated by a strategy can be solved one
after another (see Chapter 7). Hence, the process that implements problem solving
with strategies must allow specifiers to work on problems even if the solutions on which
they depend are not yet completely known. Technically, we can achieve this effect
by propagating incomplete solutions. When the developer wants to work on a “later”
subproblem, the assemble functions contained in the strategy modules (see Section
5.3.1) are executed, with dummy values in place of solutions, which have not yet been
developed. As soon as a change in an earlier problem/solution occurs, the assemble
functions must be re-executed to propagate the results of the changes into later problem
definitions. When a subproblem is finally solved, both the assemble and accept functions
must be executed.

Replay mechanisms. Sometimes a developer might want to change the solution to a previ-
ous subproblem, even if that solution is already complete and has been propagated into
subsequent problems and solutions. Currently, changing completed solutions to sub-
problems is only possible by backtracking. But then, all intermediate steps that were
performed after the revised solution was completed are lost and have to be repeated.
To make revisions of solutions more comfortable, a replay mechanism is needed that
automatically tries to repeat the development steps between the development of the
revised solution and state of development before the revision.

Exploratory developments. The current architecture does not well support users who
first want to try out several alternatives to solve a problem before deciding on the
best way to solve it. Exploring different alternatives is only possible with backtracking
or performing entirely different developments to solve the same problem. To support
exploratory development, the system architecture could allow developers to introduce
branches in the development, which would result in several “parallel” development trees
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for the same development. Finally, the developer could select the best development and
discard the alternative development trees.

Reuse of developments. The strategy framework supports reuse of development knowl-
edge that is represented in terms of strategies. To support also reuse of complete devel-
opments, we must develop mechanisms to combine previously generated development
trees. Such combination mechanisms must ensure that, for example, different pieces of
information that by chance have the same name are not identified.

Support more phases of software development. It is our aim to eventually support all
phases of the software development process with strategies. Besides the four instantia-
tions presented in this work, we specifically intend to investigate possible instantiations
of the strategy framework for requirements engineering and for testing.

Integrate different instances of the strategy framework. For now, different instanti-
ations of the strategy framework lead to different independent support systems for
different software engineering activities. We are currently investigating ways in which
different instances of the system architecture can be combined; first ideas are reported
in Chapter 7. An integration of several instances of the strategy framework into a single
support system would provide integrated tool support for larger parts of the software
lifecycle.

Record design decisions. In the current system architecture, the development tree docu-
ments the development process. But it only documents which development steps have
been taken, not why they were taken. It would be a simple adjustment to allow the
users to give reasons for their choices of strategies in natural language, and store these
reasons in the development tree.
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Chapter 6

Strategy-Based Program Synthesis

This chapter presents an instantiation of the strategy framework that supports the synthesis
of totally correct imperative programs from specifications that are expressed as formulas of
first-order predicate logic. This instantiation is implemented in a prototype system 10SS
(Integrated Open Synthesis System). The implementation of 0SS follows the system archi-
tecture presented in Section 5.4.

Other programming paradigms can also be supported by strategies: A different instanti-
ation of the strategy framework, supporting the synthesis of functional instead of imperative
programs, is described in (Heisel, 1994).

We first define the generic parameters of the strategy framework and then present some
example strategies. After describing the implemented prototype system 10SS, we summarize
and point out further research. Like Chapter 5, this chapter uses results from (Heisel, 1994;
Heisel et al., 1995b; Heisel et al., 1995a; Heisel, 1996¢).

6.1 Problems, Solutions, Acceptability and Explanations

In defining the generic parameters of the strategy framework, we use a Z-like notation, but
we do not formalize the syntax and semantics of formulas and programs. For syntactic
combinations of formulas, we use the subscript , e.2. Ay and = ;. To refer to the semantics
of formulas, we use predicates like valid and satisfiable.

“o”
S

Problems

Problems are specifications of programs, expressed in terms of preconditions and postcondi-
tions, which are themselves formulas of first-order predicate logic. To aid focusing on the
relevant parts of the task, the postcondition is divided into two parts, namely the invariant
and the goal. In addition to these we have to specify which variables may be changed by
the program (result variables), which variables may only be read (input variables), and which
variables must not occur in the program (state variables). The state variables are used to
store the values of variables before execution of the program for reference of this value in its
postcondition. The function free yields the free variables of a formula. The predicate valid
refers to the semantics of a formula and expresses its logical validity.

141
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__ ProgProblem
pre, goal, inv : First_Order_Formula
res, inp, state : P Variable

disjoint (res, inp, state)
free(pre Ay goal A inv) C res U inp U state
valid (pre =, inv)

Solutions

Solutions are programs in an imperative Pascal-like language. Besides, solutions contain an
additional precondition and an additional postcondition. (These conditions are additional to
the pre- and postconditions of contained in a problem.) If the additional precondition is
not equivalent to true, then the developed program can only be guaranteed to work if both
the originally specified precondition and the additional precondition hold. The additional
postcondition gives information about the behavior of the program, in that it describes how
the goal is achieved by the program. To exclude trivial solutions, the additional precondition
is required to be distinct from false.

— ProgSolution
prog : Program
apr, apo : First_Order_Formula

satisfiable (apr)

Acceptability

A solution is acceptable with respect to a problem if and only if the program it contains is
totally correct with respect to both the original and the additional pre- and postconditions,
does not contain state variables (function vars), and does not change input variables (function
asg). Checking for acceptability of a solution amounts to proving verification conditions on
the constructed program.

_correct_for_ : ProgSolution <= ProgProblem

Y pr : ProgProblem; sol : ProgSolution e
sol correct_for pr
=
(valid(pr.pre As sol.apr =, (sol.prog)(pr.goal As pr.inv A, sol.apo)) A
vars(sol.prog) N pr.state = & A
asg(sol.prog) N pr.inp = &)

The formula pre =, {(prog)post is a formula of dynamic logic (Goldblatt, 1982), a logic
designed for proving properties of imperative programs. This formula denotes the total cor-
rectness of program prog with respect to precondition pre and postcondition post.
Ezxplanations for solutions are provided as formal proofs in dynamic logic. In IOSS, proofs
are represented as tree structures that can be inspected at any time during development.
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6.2 Strategies for Program Synthesis

We present four strategies. The first one replaces the goals of programming problems by
stronger or equivalent ones. With the second, we can develop compound statements. The
third can be used to develop loops. Using the THEN strategical, we combine these strategies
to yield a fourth strategy, more powerful than either of its constituents, for developing loops
together with their initialization.

The notation we use is semi-formal and resembles Z. The type Value denotes the disjoint
union of the schema types ProgProblem and ProgSolution, whose members are denoted by
bindings, i.e., by lists of pairs of the form atiribute = attribute value.

6.2.1 The strengthening strategy

This strategy is used to incorporate knowledge about the data structures occurring in problem
descriptions into the synthesis process. The idea is to replace the goal of a programming
problem by a stronger one, i.e., a formula which entails the old goal in the model under
consideration. Examples of the domain-specific knowledge that is used to strengthen goals
are facts about the natural numbers, e.g., that the sum over an empty range of indices is zero.
The strategy produces one subproblem, which is a transformation of its input problem.

strengthening = {str_pr, str_sol}
where str_pr is defined by

1A str_pr = {P_init}
OA str_pr = {P_str, S_str}
str_pr = { t : scheme str_pr — Value |
g, inv_pr : First_Order_Formula |
free(inv_pr) N t(P_init).res = &) A
valid(g N, inv_pr =, t(P_init).goal) ®
(let var_pr == (p var : First_Order_Formula |
valid (t(P_init).pre <, inv_pr A, var)) e
t(P_str) = ( pre = t(P_init).pre,
goal = g,
inv = t(P_init).inv,
res = t(P_init).res U (free(g) \ (t(P—init).inp U t(P_init).state)),
inp = t(P_init).inp,
state = t(P_init).state )) N
t(S_str) correct_for t(P_str)}

The constituting relation str_pr has P_init as its only input attribute. Its output attributes
are the strengthened problem P_sir and its solution S_str. We define constituting relations
by stating conditions on their member tuples.

Note the existential quantifier in the definition. It indicates that external information is
necessary to set up the problem for P_str. In the implemented strategy of 10SS, the user
is asked to provide the stronger goal g. The system automatically determines the invariant
parts inv_pr of the precondition (i.e., parts that contain no result variables), which may be
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necessary to show that solving the problem with goal ¢ indeed suffices to solve the input prob-
lem of the strategy. The formula var_pr can be determined automatically from ¢(P_init).pre
and inv_pr.

Hence, an existential quantifier in the definition of a constituting relation indicates that
external information is necessary to define some of the attribute values. Sometimes, user
interaction is needed to obtain the external information. In other cases, the external infor-
mation can be computed automatically. The u operator! indicates that the defined value can
be determined uniformly from other known values.

The strengthening strategy generates the verification condition
g A inv_pr = t(P_init).goal

This means that the conjunction of the new goal g and the selected parts inv_pr of the
precondition must entail the original goal ¢(P_init).goal in the model under consideration.
This model has to be specified by appropriate axioms. The rules of dynamic logic that
guarantee correctness of the developed programs can be found in (Heisel, 1994).

The value of P_str depends of the value of P_init and the external information. Only the
goal and res components of the value of P_str differ from those of P_init. The component
t(P_str).goal is the new goal g, and any variables newly introduced in g are classified as
result variables. The value of S_str must be acceptable for the value of P_str.

The second constituting relation of the strengthening strategy defines the final solution,
i.e., the value of S_final.

IA str_sol = {S_str}
OA str_sol = {S_final}
str_sol = { t : scheme str_sol — Value | t(S_final) = t(S_str)}

The solution to the original problem coincides with the solution to the strengthened problem.

6.2.2 The protection strategy

This strategy is based on the idea that a conjunctive goal can be achieved by a compound
statement. The part of the goal achieved by the first statement must be an invariant for the
second one. The strategy produces two subproblems and is defined as follows:

protection = {prot_first, prot_second, prot_sol}

where prot_first is defined by

'In contrast to the definition of the p operator in Z, we do not the require the predicate to determine a
unique value. We interpret p as the Hilbert operator of higher-order logic, which selects one fixed value of the
predicate’s extension.
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1A prot_first = { P_init}
OA prot_first = { P_first, S_first}
prot_first = { t : scheme prot_first — Value |
J¢g1 : First_Order_Formula e
(let g2 == (1 g2 : First_Order_Formula | valid (t(P_init).goal <, g1 Ns g2)) ®
t(P_first) = { pre = t(P_init).pre,
goal > a1,
nv = true,
res = t(P_init).res N free(g1),
inp = t(P_init).inp U (t(P_init).res \ free(g1)),
state = t(P_init).state )) N
t(S_first) correct_for t(P_first)}

The precondition for the first statement is the same as for the original problem. The invariant
of the original problem may be invalidated in achieving goal g¢;, hence the inv component of
the value of P_first is true. Only the variables occurring free in ¢; may be changed by the
program to be developed and are thus classified as result variables; the other result variables
of P_init become input variables for P_first. The state variables remain unchanged.

Again, an existential quantifier indicates that external information is necessary to set up
the problem for P_first. In the implemented strategy of IOSS, the user is asked to indicate
the goal for the first problem. The constituting relation prot_second is defined by

1A prot_second = { P_init, P_first, S_first}
OA prot_second = { P_second, S_second }
prot_second = { t : scheme prot_second — Value |
(let go == (p g2 : First_Order_Formula |
valid (t(P_init).goal <4 t(P_first).goal A5 g2)) ®
t(P_second) = ( pre = t(P_first).goal N\s t(S_first).apo,
goal = gy N t(P_init).inv,
inv = t(P_first).goal,
res = t(P_init).res,
inp = t(P_init).inp U (free(t(S_first).apo)
\(t(P_init).res U t(P_init).state)),
state = t(P_init).state )) N
t(S_second) correct_for t(P_second) N
valid (t(P_first).goal Ny t(S_first).apo =, t(S_second).apr)}

The goal for P_second can be determined automatically. It consists of that part g, of the
original goal that was not achieved by solving the problem P_first, together with the invariant
of P_init. The invariant for P_second is the goal of P_first, which is also a precondition for
P_second. Another precondition for P_second is the additional postcondition guaranteed by
S_first.

The result variables for P_second are the same as those of the original problem. Its
input variables are the input variables of P_init, together with all variables newly introduced
in solving P_first (these occur in ¢(S_first).apo). It is necessary to classify these variables
because, in the definition of programming problems, we stated that each variable must be
classified: free(pre Ay goal As inv) C res U inp U state. The state variables again remain
unchanged.
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Not only is the solution S_second required to be acceptable for P_second, but the post-
condition established by S_first must also entail the additional precondition of S_second.
Note that this second condition is a local acceptability condition for S_second. If it is not
fulfilled, then a precondition, which is necessary for the program contained in S_second to es-
tablish the postcondition stated in P_second, cannot be guaranteed, and S_second, although
acceptable for P_second in isolation, cannot be part of a solution to the original problem
P_init.

The constituting relation prot_sol specifies the way in which the final solution to a problem
is assembled from the solutions of its subproblems. Here, the final program is the sequential
composition of two programs developed in solving subproblems of the original problem.

IA prot_sol = {S_first, S_second }
OA prot_sol = {S_final}
prot_sol = { t : scheme prot_sol — Value |
t(S_final) = ( prog = t(S_first).prog; t(S_second).prog,
apr = t(S_first).apr,
apo = t(S_second).apo) }

6.2.3 The loop strategy

This strategy enables the construction of a while loop. It is applicable only when the goal
contains no quantifiers because the goal serves as the termination test of the loop. The loop
strategy generates exactly one subproblem and is given by

loop = {loop_body, loop_sol}
where loop_body is defined by

1A loop_body = { P_init}
OA loop_body = { P_loop, S_loop}
loop_body = { t : scheme loop_body — Value |
boolean_expr(t(P_init).goal) A
3bf,0: Term; ly : Variable; <: Term +— Term;
loop_inv : First_Order_Formula |
well_founded_ordering (0, <) A
to ¢ (t(P_init).res U t(P_init).inp U t(P_init).state) A
valid (t(P_init).pre =, loop_inv) A
valid (t(P_init).inv A loop_inv Ay =5 (t(P_init).goal) =, 0 < bf)
t(P_loop) = { pre = t(P_init).inv As loop_inv Ny —s(t(P_init).goal) Ns to =5 bf,
goal = bf < 1y,
inv = t(P_init).inv A loop_inv,
res = t(P_init).res,
inp = t(P_init).inp,
state = t(P_init).state U {{p}) A
t(S_loop) acceptable_for t(P_loop)}

To set up the problem P_loop, a bound function bf and a well-founded ordering < on the
carrier set of bf are needed, as well as a constant 0 that is minimal with respect to <. The
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invariant of the loop to be developed consists of the invariant of the original problem and
a formula loop_inv that usually contains invariant parts of the precondition t(P_init).pre,
(e.g., ranges of variables). In IOSS, both loop_inv and bf must be provided by the user,
although for loop_inv the system does suggest candidates. An appropriate ordering, however,
can often be inferred from the sort of the bound function, which is Z in many cases.

The goal of problem P_loop is then to decrease the bound function, i.e. to make progress
towards termination of the loop, while maintaining the invariant. To record the value of the
bound function, a new state variable #; is introduced. The input and result variables are the
same for P_loop as for P_init.

The overall solution generated by the loop strategy is a loop with the negation of the
original goal ¢(P_init).goal as the loop condition and the program that results in solving
P_loop as the loop body. Accordingly, loop_sol is defined by

1A loop_sol = { P_init, P_loop, S_loop}

OA loop_sol = {S_final}

loop_sol = { t : scheme prot_sol — Value |

(let loop_inv == (p loop_inv : First_Order_Formula |
valid (t(P_loop).inv < t(P_init).inv A loop_inv)) e
t(S_final) = { prog = while not ¢(P_init).goal do t(S_loop).prog od,

apr = t(P_init).pre = t(S_loop).apr,
apo = loop_inv) )}

The formula loop_inv can be determined automatically — it is precisely the same formula as
in loop_body.

6.2.4 A Combined Strategy

Gries” approach to the development of correct programs (Gries, 1981) deals primarily with
the development of loops. For while loops, the approach can be expressed by the agenda
shown in Table 6.1. Let a precondition P and a postcondition R be given. Recall that the
formula P = (prog)R of dynamic logic denotes the total correctness of program prog with
respect to the precondition P and the postcondition R. The program developed with the this
agenda has the form init; while not C' do body od. The verification conditions given in the
agenda guarantee that the developed loop is totally correct with respect to the given pre- and
postconditions.

Combining the strategies introduced in the previous sections, we can formalize the agenda
of Table 6.1 as a strategy. First, the strengthening strategy must be applied to replace the
goal of the original problem with the loop invariant and the negation of the loop condition.
The conditions I and € must be supplied as external information, where, for the development
of the invariant, the heuristics given by Gries (Gries, 1981) can be employed. Second, the
protection strategy must be applied. The first statement of the compound generated by the
protection strategy is the initialization of the loop that establishes the invariant. The second
part of the compound consists of the loop itself which is developed with the loop strategy.

We use the THEN strategical to define a new while strategy that encompasses these steps:

while = THEN (strenthening, P_str, THEN(protection, P_second, loop))

where P_str is the only subgoal generated by the strengthening strategy, and P_second is the
problem to develop the second part of the compound generated by the protection strategy.
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No.| Step Verification Condition
1 | Develop a loop invariant I by weak- | R = I

ening the postcondition R appropri-
ately.

2 | Develop a loop condition C' such | - CAI =R
that upon termination the desired

result is true.
3 | Develop the initialization init of the | P = (init)[
loop such that it establishes the in-
variant.

4 | Develop a bound function bf on a | well_founded_ordering(0,<) A (C =
set with a well-founded ordering, | 0 < bf)

such that bf is bounded from below
as long as the loop has not termi-
nated.

5 | Develop the loop body body such | I = (t0:= bf; body)(I A bf < t0)
that the bound function is decreased

while the invariant is maintained.

Table 6.1: Agenda for developing while loops

Strategies defined with THEN perform larger development steps than their component
strategies. Thus, strategies can gradually approximate the complexity of development steps
performed by human developers in practice. More strategies for program synthesis can be
found in (Heisel, 1994).

6.3 10SS: An Implemented Program Synthesis System

The program synthesis system [OSS is a research prototype that was built to validate the
concept of strategy and the system architecture developed for their machine-supported appli-
cation. Currently, it supports the application of the program development methods described
in (Gries, 1981) and (Dershowitz, 1983). Because the interfaces of strategy modules are
presented uniformly, Gries’ and Dershowitz’ methods can be combined freely.

IOSS is an instantiation of the architecture described in Section 5.4, which uses the in-
stantiation given in Section 6.1. The basis for the implementation of 10SS is the Karlsruhe
Interactive Verifier (KIV), a shell for the implementation of proof methods for imperative
programs (Heisel et al., 1988).

After giving an overview of the strategy base of 10SS, we describe its graphical user
interface and show how existing software tools have been reused and integrated to implement

1OSS.

6.3.1 The Strategy Base

A number of interactive, semi-automatic and fully automatic strategies have been imple-
mented. In the current version, they are oriented toward programming language constructs.
Three strategies solve a problem directly: one for developing the empty program skip (skip
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strategy), two for developing assignments (manual assignment and automatic assignment
strategy).

Two strategies can be applied to modify a problem: the strengthening strategy, which
we presented in Section 6.2.1, and the state variable strategy, which introduces a new state
variable for some result variable.

Three strategies are available for developing compound statements: one corresponds to
the rule for compound statements in the Hoare calculus (intermediate assertion strategy), the
two others are based on Dershowitz’ approach for conjunctive goals (Dershowitz, 1983). The
disjoint goal strategy can be applied if the goal can be divided into two independent subgoals.
Two subgoals are independent if the set of result variables that must be changed to achieve
one of the subgoals are disjoint from the set of result variables that must be changed to
achieve the other subgoal. The protection strategy presented in Section 6.2.2 can be applied
when the subgoals are not independent as required for the disjoint goal strategy.

Two strategies can be used to develop conditionals: the conditional strategy reflects the
rule for conditionals of the Hoare calculus, the disjunctive conditional applies if the goal is of
disjunctive form.

Since the while strategy defined in Section 6.2.4 is not yet implemented, loops must be
developed using the loop strategy of Section 6.2.3 in combination with the strengthening and
protection strategies.

Higher-level strategies like strategies for the development of divide-and-conquer algorithms
or re-usable procedures have been defined, but are not yet implemented. A complete descrip-
tion of all defined and implemented strategies can be found in (Heisel, 1994; Heisel, 1992).

6.3.2 The Interface

Figure 6.1 shows the graphical user interface of I0SS. The main window displays the current
development task, represented by the development tree on the left-hand side of the window,
and the current programming problem, which appears on the right-hand side of the window.
The tree graphically represents the process and the state of the program development. Each
node is labeled with the name of the strategy, which has been applied to it. The state of the
node is color coded, showing at a glance whether it is reducible, or solved, etc.

A node is selected by simply clicking it with the mouse. If that node is reducible, it
becomes the current node, and its problem specification is shown on the right-hand side of
the window. Any node can be selected for the purpose of inspecting it, but only reducible
nodes can become the current node. A node can be inspected via the View menu. A separate
window pops up for each node, and several nodes can be inspected at the same time.

The explanation (i.e., proof) for the synthesized solution — as far as it has been constructed
— is accessible via the View menu, too. 10SS combines the explanations for each strategy
application to form a coherent proof that — once the development process is completed —
verifies the developed program.

The strategy base of 10SS is accessible via the Edit menu. A strategy is applied to the
current node by invoking the respective menu entry. In Figure 6.1 the menu is shown in the
center of the window. It is possible for any menu to be kept on the screen at an arbitrary
position. This allows developers to quickly access frequently used features such as the strategy
base. Whenever a strategy requires user input, the user is prompted for it in a window. 10585
also provides features to manipulate the graph. The user can, for example, re-scale the tree
or hide subgraphs.
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Figure 6.1: The 10SS interface

6.3.3 Experience with Re-Use and Integration

Technically speaking, 0SS is not one single program. It makes use of a number of software
packages to realize what the user perceives as [OSS. The implementation of I0SS has been
carried out in two steps. First, the kernel system has been implemented as an instance of the
architecture described in Section 5.4. Second, a graphical user interface has been designed
and implemented on top of the kernel system.

The Kernel System

The Karlsruhe Interactive Verifier (KIV) (Heisel et al., 1988) is a shell for the implementa-
tion of proof methods for imperative programs. It provides a functional Proof Programming
Language (PPL) with higher-order features and a backtrack mechanism. Assertions about pro-
grams can be formulated in dynamic logic (Heisel et al., 1989). The language for programs
itself is a Pascal-like language with while-loops and recursive procedures. KIV serves for the
implementation of the 0SS kernel, its data structures, and strategy modules.

Strategies are implemented as collections of PPL functions in separate modules, and, as
a result, new strategies can be incorporated into IOSS in a routine way. A template file for
new strategies currently supports incorporating of new strategies; for the future, we envision
tool support relieving the implementor of everything other than handling the characteristics
of the newly implemented strategy.

A severe restriction of KIV is its command-line interface. There is no reasonable way to
bring into effect the potential to inspect the state of development and to take advantage of
the freedom of choice provided by the architecture. A more sophisticated was needed to fully
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exploit the benefits of the strategy framework and the associated system architecture.

The Graphical Interface

Since we had very limited resources in terms of person-power to realize the interface, we
decided to rely as much as possible on existing software packages and toolkits. The interface
was to be built with minimal changes to the kernel system. We needed a means to transfer
data from KIV to whichever interface system we would use. For the visualization of the state of
development, we needed a graph layout system. Moreover, we wanted to avoid programming
on a level such as the X Window Toolkit, since this is a tedious, time-consuming task.

With the following packages we found just what we needed:

Tcl — A simple, extensible scripting language providing generic programming facilities. Each
application can implement new features as Tcl commands (Ousterhout, 1994).

Tk — An extension to Tcl providing a toolkit for the X Window System. Tk extends the
core Tcl facilities by commands for building user interfaces. It hides much detail C
programmers must address when constructing a user interface (Ousterhout, 1994).

expect — An extension to Tcl/Tk designed to control interactive programs using standard
terminal 1/O. For the controlled programs, expect takes over the part of the user
“typing” commands and interpreting output (Libes, 1991).

TkSteal — An extension to Tk to integrate stand-alone X applications in a Tk-built interface
(Delmas, 1994).

daVinci — A generic visualization system for directed graphs (Fréhlich and Werner, 1995).

Tk e
777777777777777777777777 TkSteal
Tcl Expect daVinci
10SS-Kernel

Figure 6.2: System integration for the 0SS interface

Figure 6.2 illustrates the integration of these packages to construct the graphical interface
for 10SS. expect controls the command-line interface of KIV and the application interface
of daVinci. TkSteal provides “interface sugar” for the graphical interface. It integrates
daVinci with the other parts of the IOSS interface.

We think it is remarkable how little effort was required to build the interface. It took
only one person-month to build it in its current shape. Only 800 lines of code needed to be
written in Tcl, 116 lines of code of additional code had to be written in PPL.

For a more complete description of 10SS, which also contains example developments, the
reader is referred to (Heisel et al., 1995a).



152 Chapter 6. Strategy-Based Program Synthesis

6.4 Related Work

The strategy framework in general, and 1OSS in particular, make it possible to integrate a
variety of methods for program synthesis, provided they can be expressed in its basic for-
malism. The synthesis systems CIP (CIP System Group, 1987), PROSPECTRA (Hoffmann
and Krieg-Briickner, 1993) and LOPS (Bibel and Hérnig, 1984), in contrast, are all designed
to support specific methods. Their authors did not intend to integrate these methods with
other ones, nor are these systems customizable. Moreover, the support of activities other
than program synthesis was not a design goal for any of these systems.

The approach underlying KIDS (Smith, 1990) is to fill in algorithm schemas by construc-
tive proofs of properties of the schematic parts. This is achieved using highly specialized code,
called design tactics, of which at least one is defined for each schema. There is no general
concept of a design tactic, and no notion of how to incorporate a new one into the system.
Information about the development process is maintained implicitly, so that, working with
KIDS, it is hard to keep track of where one is in a development. There is a logging facility and
a replay facility, but these provide no possibility of browsing the state of development. Since
design tactics are linearly programmed, there is no way to change the order of independent
design steps or to “interleave” the applications of tactics.

6.5 Summary

In this chapter, we have presented a first instantiation of the strategy framework that supports
the synthesis of totally correct imperative programs. This instantiation demonstrates that
the strategy framework can be profitably employed in program synthesis. Moreover, we have
described a prototype system that implements the instantiation for program synthesis. This
prototype shows that carrying out development tasks with strategies is feasible.

IOSS in its current version is useful for teaching students the systematic development
of provably correct programs. However, the currently available strategies are relatively low-
level. This makes program synthesis with I0SS a time-consuming and highly interactive task.
Consequently, IOSS is not yet applicable for the development of industrial-scale programs.

IOSS was built to serve as a proof of concept, rather than as a full-fledged development
tool. In particular, the following facts became apparent:

e Because of the uniform modular representation of strategies, an integration of different
methods for program synthesis becomes possible. In 10SS, the methods of Gries and
Dershowitz can be combined freely.

e The strategy approach leads to open systems that can be improved gradually. Such an
improvement can be the routine incorporation of new strategies, the replacement of an
interactive heuristic function by a semi- or fully automatic one, or the combination of
existing strategies into more powerful ones, using strategicals.

e Implemented systems that support an instance of the strategy framework can be built
with relatively little effort, using freely available software packages.



6.6. Further Research 153

6.6 Further Research

IOSS has the potential to be developed further into a tool that can be used to tackle more re-
alistic program development tasks than this is currently the case. The following improvements
would make 10SS considerably more powerful:

Selection of strategies. More support could be provided for the users of 10SS in select-
ing the strategy to be applied to the current problem. Whereas positively proposing
candidate strategies seems a very ambitious aim, it is easier to exclude those strategies
that cannot be applied to the current problem, e.g., because they require a problem of
a specific syntactic form that does not match the form of the current problem.

Automation. Although the strategy framework provides a high potential for automation,
most of the strategies available in IOSS are interactive. To better exploit the potential
for automation, we need to build up libraries that contain theories for frequently used
data structures. KIDS (Smith, 1990), for example, heavily relies on such libraries.

More strategies. More powerful strategies should be incorporated into I0SS. Candidates
are strategies that are equivalent to the design tactics available in KIDS. Strategies for
the synthesis of divide-and-conquer algorithms are already defined.

Replay mechanisms. It happens that during the synthesis of a program, different parts
of the program are developed in almost the same manner. We need mechanisms that
support the adaptation and reuse of sequences of development steps.

Programming language. The programming language supported by IOSS should be made
more expressive, e.g., by incorporating powerful procedural constructs, or introducing
dynamic data structures, such as linked lists.

Proof support. The theorem prover of KIV, which is used to prove the verification condi-
tions generated by 10SS, is not very sophisticated. For instance, there is no built-in
theory of ordering relations. The prover should be parameterized with theories, and
rewriting techniques should be incorporated.

Safety invariants. When we implement software for safety-critical systems as specified in
Chapter 3, then safety cannot be guaranteed in the intermediate states that occur when
a program that implements a system operation is executed. The specification only
states that the state before and the state after execution of the system operation are
safe. This situation can be improved under the condition that sequences of assignments
are considered to be sufficiently fast. In this case, we can require a “safety invariant”
to hold before and after each sequence of assignments. Then the system can be in an
unsafe state only for the time that is needed to execute the longest assignment sequence
occurring in the implementation. With little effort, IOSS can be extended to deal with
such safety invariants.



154 Chapter 6. Strategy-Based Program Synthesis



Chapter 7

Strategy-Based Specification Acquisition

The instantiation of the strategy framework discussed in the previous chapter presupposes
the existence of a formal specification for the program to be developed. However, developing
the specification may be at least as difficult as transforming it into an executable program.
Since formal specification languages are often difficult to handle, developers need support
to use them appropriately. Strategies for specification acquisition not only propose possible
orders in which the different parts of specifications can be developed, but also provide valuable
validation mechanisms for the resulting specifications.

In Chapter 2, we have presented an agenda for specification acquisition, which integrates
all activities that must be carried out to develop a specification smoothly into traditional
software processes. Some of these activities (Steps 1, 2, and 4) are not carried out with
formal techniques; others (Steps 4 and 5) can only be performed after the specification has
been developed. Therefore, this chapter concentrates on Step 3 of the agenda of Chapter 2,
namely the transformation of the requirements into a formal specification.

The pragmatic relaxations of specification discipline proposed there are reflected in the
definitions of problems, solutions, and acceptability of the instantiation: Chapter 8 presents an
instantiation of the strategy framework for the combination of Z and real-time CSP defined in
Chapter 3. If restrictions of the specification language are to be ignored, we can, for example,
define acceptability of Z specifications as type correctness because it can be checked by tools.
Then, the specification of Section 2.4.3 is acceptable. Leaving out details, on the other hand,
does not show up in the definition of an instantiation of the framework, but only in individual
specification developments.

In this chapter, we first introduce the concept of a specification style in Section 7.1.
Specification styles are different manners in which specifications can be developed. We then
present the definitions of problems, solutions, and acceptability we use to instantiate the
strategy framework for specification acquisition in Section 7.2. In Section 7.3, we define
strategies associated with the styles introduced in Section 7.1. These are used in an example,
where we present the development of a specification of the Unix file system in Section 7.4.
Finally, in Section 7.5, we show how 7 specifications developed with the instance of the
strategy framework of this chapter can be transformed into I0SS programming problems. As
usual, we close with a discussion of related work, a summary of the achieved results, and
directions for further research. The instantiation of the framework and some of the strategies
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presented here are taken from (Heisel, 1996¢). The concept of style is explained in more
detail in (Souquieres and Heisel, 1996). The example and some reflections on specification
languages can be found in (Heisel, 1995b).

7.1 The Concept of a Specification Style

Different specification languages are distinguished by the language constructs they offer to
their users. For each specification language, we can find requirements on or aspects of systems
we want to specify that are supported very well and others that can be expressed only in a
clumsy way or not at all. For example, algebraic languages do not support the specification
of state-based systems very well; on the other hand, the generic constructs offered by the
language 7 leave much to be desired. In this way, specification languages encourage the use
of some constructs and discourage the use of others. As a result, they implicitly represent
certain specification styles, because specifiers proceed differently, according to the specification
language they use.

In contrast to this situation, we strongly advocate orienting the development of a speci-
fication on the problem, not on the specification language that is used. When developing a
formal specification, we should ask ourselves the following questions:

e Does the system to be built have a global state that is changed by some operations?
e Is it suitable to abstractly describe properties of (parts of) the system to be specified?

e [s it possible to combine and adjust existing specifications to obtain a specification for
(parts of) the new system?

Depending on the answers to these questions, a specifier will follow different paths to develop
a specification. We propose to define these different approaches to developing specifications
as specification styles and support them in a systematic way, i.e., by agendas and strategies.
Such definitions make styles explicit, instead of representing them implicitly by specification
languages. The previous questions correspond to the state-based, algebraic, and reuse styles.

A specification style describes a certain “spirit” in which a specification is set up. For
example, the aim of the reuse style is to reuse specifications contained in a library whenever
possible. Of course, we usually cannot expect to set up a new specification exclusively using
existing specifications of a library. Library items will have to be modified, and certain parts
will have to be developed from scratch. Hence, a style is nothing strict, but it will have to
be combined with other styles. Styles are used locally, i.e., even within one development,
one switches between different styles. It is therefore not reasonable to identify styles with
specification languages.

Specification styles can be described as sets of strategies. Strategies that belong to a
particular style are to a large extent independent of the specification language to be used.
That is, the strategies associated with a particular style will define the same number of
subproblems with the same dependencies for the same purpose independent of the choice of
the specification language; only the specification expressions that are generated as solutions
will look different. In (Souquieres and Heisel, 1996), we show that, in performing the same
steps, we can obtain “equivalent” specifications in different languages. This shows that, to a
large extent, the development process can be driven exclusively by the problem.
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In the following, we define the notions of problems, solutions, and acceptability for speci-
fication acquisition, and then present strategies that are associated with different styles.

7.2 Problems, Solutions, and Acceptability

The instantiation of the strategy framework which we now present can be used in developing
specifications in Z. This instance integrates well with the instance for 10SS, because Z sup-
ports the explicit modeling of states. Z specifications are usually implemented in imperative
languages, such as the one used in [0SS, and Z operation schemas are easily transformed into
programming problems for IOSS (see Section 7.5).

In contrast to program synthesis, where problems and solutions are purely formal objects,
specification acquisition transforms informal requirements into formal specifications. A prob-
lem to be solved will therefore contain a natural language description of the purpose of the
specification to be developed.

In addition, the successive development of a specification requires knowledge about the
parts of the specification that have already been developed. Since problems should contain
all information needed to solve them, problems must contain expressions of the chosen spec-
ification language — in our case, 7.

Finally, a problem contains a schematic Z expression that can be instantiated with an
appropriate concrete Z expression. The schematic Z expression specifies the syntactic class
of the specification fragment to be developed, as well as how the fragment is embedded in its
context (see e.g. Section 7.3.2 below). These considerations lead us to the basic types

[SynZ, Text, SchematicZ ]

Semantically valid 7 specifications are a subset of the syntactically correct ones. To be
able to state meaningful acceptability conditions, which capture the role of a specification
fragment in its context, Z expressions are associated with syntactic classes, e.g., specification,
schema, schema_list. These syntactic classes are sets of Z expressions. The empty string € is
a syntactically correct Z expression.

SemZ : P SynZ
SyntacticClass : P(P SynZ)
€: SynZ

We will use the following syntactic classes whose names are self-explanatory. The class
specification is the most general one.

specification, free_type, ax_def,
schema, schema_list,
declaration_list, predicate, ident : SyntacticClass

Each schematic Z expression is associated with the syntactic class of Z expressions with
which it can be instantiated. The function NL concatenates two Z expressions. As in the Z
reference manual, it means “new line”. Since concatenating two arbitrary 7 expressions does
not always yield a syntactically correct Z expression, the function NL is necessarily partial.
The empty specification ¢ is a neutral element with respect to NL.
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syn_class : SchematicZ — SyntacticClass
instantiate : SchematicZ X SynZ — SynZ
_NL_: SynZ X SynZ — SynZ

Y schem_expr : SchematicZ e ¥ v : syn_class schem_expr o
(schem_expr, v) € dom instantiate

Y spec : SynZ e
(spec,€) € dom NL = specNL € = spec A
(€, spec) € dom NL = € NL spec = spec

A specification problem consists of the parts mentioned before, i.e., a requirement, ex-
pressed in natural language, the parts of the specification already developed, and a schematic
7 expression. As an integrity condition, we require that each Z expression belonging to the
syntactic class associated with the schematic Z expression can be combined with the specifi-
cation already developed.

—SpecProblem
req : Text
context : SynZ
to_develop : SchematicZ

Y expr : SynZ | expr € syn_class to_develop e
(context, instantiate(to_develop, expr)) € dom(_NL_)

Solutions are 7 expressions:
SpecSolution == Synz

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr.to_develop, and the combination of pr.context with the instantiated schematic
expression yields a semantically valid Z specification.

_spec_acceptable_for_ : SpecSolution «— SpecProblem

Y sol : SpecSolution; pr : SpecProblem e
sol spec_acceptable_for pr
=
sol € syn_class(pr.to_develop) A
pr.context NL instantiate (pr.to_develop, sol) € SemZ

In practice, it is useful to define SemZ to be the set of 7 expressions which are accepted by
available tools, such as the Fuzz type checker (Spivey, 1992a).

7.3 Strategies for Specification Acquisition

Apart from some general-purpose strategies, we present strategies for the state-based, al-
gebraic, and reuse styles. As usual, we use a semi-formal Z-like notation to describe these
strategies, neither formalizing the syntax and semantics of Z, nor giving definitions for all
functions and predicates we use. The type Value denotes here the disjoint union of the
schema types SpecProblem and SpecSolution, and its members are denoted by bindings, as in
Chapter 6.
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7.3.1 General-Purpose Strategies

These strategies are independent of a particular specification style. They are needed in almost
every specification development, because they solve a specification problem directly.

The terminate Strategy

This strategy, which does not generate any subproblems, allows the user to type in some
specification text.

terminate = {term_sol}, where
IA term_sol = { P_init}
OA term_sol = {S_final}
term_sol = { t : scheme term_sol — Value |
dsol : SpecSolution | sol spec_acceptable_for t(P_init) e t S_final = sol}

As in Chapter 6, the existential quantifier indicates that external information is needed to
determine the value t.S_final. In an implementation, the user would be asked to type in
a specification fragment. The condition sol spec_acceptable_for t(P_init) ensures that only
specification fragments that are admissible in the context specified by the input problem are
accepted by the strategy.

The empty Strategy

This strategy generates the empty specification e. It will be used to terminate strategies that
are defined with the REPEAT or LIFT strategicals, and to skip optional parts of specifications.

empty = {empty_sol}, where
IA empty_sol = { P_init}
OA empty_sol = {S_final}
empty_sol = { t : scheme empty_sol — Value |
t S_final = € A € spec_acceptable_for t(P_init) }

7.3.2  Strategies for the State-Based Style

The state-based style of specification should be applied if a state-based system has to be
specified. Here, we must specify the legal states of the system and the operations that define
how the system state may evolve.

We present three strategies associated with the state-based style: the state_based strat-
egy, which defines a top-level method for specifying state-based systems, the develop_schema
strategy, which is used to develop a single schema, and a strategy for developing lists of
schemas, which is defined in terms of the strategicals LIFT and REPEAT.

The manner of specifying a system that is captured in the state_based strategy is inde-
pendent of the specification language that is used. In (Souquiéres and Heisel, 1996; Heisel,
1995b) it is shown how the same manner of specification can be applied using an algebraic
specification language. The two other strategies, however, refer to the schema construct of Z.
They would have no counterpart in an instantiation of the strategy framework for specification
acquisition that uses a specification language other than Z.
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The state_based strategy

One of the factors that contribute to the relatively widespread acceptance of 7 in industry is
the existence of a method (Potter et al., 1991) that gives guidance for its use. This method
recommends that the following process — which we express in terms of the agenda shown
in Table 7.1 — is followed when developing 7 specifications. However, as already noted, the
method is also useful when a different language is used.

No.| Step Validation Conditions
1 | Develop the global definitions.
Develop the global state and the ini- | There must exist an initial state.
tial state.
3 | Develop the the system operations. | No operation has precondition false.

Table 7.1: Agenda for developing state-based systems

To perform Step 3 of this agenda, i.e., to develop the system operations, another agenda,
shown in Table 7.2, can be given. If Step 3 is performed with the agenda of Table 7.2, its
associated validation condition is automatically satisfied.

No.| Step Validation Conditions
1 | Develop the operations for the nor-

mal case.

2 | Develop the operations for error
cases.

3 | Define total operations, combining | Each so defined operation has precon-
the operations for the normal and | dition true.

the error cases.

Table 7.2: Agenda for developing operations

The state_based strategy, which we now define, captures the top-level agenda of Table
7.1 for developing Z specifications. To be more general, we allow a fourth step that can be
used to complete the specification. Since the state_based strategy is a top-level strategy, its
input problem must permit the development of expressions of the syntactic class specification.
Hence, we have

state_based = { global_defs, system_state, system_ops, other_defs, state_based_sol}
where global_defs is defined by

1A global_defs = { P_init}
OA global_defs = { P_global, S_global }
global_defs = { t : scheme global_defs — Value |
syn_class(t(P_init).to_develop) = specification N
t(P_global) = { req = t(P_init).req ; “specify global definitions”,
context = t(P_init).context,
to_develop = sp : specification) A
t(S_global) spec_acceptable_for t(P_global)}
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Using the concatenation function for text, denoted “;”, a natural-language text that describes
the purpose of the new subproblem P_global is added to the informal requirements component
req. The schematic expression to_develop is denoted by sp : specification. This notation means
that a Z expression belonging to the syntactic class specification must be developed, and the
instantiation function is the identity. The constituting relation system_state is defined by

1A system_state = { P_init, S_global }
OA system_state = { P_state, S_state}

system_state = { t : scheme system_state — Value |
t(P_state) = ( req = t(P_init).req; “specify global system state”,
context = t(P_init).context NL t(S_global),
to_develop = state_def : schema_list) A
t(S_state) spec_acceptable_for t(P_state) N
t(S_state) # €}

To define P_state, the global definitions S_global are added to the context component of
P_init. The system state must be defined as a non-empty list of schemas. The constituting
relation system_ops is defined by

1A system_ops = { P_init, P_state, S_state}
OA system_ops = { P_ops, S_ops}
system_ops = { t : scheme system_ops — Value |
t(P_ops) = ( req = t(P_init).req; “specify system operations”,
context = t(P_state).context NL t(S_state)
to_develop = ops_def : schema_list) A
t(S_ops) spec_acceptable_for t(P_ops) A

t(S_ops) # ¢}

Like the system state, the operations that may change this state are defined by schemas. The
empty list of operations is not permitted. The constituting relation other_defs is defined by

1A other_defs = { P_init, P_ops, S_ops}
OA other_defs = { P_other, S_other}
other_defs = { t : scheme other_defs — Value |
t(P_other) = { req = t(P_init).req; “other definitions”,
context = t(P_ops).context NL ¢(S_ops)
to_develop = others : specification) A
t(S_other) spec_acceptable_for t(P_other)}

No assumptions can be made on the other definitions necessary to complete the specifica-
tion. Hence the specification fragment that can be developed to solve P_other may have the
syntactic class specification, and no additional acceptability conditions for S_other besides
spec_acceptable_for can be stated.

The constituting relation state_based_sol assembles the final solution, obtained from the
solutions to the subproblems, and states acceptability conditions that can be checked only
when all partial solutions are known.
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1A state_based_sol = {S_global, S_state, S_ops, S_other}
OA state_based_sol = {S_final}
state_based_sol = { t : scheme state_based_sol — Value |
t(S_final) = t(S_global) NL ¢(S_state) NL t(S_ops) NL t(S_other) A
t(S_global) does not contain state or operation schemas A
t(S_state) contains a state schema S that is not imported by any
other schema in ¢(S_state) and an initial state schema for S A
the set of initial states is non-empty A
t(S_ops) contains at least one operation schema A
none of the operations defined in ¢(S_ops) have precondition false}

A schema 5 is a state schema if it has neither inputs nor outputs if and there are other schemas
which import it. There must not be variable declarations of the kind z : 5, i.e. declaration of
variables that have the schema type 5. Note that this condition can be checked only in the
context of the other parts of the specification. A schema is an operation schema if it imports
a state schema with the /, A, or Z notation.

Applying the state_based strategy to a specification problem guarantees that the developed
specification roughly conforms to the recommended 7 method. The acceptability conditions
of the state_based strategy refer not only to the syntax of the developed specification — e.g.,
a list of schemas being non-empty — but also to its semantics, e.g. in distinguishing state and
operation schemas. More detailed acceptability conditions can be stated in the strategies that
are used to solve the problems generated by the state_based strategy.

The define_schema Strategy

This is a simple strategy, which can be used to define a schema in two steps: first the
declaration part and then the predicate part are defined. The define_schema strategy requires
that solutions of the syntactic class schema are permitted. It is given by

define_schema = {define_decls, define_pred, schema_sol}
where define_decls is defined by

1A define_decls = { P_init}
OA define_decls = { P_decls, S_decls}
define_decls = { t : scheme define_decls — Value |
syn_class(t(P_init).to_develop) D schema A
dn :ident o
t(P_decls) = ( req = t(P_init).req ; “specify declaration part of schema”,
context = t(P_init).context
to_develop = make_schema(n, decls : declaration_list, true)) N
t(S_decls) spec_acceptable_for t(P_decls) }

Here, we have used the function make_schema instead of the graphical schema notation. The
schematic expression t(P_decls).to_develop captures the information that a Z expression be-
longing to the syntactic class declaration_list must be developed, and that the instantiation
function, which embeds the developed solution S_decls into a a schema, is make_schema.
This function is applied to the name n of the schema, which must be provided as external
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information, the developed expression S_decls and the predicate true. The trivial predi-
cate true must be used as long as the predicate part of the schema is not developed. The
constituting relation define_pred is defined by

1A define_pred = { P_init, P_decls, S_decls}
OA define_pred = { P_pred, S_pred}
define_pred = { t : scheme define_pred — Value |
(let n == (un: ident |
t(P_decls).to_develop = make_schema(n,decls : declaration_list, true)) o
t(P_pred) = { req = t(P_decls).req; “specify predicate part of schema”,
context = t(P_init).context
to_develop = make_schema(n, t(S_decls), pred : predicate))) A
t(S_pred) spec_acceptable_for t(P_pred)}

Acceptability of the solution ¢(S_pred) requires that the developed predicate refer only to the
declarations made in ¢(S_decls) and to the global definitions of the context t(P_init).context.
The constituting relation schema_sol combines the declaration part and the predicate part
of the schema.

1A state_based_sol = {S_decls, S_pred}
OA state_based_sol = {S_final}
state_based_sol = { t : scheme state_based_sol — Value |

t(S_final) = make_schema(t(S_decls), t(S_pred))}

An lterative Strategy

The subproblems P_state and P_ops generated by the state_based strategy can be solved by
repeated application of the strategy define_schema. To relieve strategy users of the task of
selecting the same strategy several times in a row, we define a new strategy that generates
lists of schemas instead of just one schema. According to the definitions of Section 5.2, we
can define

define_schema_list =
REPEAT (L1FT(define_schema, p_down, p_combine, s_combine), p_rep, empty)

where p_rep is a problem attribute newly introduced by LIFT and empty is the terminating
strategy that generates the empty specification ¢, see Section 7.3.1. The other arguments of
LirT are defined as follows:

p_down == (A pr : SpecProblem | syn_class(pr.to_develop O schema_list) o
(req = pr.req, context = pr.context, to_develop = sch : schema))

p_combine == (A pr : SpecProblem; sol : SpecSolution |
syn_class(pr.to_develop) D schema_list A\ sol € schema o
(req = pr.req ; “define more schemas”,
context = pr.context NL sol,
to_develop = pr.to_develop))

s_combine == _NL_
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where p_down converts the problem of defining a list of schemas into the problem of defining a
single schema, the function p_combine incorporates a developed schema into the context part
of a problem, and the function s_combine concatenates two specifications, thereby allowing
the concatenation of a given schema with an existing list of schemas.

The requirements for the arguments of LIFT (see page 5.2.3) are fulfilled: First, the func-
tion p_combine is injective. Secondly, if we first develop a schema 5, then this schema is added
to the context component of the original problem P_init by the function p_combine. When we
then develop a schema list s/ that is acceptable for the combined problem p_combine(P_init,
S), the definition of the predicate spec_acceptable_for gives us

(p—combine(P_init,S)).context NL sl € SemZ
Since (p_combine(P_init, S)).context = P_init.context NL S, we have
P_init.context NL SNL sl € SemZ

and hence (because NL is associative) s_combine (S, sl) spec_acceptable_for P_init.

Defining the strategy define_schema_list with strategicals has two advantages over defin-
ing it from scratch, namely that the existing strategy define_schema is reused, and that the
user need not manually select the same strategy over and over again. The only possible de-
velopment steps left after application of define_schema_list are to develop one more schema
or to terminate the iteration.

7.3.3 Strategies for the Algebraic Style

The algebraic style of specification should be applied if a system or aspects of a system are
to be defined in an abstract way, by stating properties. The algebraic style supports the
definition of data types and functions on these types. Functions are defined by giving their
signatures and axiomatizing their properties.

In Z, this style of specification is associated with the syntactic constructs of axiomatic and
generic boxes, and free types. All of the definitions of Chapter 5 belong to this “algebraic
sublanguage” of Z.

In the following, we present the adt strategy, which can be used to define an abstract data
type consisting of constructor functions and other functions. Other strategies associated with
the algebraic style, which we do not define here, but which are used in the example of Section
7.4, include the following.

e The strategy define_generic_construct produces the subproblems to specify the decla-
ration part and the predicate part of a generic box, the syntactic construct of Z that is
used to define generic constructs. It is defined similarly to the strategy define_schema.
The list of generic parameters is obtained as external information.

e The strategy define_global_function is defined similarly to the define_schema and de-
fine_generic_construct strategies. It generates an axiomatic box, and the subproblems
consist of defining the declaration and the predicate parts of the box.

The adt strategy captures a language-independent approach to the development of ab-
stract data types. An instantiation of the strategy framework that supports another specifi-
cation language than 7 would need a similar strategy. The counterparts of the define_gener-
te_construct and define_global_function strategies, however, would probably look different in
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an alternative instantiation of the strategy framework. This is because other languages may
follow other principles than 7, where we often define constructs consisting of a declaration
part and a predicate part.

The adt Strategy

This strategy captures the definition of an abstract data type in the following manner: first,
we must define how the members of the data type are constructed, i.e., we must define the
constructor functions of the abstract data type. For this purpose, the free type construct of
7 is suitable. The definition of the abstract data type is continued by defining more functions
that take members of the type as their arguments or yield members of the type as their
results. Finally, some more definitions may be made to complete the type specification. The
adt strategy is defined by

adt = {constructor_defs, function_defs, other_axdefs, adt_sol}
where constructor_defs is defined by

1A constructor_defs = { P_init}
OA constructor_defs = { P_constr, S_constr}
constructor_defs = { t : scheme constructor_defs — Value |
t(P_constr) = (req = t(P_init).req; “specify ADT constructors as free type”,
context = t(P_init).context,
to_develop = adt : free_type) A
t(S_constr) spec_acceptable_for t(P_constr)}

The constructor functions of the abstract data type must take the form of a free type defini-
tion. The constituting relation function_defs is defined by

1A function_defs = { P_init, S_constr}
OA function_defs = { P_fct, S_fct}
function_defs = { t : scheme function_defs — Value |
t(P_fet) = (req = t(P_init).req ; “specify functions on ADT”,
context = t(P_init).context NL t(S_constr),
to_develop = fcts : ax_def) A
t(S_fct) spec_acceptable_for t(P_fct) A
t(S_fet) must refer to S_constr}

Non-constructor functions that take members of the defined type as their arguments or yield
members of the defined type as their result must be defined axiomatically. The syntactic
class ax_def is defined in such a way that the empty specification ¢ is a member of it, and
that state and operation schemas (as described in the definition of the state_based strategy
in Section 7.3.2 above), are not allowed. The constituting relation other_axdefs is defined by
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1A other_axdefs = { P_init, P_fct, S_fct}
OA other_axdefs = { P_other, S_other}
other_axdefs = { t : scheme other_defs — Value |
t(P_other) = { req = t(P_init).req; “other definitions”,
context = t(P_fct).context NL ¢(S_fct)
to_develop = others : specification) A
t(S_other) spec_acceptable_for t(P_other) A
t(S_other) must not contain state or operation schemas }

The constituting relation adi_sol assembles the final solution by concatenating the solutions
to the subproblems.

1A adt_sol = {S_constr, S_fct, S_other}
OA adt_sol = {S_final}
adt_sol = { t : scheme adt_sol — Value |

t(S_final) = t(S_constr) NLt(S_fct) NL t(S_other)}

7.3.4 Strategies for the Reuse Style

Reusing specifications is a non-trivial task. It is not realistic to assume that a specification
can be reused just by including it without modification into a new specification or simply
instantiating its generic parameters. Instead, we must expect to change the specification we
intend to reuse.

A strategy that allows for the modification of a generic specification for the purpose of
reuse is the use_generic_spec strategy, which we define below. Other strategies associated
with the reuse style, which we do not define here, but which are used in the example of Section
7.4, include the following.

e The combine strategy generates two subproblems. The first is to specify an arbitrary
number of component specifications. These may either be reused or developed from
scratch. The second subproblem is to specify how the components are combined. The
combine strategy is associated with the reuse style because it is normally used to combine
specifications that already exist.

o The directly_reuse strategy allows its users to reuse a generic specification by instanti-
ating its generic parameters.

The principles underlying all of these strategies are language independent. Hence, similar
strategies would also be needed to support specification acquisition in languages other than

A

The use_generic_spec Strategy

The use_generic_spec strategy takes into account that, in order to successfully reuse an
existing generic specification, it may be necessary, first, to change the generic specification,
and, second, to change the instantiated (previously changed) specification. The subproblems
it generates consist of selecting an existing generic specification, adjusting it, defining the
actual parameters to instantiate it, and define the actual instantiated specification, which
also may involve further changes. The strategy is defined by
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use_generic_spec = {select_spec, adjust_spec, actual_params, instantiate_spec,
generic_spec_sol }

where select_spec is defined by

1A select_spec = { P_init}
OA select_spec = { P_generic, S_generic}
select_spec = { t : scheme select_spec — Value |
syn_class(t(P_init).to_develop) = specification N
t(P_generic) = { req = t(P_init).req ; “select a generic specification”,
context = t(P_init).context,
to_develop = sp : specification) A
t(S_generic) spec_acceptable_for t(P_generic) A
t(S_generic) is generic}

The solution S_generic of the problem P_generic may have the syntactic class specification,
and it must be generic. The constituting relation adjust_spec is defined by

1A adjust_spec = { P_init, S_generic}
OA adjust_spec = {P_add, S_add}
adjust_spec = { t : scheme adjust_spec — Value |
t(P_add) = (req = t(P_init).req; “adjust generic specification”,
context = t(P_init).context NL t(S_generic),
to_develop = add_spec : specification) A
t(S_add) spec_acceptable_for t(P_add)}

To define P_add, the identified generic specification S_generic is added to the context. If
the generic specification needs no adjustments, the empty specification can be developed for
S_add. The constituting relation actual_params is defined by

1A actual_params = { P_init, P_add, S_add}
OA actual_params = { P_params, S_params}
actual_params = { t : scheme actual_params — Value |
t(P_params) = ( req = t(P_init).req ; “specify actual parameters”,
context = t(P_add).context NL t(S_add)
to_develop = params : specification) A
t(S_params) spec_acceptable_for t( P_params) A
t(S_params) # ¢}

The actual parameters that will be used to instantiate the adjusted generic specification
must not be empty. Since different syntactic forms of the parameter specifications are pos-
sible, the syntactic class of the solution S_params is specification. The constituting relation

instantiate_spec is defined by
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1A instantiate_spec = { P_init, P_params, S_params}
OA instantiate_spec = { P_inst, S_inst}
instantiate_spec = { t : scheme instantiate_spec — Value |

t(P_inst) = ( req = t(P_init).req ; “instantiate adjusted generic specification with
actual parameters”,
context = t(P_params).context NL t(S_params)

to_develop = inst : specification) A
t(S_inst) spec_acceptable_for t(P_inst) A
t(S_inst) # € A

t(S_inst) is concrete}

The instantiated specification S_inst must not be empty or contain generic parameters. The
constituting relation generic_spec_sol assembles the final solution by concatenating the de-
veloped parts. There are no additional acceptability conditions.

IA generic_spec_sol = {S_generic, S_add, S_params, S_inst}
OA generic_spec_sol = {S_final}
generic_spec_sol = { t : scheme generic_spec_sol — Value |
t(S_final) = t(S_generic) NLt(S_add) NL t(S_params) NL t(S_inst) }

7.4 Specification of the Unix File System

We now use the strategies presented in the previous section to develop a specification of the
user’s view of the Unix file system. The system to be specified is a tree of files and directories,
where the root and the inner nodes of the tree are directories, and the leaves are either files
or empty directories. The user can navigate in this tree, add and remove directories and files,
and access information stored in the system. Each user has a home and a working directory.

An overview of the development is given in Figure 7.1. The numbers shown in the nodes
of the development tree correspond to the order in which the problems are solved. In the
upper parts of the nodes, the problems to be solved are indicated, and the reducing strategies
are shown in the lower parts of the node.

The initial problem Pgy for the specification task has the form

Py = (req = “Specification of the Unix file system”,
context > ¢,
to_develop = sp : specification)

The numbering of the problems in the text coincides with the numbering of the nodes in
Figure 7.1.

Since the tree of files and directories together with the home and working directories form
a system state, we start with the state-based style to develop the top-level specification and
apply the state_based strategy. The first subproblem generated by the state_based strategy
is to develop the global definitions:

Py = (req = “Specification of the Unix file system; specify global definitions”,
context > ¢,
to_develop = sp : specification)
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Figure 7.1: Development tree for specification of Unix file system

We first must define the tree structures that will be part of the system state. These trees are
characterized by the fact that each node has a name, a content, and an arbitrary number of
successors. We assume that a specification of such trees, where the content of the nodes (as
opposed to their names) is a generic parameter, is available for reuse in our library. Hence, the
use_generic_spec strategy will be applicable. However, we should not reduce problem P; with
the use_generic_spec strategy, because we certainly will have to make other global definitions.
Therefore, we reduce problem P; with with a lifted version of use_generic_spec. This leaves
us the freedom to add more global definitions afterwards. The strategy for reducing Py is

LIFT (use_generic_spec, p_down, p_combine, s_combine)
where

p—down = (X pr : SpecProblem | syn_class(pr.to_develop) = specification e pr)
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p_combine = (X pr : SpecProblem; sol : SpecSolution |
syn_class(pr.to_develop) = specification e
(req = pr.req ; “more global definitions”,
context = pr.context NL sol,
to_develop = pr.to_develop))

s_combine = _NL_

The function p_down is the identity on those specification problems that admit the develop-
ment of a solution that belongs to the syntactic class specification, because P; requires the
development of an item of class specification and the use_generic_spec strategy yields an item
of this class. The syntactic class specification is the most general one, and it is closed under
the function _NL_. The function p_combine incorporates a developed specification fragment
into the context part of a problem, and the function s_combine is the concatenation function
on specifications.

That the functions p_down, p_combine and s_combine fulfill the requirements for the
arguments of the LIFT strategical follows by a similar argument to the one for the strategy
define_schema_list on page 164.

When we apply the above strategy to Py, we get the problem P, as the value of the
attribute P_generic:

Py = (req = “Specification of the Unix file system; specify global definitions;
select a generic specification”,
context > ¢,

to_develop = sp : specification)

This problem can be solved by a strategy similar to the terminate strategy, differing only in
the implementation of the corresponding heuristic function. Instead of being asked to type
in a specification, the user may select a specification from a library. We select the generic
specification

NAMED_TREE[X] ==
{f :seqN; =+ NAME x X |
() € dom f
A (¥ path :seq; Ny | path € dom f e
Sfront path € dom f
A (last path # 1 = front path ~ (last path — 1) € dom f))}

which we have already explained in Section 2.4.3 on page 21. For NAMFED_TRFEFE[X], several
functions, e.g., to select a child or the leaves of the tree, are defined (the function child_named
can be found in Section 2.4.3); for a more detailed presentation, see (Heisel, 1995b). The above
generic definition, together with the predefined functions on named trees, form the solution
S5 of problem Ps.

The next problem to work on is the second subproblem, P_add, generated by the use_gener-
tc_spec strategy. It consists of adjusting named trees to our purposes.

Ps = (req = “Specification of the Unix file system; specify global definitions;
adjust generic specification”,
context = Sy,

to_develop = add_spec : specification)
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We now have to combine named trees with paths, which allow us to use names to navigate
in named trees. To this end, we reduce Ps with the strategy combine, which was outlined in
Section 7.3.4, and which, like use_generic_spec, is associated with the reuse style. To develop
the solution S3 for Ps, the subproblem P, to specify the component specifications must be
solved. We use the strategy directly_reuse, which has been briefly described in Section 7.3.4,
to instantiate non-empty sequences with the actual parameter NAME:

PATH == seq; NAMFE

To solve the subproblem Ps of combining named trees with paths, we have to define several
functions and predicates that take named trees as well as paths as their arguments. To do
so, we apply the strategy

REPEAT (LIFT(define_generic_construct, p_down, p_combine, s_combine), p_rep, empty)

which is defined similarly to the strategy define_schema_list of Section 7.3.2. The strategy
define_generic_construct was briefly sketched in Section 7.3.3. One of the definitions we
develop in this way is the predicate is_existing_path_of that decides if a given path exists in
a given tree.

=[X]
_is_existing_path_of _: PATH «+— NAMFED_TRFEFE[X]

Vi: NAMED_TREF[X];p: PATH o
pis_existing_path_of t &
(head p = name_of _tree t A
(tail p # () = (3 ty : childrent o tail p is_existing_path_of 11)))

Let S5 denote the concatenation of the definition of paths and the definitions of the functions
and predicates that establish the combination of named trees with paths. The next problem
to solve is the definition of the actual parameters to instantiate the extended definition of
named trees.

Ps = (req = “Specification of the Unix file system; specify global definitions;
specify actual parameters”,

context = 55 NL 93,
to_develop = params : specification)

With the terminate strategy, we define the solution Sg of Ps:
UNIX_NODE ::= dir | file( FILE))

where we do not present the development of the type FILE, which denotes files. This type can
either be defined as a given type or a free type, distinguishing e.g. text files and binary files.
The last subproblem P; of Py generated by the use_generic_spec strategy is to instantiate
the adjusted generic definition with an actual parameter. Again using terminate we solve P;
by typing in the following definition of directories:

DIRECTORY :P NAMED_TREE[UNIX_NODE]

Vd: DIRECTORY; p: PATH | pis_existing_path_of d
oeVadr:domd e
(second(d adr) € ran file = adr € leaves d) A
namelist (subtrees (object_at_in(p, d))) € iseq NAME
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The set of directories, DIRFCTORY , is a subset of NAMED_TREE[UNIX_NODE]. In a
directory, files may only occur as leaf nodes, and all children of a given node must have
different names.

The concatenation of the solutions 95, 53, 5¢ and the definition of directories forms a
preliminary solution 57 of problem P;. There still is one open subproblem of P;, namely
the subproblem P to define further global definitions. It was generated because we used
a lifted version of use_generic_spec. As already explained in Section 5.7, it is unrealistic to
assume that we can foresee all necessary global definitions in advance. Since the specification
developed so far suffices to define the system state, we leave Pig open and start working on
the second subproblem generated by the state_based strategy, Ps. We will come back to Pyg
when developing the system operations.

Ps = (req = “Specification of the Unix file system; specify global system
state”,

context = 51,
to_develop = state_def : schema_list)

The system state consists of a directory tree, a path leading to the home directory, and a
path leading to the working directory. Both paths must exist in the root directory, and they
must lead to directories, not to files. For an initial state, we require a directory tree and a
home directory as inputs. The working directory is set to the home directory by default.

Using the strategy define_schema_list of Section 7.3.2, we develop the following two
schemas, which form the solution Sg of problem Ss.

__OneUserView

root : DIRECTORY

home_dir : PATH
working_dir : PATH

home_dir is_existing_path_of root

second (object_at_in(home_dir, root)({})) = dir
working_dir is_existing_path_of root

second (object_at_in(working_dir, root)({))) = dir

__InitOneUserView
OneUserView'
newdir? : DIRECTORY
newhd? : PATH

root’ = newdir?
home_dir' = newhd?
working_dir' = newhd?

The next problem Py is to define the system operations:

Py = (req = “Specification of the Unix file system; specify system operations”,
context = 51 NL S,
to_develop = ops_def : schema_list)
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Like Pg, we reduce this problem with the strategy define_schema_list. Of the many Unix
commands, we only define the command ed that changes the working directory. The command
cd can be called with varying numbers and types of parameters. The strong typing of Z forces
us to define several schemas to cope with the different parameter constellations of cd. If no
argument is supplied to ed, the working directory is set to the home directory by default. If
an absolute path is supplied to ed, the working directory is set to this path, provided it is a
legal one. Legal means that the path exists in the directory and that it leads to a directory,
not to a file. Hence, with two repetitions of the strategy define_schema, we obtain the two
operations

__cd_def
AOneUserView

root' = root
home_dir' = home_dir
working_dir' = home_dir

__cd_abs
AOneUserView
p?: PATH

p?is_existing_path_of root

second (object_at_in(p?, root)((}))) = dir
root’ = root

home_dir" = home_dir

working_dir' = p?

There is a third version of ed, which takes a relative path, i.e. a path starting at the
current working directory, as its argument. Since this version of cd also allows upward
movement in the directory tree (using the notation ../), we must define a data type called
DISPLACEMENT that can be combined with paths to yield paths. Hence, we have to go
back to the last open subproblem Pjg of Py, which has been generated by a lifted version of
the use_generic_spec strategy.

P1o = (req = “Specification of the Unix file system; more global definitions”,
context = 51,
to_develop = sp : specification)

Since DISPLACEMFENT is an abstract data type, we now switch to the algebraic style and
apply the adt strategy of Section 7.3.3 to define displacements. But because we do not know if
this will be the last global definition, we use a lifted version of adt that defines one additional
subproblem:

LirT(adt, p_down, p_combine, s_combine)

where p_down, p_combine and s_combine are defined as in the strategy that we used to reduce
P, see page 169.
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The first subproblem Py; that is generated by this reduction is to define the constructors
of the abstract data type with a free type. With the terminate strategy, we give the definition

DISPLACEMENT ::= empty_d
| aqpATH)
| (o/2){(DISPLACEMENT x NAME))
| ../{DISPLACEMENT))

The empty displacement empty_d is a displacement. Paths are embedded into displacements
via the function d. Combining a displacement with a name using the function / yields a new
displacement. Given a displacement dp, ../dp yields a new displacement. All displacements
can be obtained by application of these functions.

The next subproblem Py to be solved is to define non-constructor functions on the ab-
stract data type. We reduce this problem by the strategy define_global_function described in
Section 7.3.3, which is also associated with the algebraic style. The function we need combines
paths and displacements.

_||=: PATH x DISPLACEMENT - PATH

Yp:PATH; n: NAME:; dp : DISPLACEMENT e
p |l empty_d =pA
plld(m)=p~ (n) A
p Il (dp/n) = (1] dp) ~ (n) A
(o) 11 (-/dp) = () || dp A
(p ™ () |l -./dp=p |l dp

No other definitions are necessary to define displacements. Hence, we solve the third sub-

problem P35 by the empty strategy. The concatenation of the free type definition and the
definition of the function || forms a preliminary solution Sig to the problem Pyq (there is still
one open subproblem Py4, generated by L1FT), and the concatenation S; NL Sig forms a new
preliminary solution to the problem P;. This new preliminary solution must be propagated
into the problem Py, which yields:

Py = (req = “Specification of the Unix file system; specify system operations”,
context = 51 NL 5o NL S,
to_develop = ops_def : schema_list)

The new solution S; NL.Sjp is also propagated into all subproblems of Py. Now that the
definition of displacements has become visible in node 9 of the development tree and all its
successors, we can define the third version of the ¢d command:

_ cd_rel
AOneUserView
dp? : DISPLACEMENT

(working_dir || dp?) is_existing_path_of root
second (object_at_in(working_dir || dp?, root)({))) = dir
root’ = root
home_dir" = home_dir
working_dir" = working_dir || dp?
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If a displacement is supplied to ed, the new working directory is computed as the absolute
path yielded by combining the old working directory with the given displacement.

This definition concludes our specification (at least for the purposes of this chapter). All
other open problems (the open subproblems of Pig and Py, as well as the fourth subproblem
P15 generated with the state_based strategy) can be solved with the empty strategy.

7.5 Connecting Instantiations

We now take a first step toward the combination of different instances of the strategy frame-
work. We show how specifications developed with the instance of this chapter can be trans-
formed into programming problems, as they are defined in Chapter 6. Directly proceeding
from the specification to the implementation phase of software development, however, is only
possible in cases where the specification contains data types that can easily be mapped onto
the data types available in conventional programming languages. An instance of the strategy
framework that supports the refinement of Z specifications, i.e., the refinement of the abstract
data types to data types available in programming languages, is not yet defined.

The combination of Z and 10SS can be achieved easily: since both formalisms allow
for states and have concepts to deal with changing values of variables, 7 specifications can
mechanically be translated into 1OSS programming problems.

Four kinds of variables occurring in a Z schema have to be considered (not to be confused
with the variable classification of [OSS programming problems, see page 141): Input variables
are the ones decorated with “?”. Qutput variables are the variables decorated with “!”.
State variables are the variables of the global state schema. All other variables are auziliary
variables. With this classification, the translation of a Z schema into an 10SS programming
problem proceeds as follows.

e Each input variable of the Z schema becomes an input variable of the corresponding
problem.

e Each output variable of the Z schema becomes a result variable of the problem.

e Each variable z of the Z state schema becomes an input variable if the schema predicate
entails v = 2.

e Otherwise z becomes a result variable, and a new state variable xg is generated for z if
x occurs in the schema predicate.

e Each auxiliary variable becomes a result variable.

e The precondition of the 10SS problem is the precondition of the 7Z schema plus an
equation z = xp for each state variable zy generated as described above.

e The invariant of the IOSS problem is the invariant of the Z schema defining the system
state.

e The goal of the I0SS problem consists of those conjuncts of the schema predicate that
depend on result variables of the 1I0SS problem, where primed state variables of the
schema have to be replaced by plain variables and plain state variables of the schema
have to be replaced by the corresponding state variables of the IOSS problem. Auxiliary
variables remain unchanged.
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As an example, we consider the transformation of the operation schema OpReleaseSucceed
of Section 3.3.2. The programming language of 0SS allows for enumeration types, so that a
data refinement is not necessary. Recall the definition of this schema:

_ OpReleaseSucceed
AlnertGasSystem
Sensors; Actuators

mode = RELEASE_SUCCEED

(consistency = NO = mode’ = INCONSISTENCY')
(consistency = YES =
(reset_button? = PRESSED = mode’ = NORMAL) A
(reset_button? = NOT_PRESSED = mode’ = RELEASE_SUCCEED))

where

—_InertGasSystem
mode : MODFE
warning_timer : 0.. WARNING_DURATION
release_check_timer : 0 .. CHECK _DURATION
release_bank_A, release_bank_B : OPEN_CLOSED
warning_light : LIGHT_STATUS
warning_beeper : BEEP_STATUS

mode # RELEASE_INITIATED =
release_bank_A = release_bank_B = CLOSED
mode = WARNING < warning_timer > 0
mode = RELEASE_INITIATED < release_check_timer > 0 < warning_light = ON
mode ¢ { WARNING, RELEASE_INITIATED, INCONSISTENCY }
& warning_light = OFF
mode = NORMAL < warning_beeper = NOT_BEEPING

__Sensors
InertGasSystem
bank_selector? : BANK_SELECTOR_STATUS
request_button? : BUTTON_STATUS
reset_button? : BUTTON_STATUS
inhibit_button? : BUT'TON_STATUS
fire_detector1?, fire_detector2? : DETTECTION _STATUS
gas_detector? : DETECTION _STATUS

fire_detector : DETECTION_STATUS
consistency : YES_NO

fire_detector = DETECTION <
fire_detector1? = fire_detector2? = DETFECTION

consistency — NO <
mode # RELEASE_INITIATED A gas_detector? = DETECTION
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_ Actuators
InertGasSystem’

release_bank_A!, release_bank_B': OPEN_CLOSED
warning_light! : LIGHT_STATUS

warning_beeper! : BEEP_STATUS

mode! : MODFE

release_bank_A! = release_bank_A’
release_bank_B'! = release_bank_B’
warning_light! = warning_light’
warning_beeper! = warning_beeper’
mode! = mode’

From the invariant of the schema InertGasSystem it follows that in the mode RELFEASFE-
_SUCCFED, both timers are zero, the warning light is off, but the beeper is on. The only
possible successor modes are RELFASE_SUCCFEED, NORMAL and INCONSISTENCY.
Hence, according to the definition of the system operations corresponding to these successor
states (see pages 48 and 51), only the variables mode, warning_light and warning_beeper of the
state schema InertGasSystem can change their values. Following the preceeding translation
rules, we obtain the following programming problem:

input variables: bank_selector?, ..., gas_detector?,

warning_timer, release_check_timer, release_bank_A, release_bank_B
result variables: release_bank_A!, ..., mode!,

mode, warning_light, warning_beeper,

fire_detector, consistency
state variables:  modey, warning_lighty, warning_beepery

precondition: mode = modeg N warning_light = warning_lighty

A warning_beeper = warning_beeperg A mode = RELFEASE_SUCCFEED
invariant: predicate of InertGasSystem
goal: (fire_detector = DETECTION <

(fire_detector1? = DETECTION A fire_detector2? = DETECTION))
A (consistency = NO <
(modey # RELEASE_INITIATED A gas_detector? = DETECTION))
A (consistency = NO = mode = INCONSISTENCY)
A (consistency = YES =
((reset_button? = PRESSED = mode = NORMAL)
A (reset_button? = NOT_PRFESSED = mode = RELFASE_SUCCFEFED))
A ...see ACTUATORS

The synthesis of a program for OpReleaseSucceed can be found in (Heisel and Siihl, 1996a),
and another example of a specification transformation and the synthesis of the program that
implements the transformed specifictation is presented in (Heisel, 1996a).

7.6 Related Work

Souquieres and Lévy (Souquieres, 1993; Souquieres and Lévy, 1993) have developed an ap-
proach to specification acquisition whose underlying concepts have much in common with
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the ones presented here. Specification acquisition is performed by solving tasks. The agenda
of tasks is called a workplan and resembles our development tree. Tasks can be reduced by
development operators similar to strategies. Development operators, however, do not guar-
antee semantic properties of the product. Therefore, incomplete reductions and a variable
number of subtasks for the same operator can be are possible. In (Souquieres and Heisel,
1996), language-independent development operators for the various styles are presented.

Johnson and Feather (Johnson and Feather, 1991) take a transformational approach to
supporting the specification process. Starting out from a simple initial specification, evolution
transformations are applied. These may change the semantics of the specification and add
more detail to it. Compared to these, specification styles and strategies are concepts of a
higher level of abstraction and closer to human reasoning.

In (Woodcock and Larsen, 1993), several support systems for formal specification tech-
niques — mostly for VDM and 7 — are presented. Apart from some theorem provers, these
can be divided into two classes: the first class performs type-checking or other analyses of a
given specification. These systems cannot be used to set up a specification. The second class
provides editing facilities for the language they support. Editors do not provide a process
model and cannot support design decisions.

7.7 Summary

In this chapter, we have introduced an approach to machine-supported specification acquisi-
tion, which provides methodological support for specifiers and validation mechanisms for the
developed specifications. In particular:

e We have introduced the concept of a specification style. Specification styles capture
different approaches to the development of a specification. In one specification, several
styles may be needed to specify different components. This clearly shows that it is not
satisfactory to identify styles with specification languages. Instead, specification styles
are to a large extent language-independent.

e We have shown that specification styles can be represented as sets of strategies, and we
have given examples of strategies that are associated with the state-based, algebraic,
and reuse specification styles.

e By way of an example, we have shown that strategy-based specification acquisition is
feasible. The strategies keep track of the activities to be performed and guarantee that
the developed solutions satisfy the general acceptability predicate as well as additional
strategy-specific acceptability conditions that capture context-dependent integrity con-
traints for specifications.

e We have demonstrated that the LIFT and REPEAT strategicals can be profitably em-
ployed in specification acquisition. Using the LIFT strategical, we can develop an in-
definite number of different specification fragments. Combining the REPEAT strategical
with the LIFT strategical is useful when the same strategy has to be applied several
times.

e Finally, we have shown how different instances of the strategy framework can be com-
bined. The solutions to specification problems developed with the instance for speci-
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fication acquistion can be transformed into programming problems of the instance for
program synthesis.

7.8 Further Research
The work presented in this chapter merits further research on the following subjects:

More specification styles. The specification styles we considered here do not cover all
useful specification styles that should be supported. For example, an object oriented
specification style is also of advantageous. More of these specification styles should be
identified and expressed as sets of strategies.

More instances for specification acquisition. To gain more knowledge about the extent
to which specification styles are language-independent, other instances of the strategy
framework should be defined that support languages other than Z. It could then be
investigated how strategies for Z can be transformed in a systematic way into strategies
that support other languages.

Instance for refinement. To bridge the gap between the instance of the strategy framework
of this chapter and the one used for IOSS, an instance that supports the refinement of Z
specifications should be defined. When such an instance exists, an integration of three
instances, ranging from specification over refinement to program synthesis, is promising.

More strategies. It is not yet clear to what extent the specification strategies defined so
far are complete. More case studies should be conducted to find additional strategies
that are widely applicable.

Implementation. The instance of the strategy framework presented in this chapter is not yet
implemented. Hence, the benefits of strategy-based specification acquisition cannot yet
be fully exploited. An implemented system could also help to convince other researchers
and practitioners to start working with strategies.
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Chapter 8

Strategy-Based Specification of
Safety-Critical Software

In this chapter, we present a third instance of the strategy framework. As for the instance
of Chapter 7, its purpose is to support the development of formal specifications. However,
we now consider the task to specify software for safety-critical applications as described in
Chapter 3.

The agendas of Chapter 3 will be transformed into strategies. Such a transformation
follows general principles, which we describe in Section 8.1. In Section 8.2, we instantiate
the generic parameters of the strategy framework, using the combination of Z and real-time
CSP introduced in Chapter 3. In Sections 8.3 and 8.4, we present strategies formalizing the
agendas of Sections 3.3 and 3.4, respectively. A summary and directions to further research
conclude the chapter.

8.1 From Agendas to Strategies

The transformation of agendas into strategies can be expressed as a “meta-agenda” because
— regardless of the particular agenda to be formalized — the same decisions have to be taken.
The meta-agenda is summarized in Table 8.1.

Step 1 Decide which steps of the agenda become subproblems of the strategy.

To decide on the subproblems generated by the strategy, we consider the steps of the agenda
to be formalized one by one. The result of each step is a specification fragment. FEach
step can be captured in a strategy in three ways. First, if it cannot be forseen how the
specification fragment being the result of the step looks like or how it is obtained, then the
step is transformed into a subproblem.

Secondly, if the specification fragment always has the same shape, but user interaction
will be necessary to set it up, then the step will not correspond to a subproblem, but there
will be an existentially quantified expression in the definition of a constituting relation that
needs the result of the step as its input. An example is the decision on the operational modes
of a system.

181



182 Chapter 8. Strategy-Based Specification of Safety-Critical Software

No.| Step Validation Conditions
1 | Decide which steps of the agenda be-
come subproblems of the strategy.

2 | Decide on the schemes of the consti- | The dependency relation induced by
tuting relations. the schemes of the constituting rela-
tions must be consistent with the de-
pendencies of steps of the agenda.
Only attributes corresponding to steps
of the agenda that become subprob-
lems occur in the schemes of the con-
stituting relations.

3 | Define the constituting relations. All steps of the agenda must be treated.

Table 8.1: Agenda for transforming agendas into strategies

Thirdly, if the information needed to generate the specification fragment being the result of
the step is already contained in the specification developed so far and need only be collected,
then the step will not correspond to a subproblem, but constituting relations needing the
result of the step as an input will contain a let expression defining the specification fragment
in terms of the specification fragments developed previously. An example is step 5 of the
passive sensors architecture, see page 42, where the 7 control operation is routinely defined
as a case distinction on the operational modes.

Step 2 Decide on the schemes of the constituting relations.

For each step of the agenda that is transformed into a subproblem of the strategy, we use
two attribute names, one for the problem, and one for the corresponding solution. Indepen-
dent subproblems should be gathered in a single constituting relation. To keep the strategy
definition as simple as possible, the “clusters” of independent subproblems defined by each
constituting relation should comprise as many subproblems as possible.

Validation Condition 2.1 The dependency relation induced by the schemes of the consti-
tuting relations must be consistent with the dependencies of steps of the agendas.

If steps ¢ and j of the agenda are both transformed into subproblems, then an arrow from
node i to node j in the dependency diagram of the agenda means that the constituting
relation cr; that contains the attributes defined for step j as its output attributes has at least
one of the attributes defined for step 7 as an input attribute. If step ¢ does not correspond
to a subproblem, but step j does, then cr; will contain an existential proposition or a let
expression asserting the existence of the result of step i.

Validation Condition 2.2 Only attributes corresponding to steps of the agenda that become
subproblems occur in the schemes of the constituting relations.

This condition requires that only for those steps of the agenda that become subproblems
attribute names are chosen. The steps that do not become subproblems do not occur in any
scheme of any constituting relation.



8.2. Problems, Solutions, and Acceptability 183

Step 3 Define the constituting relations.

To define a constituting relation, we must provide constraints on all its output attributes.
Problem attributes must be given concrete values, which may refer to the values of the input
attributes and to external information if necessary. Since solutions are generated by strategy
applications, they are usually not defined (except for strategies that generate no subprob-
lems), but constrained by local acceptability conditions. To define the local acceptability
conditions, we must check if the corresponding step of the agenda has validation conditions
associated with it that can be expressed formally. These validation conditions become the
local acceptability conditions for the solution attribute.

Validation Condition 3.1 All steps of the agenda must be treated.

This condition is necessary for the strategy to be a faithful formalization of the agenda.

8.2 Problems, Solutions, and Acceptability

The definition of problems, solutions, and acceptability resembles the definition of Chapter 7.
We do not develop 7 expressions, however, but expressions of the combined language defined
in Chapter 3, which consists of Z and real-time CSP. In the following definitions, the suffix
“Z-CSP” refers to the combined language, the suffix “Z” refers to the Z part of a combined
specification, and the suffix “CSP” refers to the real-time CSP part of a specification.

As in Chapter 7, we introduce basic types for the syntactically correct expressions of the
combined language, for natural-language text, and for schematic expressions of the combined
language.

[SynZ-CSP, Text, SchematicZ-CSP]

Semantically valid combined specifications are a subset of the syntactically correct com-
bined specifications. As in Chapter 7, expressions of the combined language are associated
with syntactic classes that are sets of expressions of the combined language. The empty string
¢ is a syntactically correct Z-CSP expression.

SemZ-CSP : P SynZ-CSP
SyntacticClass : P(P SynZ-CSP)
e: SynZ-CSP

We will use the following syntactic classes whose names are self-explanatory. The class
7Z-CSP-specification is the most general one.

7Z-CSP-specification, ident : SyntacticClass
Z-specification, Z-ax_def , Z-enum_type_def : SyntacticClass

CSP-specification, CSP-process_expr, CSP-pred_def ,
CSP-alphabet_def : SyntacticClass

Each schematic Z-CSP expression is associated with the syntactic class of Z-CSP expres-
sions with which it can be instantiated. The partial function NL concatenates two Z-CSP
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expressions. As in the previous chapter, the empty specification ¢ is a neutral element with

respect to NL.

syn_class : SchematicZ-CSP — SyntacticClass
instantiate : SchematicZ-CSP x SynZ-CSP — SynZ-CSP
_NL_: SynZ-CSP x SynZ-CSP —+ SynZ-CSP

Y schem_expr : SchematicZ-CSP o ¥ v : syn_class schem_expr e
(schem_expr, v) € dom instantiate
Y spec : SynZ-CSP e
(spec,€) € dom NL = specNL € = spec A
(€, spec) € dom NL = € NL spec = spec

A specification problem again consists of a requirement, expressed in natural language, the
parts of the specification already developed, and a schematic Z-CSP expression. Each Z-CSP
expression belonging to the syntactic class associated with the schematic Z-CSP expression
must be combinable with the specification already developed.

—SafProblem
req : Text
context : SynZ-CSP
to_develop : SchematicZ-CSP

Y expr : SynZ-CSP | expr € syn_class to_develop e
(context, instantiate(to_develop, expr)) € dom(_NL_)

Solutions are Z-CSP expressions:
SafSolution == SynZ-CSP

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr.to_develop, and the combination of pr.context with the instantiated schematic
expression yields a semantically valid Z-CSP specification.

_saf _acceptable_for_ : SafSolution <= SafProblem

Y sol : SafSolution; pr : SafProblem e
sol saf _acceptable_for pr
=
sol € syn_class(pr.to_develop) A
pr.context NL instantiate (pr.to_develop, sol) € SemZ-CSP

8.3 A Strategy for the Passive Sensors Architecture

With this instantiation of the strategy framework, we can define a strategy that formalizes
the agenda for the passive sensors architecture given in Section 8.3. Recall the definition of
the agenda, which is repeated in Table 8.2. We follow the agenda of Table 8.1 to transform

this agenda into a strategy.
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No.| Step Validation Conditions
1 | Model the sensor values and actu-
ator commands as members of 7
types.
2 | Decide on the operational modes of
the system.
3 | Define the internal system states | The internal system state must be an
and the initial states. appropriate approximation of the state
of the technical process.
The internal state must contain a vari-
able corresponding to the operational
mode.
Each legal state must be safe.
There must exist legal initial states.
The initial internal states must ade-
quately reflect the initial external sys-
tem states.
4 | Specify an internal Z operation for | The only precondition of the operation
each operational mode. corresponding to a mode is that the
system is in that mode.
For each operational mode and each
combination of sensor values there
must be exactly one successor mode.
Each operational mode must be reach-
able from an initial state.
There must be no redundant modes.
5 | Define the Z control operation.
6 | Specify the control process in real-
time CSP.
7 | Specify further requirements if nec-
essary.

Table 8.2: Agenda for the passive sensors architecture

Step 1: Decide which steps of the agenda become subproblems of the strategy
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Step 1 of Table 8.2 should become a subproblem because several types will have to be defined.
This could be done, e.g., with an iterated strategy. For Step 2 no separate subproblem is

generated, because the user only needs to decide on the operational modes of the system,
which are then collected in a Z enumeration type. Steps 3 and 4 are larger development
tasks that certainly should become subproblems. Steps 5 and 6, however, are performed in
a routine way, merely instantiating schematic expressions of Z or CSP. Hence, they do not
become separate subproblems. We need to introduce a subproblem for Step 7, because we
know nothing about the further requirements or how they are developed.
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Step 2: Decide on the schemes of the constituting relations

Using the information of Step 1 and the dependency diagram of the passive sensors agenda,
we build the largest possible clusters of steps to be treated in the constituting relations.
Figure 8.1 displays the results of Steps 1 and 2. The steps marked with an asterisk are the
ones for which no separate subproblems are set up. The steps that are combined in the same
constituting relation are indicated by shaded ovals. The names of the attributes defined for
the various steps are given with the definition of the constituting relations.

<o -

Figure 8.1: Strategy for passive sensors architecture

The clusters corresponding to the constituting relations respect the dependencies of the
steps of the agenda. Hence Validation Condition 2.1 is fulfilled.

Step 3: Define the constituting relations

In the strategy passive_sensors we define now, the names of the constituting relations refer
to the step numbers of the agenda.

As usual, we use a semi-formal Z-like notation to describe strategies, neither formalizing
the syntax and semantics of Z-CSP, nor giving definitions for all functions and predicates
we use. The type Value denotes the disjoint union of the schema types SafProblem and
SafSolution, and its members are denoted by bindings, as in Chapter 6.

passive_sensors = {step_1, steps_2/3, step_4, steps_5/6/7, pass_sol }
where step_1 is defined by

IA step_1 = {P_init}

OA step_1 = { P_sens/act, S_sens/act}

step_1 = { t : scheme step_1 — Value |
syn_class(t(P_init).to_develop) = Z- CSP-specification N

t(P_sens/act) = (req = t(P_init).req; “Model the sensor values and actyator
commands as members of Z types.”,

context = t(P_init).context,
to_develop = type_defs : Z-az_def) A
t(S_sens/act) saf_acceptable_for t(P_sens/act)}

A natural-language text taken from the agenda describes the purpose of the new subproblem
P_sens/act; it is added to the informal requirements component req using the concatenation
function “;” for text. The schematic expression to_develop is denoted by type_defs : Z-ax_def.
This notation means that type definitions must be developed that are expressed as axiomatic
definitions in Z. The constituting relation steps_2/3 is defined by
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IA steps_2/3 = {P_init, S_sens/act}

OA steps_2/3 = { P_state, S_state}

steps_2/3 = { t : scheme steps_2/3 — Value |
(I modes : Z-enum_type_def o

t(P_state) = { req = t(P_init).req ; “Define the internal system states and
the initial states.”,

context = (t(P_init).context) NL ¢(S_sens/act) NL modes,
to_develop = state_def : Z-specification)) A
t(S_state) saf _acceptable_for t(P_state) A
t(S_state) # ¢ A
t(S_state) contains a state schema S that
has a component of the type defined by modes
and is not imported by any other schema in ¢(S_state)
and an initial state schema for S A
the set of initial states is non-empty }

The existential quantifier indicates that a heuristic function is used to obtain the enumeration
type defining the operational modes. To define P_state, the types defining the sensor values
and actuator commands contained in the solution S_sens/act and the type defined by modes
are added to the context component of P_init. The solution S_state is constrained only to the
syntactic class Z-specification because introducing new global definitions may be necessary
for defining the system state schema, see Section 3.3.2. The local acceptability conditions
for S_state capture those validation conditions associated with Step 3 that can be shown
formally. The constituting relation step_4 is defined by

1A step_4 = { P_init, P_state, S_state, S_sens/act}
OA step_4 = {P_ops, S_ops}
step_4 = { t : scheme step_4 — Value |

t(P_ops) = {req = t(P_init).req; “Specify an internal Z operation for
each operational mode.”,
context = t(P_state).context NL t(S_state)

to_develop = ops_def : Z-specification) A
t(S_ops) saf _acceptable_for t(P_ops) A
(let Modes == (p enum_type : Z-enum_type_def |
t(P_state).context = t(P_init).context NL t(S_sens/act) NL enum_type);
mode == (p id : ident | the state schema defined in ¢(S_state) contains
id : Modes as a component) e
t(S_ops) contains an operation schema named mOp for each mode m
defined by Modes A
for each operation mOp: mode = m = pre mOp A
for each operational mode and each combination of sensor values
there is exactly one successor mode A
each operational mode is reachable from an initial state A
there are no redundant modes)}

The system operations are defined in Z. As for the defining the system state, global definitions
may be necessary. The local acceptability conditions for S_ops capture those validation
conditions associated with Step 4 that can be shown formally. The type defined by Modes,
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which is needed to express the local acceptability conditions for S_ops, is the last specification
fragment in ¢(P_state).context. The constituting relation steps_5/6/7 is defined by

1A steps_5/6/7 = { P_init, P_ops, S_ops}
OA steps_5/6/7 = { P_other, S_other}
steps_5/6/7 = {1t : scheme steps_5/6/7 — Value |
FJINTERVAL :N e
(let z_control_op == (s : schema |
s conforms to the schematic expression given in Step 5, page 42);
esp_control_proc == (u proc : CSP-specification |
proc conforms to the schematic expression given in Step 6, page 43,
with wait interval INTERVAL);
env_ass == (p ass : CSP-pred_def |
ass conforms to the schematic expression given in Step 6, page 43);
sens/act_ass == (p ass : CSP-pred_def |
ass conforms to the schematic expression given in Step 6, page 43) o
t(P_other) = { req = t(P_init).req; “Specify further requirements if necessary.”,
context = (t(P_ops).context) NL ¢(S_ops) NL z_control_op NL
csp—_control_proc NL env_ass NL sens/act_ass
to_develop = others : Z-CSP-specification)) A
t(S_other) saf _acceptable_for t(P_other)}

The p operator yields an item satisfying the given condition. The expressions z_control_op,
csp_control_proc, env_ass and sens/act_ass can be automatically generated using the infor-
mation contained in t(P_ops).context and t(S_ops), and the constant INTERVAL that has
to be supplied by the user. No assumptions can be made on the other definitions necessary to
complete the specification. Hence the specification fragment that can be developed to solve
P_other may have the syntactic class Z-CSP-specification, and no additional acceptability
conditions for S_other besides saf_acceptable_for can be stated. The constituting relation
pass_sol assembles the final solution, using the context component of P_other, where all
developed specification fragments are collected, and the solution S_other.

1A pass_sol = { P_init, P_other, S_other}
OA pass_sol = {S_final}
pass_sol = { t : scheme pass_sol — Value |
(let sol == (u s : SafSolution | t(P_other).context = t(P_init).contextNL s) ®
t(S_final) = solNL S_other)}

All steps of the agenda are taken into account in one of the constituting relations. Hence,
validation condition 3.1 of the meta-agenda is fulfilled.

8.4 A Strategy for the Active Sensors Architecture

Recall the agenda for the active sensors architecture, which we repeat in Table 8.3. Again, we
proceed according to the meta-agenda of Table 8.1 in transforming the agenda into a strategy.
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No.| Step Validation Condition
1 | Model the sensors as CSP events or
members of Z types.

2 | Decide on auxiliary processes.

3 | Decide on the operational modes of
the system and the initial modes.

4 | Set up a mode transition relation, | All events identified in Step 1 and all
specifying which events relate which | modes defined in Step 3 must occur in
modes. the transition relation.

The omission of a successor mode for a
mode-event pair must be justified.

All modes must be reachable from an
initial mode, and there must be no re-
dundant modes.

5 Model the actuator commands as
members of Z types or CSP events.

6 | Define the internal system states | The internal system state must be an
and the initial states. appropriate approximation of the state
of the technical process.

Each legal state must be safe.

There must exist legal initial states.
For each initial internal state, the con-
troller must be in an initial mode.

7 | Specify a Z operation for each event | These operations must be consistent

that can cause a mode transition. with the mode transition relation.
8 | Define the auxiliary processes iden- | The alphabets of these processes must
tified in Step 2. not contain external events or events
related to the Z part of the specifica-
tion.

9 | Specify priorities on events if neces- | The priorities must not be cyclic.
sary.

10 | Specify the interface control pro- | All prioritized external events and all
cess. internal events must occur as initial
events of the branches of the interface
control process.

The interface control process must be
deterministic.

The preconditions of the invoked Z op-
erations must be satisfied.

11 | Define the overall control process. The auxiliary processes must communi-
cate with the interface control process.

12 | Define further requirements or envi-
ronmental assumptions if necessary.

Table 8.3: Agenda for the active sensors architecture
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Step 1: Decide which steps of the agenda become subproblems of the strategy

There are four steps for which subproblems are not necessary. Step 2 yields just a set of
internal events that must be given by the user. Similarly to the passive sensors strategy, to
perform Step 3, the user must give the operational modes of the system and point out the
initial modes. This information is then transformed into a Z enumeration type and a subset of
this type. Third, the process defining the priorities on events, which is the result of Step 9, can
be generated automatically from the information which event has priority over which other
events. This information will again be obtained from the user. Finally, the overall control
process being the result of Step 11 can be set up automatically according to the schematic
expressions given in the agenda on page 61.

Step 2: Decide on the schemes of the constituting relations

As for the active sensors strategy, we use the information of Step 1 and the dependency
diagram of the active sensors agenda to determine the largest possible clusters of steps to be
treated in the constituting relations. Figure 8.2 displays the results of Steps 1 and 2. Again,
the names of the attributes defined for the various steps are given with the definition of the
constituting relations.

Figure 8.2: Strategy for active sensors architecture

Step 3: Define the constituting relations

As for the passive sensors strategy, the names of the constituting relations refer to the step
numbers of the agenda.

active_sensors = {steps_1/5, steps_2/3/4/6, step_T, steps_8/9/10, steps_11/12, act_sol}
where step_1/5 is defined by

1A steps_1/5 = {P_init}

OA steps_1/5 = { P_sens, S_sens, P_act, S_act}

steps_1/5 = {t : scheme steps_1/5 — Value |
syn_class(t(P_init).to_develop) = Z- CSP-specification N
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t(P_sens) = (req = t(P_init).req; “Model the sensors as CSP events or
members of Z types.”,

context = t(P_init).context,
to_develop = sensor_defs : 7-CSP-specification) A

t(P_act) = (req => t(P_init).req; “Model the actuator commands_ as
members of Z types or CSP events.”,

context = t(P_init).context,
to_develop = actuator_defs : 7-CSP-specification) A
t(S_sens) saf_acceptable_for t(P_sens) A
(F ext_events : CSP-alphabet_def; sol : Z-CSP-specification e
t(S_sens) = sol NL ext_events)
t(S_act) saf _acceptable_for t(P_act)}

The modeling of the sensors and actuators may use 7 as well as real-time CSP. Therefore,
t(P_sens).to_develop and t(P_act).to_develop have syntactic class Z-CSP-specification. The
solution t(S_sens) must contain the definition of a set of events Faternal_Events, as described
in Section 3.4.1, page 55. Because we will refer to this set in one of the other constituting
relations, we require that the definition of Faternal_Fuvents is the last specification fragment
contained in ¢(S_sens). The constituting relation steps_2/3/4/6 is defined by

1A steps_2/3/4/6 = { P_init, S_sens}
OA steps_2/3/4/6 = { P_mode_trans, S_mode_trans, P_state, S_state}
steps_2/3/4/6 = { t : scheme steps_2/3/4/6 — Value |
(Fint_events : CSP-alphabet_def; modes : Z-enum_type_def;
init_modes : Z-ax_def |
init_modes defines a subset of the type defined by modes o
t(P_mode_trans) =

(req = t(P_init).req ; “Set up a mode transition relation, specifying
which events relate which modes.”,
context = t(P_init).context NL t(S_sens) NL modes NL init_modes

NL int_events,
to_develop = trans_rel : Z-specification) A
t(P_state) =

(req = t(P_init).req; “Define the internal system states and the
initial states.”,

context = t(P_init).context NL t(S_sens) NL modes NL init_modes
NL int_events,
to_develop = state_def : Z-specification)
A
t(S_mode_trans) saf _acceptable_for t(P_mode_trans) A
(let ext_events == (p alph : CSP-alphabet_def |
dsol : Z-CSP-specification e t(S_sens) = sol NL alph) e
all events contained in the alphabet defined by ext_events
and all modes contained in the type defined by modes occur in
t(S_mode_trans)) A
in the mode transition relation defined by t(S_mode_trans) each mode
must be reachable from an initial mode defined by the set init_modes
and there must be no redundant modes A
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t(S_state) saf _acceptable_for t(P_state) A

t(S_state) # ¢ A

t(S_state) contains a state schema S that is not imported by any
other schema in ¢(S_state) and an initial state schema for S A
the set of initial states is non-empty)}

To define the problems corresponding to Steps 4 and 6 of the agenda, we need the result of
Steps 1, 2, and 3. The solution S_sens for Step 1 is an input attribute of the constituting
relation steps_2/3/4/6, the results of Steps 2 and 3 are obtained by heuristic functions. The
internal events int_events are last added to the context, because we will need them in a
later constituting relation. The formalizable validation conditions of Steps 4 and 6 have
become local acceptability conditions for the solutions ¢(S_mode_trans) and ¢(S_state). The
acceptability conditions for ¢(S_mode_trans) refer to the external events defined earlier, whose
definition is the last part of ¢(S_sens). The constituting relation step_7 is defined by

IA step_7 = { P_init, P_state, S_state, S_mode_trans, S_act}
OA step_7 = {P_ops, S_ops}
step_T = {1t : scheme step_7 — Value |

t(P_ops) = (req = t(P_init).req; “Specify a 7 operation for each event
that can cause a mode transition.”,
context = t(P_state).context NL t(S_mode_trans) NL t(S_state)

NL ¢(S_act)
to_develop = ops_def : Z-specification) A
t(S_ops) saf _acceptable_for t(P_ops) A
the operations defined by ¢(S_ops) must be consistent with the state transition
relation defined by ¢(S_ops)}

As can be seen in Figure 8.2, Step 7 needs the results of Steps 5, 4, and 6 as an input. The
corresponding solution attributes are input attributes for the constituting relation step_7.
The operations must be defined in Z, and the validation condition associated with Step
7 is expressed as a local acceptability condition for t(S_ops). The constituting relation

steps_8/9/10 is defined by

IA steps_8/9/10 = { P_init, P_ops, S_ops}
OA steps_8/9/10 = { P_aux, S_auzx, P_int_ctrl, S_int_ctrl}
steps_8/9/10 = { t : scheme steps_8/9/10 — Value |

t(P_auz) = (req = t(P_init).req; “Define the auxiliary processes identi-
fied in Step 2.7,
context = t(P_ops).context NL ¢(S_ops)
to_develop = aux_proc : CSP-specification) A
(3 priority : CSP-pred_def | priority defines non-cyclic priorities on events e
t(P_int_ctrl) =
(req = t(P_init).req ; “Specify the interface control process.”,
context = t(P_ops).context NL t(S_ops) NL priority
to_develop = interface_control : CSP-process_expr) A
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t(S_auz) saf _acceptable_for t(P_aux) N
t(S_int_ctrl) saf _acceptable_for t(P_int_ctrl) A
(let int_events == (p alph : CSP-alphabet_def |
dsol : Z-CSP-specification e t(P_state).context = sol NL alph)
the union of the alphabets of all processes defined in ¢(S_auz)
is a subset of the events defined in int_events A
all priorized external events and all events defined in int_events must occur
as initial events of the branches of the interface control process defined by
t(S_int_ctrl) A
the process defined by ¢(S_int_ctrl) must be deterministic A
the preconditions of the invoked Z operations must be satisfied))}

To define the problem P_aux corresponding to Step 8, the values of the attributes P_ops and
S_ops suffice. To define the problem P_int_ctrl, on the other hand, the process defining the
priorities on events must be obtained using a heuristic function. The local acceptability con-
ditions of both t(S_aux) and ¢(S_int_ctrl) refer to the internal events defined earlier, whose
definition is the last specification fragment contained in ¢(P_state).context. The constituting
relation steps_11/12 is defined as in the passive sensors architecture by

IA steps_11/12 = { P_init, P_int_ctrl, S_int_ctrl, S_auz}
OA steps_11/12 = { P_other, S_other}
steps_11/12 = { t : scheme steps_11/12 — Value |
(let ctri_proc == (u proc : CSP-specification |
proc conforms to the schematic expression given in Step 11, page 61) o
t(P_other) =
(req = t(P_init).req ; “Specify further requirements if necessary.”,
context = t(P_int_ctrl).context NL t(S_aux ) NL t(S_int_ctrl) NL ctri_proc
to_develop = others : Z-CSP-specification)) A
t(S_other) saf _acceptable_for t(P_other)}

The constituting relation act_sol assembles the final solution, using the context component of
P_other, where all developed specification fragments are collected, and the solution S_other.

1A pass_sol = { P_init, P_other, S_other}
OA pass_sol = {S_final}
pass_sol = { t : scheme pass_sol — Value |
(let sol == (u s : SafSolution | t(P_other).context = t(P_init).contextNL s) ®
t(S_final) = solNL S_other)}

8.5 Summary

The results of this chapter are the following:

e A meta-agenda shows how agendas can be transformed into strategies in a fairly routine
way.

e We have presented a third instance of the strategy framework.

e We have used this instance and the meta-agenda to define strategies that capture the
agendas developed in Chapter 3, thus making them amenable to machine support.
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8.6 Further Research

Further work on strategy-based specification of safety-critical software concerns the following
points:

Implementation. The instantiation of the strategy framework presented in this chapter and
the strategies for the two architectures should be implemented.

Case studies. This implementation should be used to perform case studies with the goal to
compare working with the agendas on paper on the one hand and using the implemented
strategies on the other hand. An important question is how restrictive a strategy should
be to obtain the best balance between user guidance and flexibility.

Machine support for results of Section 3.8. Most of the research problems stated in
Section 3.8 have an implementable counterpart. When concepts for the solutions of
the problems stated there are developed, they deserve implementation in the strategy
framework.



Chapter 9

Strategy-Based Development of Software
Architectures

We now transform the agendas defined in Chapter 4 into strategies, after having defined an
appropriate instance of the strategy framework. As in Chapter 8, the transformation follows
the meta-agenda of Section 8.1. Before we close the chapter with a summary and directions
to future research, we compare the four different instantiations of the strategy framework
presented in Chapters 6-9.

9.1 Problems, Solutions, and Acceptability

The definitions of problem, solutions, and acceptability we present now can also be used for
the development of LOTOS specifications for purposes other than architectural design.

Asin Chapters 7 and 8, we introduce basic types for syntactically correct LOTOS expres-
sions, for natural-language text, and for schematic LOTOS expressions.

[SynLOTOS, Text, SchematicLOTOS]

Semantically valid LOTOS specifications are a subset of the syntactically correct LOTOS
specifications. To be able to state meaningful acceptability conditions, which capture the role
of a specification fragment in its context, LOTOS expressions are associated with syntactic
classes. These syntactic classes are sets of LOTOS expressions. The empty string € is a
syntactically correct LOTOS expression.

SemLOTOS : P SynLOTOS
SyntacticClass : P(P SynLOTOS)
e: SynLOTOS

Before we introduce the syntactic classes we will use in the strategy definitions, we sum-
marize the syntax of the LOTOS constructs we generate as architectural descriptions using
our strategies, see (Bolognesi and Brinksma, 1987). A top-level specification in LOTOS has
the form

195
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specification name [gate_list](parameter_list): functionality
type_defintiion_lest
behaviour
behavior_ezpression
where
type_defintiion_lest
process_definition_list
endspec

The syntactic classes occurring in this expression are set in ttalics teletype. The keyword
specification only occurs on the top-level of a specification. To guarantee hierarchical
compositionality of our architectural descriptions, we will only develop LOTOS expressions

of the form

behavior_ezpression
where

type_defintiion_lest

process_definition_list

We call the corresponding syntactic class spec_body. A process definition has the form

process name [gate_list](parameter_list): functiomality :=
behavior_ezpression

where
type_defintiion_lest
process_definition_list

endproc

We will use the syntactic classes introduced above, and the class predicate that comprises the
predicates that guard behavioral expressions:

spec_body,

behavior_expression,

process_definition_list, process_definition,
type_definition_list, gate_list, parameter_list
predicate, name, functionality : SyntacticClass

Each schematic LOTOS expression is associated with the syntactic class of LOTOS ex-
pressions with which it can be instantiated. The partial function NL concatenates two LOTOS
expressions. The empty specification ¢ is a neutral element with respect to NL.

syn_class : SchematicLOTOS — SyntacticClass
instantiate : SchematicLOTOS x SynLOTOS —+ SynLOTOS
_NL_: SynLOTOS x SynLOTOS -+ SynLOTOS

Y schem_expr : SchematicLOTOS oY v : syn_class schem_expr o
(schem_expr, v) € dom instantiate
Y spec : SynLOTOS o
(spec,€) € dom NL = specNL € = spec A
(€, spec) € dom NL = € NL spec = spec
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A specification problem again consists of a requirement, expressed in natural language,
the parts of the specification already developed, and a schematic LOTOS expression. Each
LOTOS expression belonging to the syntactic class associated with the schematic LOTOS
expression must be combinable with the specification already developed.

— ArchProblem
req : Text
context : SynLOTOS
to_develop : SchematicLOTOS

Vexpr : SynLOTOS | expr € syn_class to_develop e
(context, instantiate(to_develop, expr)) € dom(_NL_)

Solutions are LOTOS expressions:
ArchSolution == SynLOTOS

A solution sol is acceptable for a problem pr if and only if it belongs to the syntactic
class of pr.to_develop, and the combination of pr.context with the instantiated schematic
expression yields a semantically valid LOTOS specification.

_arch_acceptable_for_: ArchSolution < ArchProblem

Y sol : ArchSolution; pr : ArchProblem e
sol arch_acceptable_for pr
=
sol € syn_class(pr.to_develop) A
pr.context NL instantiate (pr.to_develop, sol) € SemLOTOS

9.2 Strategies for the Repository Style

As usual, we use a semi-formal Z-like notation to describe strategies, neither formalizing
the syntax and semantics of LOTOS, nor giving definitions for all functions and predicates
we use. The type Value denotes the disjoint union of the schema types ArchProblem and
ArchSolution, and its members are denoted by bindings.

Table 9.1 repeats the the agenda for the repository style. Recall that the steps have to
be performed in the given order. To transform this agenda into a strategy, we carry out the
steps given in Table 8.1.

Step 1: Decide which steps of the agenda become subproblems of the strategy
Step 3 of the agenda of Table 9.1 need not become a subproblem, because the overall archi-
tectural description can be assembled using the results of the first two steps.

Step 2: Decide on the schemes of the constituting relations

We will have one constituting relation for Step 1, one constituting relation for Step 2, and
one constituting relation to assemble the final solution.
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No.| Step Validation Conditions
1 | Define the types shared_memory, | The type shared_memory must be de-
1d, indez and value. fined according to the schema given in

Section 4.2.1. The type i¢d must con-
tain a constant for_nobody.

2 | Define the component processes. Each component process must be either
aread, a write, or a read /write process.

3 | Assemble the overall architectural | The processes must communicate with
description according to the com- | the shared memory according to their
munication pattern of the repository | being a read, write or read/write pro-
style. cess, as described in the communica-
tion pattern.

Table 9.1: Agenda for the repository architectural style

Step 3: Define the constituting relations
rep_arch = {define_types, define_components, rep_sol }
where define_types is given by

1A define_types = { P_init}

OA define_types = { P_types, S_types}

define_types = { t : scheme define_types — Value |
syn_class(t(P_init).to_develop) D spec_body A

t(P_types) = (req = t(P_init).req; “Define the types shared_memory, id,
indez and value.”,
context = t(P_init).context,

to_develop = type_defs : type_definition_list) A
t(S_types) arch_acceptable_for t(P_types) A
t(S_types) contains the definition of a type skared_memory conforming
to the schema given in Section 4.2.1, page 77 A
t(S_types) contains the definition of a type 4d with a constant for_nobody}

In contrast to the usual LOTOS semantics, we not only regard specification bodies, but
also lists of type definitions and lists of process definitions as valid LOTOS specifications.
Therefore, it is not necessary to embed the type definition list type_defs into a specification
body with a trivial behavioral expression. The constituting relation define_components is
given by

1A define_components = { P_init, S_types}
OA define_components = { P_comps, S_comps}
define_components = { t : scheme define_components — Value |
t(P_com) = { req = t(P_decls).req; “Define the component processes.”,
context = t(P_init).context NL S_types,
to_develop = comp_procs : process_definition_list) A
t(S_comps) arch_acceptable_for t(P_comps) A
t(S_comps) # ¢ A
each member of the list {(S_comps) defines a read, a write, or
a read /write process}
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The constituting relation rep_sol is defined by

IA rep_sol = { P_init, S_types, S_comps}
OA rep_sol = {S_final}
rep_sol = { t : scheme rep_sol — Value |
(let shared_mem_def == (u proc : process_definition |
proc conforms to the schematic process definition given on page 76);
behav == (p bexp : behavior_expression |
bexp conforms to the communication pattern given on page 79) o
t(S_final) = behav where S_types NL shared_mem_def NL S_comps A
t(S_final) arch_acceptable_for t(P_init))}

The p operator yields an item satisfying the given condition. In an implementation, we would
have functions computing shared_mem_def and behav.

To perform Step 2 of the agenda of Table 9.1, we had defined another agenda in Chapter 4,
which we repeat in Table 9.2. The steps of Table 9.2 must be performed in the given order.
We transform this agenda into a strategy, again following the steps of the meta-agenda.

No.| Step Validation Conditions
1 | Decide if the component is a read,
write, or read/write process.

2 | Define the component as a process. | The process definition must contain the
patterns for the chosen kind of compo-
nent.

Table 9.2: Agenda to develop components for a repository architecture

Step 1: Decide which steps of the agenda become subproblems of the strategy

Step 1 of the agenda of Table 9.2 needs only user interaction. No subproblem is necessary.

Step 2: Decide on the schemes of the constituting relations

We will have one constituting relation for Step 2, and one constituting relation to assemble
the solution generated by the strategy.

Step 3: Define the constituting relations
rep_comp = {define_component, rep_comp_sol}
where define_component is defined by

1A define_component = { P_init}
OA define_component = { P_comp, S_comp}
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define_component = { t : scheme define_component — Value |
syn_class(t(P_init).to_develop) D process_definition A
dind : {read, write, read_write} o
t(P_comp) = (req = t(P_init).req; “Define the component as a ind process.”,
context = t(P_init).context,
to_develop = comp_def : process_definition) A
t(S_comp) arch_acceptable_for t(P_comp) N\
t(S_comp) conforms to the pattern for the process of the kind indicated by
ind, see page 78}

The constituting relation rep_comp_sol is defined by

IA rep_comp_sol = {S_comp}
OA rep_comp_sol = {S_final}
rep_comp_sol = { t : scheme rep_comp_sol — Value | t(S_final) = t(S_comp)}

The solution of problem P_comp can be either a subsystem that is an instance of some
architectural style, or a simpler process. In the first case, problem P_comp would be reduced
by a strategy subarch that generates the subproblem to develop a solution of syntactic class
spec_body and embeds the solution into a process definition. The subproblem generated by the
subarch strategy would then be reduced with a top-level strategy associated with the chosen
style. For routine development of sub-architectures, combinations of the subarch strategy and
the top-level strategies associated with the various architectural styles can be defined using
the THEN strategical.

For the second case, a strategy develop_process_definition would be useful that generates
the subproblems to define the behavior part of the process definition and its local definition
part. This strategy would be defined similarly to the define_schema strategy of Section 7.3.2.

To solve the subproblem P_comps generated by the rep_arch strategy, we can iterate rep_comp
using the strategy

REPEAT (LIFT(rep_comp, p_down, p_combine, s_combine), p_rep, empty)

where p_rep is a problem attribute newly introduced by LIFT and empty is the terminating
strategy that generates the empty specification €. The other arguments of LIFT are defined
as follows:

p_down == (Apr : ArchProblem | syn_class(pr.to_develop) D process_definition_list e
(req = pr.req,
context = pr.context,
to_develop = comp_def : process_definition))

p_combine ==
(A pr : ArchProblem; sol : ArchSolution |
syn_class(pr.to_develop) D process_definition_list A\ sol € process_definition e
(req = pr.req ; “define more component, processes”,
context = pr.context NL sol,
to_develop = pr.to_develop))

s_combine == _NL_
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The function p_down converts the problem of defining a list of processes into the problem of
defining a single process, the function p_combine incorporates a developed process definition
into the context part of a problem, and the function s_combine concatenates two specifica-
tions, thereby allowing the concatenation of a given process definition with an existing list
of process definitions. Proving that the requirements for the application of LirT are fulfilled
proceeds as in Section 7.3.2, page 164.

9.3 Strategies for the Pipe/Filter Style

To develop architectures conforming to the pipe/filter style, we have the agenda repeated in
Table 9.3, whose steps must be performed in the given order. In transforming the agenda
into a strategy we proceed as usual.

No.| Step Validation Conditions

1 | Define the filters one by one. Each filter must fulfill the conditions
stated in the component characteristics
part of the style characterization.

2 | Assemble the filters according to the | The architectural description must ful-
pattern given in the communication | fill the constraints stated in the con-

pattern part of the style characteri- | straints part of the style characteriza-

zation. tion.

Table 9.3: Agenda for the pipe/filter architectural style

Step 1: Decide which steps of the agenda become subproblems of the strategy

Assembling the developed filters in the way prescribed by the communication pattern of
the pipe/filter architectural style characterization is a routine task. Hence, there will be no
subproblem corresponding to Step 2 of the agenda shown in Table 9.3.

Step 2: Decide on the schemes of the constituting relations

Consequently, we will define one constituting relation for Step 1, and one to assemble the
final solution.

Step 3: Define the constituting relations

p/f—arch = {define_filters, p/f_sol}

where define_filters is defined by

1A define_filters = { P_init}
OA define_filters = { P_filt, S_filt}
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define_filters = { t : scheme define_filters — Value |
syn_class(t(P_init).to_develop) D spec_body A
t(P_filt) = (req = t(P_init).req; “Define the filters one by one.”,
context = t(P_init).context,
to_develop = filt_defs : process_definition_listy A
t(S_filt) arch_acceptable_for t(P_filt) A
each member of the list ¢(S_filt) fulfills the conditions stated in the
component characteristics part of the style characterization, see page 81}

The constituting relation p/f_sol is defined by

IAp/f_sol = {S_filt}
OA p/f_sol = {S_final}
p/f—sol = {t: scheme p/f_sol — Value |
(let behav == (u bexp : behavior_expression |
bexp conforms to the schematic behavioral definition given on page 82) o
t(S_final) = behav where t(S_filt) A
t(S_final) fulfills the constraints stated in the style characterization on page 82}

To perform Step 1 of the agenda of Table 9.3, we had defined another agenda, which we repeat
in Table 9.4. The steps 1 and 2 of Table 9.4 are independent of one another. We transform
this agenda into a strategy, again following the steps of the meta-agenda.

No.| Step Validation Conditions
1 | Decide on the pipes that connects
the filter with other filters.

2 | Decide on the gates of the filter with
the environment.

3 | Define the filter as a process. The process must fulfill the conditions
stated in the characteristics part.

Table 9.4: Agenda to develop components for a pipe/filter architecture

Step 1: Decide which steps of the agenda become subproblems of the strategy

Steps 1 and 2 of the agenda of Table 9.4 will not correspond to subproblems because their
results are simple gate lists that must be given by the user.

Step 2: Decide on the schemes of the constituting relations

Consequently, we will define one constituting relation corresponding to Step 3, and one to

assemble the final solution.

Step 3: Define the constituting relations

p/f—comp = {define_component, p/f_comp_sol}
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where define_component is defined by

1A define_component = { P_init}
OA define_component = { P_comp, S_comp}
define_component = { t : scheme define_component — Value |
syn_class(t(P_init).to_develop) D process_definition A
d pipe_list, ext_gate_list : gate_list o
t(P_comp) = (req = t(P_init).req; “Define the filter as a process.”,
context = t(P_init).context,
to_develop = comp_def : process_definition) A
t(S_comp) arch_acceptable_for t(P_comp) N\
gatelist(t(S_comp)) = pipe_list U ext_gate_list A
t(S_comp) fulfills the conditions stated in the component characteristics part
of the style characterization, see page 81}

The function gatelist yields the list of gates of a process definition. The constituting relation
p/f—_comp_sol is defined by

IA p/f_comp_sol = {S_comp}
OA p/f_comp_sol = {S_final}
p/f—comp_sol = {t: scheme p/f_comp_sol — Value | t(S_final) = t(S_comp)}

To solve the subproblem P_filt generated by the p/f_arch strategy, we can iterate p/f_comp
using the strategy

REPEAT(L1FT(p/f_comp, p_down, p_combine, s_combine), p_rep, empty)

where all arguments of LIFT except p/f_comp are defined as in the previous section.

9.4 Strategies for the Event-Action Style

Table 4.5 repeats the agenda defined in Chapter 4, whose steps must be performed in the
given order.

No.| Step Validation Conditions
1 | Define the type event.

Define pairs, consisting of a predi- | Each action process must communicate
cate on the type event and a pro- | with the event manager and define the
cess defining the corresponding ac- | reaction to the events that fulfill the
tion. defined predicate.

3 | Define the process Event_Manager | The definition of the event manager
and assemble the overall architec- | must conform to the pattern given in
tural description according to the | the component characteristics, and it
communication pattern. must be consistent with Step 2.

Table 9.5: Agenda for the event-action architectural style
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Step 1: Decide which steps of the agenda become subproblems of the strategy

The definition of the process Event_Manager can be assembled from the results of the first
two steps. Therefore, the third step of the agenda of Table 9.5 does not require the definition
of separate subproblem.

Step 2: Decide on the schemes of the constituting relations

Two of the constituting relations correspond to the steps 1 and 2, and the third defines the
final solution.

Step 3: Define the constituting relations
e-a_arch = {define_events, define_components, e-a_sol }
where define_events is defined by

1A define_events = { P_init}
OA define_events = { P_events, S_events}
define_events = { t : scheme define_events — Value |
syn_class(t(P_init).to_develop) D spec_body
t(P_events) = (req = t(P_init).req; “Define the type event.”,
context = t(P_init).context,
to_develop = event_def : type_definition_list) A
t(S_events) arch_acceptable_for t(P_events)}

The constituting relation define_components is defined by

1A define_components = { P_init, S_events}
OA define_components = { P_comps, S_comps}
define_components = { t : scheme define_components — Value |
t(P_com) = { req = t(P_decls).req; “Define the component processes.”,
context = t(P_init).context NL S_events,
to_develop = comp_procs : process_definition_list) A
t(S_comps) arch_acceptable_for t(P_comps) A
t(S_comps) # ¢ A
each member of the list ¢(S_comps) conforms to the component characteristics
of the style characterization, see page 85}

The constituting relation e-a_sol is defined by

IA rep_sol = {P_init, S_events, S_comps}
OA rep_sol = {S_final}
rep_sol = { t : scheme rep_sol — Value |
(3 event_manager_def : process_definition |
event_manager_def conforms to the pattern given in the component
characteristics, see page 84, and is consistent with.S_comps e
(let behav == (p bexp : behavior_expression |
bexp conforms to the communication pattern given on page 85) o
t(S_final) = behav where S_events NL event_manager_def NL S_comps A
t(S_final) arch_acceptable_for t(P_init))}
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We have used an existential quantifier to indicate that user interaction may be necessary to
set up the definition of the Event_Manager process. The other parts of the solution can be
assembled automatically, as indicated by the use of the let construct.

To perform Step 2 of the agenda of Table 9.5, we had defined another agenda, which we repeat
in Table 9.6. The steps of Table 9.6 must be performed in the given order. We transform this
agenda into a strategy, again following the steps of the meta-agenda.

No.| Step Validation Conditions
1 | Decide on the events to be treated.
Define the action to be taken as a | The process definition conforms to the

process. component characteristics given in the

style characterization.

Table 9.6: Agenda to develop components for an event-action architecture

Step 1: Decide which steps of the agenda become subproblems of the strategy

The predicate that defines to which events the component process reacts will be given by the
user. Hence, there will only be a subproblem corresponding to Step 2 of the agenda.

Step 2: Decide on the schemes of the constituting relations

Consequently, we will define one constituting relation corresponding to Step 2, and one to
assemble the final solution.

Step 3: Define the constituting relations

e-a_comp = {define_component, e-a_comp_sol }
where define_component is defined by

1A define_component = { P_init}
OA define_component = { P_comp, S_comp}
define_component = { t : scheme define_component — Value |
syn_class(t(P_init).to_develop) D process_definition A
event_type_def : type_definition; sol : ArchSolution |
t(P_init).context = sol NL event_type_def
A pred : predicate |
pred is a predicate on the type defined by event_type_def
(let compname_auz : name be a new name e
t(P_comp) =
(req = t(P_init).req; “Define the action to be taken as a process.”,
context = t(P_init).context,
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to_develop =
process compname_auz : functionality(comp_def) :=
[ pred 1 => process_instantiation(comp_def)
where
comp_def : process_definition
endproc) A
t(S_comp) arch_acceptable_for t(P_comp) N\
t(S_comp) fulfills the conditions stated in the component characteristics part
of the style characterization, see page 85)}

The e-a_comp strategy is applicable only if the context part of the initial problem contains the
definition of an event type. The predicate obtained by a heuristic function must refer to this
type. The new name compname_auz can be generated automatically. The solution ¢(S_comp)
of the problem t(P_comp) is an expression comp_def that must belong to the syntactic class
process_definition. This process definition is embedded in a larger process definition that
contains the predicate indicating when the action must be taken. The embedding process
compname_aux has the same functionality as the process defined by comp_def. Its behavior
part only consists of a guarded expression: in case the predicate holds, the process defining
the action, which is contained in the local definition list of the embedding process definition,
is executed. The constituting relation e-a_comp_sol is defined by

IA e-a_comp_sol = {P_comp, S_comp}
OA e-a_comp_sol = {S_final}
e-a_comp_sol = { t : scheme e-a_comp_sol — Value |
t(S_final) = instantiate(t(P_comp).to_develop, t(S_comp))}

The final solution is just the instantiation of the schematic expression t(P_comp).to_develop
with the process definition ¢(S_comp), using the function instantiate introduced in Section
9.1.

To solve the subproblem P_comps generated by the e-a_arch strategy, we can iterate e-a-
_comp using the strategy

REPEAT (LIFT(e-a_comp, p_down, p_combine, s_combine), p_rep, empty)

where all arguments of LIFT except emboz—a_comp are defined as in the previous section.

9.5 Comparing Instantiations of the Strategy Framework

The instantiations of the strategy framework presented in Chapters 6-9 differ in several
important respects. The differences between program synthesis on the one hand and spec-
ification acquisition and software design on the other hand are reflected in their respective
instantiations, and are visible in the following specific phenomena!:

'Since we use a specification language to express software designs, we only speak of “specification acquisition”
in the following.
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Instantiation of generic parameters

Program synthesis leads from a formal specification to a program. Both are formal objects,
and the definition of acceptability can establish a formal relation between the two, namely
correctness.

In specification acquisition, such a formal relation is impossible because the requirements
for a software system are described informally. Indeed, specification acquisition actually leads
from informal to formal artifacts in the software engineering process. The general definition of
acceptability can therefore refer only to the formal specification, and not to the requirements.
By contrast with program synthesis, where all partial solutions are statements, the partial
solutions in specification acquisition belong to different syntactic classes, and so the general
notion of acceptability is static type correctness, although for individual strategies, stronger
acceptability conditions can be stated. These conditions reflect the purpose of the different
parts of the specification in the context of a given strategy, requiring, e.g., that — when
specifying a state-based system — the global definition part of a specification should not define
the system state, or that system operations should have satisfiable preconditions. Consistency
and completeness criteria can also be stated in the context of particular strategies.

Independent subproblems

In program synthesis, the subproblems generated by a strategy are often independent of each
other. When developing a conditional, for example, the two branches can be developed in
any order or in parallel.

Specification acquisition, on the other hand, proceeds much more incrementally, and so
later parts of a specification usually refer to its earlier parts. To define the operations of a
system, for instance, its state must be known. None of the strategies defined for specification
acquisition in Chapter 7, or software design in Chapter 9 accommodates solution of indepen-
dent subproblems. Only the strategy for the active sensors architecture presented in Section
8.4 generates independent subproblems.

Incomplete solutions

The fact that subproblems in specification acquisition can depend strongly on one another
has an influence on how work with strategies proceeds. Experience has shown that it is
unrealistic to assume that, if problem P, depends on the solution .57 of problem Py, then it
will necessarily be possible first to solve P; completely and then start working to solve Ps.
In the state_based strategy (see page 160), the definition of the state and the operations will
usually make use of the global definitions, but we cannot assume that a specifier foresees all
necessary global definitions in advance. The process that implements problem solving with
strategies must therefore allow specifiers to work on a problem even if the solution it depends
on is not yet completely known. Technically, we can achieve this by propagating incomplete
solutions.

In program synthesis, such a feature would make the problem solving process more flex-
ible and comfortable. However, it is not required in order to make strategy-based program
synthesis feasible.
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Use of repetition

Frequently, in specification acquisition, several items of the same kind must be developed to
solve a problem, as is the case with in P_state and P_ops in the state_based strategy. Such
development can be supported by the strategicals REPEAT and LIFT, as described in Section
7.3. If several items of different syntactic classes have to be developed, as with the global
definitions P_global of the state_based strategy, then this can be achieved using the LiFT
strategical without combining it with REPEAT.

For program synthesis, repeating a strategy is not as useful as it is in specification acqui-
sition. In developing a program, it is not necessarily helpful to consider it as a concatenation
of items from the syntactic class statement. This is due to the fact that programming prob-
lems provide much more detailed and semantic information than do specification problems,
simply because the former are formal, which the latter are not. In addition, the syntactic
forms of programming problems may already suggest strategies to apply to them, such that
strategy selection can rely more on the specific problem in program synthesis than it can in
specification acquisition.

These considerations show that program synthesis on the one hand and specification
acquisition and software design on the other hand are fairly different activities. Strategies
are, however, sufficiently general to support them all.

9.6 Summary
The results of this chapter are the following:

o We have presented a fourth instance of the strategy framework.

e We have used this fourth instance and the meta-agenda of Section 8.1 to define strate-
gies that capture the agendas developed in Chapter 4, thus making them amenable to
machine support.

o We have compared the different instantiations of the strategy framework, showing that
this framework is sufficiently powerful to support a variety of software engineering ac-
tivities.

9.7 Further Research

Further work on strategy-based development of software architecture concerns the following
points:

Implementation. The instantiation of the strategy framework presented in this chapter and
the strategies for the three architectural styles should be implemented.

More strategies. General-purpose strategies as the ones defined in Chapter 7 should be
defined for the LOTOS instantiation of the strategy framework.

Integration with existing software. When conducting our case study of Chapter 4, we
first developed the robot designs and then analyzed and compared the designs using an
existing tool. It should be investigated how existing LOTOS tools can be used during



9.7. Further Research 209

the development of a design. First, such tools could be useful to check some of the
acceptability conditions of the strategies. Secondly, they can support an explorative
process of software design.

Comparative Studies. The LOTOS instantiation of the strategy framework could also be
used to specify safety-critical software or for general specification tasks. It should be
investigated how strategies defined for one instantiation of the strategy framework,
e.g., the instantiation of Chapter 8, can be transformed into strategies for a different
instantiation, e.g., the instantiation of this chapter, and to what extent the development
steps are independent of the used specification language.

Machine support for results of Section 4.8. Most of the research problems stated in
Section 4.8, particularly architecture refinement, have an implementable counterpart.
Therefore, when concepts for the solutions of the problems stated there are developed,
more implementation tasks will arise.
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Chapter 10

Conclusions

In the previous chapters, we have introduced the concepts of an agenda and of a strategy. We
have shown how these concepts can be profitably employed in various phases of the software
life cycle. In particular, we have investigated the use of these concepts in the areas of software
specification, design, and implementation. We have presented a general pragmatic approach
to the usage of formal specification techniques, and a specialized approach to the specification
of software for safety-critical applications. Furthermore, we have shown how software design
according to architectural styles can be supported with formal methods in a semantically
sound manner. Program synthesis techniques were also considered. In summary, this work
contributes to the following areas of research:

Methodological support for the application of formal techniques in software engineering

With the concept of an agenda, we have introduced a means for organizing work that has to be
carried out in a particular context. Agendas are obtained in a knowledge engineering process
from domain experts and — if formal techniques are to be applied — from experts in formal
techniques. Their purpose is to capture the knowledge used by the domain experts when
carrying out their tasks. Agendas are specific to the task to be performed, not to the formalism
to be used. Therefore, the use of agendas can be smoothly introduced into an organization.
Developers essentially proceed as before, only that the steps to be taken in performing the
task are made explicit. Hence, introducing agendas does not de-skill developers.

The use of agendas to guide the application of formal techniques in software engineering
results in a precise description of the artifacts to be developed and a rigorous means for
validating them. In this way, the application of formal methods in software engineering
contributes to a better quality of the artifacts produced during the software development
process. Informal techniques are not made superfluous, but there is a synergetic effect between
formal and informal techniques.

Agendas have much in common with approaches to software process modeling (Huff,
1996). The difference is that software process modeling techniques concentrate more on
management activities, e.g., roles of developers, than on technical issues. In contrast, with
agendas we always develop a document, thus concentrating on technical activities in software
engineering. Furthermore, software process modeling does not place so much emphasis on
validation issues as agendas do.

211
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In this work, we have shown that agendas are useful for the specification, design and
implementation phases of the software lifecycle, when formal techniques are used. But also
software development methods that are not based on formal techniques can be supported with
agendas: First, we have set up a preliminary agenda for requirements elicitation, which shows
that also requirements engineering can be supported with the agenda approach. Second,
we have defined an agenda for the object-oriented Fusion method (Coleman et al., 1994),
which provides valuable consistency checks for the various models of the analysis and design
phases that have to be set up during the Fusion process. It seems reasonable to assume that
systematic testing, transformation of specifications and programs, and re-engineering can be
supported with agendas as well. The definition of concrete agendas for these tasks, however,
remains a task for the future. Potentially, agendas may even be used to guide performing
tasks in other fields than software engineering.

Currently, more agendas for the specification of safety-critical embedded software are
developed in the German project ESPRESS (ESPRESS), which is a joint project with partners
from industry, research institutions, and universities. In this project, a combination of Z and
statecharts (Harel, 1987) is used instead of the combination of Z and CSP described in Chapter
3. First results have shown that — if the languages used are comparable in their expressive
power, as is the case for CSP and statecharts — the activities constituting the agendas are
the same for different languages; only the schematic expressions and some of the validation
conditions are different.

Because agendas can be employed whenever there is a systematic way of performing a
software development task, it is clear that agendas can also be defined when specification
languages other than Z, CSP, or LOTOS are used. However, further research is necessary
to find out to which degree agendas can be oriented solely on the task to be performed,
rather than on the language that is used. For a language-independent agenda, changing the
language in which a document is expressed would effect only the schematic expressions and
language-specific validation conditions. The steps of the agenda would remain the same.

Application of formal specification techniques

In addition to using agendas, the barriers that currently prevent the application of formal
techniques in software engineering practice can further be lowered by adopting a pragmatic
attitude toward formal techniques. We have shown how formal specification techniques can
be smoothly integrated into traditional processes, and how formal specification discipline can
be relaxed to avoid some of the difficulties that make the application of formal techniques
sometimes tedious. We have shown that legacy systems can benefit from a formal specification,
too.

Moreover, we have identified different specification styles that make the process of spec-
ification acquisition language-independent to a large extent. These styles can be formalized
as sets of strategies.

Safety

To support the formal specification of software for safety-critical applications, we have inves-
tigated the expressional power a formal language suitable for this purpose must possess. We
have defined such a language by combining two existing, well-established languages. We have
defined a software model for the use of the combined language and have further refined this
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model by reference architectures capturing frequently used designs of safety-critical systems.
For each such reference architecture, we have defined an agenda that gives detailed guidance
for developing specifications of software components suitable for the architecture and for the
component validation. Besides the application-independent validation mechanisms provided
by the agendas, we have shown how the developed specifications can be further validated,
taking properties of the particular application into account. The strategies that were defined
corresponding to the agendas make the implementation of a support system for strategy-based
specification of safety-critical software a routine task.

All in all, our approach to supporting the specification of software for safety-critical ap-
plications enhances the safety of the entire technical system, because the embedded software
is specified in a systematic way, the specification has an unambiguous semantics, and the
specification is validated more rigorously than this would be possible with purely informal
specifications.

Software Architectures

The definition of architectural styles is a means for making software design knowledge explicit
and supporting its reuse by using styles as guidelines for the development of concrete software
designs. We have provided a semantic foundation of architectural styles by characterizing
such styles using patterns over the formal description language LOTOS. A number of agendas
support designers in the development of software architectures conforming to the characterized
styles. The agendas were formalized as strategies, providing a basis for machine-supported
software design.

Our approach to software design leads to standardized, comprehensible, and comparable
designs that have a precise semantics and thus can be analyzed and validated in a rigorous
manner. But not only the result of the design process is improved in comparison to using in-
formal style descriptions or no styles at all, but also the process of developing the architectural
designs is now standardized and comprehensible.

Automated Software Engineering

Agendas are designed to be applied by humans. As already pointed out in Chapter 1, the
benefits of formal methods can be even better appreciated when they are supported by ma-
chine.

Strategies support the representation and application of software development knowledge
by machine. As they are formally defined, they introduce even more preciseness and rigor
into software engineering processes than agendas. Strategies are implementation-oriented.
Detailed implementation guidance is provided in the form of an architecture for support sys-
tems for strategy-based development activities. Strategies also form the basis for automating
portions of software development activities.

The strategy framework is generic. The notions of problems, solutions, and acceptability
can be freely defined. In the previous chapters, we have presented four different instances of
the specification framework, covering the specification, design, and implementation phases of
the software life cycle. The existence of these instances shows that the strategy framework is
truly generic, and that strategies are powerful enough to support a wide variety of software
engineering activities. Moreover, we have shown that the formalization of appropriately
engineered knowledge is possible in a routine manner.
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Different support systems implementing different instantiations of the strategy framework
have a strong potential for successful combination. Such combinations can provide integrated
tool support for several consecutive phases of a software life cycle.

Agendas, resulting from our approach to knowledge engineering, and strategies, resulting
from our approach to knowledge representation, lead to a uniform and flexible approach for
supporting the application of formal techniques in software engineering.

Standardization of Products and Processes in Software Engineering

This work supports recent trends in software engineering that attempt to detect patterns of
use and represent connections between software engineering artifacts that go beyond syntax.
Achieving these goals is important for mastering the increasing complexity of software engi-
neering artifacts. The emerging field of software architectures (Shaw and Garlan, 1996) and
the development of design patterns (Gamma et al., 1995) are prominent examples of this kind
of research.

In the field of software architecture, architectural styles (which have been formally charac-
terized in Chapter 4) capture frequently used design principles for software systems. Design
patterns have had much success in object-oriented software construction. They represent fre-
quently used ways to combine classes or associate objects to achieve a certain purpose. In the
same way as architectural styles, we have formally characterized design patterns for which
communication between objects is important'. Whereas concrete agendas are very much ori-
ented on the activity they support, the general concept of an agenda is not specialized to an
activity such as software design or a programming paradigm such as object-orientedness, as is
the case for architectural styles and design patterns. Apart from the fact that these concepts
are more specialized in their application than agendas, the main difference is that they do
not describe processes but products.

For the application of formal techniques in software engineering, the means for mastering
complexity and for finding common patterns in different products and different processes are
at least as important as in classical software engineering. Agendas and strategies support the
trends described above because development tasks are performed in a standardized way. This
not only supports developers but also other persons that must understand the development
process and its results, for example, because they must change or further develop the artifact
in question. This standardization also makes certification procedures much more realistic and
meaningful.

In engineering disciplines such as mechanical or civil engineering, it is taken for granted
that the design of a new machine or a new building uses standardized parts and that stan-
dardized processes are followed. Agendas and strategies can surely help us achieve such a
situation.

'Examples are the Facade, Chain of Responsibility, Mediator, Observer, and Strategy design patterns.
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Appendix A

Summary of Z Notation

Sets

Basic types: [TYPF,, TYPF,, ..., TYPE,]

Variable declaration: = : TYPFE

Powerset: PX ={Y | Y C X}

Finite subsets: FX ={Y | Y C X A Y finite}
Number of members of finite sets: #.X

Cartesian product: X x Y ={(z,y) |2 € X Ay€ Y}

Notation for sets: {Decls | Pred o Expr}
denotes the set of all Fxpr that satisfy Pred, based on the variables declared in Decls

Predicates
Connectives: = ,A,V, =, &
Quantifiers:
V Decls | Pred; e Pred; < Y Decls o (Pred; = Preds)

3 Decls | Pred, ® Pred; < 3 Decls o (Pred; A Predy)
d, ... : there exists exactly one
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222 Appendix A. Summary of Z Notation

Relations

Binary relation: X «— Y =P(X x Y)

Member of a relation: z — y = (z, y)

Let R: X «+— Y, SCX, TCY,Q:Y «— Z:

Domain of binary relation: domR={z: X |(Jy: Yez—ye R)}
Range of binary relation: ran R={y: Y | (Jz: X ez — y € R)}
Inverse of binary relation: R~ ={z: X;y: Y|z —y € Rey— z}
Domain restriction: S<R={z:X;y:Y |2 € SAz—y€E R}
Range restriction: R>T ={z: X;y: Y |ye T ANz — y€ R}
Domain subtraction: S<9R={z:X;y: Y |2¢SAz—y€eR}
Range subtraction: R T={2:X;y: Y |yé T ANz — y€ R}

Composition: R;Q={z: X;y:Y;z:Z|z2—y€ERANy—2€ Qex+r 2}

Functions

Lambda expressions: A Decls | Pred o Fxpr
denotes a function, mapping each (composed) value of the type contained in the decla-
ration Decls that satisfy the predicate Pred to the value determined by the expression
Fxpr.

Partial functions: X —+ VY ={R: X «— VY |V2: X;y,z: Yer—yeERAz—2€R=
y =1z}
Total functions: X — Y ={f: X +— VY |domf = X}

Injektive partial functions: X —+ Y ={f: X +— Y |V, 20 : dom f e foy = fug = 2y =

$2}

Injektive total functions: X — Y = (X+)¥Y N (X —Y)
Partial onto functions: X +— Y ={f: X = Y |ranf = Y}
Total onto functions: X — YV = (X = Y)Nn(X — V)
Bijective total functions: X — Y =(X — Y)Nn(X — Y)
Finite partial functions: X = Y ={f: X = Y |domf € F X}
Finite partial injections: X - Y = (X + V)N (X =+ Y)

Overriding: Let f,g: X =Y. f®dg=((domg)<af)Uyg
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Sequences

Representation: seq X = {f : N+ X | dom f = 1..#f}
Example: {(a,b,c)={1— a,2— b,3+— ¢}

Nonempty sequences: seq1 X =seq X \ {{)}

Injective sequences: iseq X =seq X N (N + X)

Functions on sequences: e head s selects first element of s

o last s selects last element of s

tail s contains all elements of s except the first one

front s contains all elements of s except the last one
e s tis the concatenation of s and ¢

e rev s is the reverse of s

Axiomatic Descriptions

They introduce global variables whose values may be restricted. Notation:
Decls
Preds
Example:
table_length : N
table_length < 1000
introduces the global variable table_length and restricts its value to be less than or equal to
1000. The predicate part of an axiomatic definition is optional.

Free Type Definitions
Free types are algebraically defined data types.
To=c|...lca | dil(FA) |- .| d(Fr))

is an abbreviation for

[T]
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Cly...cp: T
dllElHT

dpm : By — T

{e}s .o {en}yrand, ... rand,,) partition T'

The ¢; are the constants of the type; the d; are its constructors, i.e. total injective functions
from FE; to T. The constants and the values yielded by the constructor functions are all
disjoint, and each member of the type is either one of the constants or in the range of one of
the constructor functions.

Global Abbreviations

An abbreviation definition introduces a new global constant: Name == Fzpr. Example:
FEven=={e:N|3dn:Ne2xn=c¢}

Local Abbreviations

In the let-expression let zy == FEy; ...; z, == FE, e E  the variables zy,...,z, are
local; their scope includes the expression F, but not the expressions Fjy,..., F, that are the
right-hand sides of the local definitions.

Schema Notation

Schemas are the structuring mechanism of Z. They have a name and consist of a declaration
and a predicate part. In the declaration part, local names are introduced. The predicate part
can be used to restrict the values of the schema components declared in the declaration part.
The syntactic form of a schema is:

__SchemaName
Decls

Preds

or alternatively

SchemaName = [Decls | Preds]

Schema Inclusion

If a schema name 57 occurs in the declaration part of another schema S, then all declarations
of 51 become visible in .5, and the predicates of S; and 5" are conjoined. Names occurring in
both schemas must have the same type; they are then identified.



225

Schema Decoration

The schema decoration S’ of a schema S is obtained by replacing all declared variables
vy, U2, ... 10 S by their “primed” versions v{, vs,.... This is done in the declaration as well

as in the predicate part.

The A notation uses schema decoration and inclusion: for a schema 5, AS is defined as:

AS
S
S/

S and S’ denote the state before and after execution of an operation, respectively. The
postcondition of an operation is usually expressed by equations of the form v/ = ...v...,
where v is declared in 5.

The schema =5 says that the values of the declared variables are not changed:

=5
AS

NoChange

State and Operation Schemas

Schemas are used to define the global state of a system as well as the operations working on
that state. A state schema introduces the components of the state and integrity constraints
defining the legal system states.

__State
x1 : Typey

x,  Type,

integrity constraints

An operation schema usually imports the state schema and its decorated version (AState).
Inputs of an operation are marked with “7”, outputs are marked with “!”. The predicate part
of an operation schema states the precondition of an operation, how the system state evolves,
and what conditions the output must fulfill.
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— Operation

AState

input? : Type;
output! : Type,

precondition

post_state
outputs

Schema Types

Each schema defines a type. If the declaration part of a schema consists of the declarations
zy : Ty; ...5 @, o T, then the corresponding type is denoted {2y : Ty; ...; @, @ T). The
members of the schema type are bindings z = (x1 = vy,..., %, = v,), with components

2.2 = ;.



