Detecting Feature Interactions — A Heuristic
Approach

Maritta Heisel Jeanine Souquieres
Fakultéat fiir Informatik LORIA—Université Nancy2
Universitdt Magdeburg B.P. 239 Batiment LORIA

D-39016 Magdeburg, Germany F-54506 Vandceuvre-les-Nancy, France
Fax: (49)-391-67-12810 Fax: (33)-3-83-41-30-79
heisel@cs.uni-magdeburg.de souquier@loria.fr
Abstract

We present a method to systematically detect feature interactions in requirements. The
requirements are expressed as constraints on system event traces. This method part is part
of a broader approach to requirements elicitation and formal specification.

1 The General Approach

Our work aims at providing methodological support for analysts and specifiers of software-based
systems. To this end, we have developed an integrated approach to requirements elicitation and
formal specification, which is sketched in [HS98]. We do not invent any new languages, but give
guidance how to proceed to (i) identify and formally express the requirements concerning the
system to be constructed, and (ii) systematically transform these requirements into a formal
specification. The difference between requirements and a specification is that requirements refer
to the entire system to be realized, whereas a specification refers only to the part of the system
to be implemented by software.

Our method begins with an explicit requirements elicitation phase. The result of this first
phase is a set of requirements, which are expressed formally as constraints on sequences of events
or operations that can happen or be invoked in the context of the system. These constraints
form the starting point for the development of the formal specification. The two phases pro-
vide feedback to one another: not only is the specification based on the requirements, but the
specification phase may also reveal omissions and errors in the requirements. In the present
paper, however, we will not describe the specification phase, because our method to detect fea-
ture interactions is part of the requirements elicitation phase. Expressing requirements formally
greatly supports the systematic detection of feature interactions.

We use agendas [Hei98] to express our methods. An agenda is a list of steps to be performed
when carrying out some task in the context of software engineering. The result of the task will
be a document expressed in a certain language. Agendas contain informal descriptions of the
steps. These may depend on each other. Usually, they will have to be repeated to achieve the
goal, because later steps will reveal errors and omissions in earlier steps.

Agendas are not only a means to guide software development activities. They also support
quality assurance because the steps of an agenda may have validation conditions associated with
them. These validation conditions state necessary semantic conditions that the artifact must
fulfill in order to serve its purpose properly.

2 Agenda for Requirements Elicitation

Requirements elicitation is performed in six steps, which provide methodological guidance for
analysts. In the following, we list the steps of the agenda we have developed for requirements
elicitation. Only the most important validation conditions are mentioned.

1. Introduce the domain theory.
All necessary notions must be introduced. These can either be entities, corresponding
to nouns in a natural-language description, or relationships, corresponding to verbs in a
natural-language description.

2. List all possible events that can happen in connection with the system, together with their
parameters.

3. Classify the events as: (i) controlled by the environment and not shared with the software
system, (ii) controlled by the environment but observable by the software system, (iii)
controlled by the software system and observable by the environment, and (iv) controlled
by the software system and not shared with the environment.

Validation condition: There must not be any events controlled by the software system and
not shared with the environment.

4. List possible system operations that can be invoked by users, together with their input
and output parameters. Introduce a relation between the input and output parameters.

5. State the facts, assumptions, and requirements concerning the system in natural language.
It does not suffice to just state requirements for the system. Often, facts and assumptions
must be introduced to make the requirements satisfiable. Facts express things that always
hold in the application domain, regardless of the implementation of the software system.
Other requirements cannot be enforced because e.g., human users might violate regulations.
These conditions are expressed as assumptions.

6. Formalize the facts, assumptions, and requirements as constraints on the possible traces
of system events.

Using constraints to talk about the behavior of the system has the following advantages:

o It is possible to express negative requirements, i.e., to require that certain things do not
happen. Such constraints are often related to safety conditions of the system to be realized.

o It is possible to give scenarios, i.e., example behaviors of the system. Such constraints are
often related to liveness conditions for the system to be realized.

e Giving constraints does not fix the system behavior entirely. Constraints do not restrict
the specification unnecessarily. Any specification that fulfills them is permitted.

Note that adding constraints may not only restrict but also enlarge the set of possible system
behaviors.

3 Agenda to Incorporate Single Constraints

In Step 6 of the agenda for requirements elicitation, the constraints must be formalized one
by one. Each new constraint is added to the set of constraints defined so far. But before the
constraint is added, its possible interactions with other constraints should be analyzed. The

following agenda gives guidelines how to incorporate a new constraint into a set of already
existing constraints.

Our method is a heuristic one, which means that we cannot guarantee that all interactions
are detected. Our aim is to provide a simple procedure that works well in practical cases and
that may be applied when a complete interaction analysis is unfeasible.

In the following, we will use the term literal to mean predicate or event symbols, or negations
of such symbols. An event symbol e is supposed to mean “event e must or may occur”, whereas
= e is supposed to mean “event e does not occur”. If we refer to predicate symbols and their
negations, we will use the term predicate literal. Event literals are defined analogously.

1. Formalize the new constraint as a formula on system traces.
We recommend to express — if possible — constraints as implications, where either the
precondition of the implication refers to an earlier state or an earlier point in time than
the postcondition, or both the pre- and postcondition refer to the same state (invariants).

2. Give a schematic expression of the constraint.
These schematic expressions have the following form:

AN N... Ny~ Vy V...V yg

where the z;, y; are literals. The symbol ~+ indicates that the precondition refers to an
earlier state as the postcondition. If the constraint is an invariant of the system state,
then the corresponding schema has the form

AN ... N, = VYypV...Vy

where the z;, y; are predicate literals. The use of the implication symbol = indicates that
pre-and postcondition refer to the same state.

Transforming a constraint into its schematic form, we abstract from quantifiers and from
parameters of predicate and event symbols.

3. Update the tables of semantic relations.
The detection of constraint interactions cannot be based on syntax alone. We also must
take into account the semantic relations between the different symbols. A predicate may
imply another predicate, an event may only be possible if the system state fulfills a predi-
cate, and for each predicate, we must know which events establish and which events falsify
it. We construct three tables of semantic relations:

(a) Necessary conditions for events.
If an event e can only occur if predicate literal pl is true, then this table has an entry
pl~ e.

(b) Events establishing predicate literals.
For each predicate literal pl, we need to know the events e that establish it: e ~» pl

(c) Relations between predicate literals.
For each predicate symbol p, we determine

e the set of predicate literals it entails: p—, = {q: PLit | p = ¢}

o the set of predicate literals its negation entails: = p—. = {¢ : PLit | - p = ¢}

e the set of predicate literals that entail it: —p = {q: PLit | ¢ = p}

e the set of predicate literals that entail its negation: o p = {¢q: PLit | ¢ = — p}

By contraposition, the following equalities hold:

= p={pl:p= e pl}
=p ={pl: - p= e - pl}

Hence, only two of the four sets must be determined explicitely. To check consistency
of the sets, the equivalences

PE€EY= & qE€Ep & g€ P
can be used.

4. Determine interaction candidates, based on the list of schematic requirements (Step 2)
and the semantic relation tables (Step 3). The definition of the interaction candidates is
given in Section 4.

5. Decide if there are interactions of the new constraint with the determined candidates.
It is up to the analysts and the customers to decide if the conjunction of the new with the
candidates yield an unwanted behavior or not.

6. If an interaction occurs, take one of the following actions:

e correct a fact

e relax a requirement (usually by adding a new pre- or postcondition, as preconditions
are usually conjunctions, and postconditions are usually disjunctions)

e strengthen an assumption

Perform an interaction analysis on those literals that were changed or newly introduced
into the constraint.

4 Determining Interaction Candidates

Our method to determine interaction candidates is based on the following observations: Con-
straint interactions can manifest themselves in the pre- or in the postcondition of constraints.
Constraints z ~ y and u ~ w are possible interaction candidates when their preconditions (z
and u) are neither exclusive nor independent of each other. This means, there are situations
where both z ~» y and u ~» w might apply. If in such a case the postconditions (y and w) are
incompatible, we have found an interaction.

Constraints z ~» y and u ~ w may interact on the postcondition if we can find a literal
[such that y entails I and w entails = [. If in such a case the preconditions z and u do not
exclude each other, an interaction occurs.

4.1 Precondition Interaction

To decide if two constraints z ~» y and u ~ w might interact on their precondition, we perform
the following reasoning: if the two constraints have common literals in their precondition (zNw #
&), then they are certainly interaction candidates.

But the common precondition may also be hidden. For example, if £ contains the event e,
u contains the predicate literal p, and e is only possible if p holds (p ~+ €), then we also have
detected a common precondition between the two events.

The common precondition may also be detected via reasoning on predicates. If, for example,
z contains the predicate literal p, u contains the predicate literal ¢, and p = ¢ or vice versa,
then there is a common precondition.

Figure 1 shows the general approach to find interaction candidates of the precondition for a
new constraint ¢’ among the facts, assumptions, and requirements already defined.

To formally define the set Cpre(c’, far) of candidates of precondition interaction of a new
constraint ¢/ with respect to a set far of constraints representing facts, assumptions, and re-
quirements, we first introduce some auxiliary definitions: For each event e, predicate literal pl

‘ q q=>r r facts
e p [F=>4d| r e ass.
pre p-e p=>r p-e
”””” T r=>p reg.
post
—e

Figure 1: Candidates for precondition interaction

and constraint ¢, we define

~e ={pl: PLit | pl ~ e}
pre_predicates(c) = (precond(c) N PLit) U Ueeprecond(c)nBVENT ~€

With these preliminaries, we can define

Cpre(c', far) =
{c: far | precond(c) N precond(c') # &}
U
Uxepre_predicates(c’){c : far | ((:>£II U CII:>) N precond(c) 7& ®)
V
(e :precond(c) NEVENT; y: sz Uz ey~ e)}

This definition can be explained as follows: All constraints ¢ with a common literal in the
precondition are candidates. For events e in the precondition of ¢’, all predicates that are
necessary for e to occur are collected. Together with the predicate literals contained in c¢’s
precondition, they form the set pre_predicates(c'). For each z € pre_predicates(c'), the transitive
closure with respect to implication is computed, where both forward (z—,) and backward chaining
(=z) are performed. This is necessary because weaker as well as stronger literals have states
in common with z. Moreover, this ensures that the candidates are independent of the order in
which the constraints are added. Each constraint ¢ whose precondition contains an element of
the transitive closure of some z is a candidate. But also those ¢ that contain in their precondition
an event e that has a necessary precondition contained in the transitive closure of some z must
be added to the set of candidates.

Note that on event literals = e no chaining is performed, because it is impossible to infer
anything from the non-occurrence of an event.

From the definition of Cpr(c', far), it follows that the set of candidates is independent of
the order in which the constraints are added, and that the candidate function distributes over
set union of the preconditions of constraints:

Y ¢, c1, co : Constraint; cs : P Constraint e
c2 € Cpre(c1,es U{ca}) © c1 € Cpre(ca,cs U{cr})
A
precond(c) = precond(c1) U precond(cz) = Cpre(c, cs) = Cpre(c1, cs) U Cpre(c2, cs)

The latter implies that, when a constraint is changed by adding a new literal to its precondition,
the interaction analysis has to be performed only on this new literal.
4.2 Postcondition Interaction

For determining the candidates for postcondition interaction, we proceed similarly. To find con-
flicting postconditions, we perform forward chaining on the postconditions of the new constraint,

negate the resulting literals, and check if one of the negated literals follows from the postcon-
dition of another constraint. This constraint is then identified as an interaction candidate. To
perform forward chaining on events, the information contained in the table of events establishing
predicate literals (e ~ p) is used. Again, on negative event literals, no chaining is performed.
Figure 2 gives an overview of the procedure.

pre
ffffffff e e~~p P _ or e~p| e facts
p=>r
post ass.
q q=>r i
—e req.

Figure 2: Candidates for precondition interaction

We need the auxiliary definitions

e, = {pl: PLit | e ~ pl}
post_predicates(c) = (postcond(c) N PLit) U Uee postcond(c)nEVENT €~
ls1 opposite lsy < dx : sy @ =z € s

where Is, lsy are sets of literals and = =1 = [.
Now, we can define

Cpost(clafa'r) =
{c: far | postcond(c) opposite postcond(c')}
U
{c: far | Az : post_predicates(c); y : post_predicates(c') o z_. opposite y-. }

This definition is symmetric, too, and Cp.s distributes over set union of postconditions of
constraints.

5 Example: the Lift System
We first consider a simple lift with the following requirements:

1. The lift is called by pressing a button, either at a floor or inside the lift.
2. Pressing a call button is possible any time.

3. When the lift passes by floor &, and there is a call from this floor, then the lift will stop
at floor k.

4. When the lift has stopped, it will open the door.

5. When the lift door has been opened, it will close automatically after d time units.

6. The lift only changes its direction when there are no more calls in the current direction.
7. When there are no calls, the lift stays at the floor last served, door closed.

8. As long as there are unserved calls, the lift will serve these calls.

9. When the lift is halted at floor £ with the door open, a call for floor k is not taken into
account.

10. When the lift is halted at floor ¥ with the door closed and receives a call for floor k, it
opens its door.

11. Whenever the lift moves, its door must be closed.
Afterwards, we add the following features:

12. The closing of the door may be prevented by pressing an open_door button.

13. When something blocks the door, the lift interrupts the process of closing the door, and
reopens the door.

14. When the lift is overloaded, the door will not close. Some passengers must get out.

15. The lift gives priority to calls from the executive landing.

In this paper, we will only show how Requirements 14 and 15 are added to the set of constraints,
and how their interaction candidates are determined. Based on Requirements 1-13, we have the
facts

1. The door can only be opened when it is closed or when it is closing and the door button
is pressed.

2. When the door starts closing, it either will close completely, or closing is interrupted by
pressing the door button.

3. The door button can only be pressed when it is released, and vice versa.

4. The door cannot be blocked when it is closed.

5.1 Starting Point

The following tables present the schematic constraints for the facts and for Requirements 1-13,
and the corresponding tables of semantic relations. The formalized facts and Requirements 1-13
are given in Appendix B.

The schematic constraints (see Step 2 of the agenda of Section 3) are given in Table 1. Un-
derlined parts show changements of constraints because of detected interactions. Table 2 shows
the necessary conditions for the events. The events establishing the predicates and their nega-
tions are given in Table 3. Finally, Table 4 gives the implicative closures of the various predicate
literals. This information is collected when performing Step 3 of the agenda of Section 3.

5.2 Adding new features

We now incorporate the features of overloading and executive floor, following the agenda of
Section 3.

Requirement 14:

When the lift is overloaded, the door will not close. Some passengers must get out.

Step 1: Formalize the new constraint as a formula on system traces.

Vitr: Tr e (Vi:domtr e overloaded(tr(i).s) = door_open(tr(i).s))

Step 2: Give a schematic expression of the constraint. owverloaded = door_open

- open_requested ~» press_door_button

Step 3: Update the tables of semantic relations.
duced a new predicate symbol overloaded. Hence, we must add the lines

Table 2: Necessary conditions for events

enter ~» overloaded
leave ~» — overloaded

to Table 3. This in turn introduces two new events enter and leave, which causes us to add the

lines

door_open ~ enter
door_open ~» leave

= door_closed ~» block

Con- | schematic expression Interaction
straint with
fact; | open ~» end_close
open ~» press_door_button
end_close ~» open
press_door_button ~» open
facty | begin_close ~ end_close
begin_close ~» press_door_button
end_close ~» begin_close
press_door_button ~» begin_close
facts | press_door_button ~» release_door_button
release_door_button ~» press_door_button
facty | door_closed ~» — block
req, press N - at ~» call
reqo true ~» press
regs passes_by A call ~ stop
Teqq stop ~» open
regs open ~» begin_closeV press_door_button V block
regs direction = up A call_from_up ~» direction = up
direction = down A call_from_down ~» direction = down
reqr halted N\ — call ~ halted
regs call A — at ~ at
reqy halted N door_open A press A at A call ~ call reqi
halted A door_open A press A at A — call ~ — call
reqio | halted N\ door_closed N press A\ at ~» open
reqi1 | — halted = door_closed
reqi2.q| press_door_button ~» open_requested
reqio.p| open_requested N halted ~ door_open regs, Teqs, req1o
reqiz | block ~ open reqs, Teqs
Table 1: Overview of schematic constraints
= halted ~» stop door_closed ~» open
halted ~» move door_open ~ begin_close
door_closed ~ move = door_closed ~ end_close

With this constraint, we have intro-

to Table 2.

press ~» call

stop ~» — call stop ~» at
move ~ passes_by move ~» — at
stop ~» — passes_by end_close ~» door_closed
press ~» call_from_up open ~ = door_closed
stop ~» = call_from_up press_door_button ~» open_requested
press ~ call_from_down release_door_button ~» — open_requested
stop ~ — call_from_down open ~ door_open
stop ~» halted begin_close ~» — door_open

move ~» — halted

Table 3: Events establishing predicate literals

cll., = @
= call— {= call_from_up,— call_from_down}
passes_by_. {— at, - halted, door_closed,— door_open}

- passes_by— =

call_from_up—. = {call}
=call_from_ups = O

call_from_down—, = {call}
= call_from_doun. =

halted—. = {at,— passes_by}
- halted, = {passes_by,— at, door_closed,— door_open}
at-. = {halted,— passes_by}

—at = O

{— door_open}
{halted, at,— passes_by}

door_closed_
= door_closed—s

open_requested—, = &

- open_requested—. = <&
door_open_, = {- door_closed,— passes_by, halted, at}

- door_open— = O

Table 4: Relations between predicate literals

Table 4 must be changed in the following way: We add the lines
overloaded—. = {door_open,— door_closed, halted, at, — passes_by}
- overloaded—. = O

According to the equivalences

PE€EG= & gE€E=p & g€ TP

the entries of all predicates related to overloaded must be updated. We get the following changes:

— door_open—. = {- overloaded}
door_closed—, = {— door_open,— overloaded}
— halted—. = {passes_by,— at, door_closed,— door_open,— overloaded}
passes_by—. = {— at,— halted, door_closed,— door_open,— overloaded}

Note that we do not change the entry for — at—., because at has a floor as its argument. If
= at(f) holds, we do not know if the lift is moving or if it is at another floor than f. The above

equivalences are exact only for predicates without arguments (e.g., door_closed, halted). For the
other predicates, they just point out which entries of the table must be re-considered.

Step 4: Determine interaction candidates. To determine the precondition interaction
candidates, we determine the sets used in the definition of Cp. in Section 4.1:

pre_predicates(req1a) = {overloaded}
= overloaded U overloaded—. = {door_open,— door_closed, halted, at,
- passes_by}
{e: EVENT, y : — overloaded U overloaded_.
|y~ eeoe} = {open,move}

Hence, the precondition interaction candidates are the ones that have one of the elements
door_open,— door_closed, halted, at,— passes_by, open, move in their precondition. According
to Table 1, these are fact;, regs, reqy, reqo, reqio.

To determine the postcondition interaction candidates, we proceed according to the definition
of Cpost in Section 4.2:

post_predicates(reqia) = {— door_open}

Because door_open—, = {— door_closed,— passes_by, halted, at}, we must look for postcondi-
tions door_closed, passes_by,— halted, — at and related events according to Table 3. These are
end_close, move. According to Table 1, we get the candidates fact; and reqi;.

Step 5: Analyze possible interactions. We do not have interactions with fact;, reg7, reqy,
regio, reqi1, but with regs. There is also an interaction with regs, which cannot be detected by
our procedure because of missing semantic information. In Section 6, we discuss in more detail
why this interaction cannot be found and what can be done about this.

Step 6: Eliminate interactions, if necessary. To adjust regs (see Appendix B), we cannot
use the macro must_be_followed_bys; any more, because now we do not add a new possible
event, but a predicate. We must expand the macro and add the postcondition

..V 3j i+ 1..#tr e overloaded(tr(j).s)
The new schematic constraint becomes
open ~» begin_close V press_door_button V block \V overloaded

Since we have added the new postcondition owverloaded to the constraint, we must
now perform postcondition interaction analysis on this literal. @ With overloaded—. =
{door_open, = door_closed, halted, at,— passes_by} it follows that we must look for constraints
with postconditions = door_open, door_closed, — halted, — at, passes_by. Related events accord-
ing to Table 3 are begin_close, end_close, move. In Table 1, we find the candidates fact;, facts,
and reqi1. There is no interaction with any of them.

To adjust regg, we add the elements enter and leave to the set evs (see Appendix B). Its
schematic version remains the same. Hence, no further interaction analysis is necessary.

Requirement 15:

The lift gives priority to calls from the executive landing.

Step 1: Formalize the new constraint as a formula on system traces.

Vitr: Tr e (Vi:domtr e call(tr(i).s, executive_floor)
= next_stop(tr(i).s) = ezecutive_floor)

Step 2: Give a schematic expression of the constraint.
call = next_stop = executive_floor

Step 3: Update the tables of semantic relations. We did not introduce new predicates or
events, only a new function symbol next_stop and a constant of type Floor. Hence, the semantic
tables remain unchanged.

Step 4: Determine interaction candidates. To determine the precondition interaction
candidates, we determine the sets used in the definition of Cpp in Section 4.1:

pre_predicates(reqis) = {call}
scallUcall, = {call_from_up, call_from_down}
{e : EVENT; y: scallUcall, | y~ e ® e} %)

Hence, the precondition interaction candidates are the ones that have one of the elements
call, call_from_up, call_from_down in their precondition. According to Table 1, these are reqs,
reqs, Teqs, Teqy.

There cannot be any postcondition interaction candidates, because the postcondition of
reqis contains only new syntactic elements that are not semantically related to any of the other
syntactic elements.

Step 5: Analyze possible interactions. We have interactions with reqs and regg, but not
with regs and reqg.

Step 6: Eliminate interactions, if necessary. We add a new precondition to reqs, which
becomes

Vir: Tr e (let tr' == remove(tr,{b : Button e press(b)}) e
Vi:domtr'; k : Floor | i # #tr' e
passes_by(tr'(i).s, k) A call(tr'(3).s, k)
A (k = ezecutive_floor V = call(tr'(7).s, executive_floor))
= tr'(1 + 1).e = stop(k))

The new schema, for regs is:
passes_by A call A\ f = executive_floor ~» stop
passes_by A call N f # executive_floor N\ — call ~» stop

Note that now we have call as well as — call in the schematic precondition of the constraint.
This is not a contradition (call and — call have different arguments), but only enlarges the set
of possible interaction candidates.

We must now perform a precondition interaction analysis on the new precondition — call.
We have —.— call U= call, = {— call_from_up,— call_from_down}. Because there are no
related events, our candidates are the constraints with precondition — call, = call_from_up,
= call_from_down. These are req; and reqg. With both of them, there is no interaction.

To adjust regg, we also add new preconditions.

Vir: Tre(Vi:domtr |i# #tr e
(direction(tr(i).s) = up A call_from_up(tr(i).s) A = call(tr(i).s, executive_floor)
= direction(tr(i + 1).s) = up)
A
(direction(tr(i).s) = down A call_from_down(tr(i).s) A
= call(tr(i).s, executive_floor)
= direction(tr(i + 1).s) = down)

The new schemas are
direction = up A call_from_up N — call ~ direction = up
direction = down A call_from_down A — call ~ direction = down

As for reqs, we must perform a precondition interaction analysis on the new precondition
= call. This yields the same candidates as before, plus the new version of reqs. Again, there is
no further interaction.

6 Discussion

The approach for the detection of feature interactions we have presented is truly heuristic. This
means, we cannot guarantee that all interactions that might occur are found by our procedure.
The virtue of our approach lies in the fact that interactions on the requirements level can be
detected very early, before the formal specification is set up, and with relatively little effort. Even
though determining the interaction candidates is tedious if performed by hand, the procedures to
determine the sets Cpr. and Cpes as defined in Section 4 are very easy to implement. Theorem
proving techniques are unnecessary. The number of interaction candidates that are yielded
by our procedure and that must be inspected is much less than if a complete analysis were
performed.

The semantic information collected in the tables of necessary conditions for events, events
establishing predicate literals, and relations between predicate literals not only contributes to a
better understanding of the requirements, but also greatly facilitates the process of setting up
and validating a formal specification for the software system to be built.

Our approach to detect feature interactions is independent of the order in which the features
are added. We do not attempt to resolve feature interactions automatically. Such decisions are
best taken by the customers.

Detecting more interactions. In Section 5.2, we saw that our procedure did not find regg as
an interaction candidate for reqi4 although there is an interaction between these requirements.
The reason is that our tables did not contain enough information to detect this interaction. Our
constraints do not say what the lift has to do to get to a certain floor when it is elsewhere.
Human analysts detect the interaction only because they know how a lift works. If the lift is
moving, it must stop at the requested floor. It it is halted with the door closed, it must start
moving. If it is halted with the door open, it must close the door and then start moving. Only
in this last case there is an interaction with reqi4, which requires the door to be opened.

Clearly, an automatic procedure can only work if it is given enough information. Such
information, however, can be added systematically. The liveness condition regg is distinguished
from other constraints such as req;, regi4 and reg;5 by the fact that it relates states of the system
that can be separated by a large number of events. In contrast, req; relates consecutive states,
and reqi4 and req;5 talk about one state only.

Accordingly, constraints can be assigned a distance, which characterizes the different states
related by the constraint. Requirement req; would have distance one, reqi4 and reqi5 would

have distance zero, and regs would have a distance greater than one. For each constraint with a
distance distance greater than one, additional information is needed. Such information can be
expressed as scenarios that show on the one hand how to proceed one step from the beginning
state (to perform analysis of precondition interaction) and on the other hand one step that leads
to the final state (to perform analysis of postcondition interaction). For regs, this would yield
the scenarios

call A — at A — halted ~» stop
call A\ = at A halted N\ door_closed ~» move
call A\ — at A halted N\ door_open ~» begin_close

for the precondition analysis and the scenario
stop ~ at

for the postcondition analysis. When such scenarios are added to the sets of constraints, our
procedure finds the interaction between reg;4 and reqg via the common precondition halted.
On the other hand, those interactions that are not detected by analysis of the requirements
should become apparent and be resolved when the formal specification is set up. Our approach
leaves room for decisions how important an early detection of interactions is considered to be
and how much effort is spent for this activity. If an early detection of interactions is important,
then our procedure can be adjusted. If it is acceptable to detect some interactions only in the
specification phase, then a simpler procedure can be used in the requirements elicitation phase.

References

[Hei98] Maritta Heisel. Agendas — a concept to guide software development activites. In
R. N. Horspool, editor, Proc. Systems Implementation 2000, pages 19-32, London, 1998.
Chapman & Hall.

[HS98] Maritta Heisel and Jeanine Souquiéres. Methodological support for requirements elici-
tation and formal specification. In A. Finkelstein, editor, Proceedings 9th International
Workshop on Software Specification and Design, 1998. to appear.

[Spi92] J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd edition, 1992.

A Formal Expression of Constraints on Traces

We express requirements, assumptions, and facts referring to the current state of the system,
events that happen, and the time an event happens:

81— 8 2 Sy 2 Spg -
t1 t2 tn
The system is started in state S;. When event e; happens at ¢;, then the system enters state
Sz, and so forth. One element of a trace of the system thus consists of these three parts. The
following formal treatment of traces, we use the Z notation [Spi92].

[STATE, EVENT, TIME]

Traceltem
s: STATE
e: EVENT
t: TIME

Each trace of the system is a sequence of trace items, where events later in the sequence
must not happen at an earlier time as an event earlier in the sequence. The sign <; denotes a
relation “not later” on time, which fulfills the axioms of a partial ordering relation (reflexivity,
transitivity, and anti-symmetry).

For each valid system trace, we require that events later in the sequence do not happen at
an earlier time than events earlier in the sequence.

TRACE : P(seq Traceltem)
Vitr: TRACE e Vi :domtr e i = #tr V (tri).t <; (tr(i +1)).t

For each system, we will call the set of possible traces Tr. Constraints will be expressed as
formulas restricting the set Tr. For each possible trace, its prefixes are also possible traces.

Tr:PTRACE
Vir: Tr e (Vir': TRACE | tr' prefix tr o tr' € Tr)

To express the constraints, it will also be necessary to declare predicates on the states, because
the behavior of the system may depend on its current state. Such predicates, however, are
only declared in the requirements elicitation phase. Their definition is part of the specification
phase. But also predicates that refer to the occurrence of events at certain points in time are
conceivable.

A.1 Specification Macros for Traces

To express constraints concisely, we define several specification macros.
Often, it is necessary to select subtraces ¢r’ of a given trace ¢r that begin with an event e;
and end when the event ey occurs for the first time after e; has occurred:

subtraces : TRACE x EVENT x EVENT — P TRACE

Vitr,tr' : TRACE; e1,e3 : EVENT o
tr' € subtraces(tr, ey, e2)
=
(Ftry,tro: TRACE o tr = try ~ tr' ™ tre) A
(tr'1l).e = e1 A (tr' (#tr)).e = e2 A
(Vi:2..#tr' —1e(tr'i).e # e)

The macro alternates_with expresses that events e; and es must always alternate.
_alternates_with_ : EVENT < EVENT

Vel, €y : EVENT e
e1 alternates_with ey
-~
(Vitr: Tr o (Vir': subtraces(tr,ei,er) o
(3, ti :rantr’ o ti.e = e3)))

A generalization of alternates_with is the following:
_alternates_withs_ : EVENT < P EVENT

Vev: EVENT; evs : P EVENT o
ev alternates_withs evs
<~
(Vir: Tr o (Vir' : subtraces(tr, ev, ev) o
3y ev’': evs @ Iti :rantr' e ti.e = ev'))

Here, event ev must alternate with the events contained in the set of events evs.
The next macro expresses that event e; must be immediately followed by event es.

_immediately_followed_by_ : EVENT <— EVENT

Vel, €2 : EVENT e
e1 immediately_followed_by ey
=
(Vtr: Tre(Vi:domtr | (tri).e=er o
i =H#tr V (tr(i + 1)).e = e2))

We may also want to express that event e entails a set of events that can occur in any order:

_followed_by_: EVENT <—-F EVENT

Vev: EVENT; es:F EVENT e ev followed_by es
=

(Vitry, tro : Tr | (last tri).e = ev A

try prefix tro A\ #tro — #try > FHes o

{t:#tr +1..#tr1 + 1+ #es o (trai).e} = es)

The next macro expresses that after event e; has happened, event ey is possible.

_may_be_followed_by_: EVENT <— EVENT

Vey,e: EVENT o
e1 may_be_followed_by ey
-~
(Vtr: Tr | (lasttr).e = e ®
(3tr' . Tr | tr prefix tr' o
(Fi:domtr' | i > #tr e (tri).e = e2)))

The next macro expresses that if event e; happens, then event es must happen within d time
units.

_must_be_followed_by_: EVENT <« (EVENT x TIME)

Vey,e: EVENT; d: TIME e
e1 must_be_followed_by (es, d)
=
(Vitr:TreVi:domtr | tr(i).e = e Atr(#tr).t —tr(i).t >de
Fj:i+1..#tretr(j).e=e Atr(j).t —tr(i).t <d))

A generalization of this macro is:

_must_be_followed_by;_ : EVENT < (P EVENT x TIME)

Vev: EVENT; evs : PEVENT; d : TIME e
ev must_be_followed_by; (evs, d)
<~
evs = DA
(Vtr: TreVi:domtr | tr(i).e = e Atr(#tr).t —tr(i).t >de
(Fj:i+1..#tretr(j).e € evs Atr(j).t —tr(i).t < d))

A.2 Auxiliary functions

The function events transforms a trace into a sequence of events.

events : TRACE — seq EVENT
Vir: TRACE e eventstr = {i : N; ti : Traceltem | i — ti € tr @ i — ti.e}

The function remowve takes a traces and a set of events as its arguments and removes all
trace elements whose event is in the given set.

remove : TRACE x P EVENT — TRACE
Vitr: TRACE; evs : P EVENT e remove(tr, evs) = tr | {ti : Traceltem | ti.e ¢ evs}

B Formal Versions of Requirements and Facts
The basics of this formalization are given in Appendix A.

Fact 1:

The door can only be opened when it is closed or when it is closing and the door button is
pressed.

open alternates_withs {end_close, press_door_button}

Fact 2:

When the door starts closing, it either will close completely, or closing is interrupted by pressing
the door button.

begin_close alternates_withs { end_close, press_door_button}

Fact 3:

The door button can only be pressed when it is released, and vice versa.

press_door_button alternates_with release_door_button

Fact 4:

The door cannot be blocked when it is closed.

Vir: TreVi:domtr |i# #tre
door_closed(tr(i).s) = tr'(i + 1).e # block)

Requirement 1:

The lift is called by pressing a button, either at a floor or inside the the lift.

Vir: Tr e (Vi:domtr; b: Button | i # #tr e
tr(i).e = press(b) A = at(tr(i).s, floor(b)) = call(tr(i + 1).s, floor(b))

Requirement 2:

Pressing a call button is possible any time.

Vitr: Tr; ety, ety : seq EVENT; b : Button | events tr = et; ~ ety ®
Atr' . Tr e events tr' = ety ~ (press(b)) ~ ety

where the definition of the function events can be found in Appendix A.2.

Requirement 3:

When the lift passes by floor &, and there is a call from this floor, then the lift will stop at floor
k.

Vir: Tr e (let tr' == remove(tr,{b : Button e press(b)}) e
Vi:domtr'; k : Floor | i # #tr' e
passes_by(tr'(i).s, k) A call(tr'(i).s, k) = tr'(i +1).e = stop(k))

Because press events are always possible, we must remove them from the traces when we want
to express liveness conditions for the lift.

Requirement 4:
When the lift has stopped, it will open the door.
Vir: Tr e (let tr' == remove(tr,{b : Button e press(b)}) e

Vi:domtr' | i# #tr' e
tr'(1).e = stop(k) = tr'(i + 1).e = open)

Requirement 5:

When the lift door has been opened, it will close automatically after d time units.

open must_be_followed_bys ({begin_close, press_door_button, block}, d)

Requirement 6:
The lift only changes its direction when there are no more calls in the current direction.

Vir: Tre(Vi:domtr |i# #tre
(direction(tr(i).s) = up A call_from_up(tr(i).s) = direction(tr(i +1).s) = up)
A
(direction(tr(i).s) = down A call_from_down(tr(i).s
= direction(tr(i + 1).s) = down)

Requirement 7:
When there are no calls, the lift stays at the floor last served, door closed.

Vir: Tre(Vi:domtr |i# #tr e
halted(tr(i).s) A (Vk : Floor e = call(tr(i).s,k)) = halted(tr(i + 1).s)

That the door is closed follows already from Requirement 5. A redundant formulation of req;
would be ... = halted(tr(i + 1).s) A door_closed(tr(i + 1).s).

Requirement 8:

As long as there are unserved calls, the lift will serve these calls.

We cannot require that when the lift is halted and receives a call, it starts moving immedi-
ately. For example, when the lift just has arrived, its door is still closed. It must then open the
door to let passengers enter or leave, and it must close the door again, before it can serve the
new call. Hence, we introduce a constant ¢ that represents the maximal number of events that
may happen before the lift arrives at the requested floor.

To express Requirement 8 formally, we consider traces tr where at some point there is a call
for a floor f, but the lift is not at floor f. We are only interested in the part ¢ry of the trace that
begins with such a state. The subtrace tro must be long enough, i.e., it must contain at least
¢ events that are not press, press_door_button, release_door_button or block events. These are
the events that may prevent the lift to serve a call for an unlimited amount of time. We then
require that there must be a state in tro where the lift at the requested floor f, such that no
more than ¢ events have happened that do not delay the lift.

let evs == {b : Button e press(b)} U {press_door_button, release_door_button, block} e
(Vitr: Tr eVir, trg: TRACE | tr = try ~ tra A\ #(remove(tra, evs)) > c o
YV f : Floor e call(tra(1).s,f) A = at(tra(1).s,f) =
dtrg,tra : TRACE | tro =trs " tra Ntra # () @
at(tra(1).s,f) N #(remove(trs), evs) < c)

Requirement 9:
When the lift is halted at floor & with the door open, a call for floor % is not taken into account.

Vir: Tr e (Vi:domtr; b: Button | i # #tr e
halted(tr(i).s) A door_open(tr(i).s) A tr(i).e = press(b) A at(tr(z).s, floor(b))
= V[: Floor e call(tr(i+1).s,f) < call(tr(i).s, f)

Requirement 10:

When the lift is halted at floor & with the door closed and receives a call for floor &, it opens its
door.

As for all liveness requirements, we must express this constraint without taking into account
any delaying events.

let evs == {b : Button e press(b)} U {press_door_button, release_door_button} e
(Vitr: Tr eV itry,tro: TRACE | tr = try ~ tro A\ remove(tre, evs) # () ®
halted(tra(1).s) A door_closed(tra(1).s) A tra(1).e = press(b) A at(tra(1).s, floor(b))
= remove(trs, evs)(1).e = open)

Requirement 11:

Whenever the lift moves, its door must be closed.

Vir: Tr e (Vi:domtr e - halted(tr(i).s) = door_closed(tr(1).s))

Requirement 12:

The closing of the door may be prevented by pressing an open_door button.

This requirement forces us to have two events begin_close and end_close instead of one event
close, because events are instantenous and cannot be interrupted.

We split the requirement into two requirements reqio 4, regi2.p

Vir: Tre(Vi:domtr |i# #tire
tr(i).e = press_door_button = open_requested(tr(i + 1).s)

Vir: Tre(Vi:domtr |i# #tre
open_requested(tr(i).s) A halted(tr(i).s) = door_open(tr(i + 1).s)

Requirement 13:

When something blocks the door, the lift interrupts the process of closing the door, and reopens
the door.

let evs == {b : Button e press(b)} U {press_door_button, release_door_button} e
(Vir : Tr o (let tr' == remove(tr, evs) o
Vi:domtr' | i#£ #tr' e
tr'(i).e = block = tr'(i + 1).e = open))

