
Methodological Support for Formally Specifying
Safety-Critical Software

Maritta Heisel
Technische Universität Berlin

�
Carsten Sühl
GMD FIRST

�

Abstract

We present the concept of an agenda and apply this concept to the formal specification of software
for safety-critical applications. An agenda describes a list of activities to solving a task in software
engineering, and validations of the results of the activities. Agendas used to support the application of
formal specification techniques provide detailed guidance for specifiers, schematic expressions of the
used specification language that only need to be instantiated, and application independent validation
criteria. We present an agenda for a frequently used design of safety-critical systems and illustrate its
usage by an example. Using agendas to systematically develop formal specifications for safety-critical
software contributes to system safety because, first, the specifications are developed in a standardized
way, making them better comprehensible for other persons. Secondly, using a formal language yields
specifications with an unambiguous semantics as the starting point of further design and implementation.
Thirdly, the recommended validation criteria draw the specifier’s attention to common mistakes and thus
enhance the quality of the resulting specification.

1 Introduction

Although every software-based system potentially benefits from the application of formal methods, their
use is particularly advantageous in the development of safety-critical systems. The potential damage oper-
ators and developers of a safety-critical system have to envisage in case of an accident may be much greater
than the additional costs of applying formal methods in system development. It is therefore worthwhile to
develop formal methods tailor-made for the development of safety-critical systems.

A major drawback of formal techniques is that they are not easy to apply. Users of formal techniques
need an appropriate education. They have to deal with lots of details, and often they are left alone with a
mere formalism without any guidance on how to use it.

While nothing can be done about the first two points, it is definitely possible to provide guidance for
the users of formal techniques. In this paper, we introduce the concept of an agenda that makes explicit
the activities to be performed when developing an artifact in software engineering. We present a concrete
agenda that supports specifiers in the development of specifications of software for safety-critical applica-
tions. The agenda not only makes all steps of the specification process explicit. It also provides schematic
expressions of the specification language to be used and validation criteria to check the specification for
consistency and completeness.

In the following, we first describe the class of systems we consider and the specification language we
will use (Section 2). We then describe the concept of an agenda in more detail in Section 3. In Section 4,
we present an agenda for specifying software suitable for a common class of safety-critical systems. We
illustrate the usage of this agenda in Section 5. Finally, we discuss related work in Section 6 and summarize
our achievements in Section 7.

�
Franklinstr. 28/29, Sekr. FR 5-6, D-10587 Berlin, Germany, email: heisel@cs.tu-berlin.de, fax: +49-30-314-73488�
Rudower Chaussee 5, D-12489 Berlin, Germany, email: suehl@first.gmd.de, fax: +49-30-6392-1805

1



2 System Model and Specification Language

The purpose of the systems we want to consider is to control some technical process, where the control
component is at least partially realized by software. Such a system consists of four parts: the technical
process, the control component, sensors to communicate information about the current state of the technical
process to the control component, and actuators that can be used by the control component to influence the
behavior of the technical process.

A software-based control component affects certain process variables (manipulated variables) by send-
ing commands to actuators. By evaluating the current state of certain process variables which are measured
by sensors (controlled variables), the control component approximates the current state of the real process
to verify the effect of the commands sent to the actuators and to determine further commands to be sent. It
is very important that the image of the state of the technical process that is built up in the software control
component is sufficiently accurate and up-to-date. In the following, we will call this state the internal state,
because it is internal to the software control component; the state of the technical process we will call the
external state.

Most safety-critical systems are reactive. Hence, two aspects are important for the specification of
software for safety-critical systems. First, it must be possible to specify behavior, i.e. how the system
reacts to incoming events. Second, the structure of the system’s data state and the operations that change
this state must be specified. These requirements lead us to use a combination of the process algebra real-
time CSP [Dav93] and the model-based specification language Z [Spi92].

For each system operation Op specified in the Z part of a specification, the CSP part is able to refer to the
event OpExecution. For each input or output of a system operation defined in Z, there is a communication
channel within the CSP part onto which an input value is written or an output value is read from. The
dynamic behavior of a software component may depend on the current internal system state. To take this
requirement into account, a process of the CSP part is able to refer to the current internal system state via
predicates which are specified in the Z part by schemas. For a more detailed description, see [HS96, Hei97].

3 Agendas and Reference Architectures

An agenda is a list of activities to be performed when carrying out some task. In this paper, we consider
the application of formal specification techniques in the context of system safety. Here, agendas contain
informal descriptions of the activities. They may also contain schematic expressions of the formal specifi-
cation language that can be instantiated in carrying out the activity. The activities listed in an agenda may
depend on each other. Usually, they will have to be repeated to achieve the goal, like in the spiral model of
software engineering.

As one of the major reasons for applying formal techniques is to guarantee semantic properties of an
artifact, the activities of an agenda may have validation conditions associated with them. These validation
conditions state necessary semantic conditions that the artifact must fulfill in order to serve its purpose
properly. Since the verification conditions that can be stated in an agenda are necessarily application
independent, the developed artifact should be further validated with respect to application dependent needs.

Following an agenda gives no guarantee of success. Agendas cannot replace creativity, but they can
tell the user what needs to be done and can help avoid omissions and inconsistencies. Their use lies in
an improvement of the quality of the developed products and in the possibility for reusing the knowledge
incorporated in an agenda.

In this paper, we show how agendas can be profitably employed to specify software to control safety-
critical systems, as the ones described in Section 2. There are several ways to design safety-critical systems,
according to the manner in which activities of the control component take place, and the manner in which
system components trigger these activities. These different approaches to the design of safety-critical sys-
tems can be expressed as reference architectures. The architecture we consider here assumes that sensors
are no passive measuring devices but can cause interrupts in the control component.

The agenda we present for this active sensors architecture describes the steps to be taken to specify a
suitable software control component. It provides schematic expressions of Z or real-time CSP that only
need to be instantiated, and states validation obligations that should be fulfilled. Our general approach to

2



internal
system
state

actuator commands

real-time CSP

Z

au
xi

lia
ry

 p
ro

ce
ss

es

sensor events

Priority

EventOpNExecution

EventOp2Execution

EventOp1Execution

Interface Control

EventOp1

EventOp2

EventOpN

prioritized events

Figure 1: Software Control Component for Ac-
tive Sensors Architecture

5, 4 8 9 10 113

6

2

1

7

Figure 2: Dependencies of Steps

the specification of safety-critical software is to first decide on the architecture of the system for which a
software control component must be specified, and then to follow the steps of the corresponding agenda.

The aim of this work is not to completely cover the area of specification of safety-critical systems,
but to show that detailed guidance can be provided to specifiers of software systems if special contexts
are considered. Consequently, other reference architectures for the design of safety-critical systems are
useful, too. An example can be found in [Hei97]. Furthermore, concrete safety-critical systems need not
be “pure” instances of predefined architectures. When necessary, reference architectures can be combined
as appropriate.

4 An Agenda for the Active Sensors Architecture

An active sensor controls a certain variable of the technical process and independently reports certain
changes of the controlled variable to the control component at arbitrary time instants. Such a report im-
mediately triggers a handling operation within the control component. The active sensors architecture is
applicable to systems with only active sensors. Moreover, we assume that it is appropriate to distinguish
several operational modes of the system. Within distinct modes, which can model different environmental
or internal conditions, the behavior of the system – and thus of the control component – may be totally
different.

Figure 1 shows the structure of a software control component associated with the active sensors archi-
tecture. The CSP part of such a control component consists of three parallel processes. A Priority process
receives the sensor events from the environment. If several events occur at the same time, this process de-
fines which of these events is treated with priority. Depending on the prioritized events passed on from the
Priority process, an InterfaceControl process invokes a Z operation to update the internal state of the soft-
ware controller. Hence, the Z operations correspond to events that cause transitions between operational
modes. The InterfaceControl process is also responsible for sending actuator commands to the environ-
ment. Finally, there may be auxiliary processes that interact only with the InterfaceControl process, not
with the environment or with the Priority process. The active sensors architecture is suitable for systems
that continuously have to react to user commands or other stimuli from the environment.

An overview of the agenda for this architecture is given in Table 1. The steps shown there need not be
executed exactly in the given order. Figure 2 shows the dependencies between them. In the following, we
describe the steps in more detail; their associated validation conditions are explained when necessary. For
a more comprehensive presentation, see [Hei97].

Step 1 Model the sensors and actuators as sets of CSP events or Z types.
Sensors trigger operations of the control component. If a sensor carries a measured value, it is modeled as

3



No. Step Validation Condition

1 Model the sensors and actuators as sets of
CSP events or Z types.

2 Decide on auxiliary processes.
3 Decide on the operational modes of the

system and the initial modes.
4 Set up a mode transition relation, specify-

ing which events relate which modes.
4.1. All events identified in Step 1 and all modes
defined in Step 3 must occur in the transition rela-
tion.
4.2. The omission of a mode-event pair from the
relation must be justified.
4.3. All modes must be reachable from an initial
mode.

5 Define the internal system states and the
initial states.

5.1. The internal system state must be an appro-
priate approximation of the state of the technical
process.
5.2. Each legal state must be safe.
5.3. There must exist legal initial states.
5.4. For each initial internal state, the controller
must be in an initial mode.

6 Specify a Z operation for each mode tran-
sition contained in the mode transition re-
lation.

6.1. These operations must be consistent with the
mode transition relation.

7 Define the auxiliary processes identified in
Step 2.

7.1. The alphabets of these processes must not
contain external events or events related to the Z
part of the specification.

8 Specify priorities on events (optional). 8.1. The priorities must not be cyclic.
9 Specify the interface control process. 9.1. All prioritized external events and all internal

events must occur as initial events of the branches
of the interface control process.
9.2. The preconditions of the invoked Z operations
must be satisfied.

10 Define the overall control process. 10.1. The auxiliary processes must communicate
with the interface control process.

11 Define further requirements or environ-
mental assumptions if necessary.

Table 1: Agenda for the Active Sensors Architecture

a Z type whose members are communicated via a communication channel. If a sensor just carries boolean
information (i.e., something happens or not), it is modeled as a set of CSP events. Modeling the sensors
yields a set of events Sensor Events. Modeling the actuators proceeds analogously.

Step 2 Decide on auxiliary processes.
One can regard these auxiliary processes as subcomponents of the controller that do not need a state.
Examples are timers that are controlled by the software component. The events that are used in the auxiliary
processes to communicate with the rest of the control component form the set Internal Events.

Step 3 Decide on the operational modes of the system and the initial modes.
According to different environmental conditions in which the control component has to react differently, a
set of operational modes has to be defined yielding an enumeration type MODE. Moreover, modes must
be identified in which the controller can be initialized.

Step 4 Set up a mode transition relation, specifying which events relate which modes.
This transition relation can be defined in Z, or it can be given as a state transition diagram. For each

4



operational mode m and each event e (which can be internal or external), it must be decided on the successor
modes that are possible when event e occurs in mode m. It should also be specified what happens when
the sensors report an event that cannot normally occur in the respective mode. Hence, the mode transition
relation should be made as complete as possible, and a justification should be given, if no successor mode
is defined for a pair � m � e � .
Step 5 Define the internal system state and the initial states.
The legal states of the control component as well as its initial states must be specified by means of Z
schemas. Furthermore, safety constraints on controller must be defined. These safety constraints have to
be ensured by the definition of the legal states, see validation condition 5.2.

Step 6 Specify a Z operation for each mode transition contained in the mode transition relation.
The Z operations correspond to mode transitions caused by the occurrence of events. Different mode
transitions might be associated with the same operation. The operations must be consistent with the state
transition relation.

Step 7 Define the auxiliary processes identified in Step 2.
This step can be performed by defining process terms or by specifying predicates that restrict the behavior
of the respective processes. The auxiliary processes should neither receive external sensor messages nor
invoke Z operations or depend on the internal system state. They should exclusively interact with the
InterfaceControl process, see Figure 1.

Step 8 Specify priorities on events if necessary.
To determine if priorities are necessary, we have to analyze the state transition diagram. If more than one
event can occur at the same time when the system is in a certain operational mode, it must be decided how
the system reacts when several events occur simultaneously. Usually, the event with the highest importance
for safety will be treated; the other ones will be ignored.

Technically, this means to define derived events and a process Priority that relates the original events
with the derived ones. If we have a high priority event high and a low priority event low, then the system
will only react to the event low if high does not occur at the same time. Therefore, an event excl low is
derived that occurs at time t exactly when low but not high occurs at time t.

Step 9 Specify the interface control process.
The interface control process handles the prioritized events coming from the sensors. According to the
internal or sensor events that occur, the interface control process triggers the execution of Z operations
and sends events to actuators or auxiliary processes. The interface control process will usually contain
an external choice of prioritized events. Each branch of this external choice should be robust, i.e., if the
sensors send signals that contradict the internal state of the system, then the system must handle the faulty
situation. Consequently, a possible form of interface control process that is executed after the system is
initialized is

InterfaceControlREADY ���� X �
event �
	 if � consistency condition �

then � execute event � -Z-operation �
� send actuator commands ��� Wait ��� X
else � emergency shutdown ��� send actuator commands ��� Stop fi���������

eventn 	 �����
All branches are defined similarly. To ensure that the execution of each branch takes time, we need a Wait
process in each of them. This form is only possible if there is a fail-safe state. Then the system can shut
down when an inconsistency is detected. To express the consistency conditions, predicates on the current
internal system state must be defined in Z.

According to validation condition 9.2, the preconditions of the invoked Z operations must be satisfied.
This must be guaranteed by appropriate consistency conditions guarding the invocation of the Z operations
in the interface control process.

Step 10 Define the overall control process.

5



EnteringTrainSensor1
2

LeavingTrainSensor1
2

GateSensor

TrainSensorHandler InterfaceControl

Gates

OpenGateCmd,
CloseGateCmd

TrainEntered,
TrainLeft

GateOpened,
GateClosed

TrainEntered1,
TrainEntered2

TrainLeft1,
TrainLeft2

Crossing
Controller

Timer

Timer_elapsedTimer_set,
Timer_reset

READY

Figure 3: Architecture of Controller

OPEN WARNING

OPENING CLOSING

CLOSED

INCON

TrainEntered

WT_
elapsed

GateClosedTrainLeft

Gate
Opened

Train
Entered

TrainLeft TrainEntered

OT_
elapsed

Train
Left

CT_elapsed

Train
Entered

Train
Entered

Figure 4: Operational Modes

The control process combines the processes defined in Steps 7, 8, and 9. Let Aux� � ����� � Auxk be the auxiliary
processes defined in Step 7. Then a possible form of the overall control process is

ControlComponent �� � InterfaceControl � Aux ��� ����� � Auxk ��� Internal Events

InterfaceControl �� Init 	
� InterfaceControlREADY � Priority ��� ��� Priority � � Sensor Events � Internal Events � �

where Init establishes an initial internal system state. The internal events are hidden from the environment,
and the prioritized events newly introduced in the alphabet of the Priority process are hidden from the other
components of the controller (and hence from the environment).

Checking validation condition 10.1, it must be verified that the auxiliary processes communicate with
the interface control process. Technically, this means that the alphabets of (Aux ��� ����� � Auxk) and
InterfaceControl have a non-empty intersection.

Step 11 Define further requirements or environmental assumptions if necessary.
Usually, these will be assumptions on the environment and real-time requirements on the execution time of
Z operations.

5 Example: Railroad Crossing

We illustrate the agenda by specifying a software component controlling the gates of a railroad crossing,
known as the Generalized Railroad Problem, see e.g. [HM96]. We assume that there are two tracks at the
crossing, one in each direction.

We begin with Step 1 of the agenda, i.e. the definition of the sensors and actuators. For each direction,
a sensor is situated in front of the crossing to report the arrival of trains. The arrival of trains are represented
by the CSP events TrainEntered � and TrainEntered 	 , respectively. Analogously, behind the crossing there
are sensors reporting the departure of trains represented by the events TrainLeft � and TrainLeft 	 .

The controller manipulates the gates of the crossing by giving the commands to close and to open
the gates (events CloseGateCmd and OpenGateCmd). Sensors detect the transition of the gates into a
completely closed or completely opened state.1 These transitions are modeled by the events GateOpened
and GateClosed. The interface of the controller to its environment is shown in Figure 3.

According to Step 3 of the agenda, we define a data type Modes that contains the operational modes of
the controller.

Modes 
�
 � OPEN 
 OPENING 
 CLOSED 
 CLOSING 
 WARNING 
 INCON

The mode OPEN will be the only initial mode of the controller.

1We only regard the state of the gates as a whole, i.e. the gates are regarded to be open or closed if and only if all gates are open
or closed.

6



To define the transitions between the operational modes, which are associated with sensor events and
internal events, we have to decide on auxiliary processes (Step 2). The opening and closing of the gates
must be finished within certain time intervals, whose lengths are expressed as constants MaxOpeningDur
and MaxClosingDur, respectively. Car drivers and pedestrians are warned WarningDur time units before
the gates are closed.

MaxOpeningDur � MaxClosingDur � WarningDur 
 ���

To monitor these intervals we use three timer components WarningTimer, OpeningTimer, and ClosingTimer,
which will mark the end of these intervals by an event Timer elapsed. Their alphabets, i.e. the set of events
in which they can participate is

Internal Events ���� WT set � WT reset � WT elapsed � OT set � OT reset � OT elapsed �
CT set � CT reset � CT elapsed �

The operational modes and the transitions between them are depicted in Figure 4. This figure graphi-
cally defines the mode transition relation to be set up in Step 4 of the agenda. As can be easily verified,
all external and internal events are taken into account in the state transition diagram, for each mode-event
pair the consequence is considered, and each mode is reachable from the initial mode OPEN. Hence, the
validation conditions associated with Step 4 are fulfilled.

Performing Step 5 of the agenda, we decide that the state components of the controller are the current
operational mode and the number of trains currently being in the crossing area. The safety constraint for
the controller is that there must not be any train in the area while the gates are open. An availability
requirement is that the gates may only be closed if there are trains in the crossing area. These conditions
are reflected in the state schema.

State
mode 
 Modes
num trains 
 �
mode �	� OPEN � OPENING 
�� num trains ��

num trains ��
�� mode ��� OPEN � OPENING � INCON 


While validation condition 5.1 cannot be shown formally, validation condition 5.2 is satisfied by construc-
tion because the safety constraint is part of the state invariant.

When starting the controller, it is assumed that no train is in the area and that the gates are open.

Init ���� State � 
 mode � � OPEN � num trains � ��
��
The Init schema uniquely defines the initial state, whose compliance with the state invariant is straightfor-
ward to prove (validation condition 5.3). By the definition of the Init schema, validation condition 5.4 is
trivially fulfilled.

To carry out Step 6, we model the possible commands to the gates by the data type GateCmd.

GateCmd 
�
 � CMD OPEN 
 CMD CLOSE 
 CMD NONE

The schema Actuators defines how the actuator commands are derived from the operational mode of the
controller.

Actuators
State �
gate � 
 GateCmd

gate � � CMD OPEN � mode � � OPENING
gate � � CMD CLOSE � mode ����� CLOSING � INCON 


We can now define the operations on the abstract state. They reflect the mode transition diagram of Figure
4 and are straightforward to define.

7



TrainEntered�
State � Actuators

mode �� INCON

num trains � � num trains ���
mode � � OPEN � OPENING 
�� mode � � WARNING
mode � � CLOSING � CLOSED � WARNING 
�� mode � � mode

TrainLeft�
State � Actuators

mode � CLOSED

num trains � � num trains ���
mode � � if num trains � � 


then OPENING else CLOSED

GateOpened ���� � State � Actuators 
 mode � OPENING � mode � � OPEN � num trains � � num trains �
The remaining operations GateClosed, WarningFin and Incon (that enters the fail-safe state), are defined
analogously.

The relationship between the modes in the pre and post state, as defined by the operation schemas, di-
rectly reflects the state transition diagram. Therefore, validation condition 6.1 can be checked successfully.

Continuing with Step 7, we specify the auxiliary timer subcomponents which monitor the maximal
closing and opening duration of the gates as well as the warning period.

WarningTimer �� � X � � WT set 	 � Wait WarningDur � WT elapsed 	 X �	� WT reset 	 X �
The processes ClosingTimer and OpeningTimer are defined analogously.

Inspecting the mode transition diagram reveals that there is no need to give priority to some event in
any mode. Hence, Step 8 is omitted.

To accomplish Step 9, we first specify a process TrainSensorHandler, which serves two purposes.
First, it abstracts from the concrete sensor reporting the event of a train arrival or a train departure. Second,
it buffers incoming events, thus guaranteeing that no sensor report is ignored by the controller.

TrainSensorHandler ��� � X � TrainEntered � 	 TrainEntered 	 X ��
�


 � � X � TrainEntered 	 	 TrainEntered 	 X �



�
 � � X � TrainLeft � 	 TrainLeft 	 X ��
�
�
 � � X � TrainLeft 	 	 TrainLeft 	 X �

We can then specify the interface control process as follows.

InterfaceControl �� Init 	 � InterfaceControlREADY 
�� EventSet ��
 TrainSensorHandler � � EventSet

EventSet �� � TrainEntered � TrainLeft �
The process InterfaceControlREADY reacts to the derived events contained in EventSet that are supplied by
the process TrainSensorHandler. The derived events are hidden from the environment.

With the subprocess ActuatorOut, we specify how the actuator command is derived from the respective
operation output.

ActuatorOut �� gate � CMD OPEN 	 OpenGateCmd 	 Skip�
gate � CMD CLOSE 	 CloseGateCmd 	 Skip

�
gate � CMD NONE 	 Skip

The process InterfaceControlREADY, specifying the reactive behavior after initialization, contains an in-
stance of the schematic process presented in Section 4. To define it, we need some predicates on the
internal state, which are defined in Z.

IsClosed �� � State 
 mode � CLOSED �
IsOpening ���� State 
 mode � OPENING �
IsClosing �� � State 
 mode � CLOSING �

IsWarning ���� State 
 mode � WARNING �
AreaEmpty ���� State 
 num trains ��
��
FirstTrain �� � State 
 num trains ��� �

8



InterfaceControlREADY ���� X �
� TrainEntered 	 TrainEnteredExecution 	 Wait ��� ActuatorOut �

� if FirstTrain then WT set 	 Skip else Skip fi � � X�
TrainLeft 	 if IsClosed then TrainLeftExecution 	 Wait ��� ActuatorOut �

� if AreaEmpty then OT set 	 Skip else Skip fi ��� X
else InconExecution 	 Wait ��� ActuatorOut � Stop fi�

GateOpened 	 if IsOpening
then GateOpenedExecution 	 Wait ��� ActuatorOut � OT reset 	 X
else InconExecution 	 Wait ��� ActuatorOut � Stop fi�

GateClosed 	 if IsClosing
then GateClosedExecution 	 Wait ��� ActuatorOut � CT reset 	 X
else InconExecution 	 Wait ��� ActuatorOut � Stop fi�

WT elapsed 	 if IsWarning
then WarningFinExecution 	 Wait ��� ActuatorOut � CT set 	 X
else InconExecution 	 Wait ��� ActuatorOut � Stop fi �

� � OT elapsed 	 Skip
�

CT elapsed 	 Skip ��� InconExecution 	 Wait ��� ActuatorOut � Stop

The reactive behavior is recurrent which is indicated by the recursion operator � . When an event is reported
by a sensor, the controller checks whether this report is consistent with the current state. Such a consistency
check is modeled by referring to the respective Z predicate. If the event is consistent with the internal state,
the controller executes the system operation related to the sensor report. Afterwards, the actuator command
determined by the operation are sent to the actuators. In case of an inconsistency, the controller changes to
the mode INCON and attempts to fail safe by closing the gates.

Each branch of the external choice operator
�

defines the reaction to the occurrence of a certain event.
All derived sensor events and internal timer events are initial events of the branches (validation condition
9.1). Moreover, the predicates guarding the branches guarantee that the preconditions of the corresponding
Z operations are fulfilled (validation condition 9.2).

This “normal” behavior in front of the interrupt operator � can be interrupted at any time, if a timer,
monitoring the gates’ opening or closing duration, elapses without being reset.

Having reached Step 10 of the agenda, we specify the overall control process according to the schematic
expression given in Section 4.

CrossingController ��� InterfaceControl 
�� Internal Events ��
 � WarningTimer 
�


 OpeningTimer 


�
 ClosingTimer � �
� Internal Events

The auxiliary timer processes communicate with the interface control process via the events contained in
the set Internal Events defined in Step 2. Hence, validation condition 10.1 is fulfilled.

Finally, performing Step 11 of the agenda, we require that, at each time instant, the actuators are able
to accept the commands to open or close the gates. Furthermore, the sensors are supposed not to send
contradictory events2.

EnvironmentalAssumption ���� t � ��� ��� � �
� � OpenGateCmd open t � CloseGateCmd open t ���
	 � GateOpened open t � GateClosed open t � �

This concludes the development of a specification for the controller of the railway crossing. The example
shows that, following an agenda, specifications for safety-critical software can be developed in a fairly
routine way. When specifiers are relieved from the task to find new ways of structuring a specification for
each new application, they can better concentrate on the peculiarities of the application itself.

2The predicate e open t means that the environment of a process offers event e at time t.

9



6 Related Work

The work presented in this paper further elaborates the results of an earlier paper [HS96]. There, we de-
scribed related work presenting different formalisms for specifying safety-critical software and case studies
using these formalisms. The focus of this paper, however, is on methodological support for applying formal
techniques. Related to this aim is the work of Souquières and Lévy [SL93]. They support specification
acquisition with development operators that reduce tasks to subtasks. However, they do not consider safety-
related issues, and the development operators do not provide means to validate the developed specification.
Chernack [Che96] uses a concept called checklist to support inspection processes. In contrast to agendas,
checklists presuppose the existence of a software artifact and aim at detecting defects in this artifact.

7 Conclusions

With the concept of an agenda, we have introduced a means for organizing work that has to be carried out in
a particular context. The purpose of agendas is to capture the knowledge used by the domain experts when
carrying out their tasks. Agendas are specific to the task to be performed, not to the formalism to be used.
Therefore, the use of agendas can be smoothly introduced into an organization. Developers essentially
proceed as before, only that the steps to be taken in performing the task are made explicit. Thus, agendas
contribute to making formal techniques applicable for non-experts.

Based on a reference architecture capturing a common design of safety-critical systems, we have pre-
sented an agenda that gives detailed guidance (i) for developing specifications of software components
suitable for the architecture and (ii) for validating the component specifications. An example demonstrated
the practicality of the agenda.

Using agendas, specification acquisition is performed in a standardized way. This not only supports
specifiers but also other persons who must understand the specification process and its results, for example,
because they must change or further develop the specification.

All in all, our approach to supporting the specification of software for safety-critical applications en-
hances the safety of the entire technical system, because the embedded software is specified in a systematic
way, the specification has an unambiguous semantics, and the specification is validated more rigorously
than this would be possible with informal specifications.

Acknowledgment. We thank Thomas Santen for his comments on this work.

References

[Che96] Yuri Chernack. A statistical approach to the inspection checklist formal synthesis and improve-
ment. IEEE Transactions on Software Engineering, 22(12):866–874, December 1996.

[Dav93] Jim Davies. Specification and Proof in Real-Time CSP. Cambridge University Press, 1993.

[Hei97] Maritta Heisel. Improving Software Quality with Formal Methods: Methodology and Machine
Support. Habilitation Thesis, TU Berlin, 1997. submitted.

[HM96] Constance Heitmeyer and Dino Mandrioli, editors. Formal Methods for Real-Time Computing,
chapter 1. Trends in Software. John Wiley & Sons, 1996.

[HS96] Maritta Heisel and Carsten S ühl. Formal specification of safety-critical software with Z and
real-time CSP. In E. Schoitsch, editor, Proceedings 15th International Conference on Computer
Safety, Reliability and Security, pages 31–45. Springer, 1996.

[SL93] Jeanine Souquières and Nicole Lévy. Description of specification developments. In Proc. of
Requirements Engineering ’93, pages 216–223, 1993.

[Spi92] J. M. Spivey. The Z Notation – A Reference Manual. Prentice Hall, 2nd edition, 1992.

10


