A Heuristic Algorithm to Detect Feature
Interactions in Requirements

Maritta Heisel' and Jeanine Souquiéres?

! Fakultét fiir Informatik, Universitit Magdeburg, D-39016 Magdeburg
2 LORIA—Université Nancy2, B.P. 239 Batiment LORIA, F-54506

Vandceuvre-les-Nancy

Abstract. We present a heuristic algorithm to systematically detect feature inter-
actions in requirements, which are expressed as constraints on system event traces.
The algorithm is part of a broader methodology for requirements elicitation and
formal specification. Given a new constraint and a set of already accepted con-
straints, it computes a set of candidate constraints that possibly interact with the
new one. We illustrate the algorithm by adding new features to a simple lift.

1 Introduction

The term “feature” has been coined in telecommunications, where a feature is
some service a client may subscribe to, such as call forwarding. It was also in
telecommunications where the problem of feature interaction occurred first.

Nowadays, features and the problem of integrating them are no longer
confined to the area of telecommunications. Features can be identified in
almost every software system, and there are even proposals to base the whole
software engineering process on features [3].

Following Turner et al. [3], we consider a feature as “a coherent and
identifiable bundle of system functionality that helps characterise the system
from the user perspective.” More technically, a feature is “a clustering or
modularisation of individual requirements” of a requirements specification.
This definition emphasises the user-oriented nature of features.

When a system is described in terms of several features, the situation may
occur where the features make perfect sense when considered in isolation, but
their combination leads to contradictions or unwanted or unexpected system
behaviour. This situation is called feature interaction.

Although some authors (e.g., [4,5]) distinguish between “good” and “bad”
interactions, we prefer not to do so, because the question whether an inter-
action is desirable or not must be decided by the user and must only be
addressed when the integration of the various features is undertaken.

Different approaches to feature-oriented software development can be dis-
tinguished according to the following criteria:

How are features represented?

How are feature interactions detected/avoided?
How are feature interactions resolved?

How are features composed /integrated?

o=

2 Maritta Heisel and Jeanine Souquiéres

In our work, these questions are answered as follows:

1. Features are sets of formalised requirements, where each requirement is
represented as a formula.

2. Because requirements are elicited in collaboration with the users by a
brainstorming process, we do not attempt to avoid interactions right from
the beginning but to detect and resolve them as early as possible. How
we achieve this goal is the topic of this paper.

3. We do not attempt to resolve feature interactions automatically, because
we think that each interaction should be discussed with the clients. It is
then up to the clients to decide on the required system behaviour.

4. Feature composition corresponds to conjunction of formulae. Hence, it is
commutative and associative. We think that these properties are desir-
able, because, for example, the behaviour of a telephone system should
not depend on the order the user subscribed to the different features.

In this paper—which is a revised and extended version of the position
paper [6]—we present an algorithm that, given a set of already accepted
requirements and a new requirement to be added, calculates a set of candidate
requirements with whom there might be an interaction. The algorithm is
heuristic, which means that we cannot guarantee that all existing interactions
are indeed detected.! Tt was developed as part of a method for requirements
engineering, but it is also useful for the evolution of systems.

Section 2 gives a brief overview of our requirements elicitation method.
Section 3 describes how to incorporate a single constraint into a set of exist-
ing constraints. Section 4 presents the algorithm for calculating interaction
candidates. Section 5 illustrates the application of the approach by way of
adding new features to a simple lift system. Related work is discussed in Sec-
tion 6. Section 7 concludes the paper with a discussion of the approach and
its benefits.

2 Method for Requirements Elicitation

Our method for requirements engineering [7,8] begins with an explicit require-
ments elicitation phase. The result of this first phase is a set of requirements,
which are expressed formally as constraints on sequences of events or oper-
ations that can happen or be invoked in the context of the system. These
constraints form the starting point for the development of a formal specifi-
cation. In the present paper, however, we will not describe the specification
phase, because the detection of feature interactions is part of the requirements
elicitation phase.

Our approach to requirements engineering is inspired by the work of Jack-
son and Zave [9,10] and by the first steps of object oriented methods and

! Striving for a provably correct and complete algorithm would necessitate a formal
and decidable notion of interaction. Because the notion of interaction covers more
phenomena than just logical inconsistency, it is questionable if such a definition
is possible or even desirable.

A Heuristic Algorithm to Detect Feature Interactions 3

notations such as UML [11]. The starting point is a brainstorming process
where the application domain and the requirements are described in nat-
ural language. This informal description is then transformed into a formal
representation. Requirements elicitation is performed in five steps:

1.

Introduce the domain vocabulary.

The different notions of the application domain are expressed in a textual
or graphical form.

State the facts, assumptions, and requirements concerning the system in
natural language, as a set of fragments corresponding to parts of scenar-
10s of the system behaviour.

It does not suffice to just state requirements for the system. Often, facts
and assumptions must be introduced to make the requirements satisfi-
able. Facts express conditions that always hold in the application do-
main, regardless of the implementation of the software system. Other
requirements cannot be enforced, because e.g., human users might vio-
late regulations. These conditions are expressed as assumptions.

List all relevant events that can happen in connection with the system,
and classify them.

Events concern the reactive part of the system. For each event, it must
be stated who is in control of the event (the software system or its envi-
ronment) and who can observe it.

List the system operations that can be invoked by users.

This step is concerned with the non-reactive part of the system to be
described. For purely reactive systems, it can be empty.

Formalise the facts, assumptions, and requirements as constraints on the
possible traces of system events.

Using constraints to talk about the behaviour of the system has the following
advantages:

e It is possible to express negative requirements, 1.e., to require that certain

things do not happen.

e It is possible to give scenarios, i.e., examples of system behaviour.
e Giving constraints does not fix the system behaviour entirely. The spec-

ification is not restricted unnecessarily. Any specification that fulfils the
constraints is admitted [7].

Steps 1 through 4 can be carried out in any order or in parallel, with

repetitions and revisions. There are validation conditions associated with the
different steps, supporting quality assurance of the resulting product, stating
necessary semantic conditions that the developed artifact must fulfil in order
to serve its purpose properly:

e The vocabulary must contain exactly the notions occurring in the facts,

assumptions, requirements, operations, and events.

e There must not be any events controlled by the software system and not

shared with the environment.

4 Maritta Heisel and Jeanine Souquiéres

3 Method to Incorporate Single Constraints

In Step 5 of the method, facts, assumptions, and requirements must be for-
malised one by one. But before a new formalised constraint is added to the
set of already accepted constraints, its possible interactions with them should
be analysed, in order to detect inconsistencies or undesired behaviour.

In the following, we will use the term literal to mean predicate or event
symbols, or negations of such symbols. An event symbol e is supposed to
mean “event e occurs”, whereas — e is supposed to mean “event e does not
occur”. If we refer to predicate symbols and their negations, we will use the
term predicate literal. Fvent literals are defined analogously.

The following method gives guidelines how to incorporate a new constraint
into a set of already existing constraints.

5.1 Formalise the new constraint as a formula on system traces.
To formalise facts, assumptions and requirements, we use traces, i.e., se-
quences of events happening in a given state of the system at a given
time. The system is started in state S1. When event e; happens at time
t1, then the system enters the state S2, and so forth:

e e en
S1—1) SQ —2) Snt—>Sn+1

Let Tr be the set of p(t)lssib]e ttlfaces. A constraint is expressed as a formula
restricting the set Tr. For a given trace tr € Tr, tr(i) denotes the i-th
element of this trace, tr(i).s the state of the i-th element, tr(7).e the
event which occurs in that state, and t¢r(¢).t is the time at which the
event occurs. For each possible trace, its prefixes are also possible traces.
A formal specification of traces is given in Appendix A.

It may be necessary to introduce predicates on the system state to be
able to express the constraints formally. For each predicate, events that
establish it and events that falsify it must be stated. These events must
be shared with the software system.

If possible, we recommend expressing constraints as implications, where
either the precondition of the implication refers to an earlier state or an
earlier point in time than the postcondition, or both the pre- and post-
condition refer to the same state, i.e. we have an invariant of the system.

Example. When the lift is halted at a floor with the door open, a call
for this floor is not taken into account.

Vir:Tr; b: BUTTON o Vi :domtr | i # #tr e halted(tr(z).s)
A at(tr(i).s, floor(b)) A door_open(tr(i).s) A tr(i).e = press(b)
= = call(tr(i 4+ 1).s, floor(b))

This formula contains the event symbol press(b), which is parameterised
with a button, and the predicate symbols halted, at, door_open and call.
The predicates at and call have a floor as an additional parameter besides
the system state. The function floor associates a floor with a button. The
expression dom tr denotes the valid indices of the trace, i.e., 1 .. #ir,
where # denotes the length of a trace.

A Heuristic Algorithm to Detect Feature Interactions 5

5.2 Give a schematic expression of the constraint.
Our algorithm to determine interaction candidates uses schematic ver-
sions of formalised constraints. These have the form

T1OT20...0Tpn ~> Y1 0Y29...0 Yk

where the z;, y; are literals and ¢ denotes either conjunction or disjunc-
tion. The ~+ symbol separates the precondition from the postcondition.
For transforming a constraint into its schematic form, we abstract from
quantifiers and from parameters of predicate and event symbols.

Example. The schematic expression corresponding to the constraint
stated before is
halted A at A door_open N press ~» = call

5.3 Update the tables of semantic relations.
Because our algorithm is completely automatic, it cannot be based on
syntax alone. We also must take into account the semantic relations be-
tween the different symbols. We construct three tables of semantic rela-
tions:

1. Necessary conditions for events. If an event e can only occur if pred-
icate literal pl is true, then this table has an entry pl «~ e.
Example. The event close can only occur if the door is open:
door_open «~ close

2. Events establishing predicates. For each predicate literal pl, we need
to know the events e that establish it: e ~» pl
Example. The predicate door_open is established by the event open:
open ~+ door_open

3. Relations between predicate literals. For each predicate symbol p, we
determine:

o the set of predicate literals it entails: p— = {q : PLit | p = q}
o the set of predicate literals its negation entails:
“ps ={q:PLit| = p=q}
Example. door_open=, = {— door_closed, halted, at,— passes_by}
These tables are not only useful to detect interactions; they are also useful
to develop and validate the formal specification of the software system.
5.4 Determine interaction candidates, based on the list of schematic require-
ments (Step 5.2) and the semantic relation tables (Step 5.3).
The definition of the interaction candidates is given in Section 4.
5.5 Decide if there are interactions of the new constraint with the determined
candidates.
The algorithm determines a set of candidates to examine. It does not
prove that an interaction exists between the new constraint and each
candidate. It is up to the analyst and the customer to decide if the con-
junction of the new constraint with the candidates yields an unwanted
behaviour or if it even is contradictory.
5.6 Resolve interactions.
To resolve an interaction, we usually relax requirements or strengthen

6 Maritta Heisel and Jeanine Souquiéres

assumptions. Once a constraint has been modified, an interaction anal-
ysis on those literals that were changed or newly introduced must be
performed.

The following validation conditions are associated with Step 5 of the method
for requirements elicitation:

e cach requirement of Step 2 must be expressed,

e the set of constraints must be consistent,

e for each introduced predicate, events that modify it must be observable
by the software system.

Steps 5.1 through 5.6 preserve the mutual coherence between the different
constraints. Usually, revisions and communication with customers will be
necessary.

4 Determining Interaction Candidates

Two constraints are interaction candidates for one another if they have over-
lapping preconditions but incompatible postconditions, as is illustrated in
Figure 1. “Incompatible” does not necessarily mean “logically inconsistent”;
it could also mean “inadequate” for the purpose of the system.

=

Our algorithm to determine interaction candidates consists of two parts:
precondition interaction analysis determines constraints with preconditions
that are neither exclusive nor independent of each other. This means, there
are situations where both constraints might apply. Their postconditions have
to be checked for incompatibility. Postcondition interaction analysis, on the
other hand, determines as candidates the constraints with incompatible post-
conditions. If in such a case the preconditions do not exclude each other, an
interaction occurs.

&

Fig. 1. Interaction candidates

4.1 Precondition Interaction Candidates

If two constraints? z ~» y and u ~ w have common literals in their precon-
dition (z N u # @), then they are certainly interaction candidates.

2 Underlined identifiers denote sets of literals.

A Heuristic Algorithm to Detect Feature Interactions 7

But the common precondition may also be hidden. For example, if z
contains the event e, u contains the predicate literal pl, and e is only possible
if pl holds (pl «~ €), then we also have detected a common precondition pl
of the two constraints.

The common precondition may also be detected via reasoning on pred-
icates. If, for example, z contains the predicate literal pl, u contains the
predicate literal ¢, and there is a predicate literal w with pl = w and ¢ = w,
then w 1s a common precondition.

pr pl

?
N N + 1
’ p|=>]] pl:>
pre € pln P %] P plrel pre
F’OStT rpost
—e
¢ cefar

Fig. 2. Determining interaction candidates by precondition analysis

Figure 2 shows how to calculate interaction candidates Cpre(c’, far) by a
precondition analysis for a new constraint ¢’ with respect to the set far of
facts, assumptions, and requirements already defined. Let

precond(z1 0290 ... O Ty~ Y1 O Y20 ... O Yk) = {71,... Ty}
The set pre_predicates(c) of predicates that hold in the precondition of a

constraint ¢ are the predicate literals pl € precond(c) and the predicate
literals pl with pl «~ e, for all event symbols e € precond(c):

«~e=1{pl: PLit | pl «~ e}
pre_predicates(c) = (precond(c) N PLit) U UeEprecond(c)ﬂEVENT “~e

The predicative closure of the precondition of a constraint ¢ results from
the transitive and reflexive closure of the set pre_predicates(c) with respect
to implication, i.e.

Uplepre_predicates(c) pl:>

A constraint ¢ € far is an interaction candidate for a new constraint ¢’ if
their preconditions or their respective predicative closures contain common
literals.

Cpre(c’, far) =
{c : far | precond(c) N precond(c') # @} U
{c: far | A pl : pre_predicates(c); pl' : pre_predicates(c') o plo N pll, # @}

Two cases must be distinguished, because the precondition of a constraint
can contain event literals, whereas the predicative closure of the precondition
only contains predicate literals.

From the definition of Cpr.(c’, far), it follows that the set of candidates is
independent of the order in which the constraints are added, provided that
the same tables of semantic relations are used to compute «e and pl- . More-

8 Maritta Heisel and Jeanine Souquiéres

over, the candidate function distributes over set union of the preconditions
of constraints:

Ve, e, co 0 Constraint; cs : P Constraint e
3 € Cpre(cr,cs U{ea}) & 1 € Cpre(ca,cs U {c1})
A precond(c) = precond(c1) U precond(cs)
= Cpre(c, cs) = Cpre(cr, es) U Cpre(ca, c5)

When a constraint is changed by adding a new literal to 1ts precondition,
a new interaction analysis has to be performed only on this new literal.

4.2 Postcondition Interaction Candidates

To find conflicting postconditions, we compute the predicative closure of the
postcondition of the new constraint ¢’ and the one of each constraint ¢ € far
in much the same way as for the preconditions. For an event e contained in
the postcondition of a constraint, all predicate literals pl with e ~» pl belong
to the set post_predicates(c):

postcond(z1 0220 ... 0T~ Y10 Y20 ... 0o yk) = {1, Uk}

ew. = {pl: PLit | e ~ pl}

post_predicates(c) = (postcond(c) N PLit) U UeEpostcond(c)nEVENT [

A constraint ¢ is an interaction candidate for the new constraint ¢’ if
there exists a literal pl in its postcondition or in its predicative closure, the
negation of which is in the postcondition of ¢’ or in its predicative closure.
Figure 3 illustrates the definition.

Cpost(clafar) =

{c : far | postcond(c) opposite postcond(c')} U

{c: far | A pl : post_predicates(c); pl' : post_predicates(c') e
pl= opposite pl, }

ls1 oppositelsy < Apl : lsy @ = pl € lsy

where Isy, lsy are sets of literals and = =1 = [.

’ j Pl opl -]
p|=> 9 | pI=>
! ol

Fig. 3. Determining interaction candidates by postcondition analysis

€l cefar

Again, the two cases are necessary, because postconditions may contain
event literals, whereas predicative closures only contain predicate literals.

Of course, this definition is symmetric, too, and Cp,s: distributes over set
union of postconditions of constraints.

A Heuristic Algorithm to Detect Feature Interactions 9

The set of interaction candidates C(c’, far) of a new constraint ¢ with
respect to the set far is the union of the precondition and the postcondition
interaction candidates:

C(c', far) = Cpre(c', far) U Cpost (', far)

As already mentioned, computing the set C(c, far) can be performed
completely automatically. Moreover, the implementation is fairly simple and
efficient. No theorem proving techniques or other search strategies are neces-
sary.

5 Example: the Lift System

We first consider a simple lift with the following requirements:

. The lift is called by pressing a button.
. Pressing a call button is possible at any time.
. A call is served when the lift arrives at the corresponding floor.
. When the lift passes by a floor f, and there is a call from this floor, then
the 1ift will stop at this floor.
. When the lift has stopped, it will open the door.
6. When the lift door has been opened, it will close automatically after d
time units.
7. The lift only changes its direction when there are no more calls in the
current direction.
8. When the lift is halted at a floor with the door open, a call for this floor
is not taken into account.
9. When the lift 1s halted at a floor with the door closed and receives a call
for this floor, it opens its door.
10. Whenever the lift moves, its door must be closed.

B~ N =

[y}

As a fact, we formalise that the door can only be opened when it is closed
and vice versa. Afterwards, we will add the following features:

11. When the lift is overloaded, the door will not close. Some passengers must
get out.
12. The lift gives priority to calls from the executive landing.

5.1 Starting Point

Tables 1-4 present the schematic constraints for the fact and Requirements 1-
10, and the corresponding tables of semantic relations. The formalised fact
and Requirements 1-10 are given in Appendix B.

The schematic constraints, see Step 5.2 of the method of Section 3, are
given in Table 1. In the formal expressions corresponding to fact, req; and
reqy, the precondition refers to a later state than the postcondition, because
necessary conditions for events to happen or predicates to be true are ex-
pressed. Our algorithm for feature interaction detection, however, requires

10 Maritta Heisel and Jeanine Souquiéres

the precondition to refer to an earlier or the same state as the postcondition.
Hence, the schematic expressions for fact, req; and reg; are based on the con-
traposition of the constraints given in Appendix B (i.e. = @ = — P instead

of P = Q).

The events establishing the predicates and their negations are given in
Table 2, ordered alphabetically with respect to the predicate symbols. Table 3
shows the necessary conditions for the events, ordered alphabetically with
respect to the event symbols. Finally, Table 4 shows the relations between
the various predicate literals. This information is collected when performing

Step 5.3 of the method of Section 3.

|Constraint |schematic expression
fact - door_closed ~+ = open
= door_open ~ = close
reqi - press ~» — call
reqs true ~+ press
reqs at ~ = call
reqa passes_by A call ~ stop
reqs stop ~+» open
reqe open ~+ close
reqr direction_up A call_from_up ~+ direction _up
direction_down A call_from_down ~+ direction_down
reqs halted A at A door_open A press ~» = call
reqo halted A at A door_closed A press ~+ open
reqio = halted ~» door_closed

Table 1. Overview of schematic constraints

stop ~ at
move ~» 1 at
press ~+ call

stop ~ = call

close ~ door_closed
open ~+ = door_closed
open ~+ door_open
close ~» = door_open

press ~+ call_from_down stop ~+ halted
stop ~+ = call_from_down move ~+ — halted
press ~ call_from_up move ~+ passes_by
stop ~+ = call_from_up stop ~+ = passes_by

Table 2. Events establishing predicate literals

5.2 Adding new features

We now incorporate the features of overloading and executive floor, following

the method of Section 3.

A Heuristic Algorithm to Detect Feature Interactions 11

door_open «~ close halted <~ move
at « move door_closed « open

call +~ move - halted « stop
door_closed «~ move passes_by «~ stop

Table 3. Necessary conditions for events

at= = {halted,— passes_by}
= ats = {- halted, door_closed,— door_open, passes_by}

call, = &
= calls = {= call_from_up, = call from_down}
call_from_down= = {call}
= call_from_downs = @
call_from_up= = {call}
= call_from_ups = &

door_closed= = {— door_open}
= door_closeds = {at, door_open, halted,— passes_by}
door_opens = {at,— door_closed, halted,— passes_ by}
= door_open= = {door_closed}
halted—, = {at, - passes_by}
= haltedes = {~ at, door_closed,— door_open, passes_by}
passes_by= = {— at,door_closed,— door_open,— halted}
- passes_by= = {at, halted}

Table 4. Relations between predicate literals

Requirement 11 (the Overloaded Feature). When the lift is overloaded,
the door will not close. Some passengers must get out.

Step 5.1: Formalise the new constraint as a formula on system traces.

Vir: Tr e Vi :domtr e overloaded(tr(i).s) = door_open(tr(i).s)

Step 5.2: Gwe a schematic expression of the constraint.
overloaded ~+ door _open

Step 5.3: Update the tables of semantic relations.
With this constraint, we have introduced a new predicate symbol overloaded
for which we must specify the events that modify it. Hence, we must introduce
two new events enter and leave. We add the lines

enter ~» overloaded leave ~ = overloaded
to Table 2 and the lines
door_open « enter door_open « leave

to Table 3. To Table 4, we add the lines
overloaded=, = {at, door_open,— door_closed, halted, — passes_by}
= overloaded—. = @

The entries of all predicates related to overloaded must be updated. We
get the following changes:

12 Maritta Heisel and Jeanine Souquiéres

= ate, = {door_closed,— door_open, — halted, passes_by,
- overloaded}
= door_open—, = {door_closed, - overloaded}
door_closed—, = {— door_open, - overloaded}
= halted—, = {— at, door_closed, — door_open, passes_by, = overloaded}
passes_by—, = {— at, door_closed, - door_open,— halted, - overloaded}

Step 5.4: Determine interaction candidates.

To determine the precondition interaction candidates, we determine the sets
used in the definition of Cpe in Section 4.1:

pre_predicates(reqi1) = {overloaded }

Hence, the precondition interaction candidates are the ones that have one of
the elements of overloaded=, in their precondition, 1.e., at, door_open,— door_
closed, halted,— passes_by. According to Table 1, these are fact because of
= door_closed, reqs because of at, regs because of at, halted and door_open,
reqy because of at and halted. Requirement regy is always a candidate for
precondition interaction, because true is implied by every predicate.

To determine the postcondition interaction candidates, we proceed ac-
cording to the definition of Cpos in Section 4.2:

post_predicates(reqi1) = {door_open}

Because door_open=. = {at,— door_closed, halted,— passes_by}, we must
look for postconditions that contain one of the elements of predicates — at,
door_closed, — halted, passes_by and related events that establish those pred-
icates according to Table 2. These are close and move. According to Table 1,
we get the candidates regs because of the event close and regio because of
door _closed.

Step 5.5: Analyse possible interactions.

We do not have interactions with fact, reqs, reqs, regs, reqo, reqio, but with
reqs, because the door will not close automatically after d units time if the
lift is overloaded.

Step 5.6: Eliminate interactions, if necessary. We relax regg as follows:

Vir: Tr e Vi:domtr e tr(i).e = open A last(tr).t > tr(i).t + d

= 3dj:domire

(tr(j).t <tr(i).t+dAtr(j+1).t > tr(i).t + d A - overloaded(tr(j).s))
= tr(j).e = close A tr(j).t = tr(i).t + d)

The informal requirement regs has to be updated now. It becomes: “When
the lift door has been opened, it will close automatically after d time units
if the 1ift is not overloaded”.

The new schematic constraint of regs becomes open ~+ close V overloaded.
Since we have added the new postcondition overloaded to the constraint,
we must now perform postcondition interaction analysis on this literal. With

A Heuristic Algorithm to Detect Feature Interactions 13

overloaded= = {at, door_open,— door_closed, halted, — passes_by} it follows
that we must look for constraints which contain one of the predicates — at,
= door_open, door_closed, — halted, passes_by in their postconditions and re-
lated events according to Table 2. These are close and move. In Table 1, we
find the candidate reg;g. There is no interaction with it.

This concludes the introduction of the overloaded feature. To add this
feature to the lift, we not only had to introduce some new predicates and
change some requirements of the base system. More importantly, we had to
introduce two new events enter and leave. Our method requires that these
events be observable by the software system. Hence, a weight sensor must be
added to the lift if it is not already available.

Requirement 12 (the Ezecutive Floor Feature). The lift gives priority
to calls from the executive landing.

Step 5.1: Formalise the new constraint as a formula on system traces.

Vir:Tr e Vi:domtire
call(tr(1).s, executive floor) = next_stop(tr(i).s) = executive_floor

where ezecutive_floor is a constant of type FLOOR.

Step 5.2: Gwe a schematic expression of the constraint.
call ~+ next_stop_at_executive_floor

Step 5.3: Update the tables of semantic relations.
With this constraint, we have introduced a new predicate symbol nezt_stop_
at_executive_floor for which we must specify the events that modify it. We
add the lines
press ~ next_stop_at _executive_floor
stop ~» = next_stop_at _erecutive_floor
to Table 2. We add the following entry to Table 4:
next_stop_at_executive_floors, = {call}

Step 5.4: Determine interaction candidates.
To determine the precondition interaction candidates, we determine the sets
used in the definition of Cp,e in Section 4.1:

pre_predicates(reqi2) = {call}

Hence, the precondition interaction candidates are the ones that have
one of the elements call, call_from_up, call_from _down in their precondition.
According to Table 1, these are reqq and regqy.

To determine the postcondition interaction candidates, we proceed ac-
cording to the definition of Cpos in Section 4.2:

post_predicates(reqi2) = {next_stop_at_executive_floor}

Because next_stop_at_executive_floor—, = {call}, we must look for post-
conditions that contain the predicate = call and related events according to
Table 2, that is stop. According to Table 1, we get as candidates reg, reqs
and regg because of = call and reqs because of the event stop.

14 Maritta Heisel and Jeanine Souquiéres

Step 5.5: Analyse possible interactions.

We have no interactions with req;, regs and regg, but with reqs and regr,
because reqi2 gives priority to the executive floor and not to the current floor
as expressed 1n reqy or to the current direction as expressed in regy.

Step 5.6: FEliminate interactions, if necessary.
To adjust reqq, we add a new precondition to it; regy becomes

Vir: Tr; f: FLOOR e (let tr' == remove(tr,{b: Button e press(b)})e
Vi:domitr' | i # #tr' e passes_by(tr'(i).s,f) A call(tr'(i).s, f)
A (f = executive floor V — call(tr'(i).s, executive floor))
= tr'(i 4+ 1).e = stop)

The informal requirement reqs has to be updated. It becomes: “When the
lift passes by a floor f, and there is a call from this floor, then the lift will stop
at this floor if f is the executive floor or there is no call from the executive
floor”.

The new schematic expression for regqy is:
passes_by A call A (passes_by_executive_floor V = call) ~ stop

Note that now we have call as well as = call in the schematic precondition
of the constraint. This is not a contradiction (call and = call have different
arguments), but only enlarges the set of possible interaction candidates.
Moreover, to capture the new precondition f = ezecutive_floor, we have
introduced a new predicate symbol passes_by_executive_floor with

next_stop_at _executive _floor— =
{passes_by,— at, door_closed, — door_open,— halted}

We must now perform a precondition interaction analysis on the new
preconditions = call and passes_by_executive_floor. Concerning — call, our
candidates are the constraints with precondition = call, = call_from_up,
= call_from_down, because there are no related events. There are no inter-
action candidates. Concerning passes_by_executive_floor, we also do not get
any new candidates, because all candidates were already candidates because
of passes_by.

To adjust regz, we also add new preconditions.

Vir:Tr e Vi:domir|i % #tre
(direction(tr(i).s) = up A direction(tr(i + 1).s) = down
= (= call _from_up(tr(i).s)V call(tr(i).s, executive floor)))
A (direction(tr(i).s) = down A direction(tr(i +1).s) = up
= (= call_from_down(tr(i).s)V call(tr(i).s, executive floor)))

The informal requirement reg7 has to be updated. It becomes: “The lift
only changes its direction when there are no more calls in the current direction
or there is a call from the executive floor”.

The new schematic expressions for reg; are:

direction_up A call_from _up A = call ~ direction_up
direction_down A call _from_down A — call ~+ direction_down

A Heuristic Algorithm to Detect Feature Interactions 15

As for reqs, we must perform a precondition interaction analysis on the
new precondition = call. This yields the same candidates as before, plus the
new version of reqs. Again, there is no further interaction.

6 Related work

In general, there are two ways to deal with the feature interaction problem.
The first way is to prevent feature interactions right from the beginning, for
example by enforcing modularity in the design of features. This approach
is advocated by Jackson and Zave in their Distributed Feature Composition
(DFC) virtual architecture [12]. Preventing feature interactions is supported
by making feature first-class citizens in specification languages. For example,
Plath and Ryan add a feature construct to the SMV language [13].

The second way to deal with feature interactions is to detect interactions
and then resolve them. Even when the goal is to prevent feature interactions,
algorithms for detecting them are indispensable. Zave [5] presents a method
for preventing feature interaction problems. She points out that some inter-
actions are desirable and that her method needs an analysis algorithm that
generates a list of possible interactions among a set of features. Feature de-
signers must adjust the feature specifications in an iterative process until the
only remaining interactions are desirable ones.

How interactions can be detected depends on how features are specified
and how interactions are defined. Bruns et al. [4] distinguish the following
approaches:

e In the logical approach, features are specified as logical formulas and
feature composition is logical conjunction. Feature interaction occurs if
two features cannot be simultaneously satisfied.

e In the network specification approach [14], features are specified as sets
of traces of network events and feature composition is set union. Feature
interaction occurs if two feature sets intersect after certain operations are
performed.

e In the operational approach [15], features are specified as processes and
feature composition is some concurrent composition operation. Feature
interaction occurs if the composed features fail to satisfy a global property
such as deadlock freedom.

e In the feature as service transformer approach [4], a service describes the
behaviour of a server that responds to input events. Feature composition
is the successive transformation of a service by a sequence of features.
Two notions of feature interaction are defined: two features interact (1)
if the order in which they are applied affects the system behaviour, (2) if
in some state, an input generates outputs that interfere.

Our work is a logical approach. What distinguishes it from other logical
approaches, however, is the fact that we do not equate feature interaction
with logical contradiction. In our opinion, logical contradiction is a sufficient
but not a necessary condition for a feature interaction to appear. An example
will be given in Section 7.

16 Maritta Heisel and Jeanine Souquiéres

Other recent logical approaches are described in [13,16-18]. All of them
use model checking techniques to detect interactions.

Jonsson et al. [16] propose a technique for hierarchically structuring re-
quirements specifications in a way that simplifies change management and
supports validation. As in our approach, requirements can be formulated and
updated incrementally, supporting an evolutionary modelling of the appli-
cation domain. Validation consists in checking iteratively the initial set of
requirements (expressed in a linear time temporal logic) against the system
model (expressed as a collection of automata), in scenarios where only a single
feature 1s activated.

Like Jonsson et al.; Felty and Namjoshi [17] use temporal logic to specify
features and apply model checking to detect inconsistencies in the specifi-
cation. In contrast to [16], they do not set up a separate system model, but
convert feature specifications in w-automata to perform the satisfiability test.

Khoumsi and Bevelo [18] have identified different kinds of interactions.
Their interaction detection procedure is based on the search of special prop-
erties such as feature termination, variable consistency, events compatibility,
event delayability and dependence on variables.

All of these detection procedures work on simplified models of the sys-
tem. For example, telephone networks with only a fixed (and small) number
of telephones are considered. The idea to detect interactions on simplified
requirements or system models pertains also to our algorithm.

The work discussed so far is specifically designed to cope with the feature
interaction problem. However, the notion of a goal [19] also provides a firm
basis for detecting interactions between requirements. Van Lamsweerde and
Letier use the concept of an obstacle or goal obstruction, which defines un-
desirable behaviour, to produce a refinement tree, the root of which is a goal
negation. They define heuristics and formal techniques [20] to systematically
generate obstacles from goal specifications and domain properties.

7 Discussion

We have presented an algorithm that helps to detect interactions in require-
ments. The algorithm is part of a more general method to systematically
perform the first phases of software development. A systematic analysis of
interactions leads to a better understanding of the requirements and avoids
costly changes in later phases. The approach we have presented is domain
independent and is method rather than language oriented.

Tt is useful not only for new systems but also for the evolution of systems.
System evolution is motivated by changing requirements. Either new require-
ments are introduced or old requirements are replaced by different ones. In
much the same way as for new systems, our algorithm can be used to anal-
yse the consequences of changing the requirements before any changes to the
software system are made.

We find it important that the detection of feature interactions be inde-
pendent of the order in which the features are added, because this order may

A Heuristic Algorithm to Detect Feature Interactions 17

be arbitrary and insignificant. Moreover, we do not attempt to resolve feature
interactions automatically. Such decisions are best taken by the customers.

We have already noted that it is important to find logical contradictions
in requirements, but that not all interactions amount to logical contradic-
tions. In the case study of an access control system [21], we had the following
requirements: “when the door is unblocked, it will be re-blocked after 30
seconds” and “when a person has entered the building, the door will be re-
blocked”. These requirements interact, because it is intended to block the
door immediately after the person has entered and not only after 30 seconds.
Logically, however, the two requirements are not contradictory. It would suf-
fice to re-block the door after 30 seconds, no matter if the person has entered
or not. Hence, our algorithm can detect interactions that cannot be detected
with logical procedures that detect only contradictions.

The approach for detecting feature interactions is truly heuristic. Its
virtue lies in the fact that interactions on the requirements level can be de-
tected very early, before a formal specification is set up, and with relatively
little effort. Even though determining the interaction candidates is tedious if
performed by hand, the procedures to determine the sets Cpre and Cpost as
defined in Section 4 are very easy to implement. Theorem proving techniques
are unnecessary. Using our procedure, customers must inspect much fewer
candidates than if a complete analysis, i.e. an inspection of all previously
accepted constraints, were performed.

The semantic information collected in the tables of necessary conditions
for events, events establishing predicate literals, and relations between pred-
icate literals not only contributes to a better understanding of the require-
ments, but also greatly facilitates the process of setting up and validating a
formal specification for the software system to be built, as is shown in [7,8].

Acknowledgement. We thank Thomas Santen for his comments on this paper.

References

1. M. Calder and E. Magill, editors. Proc. 6th Feature Interaction Workshop, FIW
2000. 10S Press Amsterdam, 2000.

2. K. Kimbler and W. Bouma, editors. Proc. 5th Feature Interaction Workshop,
FIW 1998. 10S Press Amsterdam, 1998.

3. R. Turner, A. Fuggetta, L. Lavazza, and A. Wolf. A conceptual basis for feature
engineering. Journal of Systems and Software, 49(1):3-15, 1999.

4. G.B. Bruns, P. Mataga, and |. Sutherland. Features as Service lransformers.
In Kimbler and Bouma [2], pages 85-97.

5. P. Zave. Systematic design of call-coverage features. In Proc. 7th International
Conference on Algebraic Methodology and Software Technology, LNCS 1548.
Springer-Verlag, 1999.

6. M. Heisel and J. Souquiéres. A heuristic approach to detect feature interactions
in requirements. In Kimbler and Bouma [2], pages 165-171.

7. M. Heisel and J. Souquiéres. A Method for Requirements Elicitation and Formal
Specification. In J. Akoka and M. Bouzeghoub and I. Comyn-Wattiau and E.
Métais, editor, Proceedings of the 18th International Conference on Conceptual

Modeling, LNCS 1728, pages 309-324. Springer Verlag, November 1999.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A

Maritta Heisel and Jeanine Souquiéres

M. Heisel and J. Souquieres. De Délicitation des besoins a la spécification
formelle. Technique et science informatiques, 18(7):777-801, 1999.

. M. Jackson and P. Zave. Deriving Specifications from Requirements: an Ex-

ample. In Proceedings 17th Int. Conf. on Software Engineering, Seattle, USA,
pages 15-24. ACM Press, 1995.

P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology, 6(1):1-30, January
1997.

M. Fowler and K. Scott. UM distilled. Applying the standard Object Modelling
Language. Addison-Wesley, 1997.

M. Jackson and P. Zave. Distributed Feature Composition: A Virtual Ar-
chitecture for Telecommunications Services. IFEE Transactions on Software
Engineering, 24(10):831-847, October 1998.

M. Plath and M. Ryan. Plug-and-Play features. In Kimbler and Bouma [2],
pages 150-164.

A. Aho, S. Gallagher, N. Griffeth, C. Schell, and D). Swayne. Scf3/sculptor with
Chisel: Requirements engineering for communication services. In Kimbler and
Bouma [2], pages 45-63.

K.E. Cheng. Towards a Formal Model for Incremental Service Specification and
Interaction Management Support. In L.G. Bouma and H. Velthuijsen, editors,
Feature Interaction in Telecommunication. 10S Press Amsterdam, 1994.

B. Jonsson, T'. Margaria, G. Naeser, J. Nystrom, and B. Steffen. Incremental
Requirement Specification for Evovlving Systems. In Calder and Magill [1],
pages 145-162.

A. Felty and K. Namjoshi. Feature specification and automatic conflict detec-
tion. In Calder and Magill [1], pages 179-192.

A. Khoumsi and R.J. Bevelo. A detection method developed after a thorough
study of the contest held in 1998. In Calder and Magill [1], pages 226-240.

A. van Lamsweerde and E. Letier. Integrating Obstacles in Goal-directed Re-
quirements. In Proc. of the 20 th International Conference on Software Engi-
neering, ICSE’98, Kyoto, Japan, 1998. IEEE.

A. van Lamsweerde and E. Letier. Handling obstacles in goal-directed require-
ments engineering. [FEE Transactions on Software Engineering, 2000. Special
Issue on Exception Handling.

J. Souquieres and M. Heisel. Une méthode pour I’élicitation des besoins:
application au systeme de controle d’acces. In Yves Ledru, editor, Pro-
ceedings Approches Formelles dans I’Assistance au Développement de Logi-
ciels - AFADL’2000, pages 36-50. LSR-IMAG, Grenoble, 2000. http://www-
lsr.imag.fr/afadl/Programme/Programme AFADI.2000.html.

J. M. Spivey. The 7 Notation — A Reference Manual. Prentice Hall, 2nd edition,
1992.

Formal Expression of Constraints on Traces

In the following specification of system traces, we use the Z notation [22]. Each
trace of the system is a sequence of trace items, where events later in the sequence
must not happen earlier in time than events earlier in the sequence. The sign <;

A Heuristic Algorithm to Detect Feature Interactions 19

denotes a relation “not later” on time, which fulfils the axioms of a partial ordering
relation.

[STATE,EVENT, TIME] Traceltem
s STATE
e: FEVENT
t: TIME

For each system, we will call the set of admissible traces Tr. Constraints will
be expressed as formulas restricting the set 1r. For each possible trace, its prefixes
are also possible traces.

| TRACE : P(seq Traceltem) Tr :PTRACE
‘ Vir: TRACE o Yi:domir e i =4tr V Vir: Tr; tr' : TRACE |
(tri)t <y (tr(s 4 1)).t tr' prefix tr o tr' € Tr

The function remove takes a trace and a set of events as its arguments and
removes all trace elements whose event is in the given set.
| remove : TRACE x PEVENT — TRACE
‘Vtr: TRACE; evs : PEVENT o

remove(tr, evs) = tr [{ti : Traceltem | ti.e ¢ evs}

B Formal Versions of Requirements and Facts

Fact. The door can only be opened when it is closed and vice versa.
Yir:Tr ¢ Vi:domtre

(tr(é).e = open = door_closed(ir(i).s) A

(tr(i).e = close = door_open(ir(i).s)
Requirement 1. The lift is called by pressing a button.
Yir:Tr; b: BUTTON e ¥Yi:domire

call(tr(i).s,floor(b)) = (Fj :domir | j < i e ir(j).e = press(b))
Requirement 2. Pressing a call button is possible at any time.

Vir: Tr; b: BUTTON o Jir': Tr e front(ir') = tr A last(ir').e = press(b)

Requirement 3. A call is served when the lift arrives at the corresponding floor.

Vir: Tr; f: FLOOR o Yidomir e at(tr(i).s,f) = — call(ir(i).s,f)

20 Maritta Heisel and Jeanine Souquiéres

Requirement 4. When the lift passes by a floor f, and there is a call from this
floor, then the lift will stop at this floor.

Vir: TR; f: FLOOR e (let tr' == remove(tr,{b: BUTTON e press(b)})e
Vi:domtr' | i# #tr'e
passes by(tr'(i).s,f) A call(tr'(i).s,f) = tr'(i + 1).e = stop)

Because press events are always possible, we must remove them from the traces
(see Appendix A) when we want to express liveness conditions for the lift.

Requirement 5. When the lift has stopped, it will open the door.

Vir: Tr; f: FLOOR e (let tr' == remove(tr,{b: BUTTON e press(b)})e
Vi:domtr'|i# #ir' e tr'(i).e = stop = tr'(i + 1).e = open)

Requirement 6. When the lift door has been opened, it will close automatically
after d time units.

Vir: Tr e« Vi:domtr e tr(i).e = open A last(tr).t > tr(i).t +d
= 3j : domir e ir(j).e = close A tr(j).t = ir(i).t +d

Requirement 7. The lift only changes its direction when there are no more calls
in the current direction.
Vir: Tr e Vi:domir | i# ftre
(direction(tr(i).s) = up A direction(tr(i + 1).s) = down
= = call_from_up(ir(i).s))
A (direction(tr(1).s) = down A direction(ir(i+1).s) = up
= = call_from_down(ir(7).s))

Requirement 8. When the lift is halted at a floor with the door open, a call for
this floor is not taken into account.
Vir:Ir; b: BUTTON e Vi:domir | i # #ir e halted(tr(i).s)
A at(tr(i).s,floor(b)) A door_open(tr(i).s) A tr(i).e = press(b)
= = call(tr(i 4+ 1).s, floor(b))

Requirement 9. When the lift is halted at a floor with the door closed and
receives a call for this floor, it opens its door.

Vir:Tr; b: BUTTON e Vi € dom ir e halted(tr(i).s)
A at(tr(i).s,floor(b)) A door_closed(tr(i).s) A tr(i).e = press(b)
= ((3j :domir ¢ j > i AVH: BUTTON e ir(j) # press(b))
= (Elk :dom tr | k>ie tr(k).e = open A
Viei+1..k—1e3b: BUTTON e tr(l).e = press(b)))

Requirement 10. Whenever the lift moves, its door must be closed.

Vir: Ir o Yi:dom ir e = halted(tr(i).s)= door_closed(tr(i).s)

