A Two-Layered Approach to Support Systematic
Software Development

Maritta Heisel' and Stefan Jihnichen?:?

! Otto-von-Guericke-Universitit Magdeburg, Fakultét fiir Informatik, Institut fiir
Verteilte Systeme, D-39016 Magdeburg, Germany, email: heisel@cs.uni-magdeburg.de
2 FG Softwaretechnik, Technische Universitat Berlin, Sekr. FR 5-6, Franklinstr.
28/29, D-10587 Berlin, Germany, jachn@cs.tu-berlin.de
3 GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany

Abstract. We present two concepts that help software engineers to per-
form different software development activities systematically. The con-
cept of an agenda serves to represent technical process knowledge. An
agenda consists of a list of steps to be performed when developing a soft-
ware artifact. Each activity may have associated a schematic expression
of the language in which the artifact is expressed and validation condi-
tions that help detect errors. Agendas provide methodological support to
their users, make development knowledge explicit and thus comprehen-
sible, and they contribute to a standardization of software development
activities and products.

The concept of a strategy is a formalization of agendas. Strategies model
the development of a software artifact as a problem solving process. They
form the basis for machine-supported development processes. They come
with a generic system architecture that serves as a template for the
implementation of support tools for strategy-based problem solving.

Keywords: Software engineering methodology, process modeling, formal methods

1 Introduction

Software engineering aims at producing software systems in a systematic and
cost-effective way. Two different aspects are of importance here: first, the process
that is followed when producing a piece of software, and second, the various
intermediate products that are developed during that process, e.g., requirements
documents, formal specifications, program code, or test cases.

To date, research on the process aspects of software engineering concen-
trates on the management of large software projects, whereas research on the
product aspects of software engineering concentrates on developing appropriate
languages to express the various software artifacts, e.g., object-oriented model-
ing languages, architectural description languages, specification or programming
languages.

The work presented in this paper is intended to fill a gap in current software
engineering technology: it introduces concepts to perform the technical parts of

software processes in a systematic way. By ensuring that the developed products
fulfill certain pre-defined quality criteria, our concepts also establish an explicit
link between processes and products.

We wish to systematically exploit existing software development knowledge,
i.e., the problem-related fine-grained knowledge acquired by experienced soft-
ware engineers that enables them to successfully produce the different software
engineering artifacts. To date, such expert knowledge is rarely made explicit. As
a consequence, it cannot be re-used to support software processes and cannot
be employed to educate novices. Making development knowledge explicit, on the
other hand, would

— support re-use of this knowledge,

improve and speed up the education of novice software engineers,

— lead to better structured and more comprehensible software processes,

— make the developed artifacts more comprehensible for persons who have not
developed them,

— allow for more powerful machine support of development processes.

Agendas and strategies help achieve these goals. An agenda gives guidance on
how to perform a specific software development activity. It informally describes
the different steps to be performed. Agendas can be used to structure quite
different activities in different contexts.

Strategies are a formalization of agendas. They aim at machine supported
development processes. The basic idea is to model software development tasks
as problem solving processes. Strategies can be implemented and supplied with
a generic architecture for systems supporting strategy-based problem solving.

development

knowledge

\L meta-agenda
1]
agenda j strategy
1) strat ={cry, ..., e}
g- formalization of = {t: tuple] ..}
manual strategy
application implementation
(software artifact ;
\ endencies
M =My .. | My setup dep
) 2
State— —Op— machine supported S
5
b b application
Control = pX. ...

Fig. 1. Relation between agendas and strategies

Figure 1 shows the relation between agendas and strategies. First, the de-
velopment knowledge used by experienced software engineers must be made ex-
plicit. Expressed as an agenda, it can be employed to develop software artifacts
independently of machine support. If specialized machine support is sought for,
the agenda can be formalized as a strategy. Such a formalization can be per-
formed systematically, following a meta-agenda. Implemented strategies provide
machine support for the application of the formalized knowledge to generate
software artifacts. In general, the steps of an agenda correspond to subproblems
of a strategy.

Agendas and strategies are especially suitable to support the application of
formal techniques in software engineering. Formal techniques have the advan-
tage that one can positively guarantee that the product of a development step
enjoys certain semantic properties. In this respect, formal techniques can lead
to an improvement in software quality that cannot be achieved by traditional
techniques alone.

In the following two sections, we present agendas and strategies in more
detail. Related work is discussed in Section 4, and conclusions are drawn in
Section 5.

2 Agendas

An agenda is a list of steps to be performed when carrying out some task in
the context of software engineering. The result of the task will be a document
expressed in a certain language. Agendas contain informal descriptions of the
steps. With each step, schematic expressions of the language in which the result
of the activity is expressed can be associated. The schematic expressions are
instantiated when the step is performed. The steps listed in an agenda may
depend on each other. Usually, they will have to be repeated to achieve the goal.

Agendas are not only a means to guide software development activities. They
also support quality assurance because the steps of an agenda may have vali-
dation conditions associated with them. These validation conditions state nec-
essary semantic conditions that the artifact must fulfill in order to serve its
purpose properly. When formal techniques are applied, the validation conditions
can be expressed and proven formally. Since the validation conditions that can
be stated in an agenda are necessarily application independent, the developed
artifact should be further validated with respect to application dependent needs.

2.1 An Agenda for Formally Specifying Safety-Critical Software

To illustrate the agenda concept, we present a concrete agenda that supports
the formal specification of software for safety-critical applications. Because we
want to give the readers a realistic impression of agendas, we present the agenda
unabridged and give a brief explanation of the important aspects of software
system safety and the language and methodology we use to specify safety-critical
software.

system environment

system disturbances
system inputs system outputs
ioulated technical
manipulate
variagles process controlled
variables
actuators sensors
d measured
commands vellizs
control
component
external
commands

Fig. 2. System Model

The systems we consider in the following, see Figure 2, consist of a technical
process that is controlled by dedicated system components being at least par-
tially realized by software. Such a system consists of four parts: the technical
process, the control component, sensors to communicate information about the
current state of the technical process to the control component, and actuators
that can be used by the control component to influence the behavior of the
technical process.

Two aspects are important for the specification of software for safety-critical
systems. First, it must be possible to specify behavior, i.e. how the system reacts
to incoming events. Second, the structure of the system’s data state and the
operations that change this state must be specified. We use a combination of
the process algebra real-time CSP [Dav93] and the model-based specification
language Z [Spi92] to specify these different aspects.

In [Hei97,HS96] we have described the following principles of the combination
of both languages in detail: For each system operation Op specified in the Z part
of a specification, the CSP part is able to refer to the events OpInvocation and
Op Termination. For each input or output of a system operation defined in Z,
there is a communication channel within the CSP part onto which an input
value is written or an output value is read from. The dynamic behavior of a
software component may depend on the current internal system state. To take
this requirement into account, a process of the CSP part is able to refer to the
current internal system state via predicates which are specified in the Z part by
schemas.

There are several ways to design safety-critical systems, according to the
manner in which activities of the control component take place, and the manner
in which system components trigger these activities. These different approaches
to the design of safety-critical systems are expressed as reference architectures.

We present an agenda for a reference architecture where all sensors are pas-
sive, i.e., they cannot trigger activities of the control component, and their mea-

surements are permanently available. This architecture is often used for moni-
toring systems, i.e., for systems whose primary function is to guarantee safety.
Examples are the control component of a steam boiler whose purpose it is to
ensure that the water level in the steam boiler never leaves certain safety limits,
or an inert gas release system, whose purpose is to detect and extinguish fire.

sensor values

real-time CSP

sV

ControlOj ioninvocation

i |internal <7 control | !
i |system Operation ‘
i |state |- :

ControlOperationTermination

Actuators

= N

o
1)

actuator commands

Fig. 3. Software Control Component for Passive Sensors Architecture

Figure 3 shows the structure of a software control component associated with
the passive sensors architecture. Such a control component contains a single
control operation, which is specified in Z, and which is executed at equidistant
points of time. The sensor values v coming from the environment are read by
the CSP control process and passed on to the Z control operation as inputs.
The Z control operation is then invoked by the CSP process, and after it has
terminated, the CSP control process reads the outputs of the Z control operation,
which form the commands ¢ to the actuators. Finally, the CSP control process
passes the commands on to the actuators.

Agendas are presented as tables with the following entries for each step:

— a numbering for easy reference,

— an informal description of the purpose of the step,

— a schematic expression that proposes how to express the result of the step
in the language used to express the document,

— possibly some informal or formal validation conditions that help detect er-
rors.

The agenda for the passive sensors architecture is presented in Tables 1 and
2, where informal validation conditions are marked “o”, and formal validation
conditions are marked “F”. The dependencies between the steps are shown in
Figure 4.

The agenda gives instructions on how to proceed in the specification of a
software-based control component according to the chosen reference architecture.
We briefly explain its steps.

No.|Step Schematic Expressions Validation Conditions

1 |Model the sensor

values and actua- Tupe =
ype = ...

tor commands as
members of Z types.

2 |Decide on the oper-
ational modes of the MODE ::= Model | ...| ModeK
system.

3 |Define the internall _ InternalSystemState o The internal system state must be an appropriate ap-
system states and the mode : MODE proximation of the state of the technical process.

initial states.

— InternalSystemStatelnit

F The internal state must contain a variable correspond-
ing to the operational mode.

o Each legal state must be safe.

F There must exist legal initial states.

InternalSystemState’
— o The initial internal states must adequately reflect the
initial external system states.
4 |Specify an internal| gonsoprs = F The only precondition of the operation corresponding
Z operation for each [InternalSystemState; to a mode is that the system is in that mode.

operational mode.

nl1? : STypel; ... ; inN?: STypeN |
(consistency [redundancy) |
Actuators =
[InternalSystemState';
outl! : ATypel; ... ; outM!: ATypeM |
(derivation of commands) |
OpModeJ = [AlnternalSystemState;
Sensors; Actuators | ...]

F For each operational mode and each combination of]
sensor values there must be exactly one successor mode.

F Each operational mode must be reachable from an ini-
tial state.

F There must be no redundant modes.

Table 1. Agenda for the passive sensors architecture, part 1

1

1]

Fig. 4. Dependencies of steps of agenda for passive sensors architecture

Step 1 The defined types depend on the technical properties of the sensors
and actuators. If the sensor is a thermometer, the corresponding type will
be a subset of the integers. If the sensor can only distinguish a few values,
the corresponding type will be an enumeration of these values. The same
principles are applied to model the actuators.

Step 2 We assume that the controller is always in one of the operational modes
Model, ..., ModeK that are defined with respect to the needs of the technical
process. The operational modes are defined as an enumeration type in Z.

Step 3 Here, the legal internal states of the software component must be de-
fined by means of a Z schema. The components of the internal state must
be defined such that, for each time instant, they approximate the state of
the technical process in a sufficiently accurate way. The state invariant de-
fines the relations between the components. It comprises the safety-related
requirements as well as the functional properties of the legal states. Initial
states must be specified, too.!

Step 4 We must now specify how the state of the system can evolve. When new
sensor values are read, the internal state must be updated accordingly. Each
internal Z operation OpModeJ specifies the successor mode of the current
mode ModeJ and the commands that have to be given to the actuators, ac-
cording to the sensor values. It is normally useful to define separate schemas
for the sensor values and actuator commands according to the following
schematic expressions Sensors and Actuators. The internal Z operations then
import these schemas.

Step 5 The central control operation defined in Z is a case distinction according
to the operational modes. For this operation, we give a schematic expression
to be instantiated. By importing the schemas Sensors and Actuators the
operation has all inputs from the sensors at its disposition, and it is guar-
anteed that all actuator commands are defined. The inputs and the current
operational mode determine the successor mode which is specified by the
internal operations OpModel.

Step 6 For the specification of the control process in real-time CSP, we again
can provide schematic expressions to aid building the specification. First,
the system must be initialized, establishing an initial state. Then, the re-
cursive process ControlComponentgrgapy is executed. Before invoking the
control operation, all associated input values are read from the respective

! The schema decoration S’ of a schema S is obtained by replacing all declared vari-
ables v1, v2, ... in S by their “primed” versions vq, v3,... .S and §' denote the state
before and after execution of an operation, respectively.

sensor channels (sensorl,...,sensorN) in parallel. This is modeled using
the parallel composition operator ||. When the control operation has ter-
minated, all output values are written to the respective actuator channels
(actuatorl,..., actuatorM) in parallel. The process Wait INTERVAL does
not accept any event for INTERVA L time units and afterwards is ready to ac-
cept the termination event before releasing control. The constant INTERVAL
must be chosen small enough, so that it is guaranteed that the internal sys-
tem state is always sufficiently up-to-date.

No.|Step Schematic Expressions
5 |Define the Z con-| _ Control
trol operation. AlInternalSystemState

Sensors; Actuators

mode = Model = OpModel
Ao A
mode = ModeK = OpModeK

6 [Specify the con-
trol process in real-
time CSP. ControlComprrapy = p X ®
((sensor1?valueS1 — inllvalueS1 — Skip || - .. ||
sensorN ?valueSN — inN'lvalueSN — Skip);
Controllnvocation — ControlTermination —
(outl?valueAl — actuatorllvalueAl — Skip || ... ||
outM ?valueAM — actuatorMvalueAM — Skip)
| Wait INTERVAL); X

ControlComponent = SystemInitExec — ControlCompreapy

7 |Specify further re-
quirements if nec-
essary.

Table 2. Agenda for the passive sensors architecture, part 2

Usually, different phases can be identified for processes expressed as an
agenda. The first phase is characterized by the fact that high-level decisions
have to be taken. For these decisions, no validation conditions can be stated.
In our example, these are the Steps 1 and 2. In the second phase, the language
templates that can be proposed are fairly general (for example, we cannot say
much more than that schemas should be used to define the internal system states
and the initial states), but it is possible to state a number of formal and informal
validation conditions. In our example, the second phase consists of Steps 3 and
4. In the third and last phase of an agenda, the parts of the document devel-
oped in the earlier phases are assembled. This can be done in a routine or even
completely automatic way. Consequently, no validation conditions are necessary
for this phase. In our example, the third phase consists of Steps 5 and 6. Step 7

allows specifiers to add specification text, if this is necessary for the particular
application. The example shows that

the agenda is fairly detailed and provides non-trivial methodological support,
— the structure of the specification need not be developed by the specifier but
is determined by the agenda,

the schematic expressions proposed are quite detailed,

— the validation conditions that help avoid common errors are tailored for the
reference architecture and the structure of its corresponding specification.

2.2 Agenda-Based Development

In general, working with agendas proceeds as follows: first, the software engi-
neer selects an appropriate agenda for the task at hand. Usually, several agendas
will be available for the same development activity, which capture different ap-
proaches to perform the activity. This first step requires a deep understanding
of the problem to be solved. Once the appropriate agenda is selected, the further
procedure is fixed to a large extent. Each step of the agenda must be performed,
in an order that respects the dependencies of steps. The informal description
of the step informs the software engineer about the purpose of the step. The
schematic language expressions associated with the step provide the software
engineer with templates that can just be filled in or modified according to the
needs of the application at hand. The result of each step is a concrete expression
of the language that is used to express the artifact. If validation conditions are
associated with a step, these should be checked immediately to avoid unnec-
essary dead ends in the development. When all steps of the agenda have been
performed, a product has been developed that can be guaranteed to fulfill certain
application-independent quality criteria.

Agenda-based development of software artifacts has a number of character-
istics:

— Agendas make software processes explicit, comprehensible, and as-
sessable.
Giving concrete steps to perform an activity and defining the dependencies
between the steps make processes explicit. The process becomes comprehen-
sible for third parties because the purpose of the various steps is described
informally in the agenda.

— Agendas standardize processes and products of software develop-
ment.
The development of an artifact following an agenda always proceeds in a
way consistent with the steps of the agenda and their dependencies. Thus,
processes supported by agendas are standardized. The same holds for the
products: since applying an agenda results in instantiating the schematic
expressions given in the agenda, all products developed with an agenda have
the same structure.

— Agendas support maintenance and evolution of the developed ar-
tifacts.
Understanding a document developed by another person is much less difficult
when the document was developed following an agenda than without such
information. Each part of the document can be traced back to a step in the
agenda, which reveals its purpose. To change the document, the agenda can
be “replayed”. The agenda helps focus attention on the parts that actually
are subject to change. In this way, changing documents is greatly simplified,
and it can be expected that maintenance and evolution are less error-prone
when agendas are used.

— Agendas are a promising starting point for sophisticated machine
support.
First, agendas can be formalized and implemented as strategies, see Section
3. But even if a formal representation of development knowledge is not de-
sired, agendas can form the basis of a process-centered software engineering
environment (PSEE) [GJ96]. Such a tool would lead its users through the
process described by the agenda. It would determine the set of steps to be
possibly performed next and could contain a specialized editor that offers the
user the schematic language expressions contained in the agenda. The user
would only have to fill in the undefined parts. Furthermore, an agenda-based
PSEE could automatically derive the validation obligations arising during a
development, and theorem provers could be used to discharge them (if they
are expressed formally).

We have defined and used agendas for a variety of software engineering activities
that we supported using different formal techniques. These activities include (for
more details on the various agendas, the reader is referred to [Hei97]):

— Requirements engineering
We have defined two different agendas for this purpose. The first supports
requirements elicitation by collecting possible events, classifying these events,
and expressing requirements as constraints on the traces of events that may
occur. Such a requirements description can subsequently be transformed into
a formal specification. The second agenda places requirements engineering
in a broader context, taking also maintenance considerations into account.
This agenda can be adapted to maintain and evolve legacy systems.

— Specification acquisition in general
There exist several agendas that support the development of formal specifi-
cations without referring to a specific application area (such as safety-critical
systems). The agendas are organized according to specification styles that
are language-independent to a large extent.

— Specification of safety-critical software
Besides the agenda presented in Section 2.1, more agendas for this purpose
can be found in [HS97,GHD98].

— Software design using architectural styles
In [HL97], a characterization of three architectural styles using the formal

10

description language LOTOS is presented. For each of these styles, agendas
are defined that support the design of software systems conforming to the
style.

— Object-oriented analysis and design
An agenda for the object-oriented Fusion method [CAB*94] makes the de-
pendencies between the various models set up in the analysis and design
phases explicit and states several consistency conditions between them.

— Program synthesis
We have defined agendas supporting the development of provably correct
programs from first-order specifications. Imperative programs can be syn-
thesized using Gries’ approach [Gri81], and functional programs can be syn-
thesized using the KIDS approach [Smi90].

3 The Strategy Framework

In the previous section, we have introduced the agenda concept and have illus-
trated what kind of technical knowledge can be represented as agendas. Agendas
are an informal concept whose application does not depend on machine support.
They form the first layer of support for systematic software development.

We now go one step further and provide a second layer with the strategy
framework. In this layer, we represent development knowledge formally. When
development knowledge is represented formally, we can reason about this knowl-
edge and prove properties of it. The second aim of the strategy framework is
to support the application of development knowledge by machine in such a way
that semantic properties of the developed product can be guaranteed.

In the strategy framework, a development activity is conceived as the process
of constructing a solution for a given problem. A strategy specifies how to reduce
a given problem to a number of subproblems, and how to assemble the solution
of the original problem from the solution to the subproblems. The solution to
be constructed must be acceptable for the problem. Acceptability captures the
semantic requirements concerning the product of the development process. In
this respect, strategies can achieve stronger quality criteria than is intended,
e.g., by CASE. The notion of a strategy is generic in the definition of problems,
solutions and acceptability.

How strong a notion of acceptability can be chosen depends on the degree of
formality of problems and solutions. For program synthesis, both problems and
solutions can be formal objects: problems can be formal specifications, solutions
can be programs, and acceptability can be the total or partial correctness of the
program with respect to the specification. For specification acquisition, on the
other hand, we might wish to start from informal requirements. Then problems
consist of a combination of informal requirements and pieces of a formal spec-
ification. Solutions are formal specifications, and a solution is acceptable with
respect to a problem if the combination of the pieces of formal specification
contained in the problem with the solution is a semantically valid specification.
This notion of acceptability is necessarily weaker than the one for program syn-
thesis, because the adequacy of a formal specification with respect to informal

11

requirements cannot be captured formally. Only if the requirements are also ex-
pressed formally, a stronger notion of acceptability is possible for specification
acquisition.

The strategy framework is defined in several stages, leading from simple
mathematical notions to an elaborated architecture for systems supporting strat-
egy-based problem solving. In the first stages, strategies are defined as a purely
declarative knowledge representation mechanism. Experience has shown that for-
mal knowledge representation mechanisms are (i) easier to handle and (ii) have
a simpler semantics when they are declarative than when they are procedural.
As for strategies, (i) agendas can be transformed into strategies in a routine way
(see Section 1), and (ii) the relational semantics of strategies supports reasoning
about and combination of strategies. Further stages gradually transform declar-
atively represented knowledge into executable constructs that are provided with
control structures to guide an actual problem solving process. Figure 5 shows
the different stages.

relations

constituting relations

declarative

knowledge strategies ——— strategicals
representation

implementable

o i
concepts modular representation

abstract problem solving algorithm

support-system architecture

Fig. 5. Stages of definitions

The basic stage consists in defining a suitable notion of relation, because,
formally, strategies establish a relation between a problem and the subproblems
needed to solve it, and between the solutions of the subproblems and the final
solution. Relations are then specialized to problem solving, which leads to the
definition of constituting relations. Strategies are defined as sets of constituting
relations that fulfill certain requirements. In particular, they may relate problems
only to acceptable solutions. Strategicals are functions combining strategies; they
make it possible to define more powerful strategies from existing ones.

To make strategies implementable, they are represented as strategy modules,
which rely on constructs available in programming languages. In particular, re-
lations are transformed into functions. The next step toward machine support

12

consists in defining an abstract problem solving algorithm. This algorithm de-
scribes the manner in which strategy-based problem solving proceeds and can
be shown to lead to acceptable solutions. The generic system architecture pro-
vides a uniform implementation concept for practical support systems.

In the following, we sketch the definitions of the strategy framework (for de-
tails, see [Hei97]). Subsequently, we discuss its characteristics. Strategies, strate-
gicals, and strategy modules are formally defined in the language Z [Spi92].
This does not only provide precise definitions of these notions but also makes
reasoning about strategies possible.

3.1 Relations

In the context of strategies, it is convenient to refer to the subproblems and
their solutions by names. Hence, our definition of strategies is based on the the
notion of relation as used in the theory of relational databases [Kan90], instead
of the usual mathematical notion of relation. In this setting, relations are sets
of tuples. A tuple is a mapping from a set of attributes to domains of these
attributes. In this way, each component of a tuple can be referred to by its
attribute name. In order not to confuse these domains with the domain of a
relation as it is frequently used in Z, we introduce the type Value as the domain
for all attributes and define tuples as finite partial functions from attributes to
values: tuple : P(Attribute + Value), where P is the powerset operator. Relations
are sets of tuples that all have the same domain. This domain is called the
scheme of the relation. Note that in Z function applications are written without
parentheses.

relation : P(P tuple)
Vr: relation e Vit : r @ domt; = dom ¢y

3.2 Constituting Relations

Constituting relations specialize relations for problem solving. Attributes can ei-
ther be ProblemAttributes or SolutionAttributes, whose values must be Problems
or Solutions, respectively. The types Problem and Solution are generic parame-
ters.

const_rel : P relation

Ver: const_rel eVt :cr; a:schemecr e
scheme cr C (ProblemAttribute U SolutionAttribute) A
(a € ProblemAttribute = t a € Problem) A
(a € SolutionAttribute = t a € Solution)

Acceptability, the third generic parameter, is a relation between problems and
solutions: _acceptable_for_ : Solution < Problem. By default, we use the dis-
tinguished attributes P_init and S_final to refer to the initial problem and its
final solution.

13

The schemes of constituting relations are divided into input attributes IA and
output attributes OA. The constituting relations restrict the values of the output
attributes, given the values of the input attributes. Thus, they determine an order
on the subproblems that must be respected in the problem solving process. Based
on the partitioning of schemes, it is possible to define a dependency relation on
constituting relations. A constituting relation cry directly depends on another
such relation cry (cry Cq4 crp) if one of its input attributes is an output attribute
of the other relation: QA cry N IA cry # 0. For any given set crs of constituting
relations, a dependency relation C.rs is defined to be the transitive closure of
the direct dependency relation it determines.

A set of constituting relations defining a strategy must conform to our intu-
itions about problem solving. Among others, the following conditions must be
satisfied:

— The original problem to be solved must be known, i.e. P_init must always
be an input attribute.

— The solution to the original problem must be the last item to be determined,
i.e. S_final must always be an output attribute.

— Each attribute value except that of P_init must be determined in the prob-
lem solving process, i.e., each attribute except P_init must occur as an
output attribute of some constituting relation.

— The dependency relation on the constituting relations must not be cyclic.

Finite sets of constituting relations fulfilling these and other requirements are
called admissible. For a complete definition of admissibility, see [Hei97].

Ezxample. For transforming the agenda presented in Section 2.1 into a strategy,
we must first define suitable notions of problems, solutions, and acceptability. A
problem pr : SafProblem consists of three parts: the part pr.req contains an infor-
mal requirements description, the part pr.contexrt contains the specification frag-
ments developed so far, and the part pr.to_develop contains a schematic Z-CSP
expression that can be instantiated with a concrete one. This schematic expres-
sion specifies the syntactic class of the specification fragment to be developed, as
well as how the fragment is embedded in its context. Solutions are syntactically
correct Z-CSP expressions, and a solution sol : SafSolution is acceptable for a
problem pr if and only if it belongs to the syntactic class of pr.to_develop, and
the combination of pr.context with the instantiated schematic expression yields
a semantically valid Z-CSP specification.

3.3 Strategies

We define strategies as admissible sets of constituting relations that fulfill certain
conditions. Let strat = {cry, ..., CTmaz } and schemes strat = scheme crg U ... U
scheme crpmqz- The set strat is a strategy if it is admissible and

— the set scheme; strat, contains the attributes P_init and S_final,

14

— for each problem attribute a of scheme; strat, a corresponding solution at-
tribute, called sol a, is a member of the scheme, and vice versa,

— if a member of the relation t< strat? contains acceptable solutions for all prob-
lems except P_init, then it also contains an acceptable solution for P_init.
Thus, if all subproblems are solved correctly, then the original problem must
be solved correctly as well.

strategy : P(IF const_rel)

V strat : strategy e
admissible strat N\
{P_ingt, S_final} C schemes strat A
(V a : ProblemAttribute ® a € scheme, strat < sol a € schemes strat) A
(V res : < strat o
(Y a : subprs, strat e (res (sol a)) acceptable_for (res a))
= (res S_final) acceptable_for (res P_init))

The last condition guarantees that a problem that is solved exclusively by ap-
plication of strategies is solved correctly. This condition requires that strategies
solving the problem directly must produce only acceptable solutions. Figure 6
illustrates the definition of strategies, where arrows denote the propagation of
attribute values.

passive_sensors S_sens/act

S sens/act P_state, S_state P_ops, S_ops P_other, S_other

P_init @ @ @ @ S_ﬁnal

Fig. 6. Strategy for passive sensors

Ezxample. When transforming an agenda into a strategy, we must decide which
of the steps of the agenda will become subproblems of the strategy. If the result
of a step consists in a simple decision or can be assembled from already existing
partial solutions, then no subproblem corresponding to the step is necessary.

2 A join M combines two relations. The scheme of the joined relation is the union of
the scheme of the given relations. On common elements of the schemes, the values
of the attributes must coincide. The operation xi denotes the join of a finite sets of
relations.

15

Considering the agenda of Section 2.1, we decide that Steps 2, 5, and 6 need not
become subproblems. Hence, we can define

passive_sensors = {step_1, steps_2/3, step_4, steps_5/6/7, pass_sol}

Figure 6 shows how attribute values are propagated. The constituting relation
stepy, for example, has as P_init as its only input attribute, and P_sens/act
and S_sens/act as its output attributes. The requirements P_sens/act.req con-
sist of the requirements P_init.req with the addition “Model the sensor val-
ues and actuator commands as members of Z types.” (see Table 1). The con-
text P_sens/act.context is the same as for P_init, and P_sens/act.to_develop
consists of the single metavariable type_defs : Z-az_def, which indicates that
axiomatic Z definitions have to be developed. For the solution S_sens/act of
problem P_sens/act, the only requirement is that it be acceptable. The other
constituting relations are defined analogously. The complete strategy definition
can be found in [Hei97].

3.4 Strategicals

Strategicals are functions that take strategies as their arguments and yield strate-
gies as their result. They are useful to define higher-level strategies by combining
lower-level ones or to restrict the set of applicable strategies, thus contributing
to a larger degree of automation of the development process.

Three strategicals are defined [Hei97] that are useful in different contexts. The
THEN strategical composes two strategies. Applications of this strategical can be
found in program synthesis. The REPEAT strategical allows stepwise repetition of
a strategy. Such a strategical is useful in the context of specification acquisition,
where often several items of the same kind need to be developed. To increase
applicability of the REPEAT strategical, we also define a LIFT strategical that
transforms a strategy for developing one item into a strategy for developing
several items of the same kind.

3.5 Modular Representation of Strategies

To make strategies implementable, we must find a suitable representation for
them that is closer to the constructs provided by programming languages than
relations of database theory. The implementation of a strategy should be a mod-
ule with a clearly defined interface to other strategies and the rest of the system.
Because strategies are defined as relations, it is possible for a combination
of values for the input attributes of a constituting relation to be related to
several combinations of values for the output attributes. A type ExtInfo is used
to select one of these combinations, thus transforming relations into functions.
Such external information can be derived from user input or can be computed
automatically. A strategy module consists of the following items:

— the set subp : P ProblemAttribute of subproblems it produces,

16

— adependency relation _depends_on_ : ProblemAttribute <> ProblemAttribute
on these subproblems,

— for each subproblem, a procedure setup : tuple X ExtIinfo - Problem that
defines it, using the information in the initial problem and the subproblems
and solutions it depends on, and possibly external information,

— for each solution to a subproblem, a predicate local_accept : tuple <> Solution
that checks whether or not the solution conforms to the requirements stated
in the constituting relation of which it is an output attribute,

— a procedure assemble : tuple x ExtInfo + Solution describing how to assem-
ble the final solution, and

— a test accept_ : P tuple of acceptability for the assembled solution.

Optionally, an ezplain component may be added that explains why a solution is
acceptable for a problem, e.g., expressed as a correctness proof.

3.6 An Abstract Problem Solving Algorithm

The abstract problem solving algorithm consists of three functions, called solve,
apply, and solve_subprs. The function solve has a problem pr as its input. To
solve this problem, a strategy strat must be selected from the available strategies.
The function apply is called that tries to solve the problem pr with strategy strat.
If this is successful, then the value of the attribute S_final obtained from the
tuple yielded by apply is the result of the solve function. Otherwise, another
trial is made, using a different strategy.

The function apply first calls another function solve_subprs to solve the sub-
problems generated by the strategy strat. It then sets up the final solution and
checks it for acceptability. If the acceptability test fails, apply yields a distin-
guished failure element. Otherwise, it yields a tuple that lies in < strat (see
Section 3.3).

The function solve_subprs has as its arguments the tuple consisting of the
attribute values determined so far, and a set of subproblems still to be solved.
It applies solve recursively to all subproblems contained in its second argument.

Problem solving with strategies usually requires user interaction. For the
functions solve, apply, and solve_subprs, user interaction is simulated by pro-
viding them with an additional argument of type seq UserInput, where the type
UserInput comprises all possible user input. User input must be converted into
external information, as required by the strategy modules. To achieve this, we
use heuristic functions. Heuristic functions are those parts of a strategy imple-
mentation that can be implemented with varying degrees of automation. It is
also possible to automate them gradually by replacing, over time, interactive
parts with semi- or fully automatic ones.

It can be proven that the functions solve, apply and solve_subprs model
strategy-based problem solving in an appropriate way: Whenever solve yields a
solution to a problem, then this solution is acceptable.

17

3.7 Support-System Architecture

We now define a system architecture that describes how to implement support
systems for strategy-based problem solving. Figure 7 gives a general view of the
architecture which is described in more detail in [HSZ95]. This architecture is
a sophisticated implementation of the functions given in the last section. We
introduce data structures that represent the state of the development of an
artifact. This ensures that the development process is more flexible than would be
possible with a naive implementation of these functions in which all intermediate
results would be buried on the run-time stack. It is not necessary to first solve
a given subproblem completely before starting to solve another one.

Two global data structures represent the state of development: the devel-
opment tree and the control tree. The development tree represents the entire
development that has taken place so far. Nodes contain problems, information
about the strategies applied to them, and solutions to the problems as insofar
as they have been determined. Links between siblings represent dependencies on
other problems or solutions.

initial external

problem information strategy selection
(‘ Y
\L A
O O setup N \depmdmcn es
/ \ | \, g
AN 7N H

e

Zan
® OO

AN
[

I
\
%/y up N \dependencls

uejdxe

development tree control tree

Fig. 7. General view of the system architecture

The data in the control tree are concerned only with the future development.
Its nodes represent uncompleted tasks and point to nodes in the development
tree that do not yet contain solutions. The degrees of freedom in choosing the
next problem to work on are also represented in the control tree. The third major
component of the architecture is the strategy base. It represents knowledge used
in strategy-based problem solving via strategy modules.

A development roughly proceeds as follows: the initial problem is the input
to the system. It becomes the root node of the development tree. The root of

18

the control tree is set up to point to this problem. Then a loop of strategy appli-
cations is entered until a solution for the initial problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the
leaves of the control tree. Secondly, a strategy is selected from the strategy base.
Applying the strategy to the problem entails extending the development tree
with nodes for the new subproblems, installing the functions of the strategy
module in these nodes, and setting up dependency links between them. The
control tree must also be extended.

If a strategy immediately produces a solution and does not generate any
subproblems, or if solutions to all subproblems of a node in the development tree
have been found and tested for local acceptability, then the functions to assemble
and accept a solution are called; if the assembling and accepting functions are
successful, then the solution is recorded in the respective node of the development
tree. Because the control tree contains only references to unsolved problems, it
shrinks whenever a solution to a problem is produced, and the problem-solving
process terminates when the control tree vanishes. The result of the process
is not simply the developed solution — instead, it is a development tree where
all nodes contain acceptable solutions. This data structure provides valuable
documentation of the development process, which produced it, and can be kept
for later reference.

A research prototype that was built to validate the concept of strategy and
the system architecture developed for their machine-supported application. The
program synthesis system IOSS (Integrated Open Synthesis System) [HSZ95]
supports the development of provably correct imperative programs.

3.8 Discussion of Strategies

The most important properties of the strategy framework are:

— Uniformity. The strategy framework provides a uniform way of representing
development knowledge. It is independent of the development activity that is
performed and the language that is used. It provides a uniform mathematical
model of problem solving in the context of software engineering.

— Machine Support. The uniform modular representation of strategies makes
them implementable. The system architecture derived from the formal strat-
egy framework gives guidelines for the implementation of support systems
for strategy-based development. Representing the state of development by
the data structure of development trees is essential for the practical applica-
bility of the strategy approach. The practicality of the developed concepts
is confirmed by the implemented system I0SS.

— Documentation. The development tree does not only support the devel-
opment process. Is also useful when the development is finished, because it
provides a documentation of how the solution was developed and can be
used as a starting point for later changes.

— Semantic Properties. To guarantee acceptability of a solution developed
with an implemented system, the functions local_accept and accept are the

19

only components that have to be verfied. Hence, also support systems that
are not verified compeletly can be trustworthy.

— Stepwise Automation. Introducing the concept of heuristic function and
using these functions in distinguished places in the development process, we
have achieved a separation of concerns: the essence of the strategy, i.e. its
semantic content, is carefully isolated from questions of replacing user inter-
action by semi or fully automatic procedures. Hence, gradually automating
development processes amounts to local changes of heuristic functions.

— Scalability. Using strategicals, more and more elaborate strategies can be
defined. In this way, strategies can gradually approximate the size and kind
of development steps as they are performed by software engineers.

4 Related Work

Recently, efforts have been made to support re-use of special kinds of software
development knowledge: Design patterns [GHIV95] have had much success in
object-oriented software construction. They represent frequently used ways to
combine classes or associate objects to achieve a certain purpose. Furthermore,
in the field of software architecture [SG96], architectural styles have been de-
fined that capture frequently used design principles for software systems. Apart
from the fact that these concepts are more specialized in their application than
agendas, the main difference is that design patterns and architectural styles do
not describe processes but products.

Agendas have much in common with approaches to software process modeling
[Huf96]. The difference is that software process modeling techniques cover a wider
range of activities, e.g., management activities, whereas with agendas we always
develop a document, and we do not take roles of developers etc. into account.
Agendas concentrate more on technical activities in software engineering. On
the other hand, software process modeling does not place so much emphasis on
validation issues as agendas do.

Chernack [Che96] uses a concept called checklist to support inspection pro-
cesses. In contrast to agendas, checklists presuppose the existence of a software
artifact and aim at detecting defects in this artifact.

Related to our aim to provide methodological support for applying formal
techniques is the work of Souquiéres and Lévy [SL93]. They support specification
acquisition with development operators that reduce tasks to subtasks. However,
their approach is limited to specification acquisition, and the development oper-
ators do not provide means to validate the developed specification.

Astesiano and Reggio [AR97] also emphasize the importance of method when
using formal techniques. In the “method pattern” they set up for formal speci-
fication, agendas correspond to guidelines.

A prominent example of knowledge-based software engineering, whose aims
closely resemble our own, is the Programmer’s Apprentice project [RW88]. There,
programming knowledge is represented by clichés, which are prototypical ex-
amples of the artifacts in question. The programming task is performed by

20

“inspection”—1i.e., by choosing an appropriate cliché and customizing it. In com-
parison to clichés, agendas are more process-oriented.

Wile’s [Wil83] development language Paddle provides a means of describing
procedures for transforming specifications into programs. Since carrying out a
process specified in Paddle involves executing the corresponding program, one
disadvantage of this procedural representation of process knowledge is that it
enforces a strict depth-first left-to-right processing of the goal structure. This
restriction also applies to other, more recent approaches to represent software
development processes by process programming languages [Ost87,SSW92].

In the German project KORSO [BJ95], the product of a development is
described by a development graph. Its nodes are specification or program modules
whose static composition and refinement relations are expressed by two kinds of
vertices. There is no explicit distinction between “problem nodes” and “solution
nodes”. The KORSO development graph does not reflect single development
steps, and dependencies between subproblems cannot be represented.

The strategy framework uses ideas similar to tactical theorem proving, which
has first been employed in Edinburgh LCF [Mil72]. Tactics are programs that
implement “backward” application of logical rules. The goal-directed, top-down
approach to problem solving is common to tactics and strategies. However, tac-
tics set up all subgoals at once when they are invoked. Dependencies between
subgoals can only be expressed schematically by the use of metavariables. Since
tactics only perform goal reduction, there is no equivalent to the assemble and
accept functions of strategies.

5 Conclusions

We have shown that the concept of an agenda bears a strong potential to

— structure processes performed in software engineering,

— make development knowledge explicit and comprehensible,

— support re-use and dissemination of such knowledge,

— guarantee certain quality criteria of the developed products,

— facilitate understanding and evolution of these products,

— contribute to a standardization of products and processes in software engi-
neering that is already taken for granted in other engineering disciplines,

— lay the basis for powerful machine support.

Agendas lead software engineers through different stages of a development and
propose validations of the developed product. Following an agenda, software
development tasks can be performed in a fairly routine way. When software en-
gineers are relieved from the task to find new ways of structuring and validating
the developed artifacts for each new application, they can better concentrate on
the peculiarities of the application itself.

We have validated the concept of an agenda by defining and applying a
number of agendas for a wide variety of software engineering activities. Currently,
agendas are applied in industrial case studies of safety-critical embedded systems
in the German project ESPRESS [GHD98].

21

Furthermore, we have demonstrated that strategies are a suitable concept
for the formal representation of development knowledge. The generic nature of
strategies makes it possible to support different development activities. Strategi-
cals contribute to the scalability of the approach. The uniform representation as
strategy modules makes strategies implementable and isolates those parts that
are responsible for acceptability and the ones that can be subject to automation.

The generic system architecture that complements the formal strategy frame-
work gives guidelines for the implementation of support systems for strategy-
based development. The representation of the state of development by the data
structure of development trees contributes essentially to the practical applica-
bility of the strategy approach.

In the future, we will investigate to what extent agendas are independent
of the language which is used to express the developed artifact, and we will
define agendas for other activities such as testing and specific contexts, e.g.,
object-oriented software development. Furthermore, we will investigate how dif-
ferent instances of the system architecture can be combined. This would provide
integrated tool support for larger parts of the software lifecycle.

References

[AR97] E. Astesiano and G. Reggio. Formalism and Method. In M. Bidoit and
M. Dauchet, editors, Proceedings TAPSOFT’97, LNCS 1214, pages 93-114.
Springer-Verlag, 1997.

[BJ95] M. Broy and S. Jahnichen, editors. KORSO: Methods, Languages, and Tools
to Construct Correct Software. LNCS 1009. Springer-Verlag, 1995.

[CAB*94] D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: The Fusion Method. Prentice
Hall, 1994.

[Che96] Yuri Chernack. A statistical approach to the inspection checklist formal
synthesis and improvement. IEEE Transactions on Software Engineering,
22(12):866-874, December 1996.

[Dav93] Jim Davies. Specification and Proof in Real-Time CSP. Cambridge Univer-
sity Press, 1993.

[GHDY98] Wolfgang Grieskamp, Maritta Heisel, and Heiko Dérr. Specifying safety-
critical embedded systems with Statecharts and Z: An agenda for cyclic
software components. In E. Astesiano, editor, Proc. ETAPS-FASE’98, LNCS
1382, pages 88-106. Springer-Verlag, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, 1995.

[GJ96] P. Garg and M. Jazayeri. Process-centered software engineering environ-
ments: A grand tour. In A. Fuggetta and A. Wolf, editors, Software Process,
Trends in Software 4, chapter 2, pages 25-52. Wiley, 1996.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[Hei97] Maritta Heisel. Methodology and Machine Support for the Application of
Formal Techniques in Software Engineering. Habilitation Thesis, TU Berlin,
1997.

22

[HL97]

[HS96]

[HS97]

[HSZ95]

[Huf96]

[Kan90]

[Mil72]

[Ost87]

[RWSS]
[SG96]
[SL93]

[Smi90]

[Spi92]
[SSW92]

[Wil83]

Maritta Heisel and Nicole Lévy. Using LOTOS patterns to characterize
architectural styles. In M. Bidoit and M. Dauchet, editors, Proceedings
TAPSOFT’97, LNCS 1214, pages 818-832. Springer-Verlag, 1997.

Maritta Heisel and Carsten Siithl. Formal specification of safety-critical
software with Z and real-time CSP. In E. Schoitsch, editor, Proceedings
15th International Conference on Computer Safety, Reliability and Security
(SAFECOMP), pages 31-45. Springer-Verlag London, 1996.

Maritta Heisel and Carsten Stihl. Methodological support for formally spec-
ifying safety-critical software. In P. Daniel, editor, Proceedings 16th Inter-
national Conference on Computer Safety, Reliability and Security (SAFE-
COMP), pages 295-308. Springer-Verlag London, 1997.

Maritta Heisel, Thomas Santen, and Dominik Zimmermann. Tool support
for formal software development: A generic architecture. In W. Schéfer and
P. Botella, editors, Proceedings 5-th European Software Engineering Confer-
ence, LNCS 989, pages 272-293. Springer-Verlag, 1995.

Karen Huff. Software process modelling. In A. Fuggetta and A. Wolf, editors,
Software Process, Trends in Software 4, chapter 2, pages 1-24. Wiley, 1996.
Paris C. Kanellakis. Elements of relational database theory. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
chapter 17, pages 1073-1156. Elsevier, 1990.

Robin Milner. Logic for computable functions: description of a machine
implementation. SIGPLAN Notices, 7:1-6, 1972.

Leon Osterweil. Software processes are software too. In 9th International
Conference on Software Engineering, pages 2—-13. IEEE Computer Society
Press, 1987.

Charles Rich and Richard C. Waters. The programmer’s apprentice: A
research overview. IEEE Computer, pages 10-25, November 1988.

Mary Shaw and David Garlan. Software Architecture. IEEE Computer
Society Press, Los Alamitos, 1996.

Jeanine Souquiéres and Nicole Lévy. Description of specification develop-
ments. In Proc. of Requirements Engineering ’93, pages 216-223, 1993.
Douglas R. Smith. KIDS: A semi-automatic program development system.
IEEE Transactions on Software Engineering, 16(9):1024-1043, September
1990.

J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd
edition, 1992.

Terry Shepard, Steve Sibbald, and Colin Wortley. A visual software process
language. Communications of the ACM, 35(4):37-44, April 1992.

David S. Wile. Program developments: Formal explanations of implemen-
tations. Communications of the ACM, 26(11):902-911, November 1983.

23

