
Methodological Support for Requirements Elicitation and Formal Specification

Maritta Heisel Jeanine Souquières
Fakultät für Informatik LORIA—Université Nancy2

Universität Magdeburg B.P. 239 Bâtiment LORIA

D-39016 Magdeburg, Germany F-54506 Vandœuvre-les-Nancy, France

heisel@cs.uni-magdeburg.de souquier@loria.fr

We propose a method for the elicitation and the ex-
pression of requirements. The requirements can then be
transformed in a systematic way into a formal specifica-
tion that is a suitable basis for design and implementation
of a software system. The approach – which distinguishes
between requirements and specifications – gives method-
ological support for requirements elicitation and specifi-
cation development. It does not introduce a new language
but builds on known techniques.

1 Introduction

The usefulness of formal specification is more and more
accepted by researchers and practical software engineers.
But formal specification techniques still suffer from two
drawbacks. First, research spends more effort to develop
new languages than to provide methodological guidance
for using existing ones. Often, users of formal tech-
niques are left alone with a formalism for which no explicit
methodology has been developed.

Second, formal specification techniques are not well in-
tegrated with the analysis phase of software engineering.
Often, formal specification begins with a very short de-
scription of the system to be implemented, and detail is
added during the development of the formal specification.
Such a procedure does not adequately take into account the
need to thoroughly analyze the system to be implemented
and the environment in which it will operate before a de-
tailed specification is developed. The elicitation of the re-
quirements for the system and their transformation into a
formal specification are separate tasks.

Our approach treats both of these issues. It introduces
an explicit requirements elicitation phase, the result of
which is an adequate starting point for the development
of the formal specification. Furthermore, it provides de-
tailed methodological guidance for requirements elicita-
tion as well as for specification acquisition. The differ-
ent phases provide feedback to one another: not only is
the specification based on the requirements, but the speci-
fication phase may also reveal omissions and errors in the

requirements.
We propose a formal expression of requirements. After

a few informal brainstorming steps, the requirements are
formalized as constraints on sequences of events or oper-
ations that can happen or be invoked in the context of the
system. Thus, the transition from informal to formal means
of expression is performed very early in the software devel-
opment process. This has the advantage that requirements
can be analyzed, e.g., for consistency, and that a formal no-
tion of correctness of a specification with respect to given
requirements becomes possible.

2 Requirements Elicitation

Our approach to requirements engineering is inspired
by object oriented methods such as Fusion [CAB�94]
or OMT [RBP�91], and by the work of Jackson and
Zave [JZ95, ZJ97].

The starting point for requirements elicitation is a brain-
storming process where the application domain and the re-
quirements are described in natural language. This infor-
mal description is then transformed into a formal represen-
tation.

Our approach is suitable for transformational as well as
reactive systems. Transformational systems offer a set of
system operations that can be invoked by the user. Reac-
tive systems, on the other hand, have to react to events that
happen in the environment.

The difference between requirements and a specifica-
tion is that requirements refer to the entire system to be re-
alized, whereas a specification refers only to the part of the
system to be implemented by software. To express require-
ments formally, we use traces of the system, i.e., sequences
of events that happen in certain states and at a certain time.
For transformational systems, events can be identified, too,
namely the invocation and the termination of the system
operations. In this way, also systems that are partially re-
active and partially transformational, can be treated.

Requirements elicitation is performed in six steps,
which provide methodological guidance for analysts. The



concept of an agenda [Hei98] is used to express our
method. An agenda is a list of steps to be performed when
carrying out some task in the context of software engineer-
ing. The result of the task will be a document expressed in
a certain language. Agendas contain informal descriptions
of the steps. With each step, schematic expressions of the
language in which the result of the activity is expressed can
be associated. The schematic expressions are instantiated
when the step is performed. The steps listed in an agenda
may depend on each other. Usually, they will have to be
repeated to achieve the goal, because later steps will reveal
errors and omissions in earlier steps.

Agendas are not only a means to guide software devel-
opment activities. They also support quality assurance be-
cause the steps of an agenda may have validation condi-
tions associated with them. These validation conditions
state necessary semantic conditions that the artifact must
fulfill in order to serve its purpose properly.

In the following, we list the steps of the agendas we
have developed for requirements elicitation and transform-
ing requirements into formal specifications. Only the most
important validation conditions are mentioned.

The steps of the agenda for requirements elicitation are:

1. Introduce the domain theory.
All necessary notions must be introduced. These can
either be entities, corresponding to nouns in a natural-
language description, or relationships, corresponding
to verbs in a natural-language description.

2. List all possible events that can happen in connection
with the system, together with their parameters.

3. Classify the events as: (i) controlled by the environ-
ment and not shared with the software system, (ii)
controlled by the environment but observable by the
software system, (iii) controlled by the software sys-
tem and observable by the environment, and (iv) con-
trolled by the software system and not shared with the
environment.
Validation condition: There must not be any events
controlled by the software system and not shared with
the environment.

4. List possible system operations that can be invoked
by users, together with their input and output parame-
ters. Introduce a relation between the input and output
parameters.

5. State the facts, assumptions, and requirements con-
cerning the system in natural language.
It does not suffice to just state requirements for the
system. Often, facts and assumptions must be intro-
duced to make the requirements satisfiable. Facts ex-
press things that always hold in the application do-
main, regardless of the implementation of the soft-

ware system. Other requirements cannot be enforced
because e.g., human users might violate regulations.
These conditions are expressed as assumptions.

6. Formalize the facts, assumptions, and requirements
as constraints on the possible traces of system events.

Using constraints to talk about the behavior of the system
has the following advantages:

� It is possible to express negative requirements, i.e., to
require that certain things do not happen.

� It is possible to give scenarios, i.e., example behaviors
of the system.

� Giving constraints do not fix the system behavior en-
tirely. They do not restrict the specification unneces-
sarily. Any specification that fulfills the constraints is
admitted.

An example illustrating our approach is given in [HS98].

3 Specification development

Jackson and Zave [JZ95] consider specifications as spe-
cial kind of requirements. A requirement is a specification
if all actions constrained by the requirement are controlled
by the software system, and all information it relies on is
shared with the software system and refers only to the past,
not the future. Requirements (and thus specifications) do
not talk about the state of the software system. In contrast
to this view, we consider a specification to be a model of
the software system to be built in order to satisfy the re-
quirements. It is developed gradually by expressing prop-
erties of the system and adding more and more details. Our
goal is to support specifiers in building this model, starting
from requirements acquired as described in the previous
section. A specification may - in contrast to the require-
ments - make statements about the software system, be-
cause it serves as the basis for further design and imple-
mentation.

While requirements elicitation is independent of the
specification language that is used, the development of a
specification depends to a certain extent on the specifi-
cation language and its means of expression [HS98]. In
the following, we assume that the specification language
Z [Spi92] is used.

The starting point of the specification development is
the whole material obtained by the requirements elicitation
phase presented in Section 2. Again, our method for spec-
ification acquisition is expressed as an agenda, consisting
of the steps

1. Define a first approximation of the state of the soft-
ware system and the initial states.

2. Augment the specification, incorporating the require-
ments one by one.



Validation condition: The constraints expressing facts
must not be violated.

Step 1 his step consists in giving a first approximation of
the system state in such a way that as many as possible of
the predicates and functions on the system state that were
introduced in the requirements elicitation process can be
defined.

For Step 2, the basic idea is to define a Z operation for
each event identified in Step 2 of the requirements elici-
tation phase that is shared with the software system (ac-
cording to the classification made in Step 3) and for each
system operation identified in Step 4. This step should be
performed following the sub-agenda:

1. List the events occurring in the constraint.

2. For each event in the list, make a first definition of
the corresponding Z operation, or adjust an already
existing operation.

Step 1 can be performed by a simple syntactic inspection of
the constraint in question. Step 2, however, can be complex
with several revisions of the current version of the spec-
ification [LS97]. The state of the system and the opera-
tions have to be re-considered in order to take into account
the evolution introduced by new constraints. Propagation
of modifications are important. Incorporating a new con-
straint may involve the following modifications: (i) adding
or modifying state components, (ii) adding or modifying
data types, (iii) adding or modifying the state invariant, and
(iv) propagating those modifications into the current state
of the specification.

The agendas for requirements elicitation and specifica-
tion acquisition provide an integrated approach that intro-
duces formality as early as possible in the software engi-
neering process. The formal expression of requirements
and facts as constraints guide the development of the for-
mal specification. Our approach even allows to define a
notion of correctness of a specification with respect to re-
quirements, facts, and assumptions. First, one defines the
set of possible traces of the specification as the set of traces
where each operation is executed only if its precondition
is satisfied. Assuming that the assumption constraints are
satisfied, we must show that the set of possible traces in-
duced by the specification fulfills the constraints stated as
requirements and facts.

4 Conclusion

The distinguishing features of our approach are the fol-
lowing:

� We introduce a clear distinction between require-
ments/requirements elicitation on the one hand and
specifications/specification acquisition on the other
hand.

� We give detailed methodological guidance for re-
quirements elicitation and specification acquisition.
The two activities are integrated smoothly.

� We propose a standardized way of expressing facts,
assumptions, and requirements. Constraints on the
set of possible traces are a very flexible and power-
ful means of describing a system and its interaction
with the environment.

� We do not invent a new language or a new formalism,
but instead build on and combine existing approaches.

� The process of requirements elicitation is independent
of the specification language to be used.

� We can treat transformational as well as reactive sys-
tems. Behavior and data transformation are the most
important aspects of computerized systems. Also
real-time considerations are taken into account.

� Expressing requirements as constraints on traces
makes it possible to define a formal notion of cor-
rectness of a specification with respect to the require-
ments.

References
[CAB�94] D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin,

H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The Fusion Method. Pren-
tice Hall, 1994.

[Hei98] Maritta Heisel. Agendas – a concept to guide soft-
ware development activites. In J. Bishop and N. Hor-
spool, editors, Proc. Systems Implementation 2000,
1998. to appear.

[HS98] M. Heisel and J. Souquières. A Method to Express
Requirements and Transform them into a Formal
Specification. Technical report, Loria, Nancy (Fr),
1998.

[JZ95] M. Jackson and P. Zave. Deriving Specifications
from requirements : an Example. In ACM, editor,
Proc. ICSE’95, 1995.

[LS97] N. Lévy and J. Souquières. Modelling Specification
Construction by Successive Approximations. In 6th
Int. AMAST conf., Sydney (A), 1997. Springer Ver-
lag.

[RBP�91] J. Rambaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and De-
sign. Prentice-Hall International. Englewood Cliffs,
New Jersey, 1991.

[Spi92] J. M. Spivey. The Z Notation – A Reference Manual.
Prentice Hall, 2nd edition, 1992.

[ZJ97] P. Zave and M. Jackson. Four dark corners for re-
quirements engineering. ACM Transactions on Soft-
ware Engineering and Methodology, 6(1):1–30, Jan-
uary 1997.


