Computer-Aided Formal Methods:
A Generic Concept

Maritta Heisel

Technische Universitat Berlin
FB Informatik — FG Softwaretechnik
Franklinstr. 28-29, Sekr. FR 5-6, D-10587 Berlin, Germany

heisel@cs.tu-berlin.de

Abstract. We present a formalism-independent approach to the design
of support systems for the application of formal methods in software
engineering. Its basis is a knowledge representation mechanism called
strategy. Strategies represent development knowledge used to perform
different software engineering activities. The development of an artefact
is modeled as a problem solving process. The definition of strategies is
generic in the definition of problems, solutions and acceptability of a so-
lution with respect to a problem. The notion of strategy is complemented
by a generic system architecture that serves as a template for the im-
plementation of support tools for strategy-based problem solving. Two
different instantiations of the strategy framework and an implemented
program synthesis system are presented.

1 Introduction

The idea behind Computer-Aided Software Engineering is that the process of de-
veloping software can (and should) be supported by software tools. Tools would
lead their users through a well-defined process and relieve them from tedious
bookkeeping tasks. CASE tools support traditional, informal approaches to soft-
ware engineering.

For the application of formal methods, tool support is even more important.
Their use involves considering much more detail than necessary with traditional
methods. Hence, applying formal methods without tool support is a tedious and
error-prone task. The peculiarities of formal methods lead to specific require-
ments for tools that support their application in software engineering practice:

Requirements for Formal Methods Specific Tool Support

Usability by non-experts. Only if tools are built that allow non-experts to
work with formal methods, they will have a chance to enter industrial prac-
tice. Today, most existing tools are parsers, type checkers and documentation
tools for specifications, or theorem provers for the underlying logics. Only
few provide support for the methodological aspects of formal methods. But
for non-experts, methodological support is crucial.

Guarantee semantic properties. A tool must support the development pro-
cess in a way that eases rigorous mathematical reasoning and establishes
confidence that the product indeed fulfills the required properties. There

must be a clear identification of the steps in the development process that
are responsible for establishing semantic properties.

Balance User Guidance and Flexibility. Since the application of formal
methods is a non-trivial task, it is important not to leave the user alone with
a mere formalism but to develop explicit techniques to guide its use. On the
other hand, a tool should not unnecessarily restrict its users. Therefore, it
must support the combination of different techniques and be customizable by
informed users who develop specialized techniques for their project contexts.

Provide Overview of Development. Exactness and rigor entail a higher
level of detail that must be handled. It is crucial for developers to have
tool support that provides an overview of the development process and the
relations between subtasks.

This paper presents a formalism independent approach to the design of tools
that support the peculiarities of formal methods. The formal basis of this ap-
proach is a knowledge representation mechanism called strategy. Strategies make
development knowledge implementable. In the strategy framework, a develop-
ment activity is conceived as constructing a solution for a given problem. The
solution to be constructed must be acceptable for the problem. Acceptability
captures the semantic requirements concerning the product of the development
process. The notion of strategy is generic in the definition of problems, solutions
and acceptability. Hence, different development activities can be expressed as
strategies. Using so-called strategicals, more powerful strategies can be defined
by combination of existing ones.

To make strategies implementable, they are represented as strategy modules.
This leads to a uniform interface between strategies which enables combination
of methods and enhances the adaptability of a support tool. Moreover, those
parts of a strategy that are responsible for the acceptability of solutions are
isolated. Only they have to be verified in order to gain confidence in a non-verified
support system. Finally, the parts of a strategy amenable to automation are
clearly identified. Thus, it becomes possible to gradually replace user interaction
by automatic procedures.

Strategies, strategicals, and strategy modules are formally defined in the
language Z [Spi92]. This does not only provide precise definitions of these notions
but also makes reasoning about strategies possible.

The strategy framework is completed by a generic system architecture. This
architecture shows how to implement support tools for strategy-based develop-
ment. It is designed to meet the requirements expressed above. Different support
systems implementing different instantiations of the strategy framework have a
strong potential for successful combination. Such a combination would provide
integrated tool support for different software development activities. A program
synthesis system called TOSS (Integrated Open Synthesis System) is an instance
of this architecture.

In the following, we present the formal foundation of the strategy framework
in Sect. 2. The system architecture is described in Sect. 3. An instantiation of the
framework to support program synthesis is presented in Sect. 4, together with

a description of the implemented system 10SS. Sect. 5 presents an instantiation
for specification acquisition. We are then able to compare the two instantiations
in Sect. 6 and to compare strategy-based problem solving with tactical theorem
proving and other related work (Sect. 7). Finally, we summarize in Sect. 8.

2 Strategies

Strategies describe possible steps during a development. Examples are how to
decompose a system design to guarantee a particular property, how to conduct
a data refinement, or how to implement a particular class of algorithms. This
kind of knowledge can be found in text books on software engineering.

A strategy works by problem reduction. For a given problem, it determines
a number of subproblems. From their solutions the strategy produces a solution
to the initial problem. Finally, it tests if that solution is acceptable according
to some notion of acceptability. The solutions to subproblems are naturally ob-
tained by strategy applications as well. In general, the subproblems of a strategy
are not independent of each other and of the solutions to other subproblems. This
restricts the order in which the various subproblems can be set up and solved.

We first give a formal definition of strategies. Second, we sketch functions to
define new strategies from existing ones. Finally, we describe how strategies can
be represented in a way suitable for implementation.

2.1 Formal Definition of Strategies

Formally, strategies are defined as relations, relating a problem to the subprob-
lems needed so solve it, and the final solution to the solutions of the subproblems.
The formal definition is expressed in the specification language Z.

Definition of Database Relations. Since in the context of strategies it is
convenient to refer to the subproblems and their solutions by names, our defi-
nition of strategies is based on the the notion of relation as used in the theory
of relational databases [Kan90], instead of the usual mathematical notion of re-
lation. In this setting, relations are sets of tuples. A tuple is a mapping from a
set of attributes to domains of these attributes. In this way, each component of
a tuple can be referred to by its attribute name. In order not to confuse these
domains with the domain of a relation as it is frequently used in Z, we introduce
the type Value as the domain for all attributes.

With the basic types Attribute and Value, we can define tuples as finite partial
functions from attributes to values: tuple : P(Attribute -+ Value). Relations are
sets of tuples that all have the same domain. This domain is called the scheme
of the relation.

relation : P(P tuple)
Vr:relation @ Vi1, l5 : v @ dom t; = dom &

A join combines two relations. The scheme of the joined relation is the union
of the scheme of the given relations. On common elements of the schemes, the
values of the attributes must coincide.

_ M _: relation x relation — relation

¥V ri, r2, 72 relation e
r Mo
= {t : tuple | dom t = scherne r U scheme ra A
schemer, <t € 11 A schemery <t € 12}

The join operation is associative and commutative. Hence, the join can also be
defined for finite sets of relations. This operation is denoted .

Using Database Relations to Define Strategies. We now use the definition
of relations given above to define strategies. The first step is to instantiate the
Attribute and Value sets for problem solving. Second, we define constituting
relations and the notions of admissibility and determinability of attribute values.
Finally, strategies can be defined.

Problems, Solutions, Acceptability. Problems and solutions are generic parame-
ters for the notion of strategy. The sets Problem and Solution are defined as
subsets of Value with an empty intersection. Acceptability is a relation be-
tween problems and solutions: _acceptable_for_ : Solution <= Problem. The sets
Problem Attribute and SolutionAttribute are subsets of Attribute with an empty
intersection. Both have countably many elements.

We use the distinguished attributes P_init and S_final to refer to the initial
problem and its final solution. Moreover, we assume a bijective correspondence
cor : ProblemAttribute —» SolutionAttribute between problem and solution at-
tributes.

Constituting Relations. FEach strategy is defined by a set of so-called constitut-
ing relations. These relations represent the dependencies between the subprob-
lems generated by a strategy. Their schemes consist of arbitrary attributes for
problems and solutions. They are divided into input attributes IA and output
attributes OA. The constituting relations restrict the values of the output at-
tributes, given the values of the input attributes. Thus, they determine an order
on the subproblems that must be respected in the problem solving process.

const_rel : P relation

Ver: const_rel eVt :cr;a: schemecr e
scheme cr C (ProblemAttribute U SolutionAttribute) A
(@ € ProblemAttribute = t a € Problem) A
(a € SolutionAttribute = t a € Solution)

It is now possible to define dependency of constituting relations. A constituting
relation directly depends on another (ery C4 crg) if one of its input attributes is
an output attribute of the other relation: OA ery N 1A ¢ry # &. The depending
constituting relation is considered to be “larger”. The transitive closure of the
direct dependency relation yields the dependency relation .

A set of constituting relations that defines a strategy must conform to our
intuition of problem solving, i.e.

1. The original problem to be solved must be known, i.e. P_init must always
be an input attribute.

The solution to the original problem is the last item to be determined, i.e.
S_final must always be an output attribute.

Each attribute value should be determined only once, i.e. the sets of output
attributes of all constituting relations must be disjoint.

. Each solution to a subproblem is used further, i.e. it occurs as an input

attribute of some constituting relation.

A solution must directly depend on the corresponding problem, i.e. if a so-
lution attribute is an output attribute of a constituting relation, then the
corresponding problem attribute must occur in the scheme of this constitut-
ing relation.

Sets of constituting relations fulfilling these requirements are called admissible.

The function partsols yields all solution attributes of a relation scheme except

S_final. Each line of the predicate corresponds to one of the above requirements.

admissible_: P(F const_rel)

Vers : F const_rel o

admissible crs

& (Veryer' ters|er#cer' e
(P_init € scheme cr = P_init € 1A cr)
A (S_final € scheme cr = S_final € OA cr)
AOAcrNOAcr' =0
A (Va : partsols cr o 3 er' cerseae IA cr”)
A (Ya: partsolscr | a € OA cr o cor™a € scheme cr))

The predicate determinable_ : P(F const_rel) requires that there is an order in

which all the attribute values can be determined. It says that the dependency

relation must not be cyclic, and that each input attribute of a constituting
relation except P_init must be an output attribute of a smaller relation.

Strategies. 1t is now possible to define strategies as relations that fulfill certain

conditions:

1.
2.

The scheme of the relation must contain the attributes P_init and S_final.
For each problem attribute of the scheme, the corresponding solution at-
tribute must be in the scheme, and vice versa.

There must be a uniquely defined set of constituting relations that is admis-
sible and determinable, such that the relation is the join of these constituting
relations.

. If a member of the relation contains acceptable solutions for all problems

except P_init then it must also contain an acceptable solution for P_init.
This means, if all subproblems are solved correctly, then the original problem
must be solved correctly, too.

The last condition guarantees that a problem that is solved exclusively by appli-
cation of strategies is always correctly solved. For strategies solving the problem

directly, this condition means that the solution to be generated must be ac-

ceptable. The function subprs yields all problem attributes of a relation scheme
except P_unait.

strategy : P relation

Y strat : strategy e
{P_init, S_final} C scheme strat
A (Va : ProblemAttribute @ a € scheme strat & cor a € scheme strat)
A (31 crs : F const_rel o
admissible crs A determinable crs A stral =< crs)
A (Vres: stral o
(V a: subprs strat e (res (cor a)) acceptable_for (res a))
= (res S_final) acceptable_for (res P_init))

This definition lays the theoretical foundation of our approach. Fig. 1 illustrates
the definition of strategies, where arrows denote the propagation of attribute

values.
strat
@Q ,
X
I VAN APR\ . I
P_init S fina
~—_F

Fig. 1. Definition of strategies

2.2 Strategicals

Strategicals are functions that take strategies as their arguments and yield strate-
gies as their result. They are useful to define higher-level strategies by combi-
nation of lower-level ones or to restrict the set of applicable strategies, thus
contributing to a larger degree of automation of the development process.
Three strategicals are defined that are useful in different contexts. The THEN
strategical composes two strategies. Applications of this strategical can be found
in program synthesis. The REPEAT strategical allows for a stepwise repetition of
a strategy. The wish for such a strategical arises in the context of specification
acquisition where often several items of the same kind have to be developed. In
order to make the REPEAT strategical more widely applicable, a LIFT strategical
transforms a strategy to develop one item into a strategy to develop several items
of the same kind. For reasons of space, we can only present THEN and REPEAT.

The THEN Strategical. This strategical has the following signature:
| THEN : strategy x ProblemAttribute x strategy = strategqy

The effect of applying THEN(strati, p, strats) is the same as when reducing a
problem first with strat; and then reducing the generated subproblem p by strats.
The difference is that p and its corresponding solution cor p are not generated
explicitly. This is illustrated in Fig. 2. An example of a strategy defined with

THEN is given in Sect. 4.2.
6

THEN(straty, p, straty)
— —
P_init @O S fina

P_init
S fina

Fig. 2. THEN Strategical

—=
S final

— =
P_init 9

The REPEAT Strategical. The first argument of this strategical is a strat-
egy strat that is to be repeated. Repetition here means that a subproblem p
generated by strat should again be reduced by a finite iteration of strat. The
iteration is terminated by another strategy terminate that does not generate
new subproblems.

| REPEAT : strategy X ProblemAttribute x strateqy - strategy

Hence, REPEAT (strat, p, terminate) is distinguished from strat only in some ad-
ditional requirements concerning the reduction of p, as indicated in Fig. 3. An
example of a strategy defined with REPEAT is given in Sect. 5.2.

REPEAT (strat, p, terminate)

strat cor p " corp
: e
Pinit| Q Sfind P init O

Fig. 3. REPEAT Strategical

s firal

2.3 Modular Representation of Strategies

To make strategies implementable, we must find a suitable representation for
them that is closer to the constructs provided by programming languages than
relations of database theory. Implementations of strategies should be indepen-
dent of each other with a uniform interface between them. Thus, the implemen-
tation of a strategy is a module with a clearly defined interface to other strategies
and the rest of the system. A strategy module consists of the following items:

— the names of subproblems it produces,

— the dependency relation on them,

— for each subproblem, a procedure how to set it up using the information in
the initial problem and the subproblems and solutions it depends on, and
possibly some externally provided information,

— a procedure describing how to assemble the final solution,

— a test of acceptability for the assembled solution, and

— optionally a procedure providing an explanation why a particular solution is
acceptable.

The last item is not strictly necessary for a strategy to work. Still, one might be
interested in a more detailed documentation of why a particular solution “works”
for a given problem. This yields the following definition of a strategy module:

__StrategyModule
subprs : P ProblemAttribute
depends : ProblemAttribute «<— ProblemAttribute
setup : ProblemAttribute - (tuple x Eztinfo —+ Problem)
assemble : tuple x FxtInfo + Solution
accept_: P tuple
explain : tuple 4 Fzplanation

The predicate part of this schema cannot be given here for reasons of space.
Note that the dependency relation is now defined for single problems instead
of constituting relations. Tt is possible for a combination of values for the input
attributes of a constituting relation to be related to several values of the output
attributes. In these cases, the basic type ExtInfo is used to select one of the
possible values. This external information can be user input or be computed
automatically. The basic type Ezplanation serves its obvious purpose.

3 System Architecture

The definition of strategies is parameterized by the notions of problem, solution,
and acceptability. Therefore, it is possible to design a generic system architecture
to support strategy-based development processes. Fig. 4 gives a general view of
the architecture which is described in more detail in [HSZ95]. Two global data
structures represent the state of development: the development tree and the
control tree. The development tree represents the entire development that has
taken place so far. Nodes contain problems, information about the strategies
applied to them, and solutions to the problems as far as they have been found.
Links between siblings represent dependencies on other problems or solutions.

The data in the control tree is concerned only with the future development.
Its nodes represent open tasks. They point to nodes in the development tree
that do not yet contain solutions. The degrees of freedom to choose the next
problem to work on are also represented in the control tree. The third major
component of the architecture is the strategy base. It represents knowledge for
strategy-based problem solving by strategy modules.

initial external
problem information strategy selection
|

7
AN

)

ue|dxe

e

i
® OO

N
[

For,

uejdxe

development tree control tree

strategy base

Fig. 4. General view of the system architecture

A development roughly proceeds as follows: the initial problem is the input
to the system. It becomes the root node of the development tree. The root of
the control tree is set up to point to this problem. Then a loop of strategy appli-
cations is entered until a solution for the initial problem has been constructed.

To apply a strategy, first the problem to be reduced is selected from the
leaves of the control tree. Second, a strategy is selected from the strategy base.
Applying the strategy to the problem means to extend the development tree
with nodes for the new subproblems, install the functions of the strategy in
these nodes, and set up dependency links between them. The control tree also
is extended according to the dependencies between the produced subproblems.

If a strategy immediately produces a solution and does not generate any sub-
problems, or if solutions to all subproblems of a node in the development tree
have been found, the functions to assemble and accept a solution are called, and,
if successful, the solution is recorded in the respective node of the development
tree. When a solution is produced the control tree shrinks because it only con-
tains references to unsolved problems. The process terminates when the control
tree vanishes. The result of the process i1s a development tree where all nodes
contain acceptable solutions.

4 Instantiation for Program Synthesis

We present the instantiation of the framework as it is used for the implemen-
tation of TOSS, a system that supports the development of provably correct
imperative programs. First, the generic parameters are instantiated. Then some
example strategies are given. Finally, the implemented prototype system TOSS
is described.

4.1 Problems, Solutions, Acceptability and Explanations

For the definition of the generic parameters, we also use a Z-like notation, without
formalizing the syntax and semantics of formulas and programs, however.

Problems are specifications of programs, expressed as preconditions and post-
conditions that are formulas of first-order predicate logic. To aid focusing on the
relevant parts of the task, the postcondition is divided into two parts, invari-
ant and goal. In addition to these we have to specify which variables may be
changed by the program (result variables), which ones may only be read (input
variables), and which variables must not occur in the program (state variables).
The state variables are used to store the value of variables before execution of
the program for reference of this value in its postcondition. The function free
yields the free variables of a formula. The predicate valid refers to the semantics
of a formula and expresses its logical validity.

Solutions are programs in an imperative Pascal-like language. Furthermore,
solutions contain additional pre- and postconditions. If the additional precondi-
tion is not equivalent to true, the developed program can only be guaranteed to
work if both the originally specified and the additional precondition hold. The
additional postcondition gives information about the behavior of the program,
i.e. 1t says how the goal is achieved by the program. To exclude trivial solutions,
the additional precondition is required not to be false.

__ ProgrammingProblemn
pre, goal, inv : First_Order_Formula __ProgSolution

res, inp, state : P Variable prog : Program

.. . apr, apo : First_Order_Formula
disjoint {res, inp, state) pr, ap

free(pre A goal A inv) C res U inp U state satisfiable(apr)
valid(pre = inv)

A solution is acceptable if and only if the program is totally correct with
respect to both the original and the additional the pre- and postconditions,
does not contain state variables (function wars), and does not change input
variables (function asg). Checking for acceptability of a solution amounts to
proving verification conditions on the constructed program.

_correct_for_: ProgSolution <= ProgrammingProblem

Y p : ProgrammingProblem; s : ProgSolution e
s correct_for p
& (valid(p.pre A s.apr = {s.prog)(p.goal A p.inv A s.apo))
A vars(s.prog) N p.state = & A asg(s.prog) N p.inp = &)

The formula pre = (prog)post is a formula of dynamic logic [Gol82], a logic for
proving properties of imperative programs. It denotes the total correctness of
program prog with respect to precondition pre and postcondition post.

FErplanations for solutions are provided as formal proofs in dynamic logic.
In TOSS, proofs are represented as tree structures that can be inspected at any
time during development.

10

4.2 Strategies for Program Synthesis

We present two strategies. The first one is used to develop compound statements;
the second is a combined strategy using the THEN strategical that serves to
develop loops together with their initialization.

The notation we use is semi-formal and resembles Z. The type Value denotes
the disjoint union of the types ProgrammingProblem and ProgSolution.

The protection Strategy. This strategy is based on the idea that a conjunctive
goal can be achieved by a compound statement. The part of the goal achieved
by the first statement must be an invariant for the second one. It produces two
subproblems and is defined as follows:

protection =< {prot_first, prot_second, prot_sol}
where prot_first is defined by

IA prot_first = {P_init}
OA prot_first = {P_first, S_first}
prot_first = { t : scheme prot_first — Value |
g1, g2 : First_Order_Formula e
(valid(t(P—init).goal & g1 A g2) A
t(P_first) = { pre = L(P_init).pre,
gO(ll 3 91,
inv => true,
res = E(P_init).res N free(gi),
inp = t(P_init).inp U (t(P_init).res \ free(g1)),
state = t(P_init).state)) A
t(S_first) correct_for t(P_first)}

The precondition for the first statement is the same as for the original problem.
The invariant may be invalidated in achieving goal g1, hence the inv component
of the value of P_first is true. Only the variables occurring free in g1 may be
changed; the other result variables of P_init become input variables for P_first.
The state variables remain unchanged.

Note that there occurs an existential quantifier in this definition. This indi-
cates that external information is necessary to set up the problem for P_first.
In the implemented strategy of TOSS, the user is asked to indicate the goal for
the first problem. prot_second is defined by

1A prot_second = {P_init, P_first, S_first}
OA prot_second = {P_second, S_second}
prot_second = { t : scheme prot_second — Value |
A g : First_Order_Formula e
(valid (t(P_init).goal & t(P_first).goal A g2) A
t(P_second) = { pre = t(P_first).goal A t(S_first).apo,
goal = g A t(P_init).inv,
inv = {(P_first).goal,
res = t(P_init).res,
inp = t(P_init).inp U (free(t(S_first).apo)
\(t(P_init).res U t(P_init).state)),
state = t(P_init).state)) A
t(S_second) correct_for t(P_second) A

11

valid(t(P_first).goal A t(S_first).apo = t(S_second).apr)}

In this case, the goal for P_second can be determined automatically. It con-
sists of that part g, of the original goal which was not achieved by solving
the problem P_first, together with the invariant of P_init. The invariant for
P_second is the goal of P_first; its precondition also is this goal, together with
the additional postcondition established by S_first.

The result variables for P_second are the same as for the original problem.
Its input variables are the input variables of P_init plus all variables newly
introduced in solving P_first (these will occur in ¢(S_first).apo). It is necessary
to classify these variables because of the integrity condition free(pre A goal A
inv) C res U inp U state stated in the definition of programming problems.

The state variables again remain unchanged. The solution S_second is not
only required to be acceptable for P_second. It must also be guaranteed that its
additional precondition is entailed by the postcondition established by S_first.

The constituting relation prot_sol defines how the final solution is assembled
from the solutions of the subproblems, where the final program is the sequential
composition of the two programs developed in solving the subproblems.

1A prot_sol = {S_first, S_second}
OA prot_sol = {S_final}
prot_sol = { t : scheme prot_sol — Value |
t(S_final) = { prog = t(S_first).prog; t(S_second).prog,
apr = t(S_first).apr,
apo = t(S_second).apo) }

A Combined Strategy. The protection strategy is frequently used for the
development of while loops. This usually takes place in the following manner:
first, a loop invariant is developed, e.g. using the heuristics given in [Gri81]. The
goal of the original problem is strengthened using the strengthening strategy. This
strategy replaces the goal of a programming problem by a stronger or equivalent
one. The new goal consists of the loop invariant and the negation of the loop
condition. Second, the protection strategy is applied. The first statement of the
compound is the initialization of the loop that establishes the invariant. The
second part of the compound consists of the loop itself which is developed with
a strategy called loop. To define a new while strategy that encompasses these
steps, the THEN strategical can be used:

while = THEN(strenthening, P_str, THEN(protection, P_second, loop))
where P_str is the only subgoal generated by the strengthening strategy.

This shows that strategicals are a means to improve user support by making
larger development steps possible. More strategies for program synthesis can be

found in [Hei94].

12

4.3 I0SS: An Implemented Program Synthesis System

TOSS is an instantiation of the architecture described in Sect. 3. Tt uses the in-
stantiation given in Sect. 4.1. The basis for the implementation of TOSS is the
Karlsruhe Interactive Verifier (KIV), a shell for the implementation of proof
methods for imperative programs [HRS88]. It provides a functional Proof Pro-
gramming Language (PPL) with higher-order features and a backtrack mech-
anism. Strategies are implemented as collections of PPL functions in separate
modules. New strategies can be incorporated in a routine way. Currently a tem-
plate file for new strategies supports this process; for the future, we envision tool
support relieving the implementor of anything but the peculiarities of the newly
implemented strategy. The graphical user interface of TOSS (see Fig. 5) is writ-
ten in tcl/tk [Ous94] and integrates the graph visualization system daVinci
[FW95] to display the development tree.

Fig. 5 shows the graphical user interface of IOSS. The main window displays

Fle Edit View Graph

Current Problem: ——————————

=
intermediate_assertion J o8 Lo -
i ers al
I sorted{a, i,
heap{s, mull, 1}
Backtrack Le(mull, i)
— | [le(i, m)
Automatic Assignment gea{seq(a, n), seg(a, null, i)}
strengthening Manual Assignment. le{null, n} I
Skip
Strengthening
State Variahle
true L
0 permi{a, al}
A ioint Goal sorted{a, 1, n}
strengthening Disjoint. hesila) ot 3
el le(rull, i}
Intermediate Assertion | | [1s(1, n}
— || |geafeeg(a, i, n), segla mull. i)} v
Conditional S
Disjunctive Contiitional

Goals:

prote

manual_assignment

variables:

Input: fo

Result: o, i

State: | Fix5%, al

Fig. 5. The 10SS interface

the development task, represented by the development tree on the left-hand side
of the window, and the current programming problem on the right-hand side of
the window. The tree visualizes the process and the state of development. Each
node is labeled with the name of the strategy applied to it. The state of the node
is color coded, showing at a glance whether it is reducible, or solved, etc. The
strategy menu is shown in the center of the window. Applications of strategies,
inspection of nodes or the proof tree and graph manipulations like scaling are
performed via mouse clicks or pull-down menus. For a more complete description

of TOSS, the reader is referred to [HSZ95].

13

5 Instantiation for Specification Acquisition

The instantiation we present serves to develop specifications in Z. This fits well
with the instance for 10SS since Z supports the explicit modeling of states.
7 specifications will usually be implemented in an imperative language, like
the one used in 10SS, and 7 operation schemas can easily be transformed into
programming problems of IOSS [Hei96].

5.1 Problems, Solutions, and Acceptability

In contrast to program synthesis where problems and solutions are purely formal
objects, specification acquisition transforms informal requirements into formal
specifications. Hence, problems contain natural language descriptions of the pur-
pose of the specification to be developed.

On the other hand, in order to develop a specification successively, one must
know the parts of the specification that are already developed. Since problems
should contain all information needed to solve them, problems must contain
expressions of the chosen specification language, in our case Z.

Moreover, a problem contains a schematic Z expression that can be instanti-
ated with an appropriate concrete Z expression. It specifies the syntactical class
of the piece of specification to be developed and how it is embedded in its context.
These considerations lead us to the basic types [SynZ, Text, SchematicZ].

Semantically valid Z specifications are a subset of the syntactically correct
ones: SemZ : P SynZ. 7 expressions can be associated with syntactical classes
that are sets of Z expressions, e.g. specification or schema. SyntacticalClass :
P(P SynZ). The empty string € is a syntactically correct Z expression.

Each schematic Z expression is associated with the syntactical class of Z
expressions that it can be instantiated with. The function NL concatenates two Z
expressions. In analogy to the Z reference manual, it can be interpreted to mean
“new line”. Since concatenating two arbitrary 7 expressions does not always
yield a syntactically correct Z expression this function is partial.

syn_class : SchematicZ — SyntacticalClass
istantiate : SchematicZ x SynZ —+ Syn/
NL_: SynZ x SynZ —+ SynZ

Y schem_expr : Schematic/Z o ¥ v : syn_class schem_expr o
(schem_expr, v) € dom instantiate

A specification problem consists of the parts mentioned above, where it is re-
quired that each Z expression belonging to the desired syntactical class can be
combined with the Z part of the problem.

__SpecProblem
req : Texl
context : SynZ
to_develop : SchematicZ

Y expr : SynZ | expr € syn_class to_develop e
(context,instantiate(to_develop, expr)) € dom(_NL_)

14

Solutions are Z expressions: SpecSolution == SynZ. A solution s is acceptable
with respect to a problem p if and only if it belongs to the syntactical class of
p.to_develop and the combination of p.context with the instantiated schematic
expression yields a semantically valid Z specification.

_spec_acceptable_for_: SpecSolution <= SpecProblem

¥ s : SpecSolution; p : Spec Problem e
s spec_acceptable_for p
& s € syn_class(p.to_develop) A
p.context NL instantiate(p.to_develop, s) € SemZ

5.2 Strategies for Specification Acquisition

We present two strategies: the state_based strategy that captures the top-level
methodology of the specification language Z; and a strategy to develop lists of
schemas that is based on a strategy called develop_schema and is defined using
the strategicals LirT and REPEAT.

Again, we use a semi-formal Z-like notation without formalizing the syntax
and semantics of 7 and giving definitions for all the used functions and predi-
cates.

The State_Based strategy. The Z methodology recommends to start with
the global definitions, then to define the system state and the operations on the
state. Finally, it may be necessary to make some more definitions in order to
complete the specification. Since this is a top-level strategy, the given problem
must admit to develop expressions of the syntactical class specification.
state_based =<1 {global_defs, system_state, system_ops, other_defs,
state_based_sol}
where global_defs 1s defined by
IA global_defs = {P_init}
OA global_defs = { P_global, S_global }
global_defs = { t : scheme global_defs — Value |
syn_class(t(P_init).to_develop) = specification A
t(P_global) = { req = t(P_init).req;specify global definitions,
context = t(P_init).contest
to_develop = sp : specification) A
t(S_global) spec_acceptable_for t(P_global)}
Using the concatenation function j for text, a natural-language description of
the problem is added to the informal requirements. The schematic expression
to_develop is given as a metavariable sp together with its syntactical class
specification. The constituting relation system_state is defined by
IA system_state = { P_init, S_global}
OA system_state = { P_state, S_state}
system_state = { t : scheme system_state — Value |
t(P_state) = (req = t(P_init).req;specify global system state,
context = (t(P_init).context) L t(S_global)
to_develop = state_def : schema_list) A
t(S_state) spec_acceptable_for t(P_state) A
t(S_state) # €}

15

To define P_state, the global definitions S_global are added to the context. The
system state must be defined as a non-empty list of schemas. The constituting re-
lation system_ops and other_defs are defined similarly. The operations are again
required to be a non-empty list of schemas. On the other necessary definitions,
no assumptions can be made.

The constituting relation state_based_sol assembles the final solution and
states acceptability conditions that can only be checked when all partial solutions
are known.

1A state_based_sol = {S_global, S_state, S_ops, S_other}

OA state_based_sol = {S_final}

state_based_sol = { t : scheme state_based_sol — Value |
t(S_final) = t(S_global)NL t(S_state)NL {(S_ops) NL t(S_other) A
t(S_global) does not contain state or operation schemas A
t(S_state) contains a state schema S that is not imported by any

other schema in £(S_state) and an initial schema for S A

t(S_ops) contains at least one operation schema A
none of the operations defined in £(S_ops) has precondition false}

A schema S is a state schema if it has neither inputs nor outputs and there
are other schemas importing it. There must not be declarations of the kind
z : 5. Note that this can be checked only in context with the other parts of the
specification. A schema is an operation schema if it imports a state schema with
the ’, A or = convention.

An Iterative Strategy. The second and third subproblems generated by the
state_based strategy can be solved by repeated application of a strategy de-
fine_schema that serves to develop a single schema. For this purpose, we define
a new strategy that generates lists of schemas instead of just one schema, using
the strategical LirT. According to the definitions of Sect. 2.2, we define

define_schema_list = REPEAT (LIFT(define_schema), p_rep, empty)

where p_rep 1s a problem attribute newly introduced by LIFT and empty is the
terminating strategy that generates the empty specification e.

6 Comparison of the Two Instantiations

The two instantiations of the strategy framework presented in Sects. 4 and 5
are distinguished in several important aspects. The differences show up in the
following phenomena:

Instantiation of the generic parameters. Program synthesis performs the tran-
sition from a formal specification to a program. Both are formal objects, and
hence the definition of acceptability can establish a formal relation between the
two, namely correctness.

In specification acquisition, this is impossible because the description of the
requirements is informal. Hence, the definition of acceptability can only refer
to the formal specification in isolation and not to the requirements. In contrast
to program synthesis, where all partial solutions are statements, the partial so-
lutions in specification acquisition belong to different syntactical classes. This

16

makes it more difficult to define a general notion of acceptability. For individual
strategies, stronger acceptability conditions than the general acceptability pred-
icate can be stated, see e.g. the state_based strategy. These conditions reflect
the purpose of the different parts of the specification in the context of a strat-
egy, e.g. that the global definitions should not define the system state and that
system operations should have a satisfiable precondition. Also other consistency
and completeness criteria can be stated in the context of appropriate strategies.

Independent subproblems. In program synthesis, it is not uncommon that the
subproblems generated by a strategy are independent of each other. For example,
when developing a conditional, the two branches can be developed in any order
or in parallel.

Specification acquisition, on the other hand, proceeds much more incremen-
tally. Usually, later parts of the specification refer to the earlier parts. For exam-
ple, in order to define the operations of a system, its state must be known. So far,
none of the strategies defined for specification acquisition contains independent
subproblems.

Working with incomplete solutions. The fact that subproblems in specification
acquisition strongly depend on each other has yet another consequence. Experi-
ence has shown that it is unrealistic to assume that, if problem P> depends on
the solution Sy of problem P, it is possible to first solve P; completely and only
then start working on Ps. This means that the process that implements prob-
lem solving with strategies must allow specifiers to work on a problem even if
the solution it depends on is not yet completely known. Technically, this can be
achieved by executing the assemble functions contained in the strategy modules
(see Sect. 2.3), where for solutions not yet developed some dummy is used. As
soon as a change in an earlier problem/solution occurs, the assemble functions
must be executed once more. When a subproblem is finally solved, both the
assemble and accept functions must be executed.

In program synthesis, such a feature would make the problem solving process
more flexible and comfortable. However, it is not necessary to make strategy-
based program synthesis feasible.

Use of repetition. Frequently, in specification acquisition, several items of the
same kind must be developed to solve a problem. In this case, one might want to
repeat the same strategy several times. This can be supported by the strategicals
REPEAT and LIFT, as described in Sect. 5.2.

For program synthesis, a repetition of the same strategy is not as useful. To
develop a program, it does not help to consider it as a concatenation of items of
the syntactic class statement. This is due to the fact that programming problems
provide much more detailed and semantical information than specification prob-
lems because they are formal. Their syntactical form may already suggest the
strategy to apply. Consequently, strategy selection can rely more on the specific
problem in program synthesis than in specification acquisition.

These considerations show that program synthesis and specification acqui-
sition are fairly different activities. However, strategies are general enough to
support them both.

17

7 Related Work

Our work relates to knowledge representation techniques and process modeling in
classical software engineering, program synthesis and tactical theorem proving.

Representation of Design and Process Knowledge. In the Programmer’s Ap-
prentice project [RW88], programming knowledge is represented by clichés, i.e.
prototypical examples of the artifacts in question. It may be difficult to set up
a sufficiently complete cliché library that does not need to be extended for each
new problem.

Wile [Wil83] and others [Ost87,SSW92] vote for a procedural representation
of software development processes. This has the disadvantage to enforce a strict
depth-first left-to-right processing.

Potts [Pot89] aims at capturing not only strategic but also heuristic aspects
of design methods. He uses Issue-based Information Systems as a representation
formalism. These tend to be specialized for a particular application domain.

Souquieres and Lévy [SL93] have developed an approach to specification ac-
quisition whose underlying concepts have much in common with the ones pre-
sented here. Specification acquisition is performed by solving tasks. The agenda
of tasks is called a workplan and resembles our development tree. Tasks can be
reduced by development operators similar to strategies. Development operators,
however, do not guarantee semantic properties of the product.

In the German project KORSO [BJ95], the product of a development is
described by a development graph. Tts nodes are specification or program modules
whose static composition and refinement relations are expressed by two kinds of
vertices. There is no explicit distinction between “problem nodes” and “solution
nodes”. The KORSO development graph does not reflect single development
steps, and dependencies between subproblems cannot be represented.

Program Synthesis. The strategy framework in general and TOSS in particular
make it possible to integrate a variety of methods which can be expressed in its
basic formalism. The synthesis systems CIP [CIP87], PROSPECTRA [HKB93]
and LLOPS [BH84], in contrast, are all designed to support specific methods. It
is not intended to integrate these methods with other ones.

The approach underlying KIDS [Smi90] is to fill in algorithm schemas by
constructive proof of properties of the schematic parts. This is achieved by highly
specialized code (design tactics) for each schema. There is no general concept of
design tactics or how to incorporate a new one into the system.

Tactical Theorem Proving. Tactical theorem proving has first been employed in
Edinburgh LCF [Mil72]. Tactics are programs that implement “backward” ap-
plication of logical rules. Tactical theorem proving is also used in the generic in-
teractive theorem prover Isabelle [Pau94], in the verification system PVS [Dol95],
and in KIV [HRS88], the theorem proving shell underlying TOSS.

The goal-directed, top-down approach to problem solving is common to tac-
tics and strategies. Nevertheless, there are some important differences. First, a
tactic is one monolithic piece of code. All subgoals are set up at its invocation.
Dependencies between subgoals can only be expressed schematically by the use

18

of metavariables. Since tactics only perform goal reduction, there is no equivalent
to the assemble and accept functions of strategies.

Another important difference concerns the roles of search, and tacticals or
strategicals, respectively. In tactical theorem proving, proof search is promising
because the theorem is known and need not be constructed. The purpose of
strategy-based development, on the other hand, is to construct an artifact of
the software development process in the first place. This makes search a hope-
less enterprise. Consequently, the Or and FaIL tacticals that are used to pro-
gram search are unnecessary in the context of strategy-based development. The
REPEAT construct is realized differently in the two frameworks. While in search
procedures, a “real” loop construct is necessary, the REPEAT strategical performs
only one step of a loop; its purpose is to impose restrictions on the strategies to
be applied. Only the THEN tactical or strategical is useful in both cases since it
allows one to perform larger steps in a proof or a development. We conclude that
the two activities — even though based on similar ideas — are quite different in
their practical application.

Apart from these conceptual differences, there are differences in the kind of
user support tactical theorem provers provide. Theorem proving systems like
Isabelle or PVS usually do not maintain a data structure equivalent to the de-
velopment tree. It is the users’ responsibility to record their proof steps textually
outside of the system.

8 Conclusions

We have demonstrated that strategies are a suitable concept for the representa-
tion of development knowledge. They aim at methodological support, in contrast
to other tools that deal with single documents and not with the process aspect
of a development. By making explicit not only dependencies but also indepen-
dencies of problems, strategies allow for the greatest possible flexibility in the
development process. Other tools enforce one fixed way of procedure on their
users (see Sect. 7).

The generic nature of strategies makes 1t possible to support quite differ-
ent development activities, like specification acquisition and program synthesis.
Strategicals contribute to the scalability of the approach. The uniform represen-
tation as strategy modules makes strategies implementable and isolates those
parts that are responsible for acceptability and the ones that can be subject to
automation.

The generic system architecture that complements the formal strategy frame-
work gives guidelines for the implementation of support systems for strategy-
based development. The representation of the state of development by the data
structure of development trees contributes essentially to the practical applica-
bility of the strategy approach. This approach fulfills the requirements stated in
Sect. 1 in the following way.

Usability by non-experts. A necessary prerequisite for the successful work with
strategies is the familiarity with the involved formalisms. To use the instantiation

19

for specification acquisition, a good knowledge of the Z language is necessary. To
develop programs with 10SS, the user should be familiar with Gries’ method to
develop correct programs [Gri81]. It is not required, however, to be a researcher
in the area of formal methods in order to profitably apply strategies.

Guarantee Semantic Properties. The function accept is the only component of
the interface of a strategy module that is concerned with semantic properties.
This enhances confidence in the development tool because only the accept func-
tions have to be verified to ensure that the tool truly guarantees acceptability
of the produced solutions.

Balance User Guidance and Flexibility. Methods are uniformly represented as
sets of strategies. Their common interface to the system kernel makes method
combination possible. To incorporate a new method into the system, the strategy
base only has to be extended by the new strategies. This involves only local
changes that do not affect existing components.

More work 1s necessary if the notions of problem, solution or acceptability
have to be changed. In this case, all strategies have to be revised, but the clear
modularization still helps in identifying the code that has to be changed.

Provide OQuverview of Development. By maintaining the open subproblems and
their dependencies in the development tree, we not only get an overview of the
state of the development, but the entire development is mirrored in this data
structure.

In the future, we want to gain more experience in expressing methods dealing
with the different phases of the software life cycle as strategies, e.g. requirements
engineering or maintenance. This will enhance understanding of the requirements
of efficient and extensive tool support.

For now, different instantiations of the strategy framework lead to different
isolated support systems. It will be investigated how different instances of the
system architecture can be combined. This would provide integrated tool support
for larger parts of the software lifecycle.

Acknowledgment. Thanks to Thomas Santen for his untiring willingness to dis-
cuss strategies.

References

[BH84] W. Bibel and K. M. Hornig. LOPS - a system based on a strategical approach
to program synthesis. pages 69-89, 1984.

[BJ95] M. Broy and S. Jaehnichen, editors. KORSO: Methods, Languages, and Tools
to Construct Correct Software. LNCS 1009. Springer Verlag, 1995.

[CIP87] CIP System Group. The Munich Project CIP. Volume II: The Program Trans-
formation Systern CI1P-S. LNCS 292. Springer-Verlag, 1987.

[Dol95] Axel Dold. Representing, verifying and applying software development steps
using the PVS system. In V.S. Alagar and Maurice Nivat, editors, Proc. 4th
AMAST, LNCS 936. Springer-Verlag, 1995.

[FW95] M. Frohlich and M. Werner. Demonstration of the interactive graph-
visualization system. In Proc. DIMACS Workshop on Graph Drawing, LNCS.
Springer-Verlag, 1995.

[Gol82] R. Goldblatt. Aziomatising the Logic of Computer Programming. LNCS 130.
Springer-Verlag, 1982.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, 1981.

[Hei94] Maritta Heisel. A formal notion of strategy for software development. Technical
Report 94-28, Technical University of Berlin, 1994.

[Hei96] Maritta Heisel. An approach to develop provably safe software. High Integrity
Systems, 1996. to appear.

[HKB93] B. Hoffmann and B. Krieg-Brickner, editors. PROgram Development by
SPECification and TRAnsformation, the PROSPECTRA Methodology, Lan-
guage Family and System. LNCS 680. Springer-Verlag, 1993.

[HRS88] Maritta Heisel, Wolfgang Reif, and Werner Stephan. Implementing verifica-
tion strategies in the KIV system. In E. Lusk and R. Overbeek, editors, Proc.
9th CADE, LNCS 310, pages 131-140. Springer-Verlag, 1988.

[HSZ95] Maritta Heisel, Thomas Santen, and Dominik Zimmermann. Tool support
for formal software development: A generic architecture. In W. Schafer and
P. Botella, editors, Proc. 5-th Furopean Software Engineering Conf., LNCS
989, pages 272-293. Springer-Verlag, 1995.

[Kan90] Paris C. Kanellakis. Elements of relational database theory. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chap-
ter 17, pages 1073-1156. Elsevier, 1990.

[Mil72] Robin Milner. Logic for computable functions: description of a machine im-
plementation. SIGPLAN Notices, 7:1-6, 1972.

[Ost87] Leon Osterweil. Software processes are software too. In 9th Intl. Conf. on
Software Engineering, pages 2-13. IEEE Computer Society Press, 1987.

[Ous94] John K. Ousterhout. Tecl and the Tk Toolkit. Addison-Wesley, 1994.

[Pau94] L. C. Paulson. Isabelle. LNCS 828. Springer-Verlag, 1994.

[Pot&89] Colin Potts. A generic model for representing design methods. In Intl. Conf.
on Software Engineering, pages 217-226. IEEE Computer Society Press, 1989.

[RWS&8] Charles Rich and Richard C. Waters. The programmer’s apprentice: A research
overview. IEEE Computer, pages 10-25, November 1988.

[SL93] Jeanine Souquitres and Nicole Lévy. Description of specification developments.
In Proc. of Requirements Engineering '93, pages 216-223, 1993.

[Smi90] Douglas R. Smith. KIDS: A semi-automatic program development system.
IEEE Trans. on Software Engineering, 16(9):1024-1043, Sept. 1990.

[Spi92] J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd
edition, 1992.

[SSW92] Terry Shepard, Steve Sibbald, and Colin Wortley. A visual software process
language. Communications of the ACM, 35(4):37—44, April 1992.

[Wil83] David S. Wile. Program developments: Formal explanations of implementa-
tions. Comrmunications of the ACM, 26(11):902-911, November 1983.

