
An Agenda for Specifying Software Components with
Complex Data Models

Kirsten Winter�, Thomas Santen�, and Maritta Heisel�

� GMD FIRST,Rudower Chaussee 5, D-12489 Berlin, Germany,
kirsten.winter@first.gmd.de, santen@first.gmd.de

� Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, Institut für Verteilte
Systeme, D-39016 Magdeburg, Germany, heisel@cs.uni-magdeburg.de

Abstract. We present a method to specify software for a special kind of safety-
critical embedded systems, where sensors deliver low-level values that must be
abstracted and pre-processed to express functional and safety requirements ade-
quately. These systems are characterized by a reference architecture. The method
is expressed as an agenda, which is a list of activities to be performed for setting
up the software specification, complemented by validation conditions that help
detect and correct errors. The specification language we use is a combination of
the formal notation Z and the diagrammatic notation statecharts. Our approach
not only provides detailed guidance to specifiers, but it is also part of a more gen-
eral engineering concept for engineering safety-critical embedded systems that
was developed in the ESPRESS project, a joint project of academia and industry.

1 ESPRESS: Engineering of Safety-Critical Embedded Systems

The work we present in this paper has been carried out in the context of the ESPRESS

project during the last two years1. In ESPRESS, we investigate development methods
for software to be used as part of safety-critical embedded systems. We favor the appli-
cation of formal methods for this purpose. Even though every software-based system
potentially benefits from the application of formal techniques, their use is of particular
advantage for the development of safety-critical embedded systems, because the poten-
tial damage operators and developers have to envisage in case of malfunction may be
much worse than the additional costs of applying formal techniques in system develop-
ment.

Figure 1 shows the basic ESPRESS process model. The agenda presented in this pa-
per guides the development of a requirements specification. Such a requirements speci-
fication is further validated and serves as a basis for safety analyses, test case generation,
and software design.

We use the ESPRESS notation �SZ [1] to express the specifications developed
with our agenda. This notation provides a semantically well-defined combination of
the Statemate languages [6] (namely statecharts and activity charts), the formal speci-
fication language Z [15], and an extension of Z by temporal logics [2]. The Statemate
languages and Z have been chosen for ESPRESS because of their relevance in industrial

1 The ESPRESS project is a cooperation of industry and research institutes funded by the German
ministry BMBF (“Förderschwerpunkt Softwaretechnologie”, grant 01 IS 509 C6).



functionality
test cases

methodological guidance
of development steps

ESPRESS

requirements elicitation

specification
requirements

analyses
and validation
analyses

and refinement

test case
generation

development process

system development

safety requirements

verification
safety

design

architecture of
software component

implementation

program
test cases

safety

template

validation

agenda

1)

2)

3)

2.1)
2.2)

...

agenda

...

agenda

...

Fig. 1. Basic ESPRESS process model

contexts and their fairly good tool support. For reasons of space, we cannot systemati-
cally explain �SZ and its constituting languages; we only give an informal explanation
of the constructs used in this paper as they appear.

2 Agendas

An agenda [7] gives guidance on how to perform a specific software development ac-
tivity. It consists of a list of steps to be performed when carrying out some task in the
context of software engineering. The result of the task will be a document expressed in
a certain language. Agendas contain informal descriptions of the steps. With each step,
templates of the language in which the result of the task is expressed are associated.
The templates are instantiated when the step is performed. The steps listed in an agenda
may depend on each other. Usually, they will have to be repeated to solve the given task.
Agendas are presented as tables, see Figure 5. Agendas may be nested, and we call the
“super-steps” stages (see Table 1).

Agendas are not only a means to guide software development activities. They also
support quality assurance because the steps of an agenda may have validation conditions
associated with them. These validation conditions state necessary conditions that the



artifact must fulfill in order to serve its purpose properly. When formal techniques are
applied, some of the validation conditions can be expressed and proven in a formal way.
Such validation conditions are marked “�”. Since the validation conditions that can
be stated in an agenda are necessarily application independent, the developed artifact
should be further validated with respect to application dependent needs.

Working with agendas proceeds as follows: first, the software engineer selects an
appropriate agenda for the task at hand. Usually, several agendas will be available for
the same development activity, which capture different approaches to perform the ac-
tivity. Once the appropriate agenda is selected, the further procedure is fixed to a large
extent. Each step of the agenda must be performed, in an order that respects the de-
pendencies of steps. The informal description of the step informs the software engineer
about the purpose of the step. The templates associated with the step provide the soft-
ware engineer with patterns that can be filled in or modified according to the needs of
the application at hand. The result of each step is a concrete expression of the language
that is used to express the artifact. If validation conditions are associated with a step,
they should be checked immediately to avoid unnecessary dead ends in the develop-
ment. When all steps of the agenda have been performed, a product has been developed
that can be guaranteed to fulfill certain application-independent quality criteria. This
product should then be subject to further validation, taking the specific application into
account.

3 Reference Architecture: Software Components with Complex
Data Models

A reference architecture describes a class of software components that share common
principles. We sketch the reference architecture for embedded software components
with complex data models, henceforth called CDM reference architecture. An instance
of this class of software components, the safety-controller of a traffic light system,
serves us to illustrate the agenda for that reference architecture. We introduce the traffic
light system in Section 4.

Software components of embedded systems often have a relatively simple data
model. Although a mathematical model of the requirements of such a system may be
complex, e.g., a system of differential equations, and the resulting software may involve
non-trivial algorithms, it is often possible to express the functional requirements as a
direct relation between the values of controlled variables, which are measured by sen-
sors, and values of manipulated variables. Examples are small automotive controllers,
such as cruise control systems, or controllers of household appliance. In earlier work,
we identified two reference architectures, called cyclic software component and active
sensors, for systems with a simple data model. Agendas for these systems are described
in [5, 9].

In the present paper, we consider software components that are characterized by the
fact that the sensors deliver low-level values (e.g., sequences of “on” and “off” values),
and for which no theory exists that relates them to the high-level notions as they are used
by domain experts in their discourses about the problem domain. In such a situation, we
cannot easily describe the requirements for a software component by a direct relation



between sensor values and actuator commands. Instead, the sensor values must first be
abstracted and interpreted appropriately to deduce the state of the technical system in
which the software is embedded and which is modeled on a higher level of abstraction.
Sometimes it is necessary to accumulate several consecutive sensor inputs. We use the
term controlled entities to name the higher-level notions that represent abstractions of
sensor value variations over time.

The relation between sensor values and actuator commands is then divided into
two relations, one relation between sensor values and controlled entities, and a second
relation between controlled entities and actuator commands. The CDM reference archi-
tecture shown in Figure 2 reflects these considerations. The two outermost components
map technical data (e.g., a lamp being on or o� ) to “logical” data suitable for specify-
ing the software component (e.g., a lamp being on, o� or �ashing). The specification
of the software component that determines logical actuator commands based on logical
sensor values consists of two parts: the internal domain model and the regulator.

sensor
values

technical
to

logical

logical

actuator
commands

technical

actuator
commands

commands

logical
to

technical
actuator

internal domain model

...
timer

controlled

regulator
technical logical

sensor
values

sensor
values

entities

software

Fig. 2: The CDM reference architecture

The internal domain model derives the values of controlled entities. These entities
describe the state of the controlled system in terms that are adequate to specify the
control task on a level of abstraction as it is used by domain experts. The regulator
specifies a relation between controlled entities and actuator commands in a “direct”
way (similar to the relation between sensor values and actuator commands in simpler
systems).

4 Case Study: Traffic Light Safety-Control

Most traffic light systems today are controlled by software. The software controller
usually consists of two largely independent modules (see Figure 3): the phase control
program and the safety controller. The phase control program receives signals about
traffic flow from various sensors in the streets and sends commands to the switchboard
to turn on and off the signal heads.

The second module, the safety controller, is responsible to guarantee that the real
signals as shown by the signal heads allow only safe traffic flow at any time. To this end,
it monitors not only the commands produced by the phase control, but it also receives
sensor data from the signal heads about their current state relative to the last received
switch command.



lamps

signal groups

signal heads

traffic streams

regulator

phase control program
el

em
en

ts
 o

f 
tr

af
fi

c 
lig

ht
 j

un
ct

io
n

safety-controller

internal domain model

modelling

C
A

N
revising in case of failure

monitoring

Fig. 3: Entities of a traffic light system

Figure 4 illustrates
the interaction be-
tween phase control,
safety control, and
the switchboard.
The upper half of
the timing diagram
shows the normal
operation of the
traffic light control.
Every 500 ms, the
phase control issues
a burst of commands
to the switchboard.
The switchboard
acknowledges these
commands with a
delay of less than
100 ms, which is the
time the sensors in
each lamp need to
determine its work-

ing state. Acknowledgments come in pairs describing the state of the lamp relative to
the latest switching command: one bit for each lamp tells whether it is unintentionally
on (uon), a second bit whether it is unintentionally off (uo� ). If neither an uon nor
an uo� is acknowledged, then this indicates that the signal head shows the intended
signal. If both bits are set, then faulty sensor data are received. The switchboard may
also issue uon and uo� messages spontaneously if a failure occurs in the otherwise
silent time between two command bursts.

The safety controller monitors all commands and acknowledgments. If it detects an
unsafe state, it issues appropriate commands to the switchboard to re-establish a safe
situation (see bottom of Figure 4). Our task is to specify such a controller with the
following general requirements:

1. The controller is generic: it is parameterized with data describing the configuration
of a traffic light junction.

2. The controller must detect all unsafe signal conditions. In particular, it may not
assume that the phase control commands lead to safe signal conditions.

3. The controller must take appropriate action to establish a safe situation, such that
an unsafe situation does not last for more than 300 ms.

The major objective of the specification is to precisely capture the meaning of a “safe
condition” of a traffic junction in general, i.e., not for a particular junction only, but
for an (almost) arbitrary configuration of lanes, traffic lights, etc. A detailed anal-
ysis of the problem reveals that it is appropriate to base a judgment on the junc-
tion’s safety condition on the signals issued for the different traffic streams. A traf-
fic stream is the logical entity of all vehicles (or pedestrians) entering and leav-



phase
control

safety
control

switch
boardtime

0
50

0
10

00
commands

acknowledgments

unintended condition

safety action

Fig. 4: Interaction between the modules

ing the junction at the same points,
e.g., the stream of vehicles enter-
ing at one point and turning left.
Several traffic streams may share
the same lane. Based on this ab-
straction, judging the safety condi-
tion of a junction amounts to con-
sidering the concurrently open traf-
fic streams and the timing require-
ments between opening and closing
traffic streams.
The safety controller can judge the
safety condition only based on its
observation of the switching com-
mands of the phase control and ac-
knowledgments of the switchboard.
To specify the action of the safety
controller depending on the states
of traffic streams, we first must de-

scribe how the flow of information about states of single lamps can be assembled to
an internal model of the traffic junction in terms of useful abstractions such as signal
heads (consisting of several lights), signal groups (which work synchronously), and
traffic streams. This is actually the most complex part of the task.

The next section introduces an agenda to specify software components with such a
complex data model and illustrates the application of the agenda to the case study.

5 Agenda for Software Components with Complex Data Models

The CDM agenda consists of three stages, shown
in Table 1. In the first stage, the embedding of
the software in its environment must be defined.
This stage consists of defining the technical and
the logical software interfaces, and the mappings
between them. It is performed as described in [5],

Stage

1 Context embedding

2 Controlled entities
3 Software model construction
Table 1: Stages of the CDM agenda

and will not be discussed further in this paper (see [8] for a complete description).
Stage 2 is characteristic for the CDM reference architecture that needs complex data
models. It is described in more detail in Section 5.1. In the third stage, the internal do-
main model and the regulator must be specified (see Figure 2). Again, only the internal
domain model is characteristic for the CDM reference architecture and hence discussed
in more detail in Section 5.2. As for the specification of the regulator, we only note
that it may contain two different kinds of components. “Passive” components are trig-
gered by a change of some controlled entity, whereas “active” components are activated
internally by the regulator when an internal timer times out.



5.1 Sub-Agenda for the Definition of Controlled Entities

The internal domain model has to construct the controlled entities based on the log-
ical sensor values. The regulator must produce the logical actuator commands from
the controlled entities, see Figure 2. Figure 5 shows the agenda for defining con-
trolled entities. First, the appropriate entities must be identified and given a Z type
(CEtype�� � � �CEtypen ). Step 2.1 also contains a template for an activity chart defining
the overall data flow that occurs in the software component.

Step Validation Conditions

2.1 Identify controlled entities that are needed to ex-
press safety requirements and to specify the regu-
lator, and define their types.
DomainModelDefs
CEtype� � � � �

� � �
� � � CEtypen � � � �

� � �

Software

Internal
Domain
Model

ControllerMAP
LS

LS MAP
LA

LACE

no validation conditions

2.2 Identify groups of controlled entities that change
simultaneously. For each group, define a deliver

event that will be produced by the internal domain
model whenever the values of the entities in the
group change.

� The signatures of
CE�� � � �CEn are
pairwise disjoint.

ControlledEntities
ENRICH DomainModelDefs PORT CE

CE�� � � �CEn

CEi

ce
i
� � CEtypek

� � �

ce i
n � CEtypel

deliver CEi � event

Property DYNAMICCE deliveri
CE�� � � �CEn

whenever fce i
�� � � � � ce

i
ng change

df deliver CE
�

i

Fig. 5. Sub-agenda for definition of controlled entities

Step 2.2 defines the dynamics that must occur in connection with controlled entities:
when the values of the controlled entities change, the regulator must be notified, because
it may be necessary that new actuator commands must be determined. This is achieved
by generating events that will cause the regulator to take appropriate actions. It is not
necessary to define an event for each controlled entity. Instead, events are defined for
groups of controlled entities that may change their values simultaneously, i.e., if one
entity of the group changes its value, then the others may also change their values.



ControlledEntities
ENRICH DomainModelDefs CE Lamp

transPoint LA � Lamp� TIME
errSignal � Lamp� STATE ErrSig
deliver CE Lamp � event

CE SignalGroup
state SG � SignalGr� STATE SG
transPoint SG � SignalGr� TIME
deliver CE SignalGroup � event

CE Tra�cStream
state TS � Tra�cStr� STATE TS
transPoint TS � Tra�cStr� TIME
deliver CE Tra�cStream � event

Fig. 6. Controlled entities for the safety

The schema ControlledEntities defines a process class. Process classes are the
structuring entities of �SZ . They are containers for sets of plain Z declarations, of
schema definitions, and of Statemate statecharts and activity charts. The schema defi-
nitions inside a class may have assigned certain roles. For example, the role of schema
definitions introduced with the keyword PORT is to describe data variables that can be
shared by a process with its environment.

In the process class ControlledEntities , the grouping of controlled entities is de-
fined using the schemas CEi . These groups of entities are collected in the port schema
CE . The schema with the keyword Property DYNAMIC expresses that an event
deliver CEi must be generated (df deliver CE �

i
) whenever one of the corresponding

controlled entities has changed its value.

Safety Controller. Step 2.1 of the CDM agenda requires us to identify entities that
allow us to describe the requirements on the safety controller at an adequate level of
abstraction. This task encompasses a detailed requirements analysis, and for the safety
controller, it needed considerable effort to find a suitable set of entities that allows us
to clearly express the control task. We found three important groups of failures that the
safety controller may need to react to (c.f. Figure 3):

1. For single lamps, the controller must evaluate uo� and uon messages to record
failures, and detect sensor failures such as omissions of acknowledgments and in-
consistent sensor data.

2. For signal groups, the controller must decide whether a sequence of signals is ad-
missible (e.g., in Germany, a transition from “red” to “green” must always go via a
combined “red-and-yellow” signal) and whether timing constraints for single sig-
nals are satisfied.

3. For traffic streams, the controller must evaluate the safety of simultaneously open
streams, and it must monitor intermediate green times, which are required, e.g.,
between closing a stream and opening a crossing stream that turns left.

In Step 2.1, we define the types describing the information about lamps, signal
groups, and traffic streams, that the regulator needs to evaluate the three groups of fail-
ures. In Step 2.2, we use these types to specify three groups of controlled entities, as
shown in Figure 6. The data of a particular traffic light junction are parameters to our
specification. Therefore, the components of the groups CE Lamp, CE SignalGroup,
and CE Tra�cStream are functions mapping identifiers of lamps, etc., to states or
transition points. The transition point is the most recent point in time when the state
of an element changed. The type STATE ErrSig has four elements: ok , uo� , uon,



Step Validation Conditions

3.1.1 Identify abstraction layers of controlled en-
tities, and associate exactly one such layer to
each controlled entity.
AbstractionLayeri

ENRICH ControlledEntities

PORT CELayeri

ce
k
j � � � �

� � �
deliver CEj � event

� If a port CELayeri contains a
controlled entity cekj , and it is
the port of the maximal abstrac-
tion layer index i that contains
controlled entities of the group
CEj , then it also contains the
event deliver CEj .

� Each controlled entity is con-
tained in exactly one port
CELayeri

3.1.2 Identify the interface between each pair of consecutive layers, and
the internal data for each layer. The input port of layer� are the logical
sensor values.
Interface � �

ENRICH LogicalSensors
IF � � b� LS

Interface i i � �

PORT IF i i � �
� � �
update modeli � event

AbstractionLayeri

ENRICH Interface i � � i INPUT IF i � � i
ENRICH Interface i i � �

DATA Statei
� � �

INIT � � �

no
validation
condi-
tions

Fig. 7. Steps for Stage 3: definition of abstraction layers

and fail , which describe the possible constellations of acknowledge messages (fail in-
dicating that both, a uo� and a uon message have been received). The functions in
CE lamp are partial, because acknowledgment messages arrive sequentially, in groups
of twelve, from the switchboard. The domains of these functions are the identifiers of
lamps for which an acknowledgment has been received after the last command burst
from the phase control. Transition points need to be evaluated by the regulator to find
missing acknowledgments.

The functions in the other two groups are total, because they describe the complete
state of the junction, which is accumulated from incoming messages about state changes
of lamps. The types STATE SG and STATE TS are parameters to the specification,
because the concrete information to evaluate safety of a junction depends on the legal
context: what is tolerable in one community may not be legal in another.

5.2 Specification of the Internal Domain Model

Stage 3 of the CDM agenda (cf. Table 1) consists of two steps: specifying the internal
domain model, and specifying the regulator. We consider only specifying the internal
domain model, for which the sub-agenda is given in Figures 7 and 8.

Having identified the necessary controlled entities, and decided on their types and
dynamics in Stage 2 of the agenda, we must now specify how the controlled entities can



Step Validation Conditions

3.1.3 Specify the behav-
ior of each abstraction
layer.

� If AbstractionLayeri changes data in IF i i � �,
then df update modeli .

� AbstractionLayeri reacts to update modeli��

events, i.e. the corresponding statechart performs a
state transition.

� If AbstractionLayeri changes entities in CELayeri ,
then it also generates the corresponding deliver

events.
� � �

3.1.4 Assemble abstraction layers into the internal domain
model.

InternalDomainModel

1Layer

Layer2

Layern

CELayer
1

LS

CELayern

CELayer2

Abstraction

IF_1_2

Abstraction

Abstraction

CE
SOFTWARESOFTWARE

no validation condi-
tions

Fig. 8. Steps for Stage 3: structure of the internal domain model

be obtained from the logical sensor values. This is the purpose of the internal domain
model.

We begin by identifying appropriate abstraction layers in Step 3.1.1. Controlled
entities that can be derived directly from the logical sensor values belong to the first
layer AbstractionLayer�, whereas controlled entities that are defined in terms of other
controlled entities belong to a higher abstraction layer.

In Step 3.1.2, we must decide what kind of information must be propagated from
one level to the next one. This information is collected in the port schemas IF i i � �.
An event update modeli notifies the next abstraction layer when relevant information
changes. Furthermore, each abstraction layer may have a memory, e.g., for accumulat-
ing values. This results in a local state Statei .

So far, we have modeled the data aspects of the abstraction layers. It remains to
specify their behavior, which is the purpose of Step 3.1.3. We distinguish two kinds of
behavior: an abstraction layer may either immediately react to an update modeli event,
or it may buffer incoming values and only take action when some internal condition is
fulfilled. These alternatives are discussed in Section 5.3. Step 3.1.4, finally, is automatic
and consists in assembling the abstraction layers in a cascade-like manner, see also
Figure 2.

Safety Controller. While the order of Steps 3.1.1 through 3.1.4 describes their logical
dependencies and is appropriate when developing a specification, it is easier to explain



InternalDomainModel
ENRICH LogicalSensors� ENRICH ControlledEntities

CE

Lamp

SignalHead

SOFTWARESOFTWARE

Lamp_Port

SH_Port

SG_Port

CE_LampLS

SignalGroup CE_SignalGroup

CE_TrafficStream
TrafficStream

Fig. 9. Internal domain model for the safety controller

the resulting product in the reversed order: The internal domain model of the traffic light
safety controller, shown in Figure 9, is a cascade of abstraction layers, which resembles
the informal “entity-relationship” analysis sketched in Figure 3.

The entities of the lowest abstraction layer are Lamps. They are grouped together
to SignalHeads. Several signal heads form a SignalGroup, each of which determines
the state of one or more TrafficStreams. The state of the elements of one abstraction
layer determines the state of the following layer. The relevant data are transmitted along
the interfaces, namely Lamp Port , SH Port and SG Port . Three of the four internal
data layers deliver the controlled entities that were introduced in Section 5.1. The union
of all controlled entities yields the interface CE , which is linked to the regulator.

5.3 Alternatives for the Definition of Abstraction Layers

We discuss two approaches
to Step 3.1.3. The templates
for both fulfill most of the
verification conditions of that
step by construction.
Table 2 shows a template
for an abstraction layer that
immediately reacts to the event
update modeli��. The state-
chart describing its behavior
has only one state, called
working . Whenever the event
update modeli�� occurs, the
operation Update Layeri is
invoked. As indicated by the
prefix �, this operation may
change the internal data of the
abstraction layer and the values of its outgoing interfaces. If the interface information

AbstractionLayeri
OP Update Layeri

IF i � � i � �Statei
�IF i i � �� �CELayeri

df update modeli��

df update model �i �
�IF i i � � �� �IF i i � ��

df deliver CE �

i
� � � �

����
Init

update_model

Update_Layer

/i-1working

abs_layer i

i

Table 2: Steps for Stage 3: template for immediate reaction



changes (�IF i i � � �� �IF i i ���), then the next abstraction layer must be notified
by generating an update modeli event (df update model �

i
). Similarly, deliver CEi

events notify the regulator about changed controlled entities.

Table 3 shows the
template for buffered
abstraction layers. They
behave differently than
immediately reacting
layers, although the
corresponding state-
charts look the same
for both. The operation
Update Layeri is a
composition of the oper-
ations Fill Bu�eri and
Process Bu�eri . The
operation Fill Bu�eri
works only on the
internal state of the
abstraction layer and
its input interface
IF i � � i . The oper-
ation Process Bu�eri
does nothing if a pred-
icate triggeri defined
on the internal state is
false, as indicated by the
prefix �. If the trigger
predicate is true, the
operation Generatei
computes new values for
the controlled entities.

AbstractionLayeri
triggeri

Statei

� � �

OP Fill Bu�eri
�Statei
IF i � � i

df update modeli��

� � �

OP Generatei
�Statei
�IF i i � �
�CELayeri

� � �

OP Process Bu�eri
�Statei
�IF i i � �
�CELayeri

triggeri � Generatei
� triggeri � �Statei � �IF i i � �

df update model �i � �IF i i � � �� �IF i i � ��

df deliver CE �

i
� � � �

Update Layeri b� Fill Bu�eri � Process Bu�eri

��
Init

update_model

Update_Layer

/i-1working

abs_layer i

i

Table 3: Steps for Stage 3: template for buffered behavior

Similar to the immediately reacting abstraction layer, the operation Process Bu�eri
generates an event update modeli to indicate that data of the output interface have
changed.

For this variant of an abstraction layer, we have the validation conditions that the
operation Fill Bu�eri eventually leads to a state satisfying triggeri , and that the
operation Generatei falsifies triggeri .

Safety Controller. The abstraction layer SignalGroup contributes to computing the
current state and the transition points of the signal groups in the system. Incoming data
are states and transition points of the signal heads. They are available at port SH Port .
Outgoing data are the current states and transition points of the signal groups as defined
in SG Port . The port CE SignalGroup contains the controlled entities enabling the
regulator to monitor the sequence of phases as well as the duration of each phase (cf.



SignalGroup

ENRICH ControlledEntities PORT CE SignalGroup
state SG � SignalGr� STATE SG
transPoint SG � SignalGr� TIME
deliver CE SignalGroup � event

PORT SH Port
state SH � SignalHe� STATE SH
transPoint SH � SignalHe� TIME
update model SH � event

PORT SG Port
state SG � SignalGr� STATE SG
transPoint SG � SignalGr� TIME
update model SG � event

INPUT state SH � transPoint SH � update model SH

DATA State SG
bufStat SH � SignalHe� STATE SH
bufTime SH � SignalHe� TIME
�rst update � SignalGr� TIME

INIT Init SG
� � �

OP Fill Bu�er SG
�State SG� SH Port

df update model SH

bufStat SH �

� bufStat SH � state SH
bufTime SH

�

� bufTime SH � transPoint SH

trigger
State SG

� sg � SignalGr �
� � �

OP Generate SG
�State SG� �SG Port
�CE SignalGroup

� sg � SignalGr �
� � �

OP Process Bu�er SG
�State SG� �SG Port � �CE SignalGroup

trigger � Generate SG
� trigger � �State SG 	 �SG Port

df update model SG
� 
 �SG Port �� �SG Port

�

df deliver CE SignalGroup
� 
 �CE SignalGroup �� �CE SignalGroup

�

Update Layer SG b� Fill Bu�er SG � Process Bu�er SG

Fig. 10. The abstraction layer of signal groups

Figure 9). In this case the controlled entities are the same as the outgoing data, i.e. the
ports CE SignalGroup and SG Port are the same except for the generated events.

The incoming values for signal heads have to be buffered because they are deliv-
ered sequentially instead of simultaneously. The specification shown in Figure 10 is an
instance of Table 3. Whenever the event update model SH is read from the incoming
port SH Port , the operationUpdate Layer SG is performed. This operation is a com-
position of the operations Fill Bu�er SG and Process Bu�er SG . The shape of the
statechart, which is omitted here, is exactly the one of the chart in Table 3.

The operation Fill Bu�er SG just adds the data read from the incoming port
SH Port to the buffer functions called bufStat SH and bufTime SH by functional
overwriting. The operation Process Bu�er SG assembles the buffered values when
trigger is satisfied. This is the case if there exists a signal group whose update informa-
tion is complete, or whose transition point was set more than a certain time span ago. If
trigger is not satisfied, then the data remain as they are. In case of change, two events



Tra�cStream

ENRICH ControlledEntities

PORT SG Port
state SG � SignalGr� STATE SG
transPoint SG � SignalGr� TIME
update model SG � event

PORT CE Tra�cStream
state TS � Tra�cStr� STATE TS
transPoint TS � Tra�cStr� TIME
deliver CE Tra�cStream � event

INPUT state SG� transPoint SG� update model SG

OP Update Layer TF
SG Port � �CE Tra�cStream

df update model SG

df deliver CE Tra�cStream
� 
 �CE Tra�cStream �� �CE Tra�cStream

�

state TF
�

� interpret signal TF � state SG � signals TF
transPoint TF

�

� transPoint SG � signals TF

Fig. 11. The abstraction layer of traffic streams

update model SG and deliver CE SignalGroup report about the new values along
the outgoing ports.

An example for unbuffered immediate reaction is given with the highest abstraction
layer of the cascade, namely the process class Tra�cStream in Figure 11. The update
operation determines the current values of the traffic streams according to the actual data
of the signal groups which control them. Incoming data are defined in the port SG Port .
The states and the transition points of the traffic streams are the controlled entities which
are delivered to the regulator via the port CE Tra�cStream. The behavior is cyclic as
before but there is no need to store values as internal data, because the values of all
signal groups are determined simultaneously.

The updating operation is activated each time the event update model SG is read
from the input port. It computes the data for the actual state and transition point for
each traffic stream in accordance with the signal groups that give the signals to them.
To determine the actual state value means to interpret the signal from the signal group in
terms of opening or closing. Both functions interpret signal TF and signals TF are
external functions described by the planning documents. The event deliver CE TF is
generated if there is any change of data.

6 Related Work

The use of formal methods to specify software for safety-critical embedded systems is
not uncommon, see e.g. [10–12]. However, few approaches provide an explicit method-
ology to develop formal specifications. Related to this aim is the work of Souquières
and Lévy [14]. They support specification acquisition with development operators that
reduce tasks to subtasks. However, they do not consider safety-related issues, and the
development operators do not provide means to validate the developed specification.

More agendas that support the specification of software for safety-critical embedded
systems can be found in [5, 9]. There, different reference architectures and formalisms
are supported. More details of the traffic light system can be found in [8, 13].



7 Conclusions

The requirements for safety-critical embedded systems can be non-trivial. In these
cases, we cannot assume that highly abstract requirements are easily captured as a direct
relation between sensor values and actuator commands.

Without formal specification techniques, the relation between high-level require-
ments and low-level sensor data often is established only in the design and implemen-
tation phases and in an ad hoc manner. This results in a gap between high-level require-
ments documents and low-level design and implementation documents. Consequently,
errors in mapping high-level requirements to low-level data are either detected very late
in the development process, or not at all. It is very hard to certify the safety of systems
developed in that way.

Our approach avoids these problems by proposing to

1. Set up a formal requirements specification before beginning with the design and
implementation of the software component.
In this way, functional and safety requirements for the software component are
stated explicitly and unambiguously.

2. Define the abstract notions, which are used to express requirements, in terms of
low-level sensor data formally and early in the software development process.
In this way, we establish a direct connection between the requirements analysis and
the software modeling phases. As a result, the requirements are adequately reflected
in the software model.

For the traffic light safety controller, finding appropriate abstract notions to charac-
terize safe states of a traffic junction (such as signal groups and traffic streams) was a
crucial point in developing an adequate specification, because these abstractions are not
documented in the domain specific literature [3, 4].

In addition, we have identified a systematic way of procedure to achieve the abstrac-
tion of low-level values to high-level concepts. This systematic way of procedure and
the formal nature of our specification language force software developers to analyze the
system much more thoroughly than this is the case for traditional software engineering
approaches. For example, classifying controlled entities into groups that may change
simultaneously (see Step 2.2 of Figure 5) forces the specifier to carefully reconsider all
the controlled entities introduced in Step 2.1.

Following the CDM agenda leads to a clean architecture of the software component.
The clear cascade-like organization of abstraction layers leads to well structured and
comprehensible specifications even for complex applications.

The validation conditions associated with the steps of the agendas ensure that the
specification fulfills certain quality criteria. All of the validation conditions presented
in this paper can be expressed formally and be demonstrated with machine support.
Without formal techniques, such a rigorous validation of the specification would not be
possible.

Apart from making design knowledge explicit and re-usable, an agenda provides a
documentation of the specifications developed with it. Each part of the specification can
be mapped to a step of the agenda that explains its purpose. In this way, the evolution
of specifications is facilitated considerably.



The traffic light case study has provided a proof of concept for the approach pre-
sented in this paper. It is not an academic example but a real-life industrial application.
Safety controllers for traffic light systems are highly non-trivial. The complete formal
specification [13] is 50 pages long, and an informal analysis document takes another
21 pages. A first version of the formal specification had been developed without using
the agendas presented in this paper. Revising this first version to make it conform to the
agenda resulted in eliminating some ad hoc solutions and has lead to a better structured
and more comprehensible specification that can be adjusted to new requirements in a
systematic way.

References

1. R. Büssow, H. Dörr, R. Geisler, W. Grieskamp, and M. Klar. �SZ – ein Ansatz zur sys-
tematischen Verbindung von Z und Statecharts. Technical Report TR 96-32, Technische
Universität Berlin, 1996.

2. R. Büssow and W. Grieskamp. Combinig Z and temporal interval logics for the formalization
of properties and behaviors of embedded systems. In R. K. Shyamasundar and K. Ueda,
editors, Asian ’97, LNCS 1345, pages 46–56. Springer-Verlag, 1997.

3. Deutsche Elektrotechnische Kommission im DIN und VDE (DKE). DIN Norm VDE 0832
– Straßenverkehrs-Signalanlagen (SVA), 1990.

4. Forschungsgesellschaft für Straßen- und Verkehrswesen. Richtlinien für Lichtsignalanlagen
– RiLSA, 1992.

5. W. Grieskamp, M. Heisel, and H. Dörr. Specifying safety-critical embedded systems with
Statecharts and Z: An agenda for cyclic software components. In E. Astesiano, editor, Proc.
ETAPS-FASE’98, LNCS 1382, pages 88–106. Springer-Verlag, 1998.

6. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
and M. Trakhtenbrot. Statemate: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering, 16(4), 1990.

7. M. Heisel. Agendas – a concept to guide software development activites. In R. N. Horspool,
editor, Proc. Systems Implementation 2000, pages 19–32, London, 1998. Chapman & Hall.

8. M. Heisel, T. Santen, and K. Winter. An agenda for software components with complex data
models. Technical report, GMD FIRST, 1998. to appear.

9. M. Heisel and C. Sühl. Methodological support for formally specifying safety-critical soft-
ware. In P. Daniel, editor, Proc. 16th SAFECOMP, pages 295–308. Springer-Verlag London,
1997.

10. J. Jacky. Specifying a safety-critical control system in Z. IEEE Transactions on Software
Engineering, 21(2):99–106, 1995.

11. J. McDermid and R. Pierce. Accessible formal method support for PLC software develop-
ment. In G. Rabe, editor, Proc. 14th SAFECOMP, Belgirate, Italy, pages 113–127, London,
1995. Springer-Verlag.

12. A. Ravn, H. Rischel, and K. Hansen. Specifying and verifying requirements of real-time
systems. IEEE Transactions on Software Engineering, 19(1):41–55, 1993.

13. T. Santen and K. Winter. Sicherung einer Lichtsignalanlage in �SZ. Technical report, GMD
FIRST, 1998. to appear.

14. J. Souquières and N. Lévy. Description of specification developments. In Proc. of Require-
ments Engineering ’93, pages 216–223, 1993.

15. J. Spivey. The Z Notation – A Reference Manual. Prentice Hall, 1992.


