A Method for Requirements Elicitation and
Formal Specification

Maritta Heisel! and Jeanine Souquiéres?

! Otto-von-Guericke-Universitit Magdeburg, Fakultét fiir Informatik, Institut fiir
Verteilte Systeme, D-39016 Magdeburg, Germany, email: heisel@cs.uni-magdeburg.de
? LORIA—Université Nancy2, B.P. 239 Batiment LORIA, F-54506
Vandceuvre-les-Nancy, France, email: souquier@loria.fr

Abstract. We propose a method for the elicitation and the expression
of requirements. The requirements are then transformed in a systematic
way into a formal specification. The approach — which distinguishes be-
tween requirements and specifications — gives methodological support for
requirements elicitation and specification development. It avoids intro-
ducing new notations but builds on known techniques.

1 Introduction

The usefulness of formal specification is more and more accepted by researchers
and practical software engineers. Consequently, this subject is treated in the
majority of software engineering text books, and many formal specification lan-
guages have been developed.

But formal specification techniques still suffer from two drawbacks. First,
research spends more effort to develop new languages than to provide method-
ological guidance for using existing ones. Often, users of formal techniques are
left alone with a formalism for which no explicit methodology has been devel-
oped.

Second, formal specification techniques are not well integrated with the anal-
ysis phase of software engineering. The starting point from which the develop-
ment of a formal specification should begin is not well elaborated. Often, formal
specification begins with a very short description of the system to be imple-
mented, and detail is added during the development of the formal specification.
Such a procedure does not adequately take into account the need to thoroughly
analyze the system to be implemented and the environment in which it will
operate before a detailed specification is developed. The elicitation of the re-
quirements for the system and their transformation into a formal specification
are separate tasks.

This paper treats both of these issues. It introduces an explicit requirements
elicitation phase, the result of which is an adequate starting point for the devel-
opment of the formal specification. Furthermore, it provides substantial method-
ological guidance for requirements elicitation as well as for specification acqui-
sition. The different phases provide feedback to one another: not only is the
specification based on the requirements, but the specification phase may also
reveal omissions and errors in the requirements.

Our approach opts for a formal expression of requirements. After some in-
formal brainstorming steps, the requirements are formalized as constraints on
sequences of events that can happen or operations that can be invoked in the
context of the system. Thus, the transition from informal to formal means of
expression is performed very early in the software development process. This
has the advantage that requirements can be analyzed, e.g., for consistency, and
that it is possible to define a formal notion of correctness of a specification with
respect to given requirements.

In the following, we describe the methods for requirements elicitation (Sec-
tion 2) and specification acquisition (Section 3), which are illustrated by an
example, an automatic teller machine. Section 4 discusses the state of the art,
and a summary of our contributions concludes the paper.

2 Requirements elicitation

Our approach to requirements engineering is inspired by the work of Jackson and
Zave [10,17] and by the first steps of object oriented methods. The starting point
is a brainstorming process where the application domain and the requirements
are described in natural language. This informal description is then transformed
into a formal representation.

Our approach is suitable for a large class of systems: transformational as
well as reactive systems. Transformational systems perform data transforma-
tions. They offer a set of system operations that can be invoked by the user.
Reactive systems, on the other hand, have to react to events that happen in
their environment.

The difference between requirements and a specification is that requirements
refer to the entire system to be realized, whereas a specification refers only to the
part of the system to be implemented by software. To express requirements for-
mally, we use traces of the system, i.e., sequences of events that happen in certain
states and at a certain time. For transformational systems, events can be iden-
tified, too, namely the invocation and the termination of the system operations.
In this way, systems that are partially reactive and partially transformational
can also be treated.

2.1 Agenda for requirements elicitation

Requirements elicitation is performed in six steps. To express our method, we
use the agenda concept [7].

An agenda is a list of steps to be performed when carrying out some task in
the context of software engineering. The result of the task will be a document
expressed in some language. Agendas contain informal descriptions of the steps,
which may depend on each other. Usually, they will have to be repeated to
achieve the goal, because later steps will reveal errors and omissions in earlier
steps. Agendas are presented as tables, see Table 1.

Agendas are not only a means to guide software development activities. They
also support quality assurance because the steps may have validation conditions
associated with them. These validation conditions state necessary semantic con-
ditions that the developed artifact must fulfill in order to serve its purpose

properly. Validation conditions that can in principle be checked mechanically
are marked I, validation conditions that can only be checked informally are
marked o.

[No[Step [Validation Conditions |

1 |Fix the domain vocabulary. o The vocabulary must contain exactly

2 |State the facts, assumptions and|the notions occurring in the facts, assump-
requirements concerning the sys-|tions, requirements, operations and events.
tem in natural language.

3 |List the possible system operations
that can be invoked by the users,
together with their input and out-
put parameters.

4 |List all relevant events that can
happen in connection with the sys-
tem, together with their parame-
ters.

5 |Classify the events. - There must not be any events controlled
by the software system and not shared with
the environment.

6 |Formalize facts, assumptions and|o Each requirement of Step 2 must be ex-
requirements as constraints on the|pressed.

admissible traces of system events.

F The constraints must be consistent.

I For each predicate introduced, the events
that modify it must be shared with the soft-
ware system.

Table 1. Agenda for requirements elicitation

The starting point of the requirements elicitation phase is an informal re-
quirements document provided by the customer. The goal of the first five steps
of our method is to understand the problem, to fix the domain vocabulary, and
to state the requirements more precisely. They usually will need communication
with the customer. The result of these brainstorming steps forms the starting
point for the formal expression of the requirements.

We now explain the steps of the agenda one by one.

Step 1. Fix the domain vocabulary.

In informal requirements documents, the used vocabulary is often ambiguous.
Several names may be used to refer to the same thing or concept, and even the
same word may be used to refer to different concepts. In this step, the domain
vocabulary should be fixed in such a way the for each concept exactly one name
is used.

To represent the domain vocabulary, we use a notation similar to entity-
relationship diagrams [1].

Step 2. State the facts, assumptions and requirements concerning the system.

It does not suffice to just state requirements for the system. Often, facts and
assumptions must be introduced to make the requirements satisfiable. Facts
express phenomena that always hold in the application domain, regardless of the
implementation of the software system. These are often hardware properties, e.g.,
that a card reader can hold at most hold one card. Other requirements cannot
be enforced because, e.g., human users might violate regulations. In such a case,
it may be possible that the system can fulfill its purpose properly only under
the condition that users behave as required. Such conditions are expressed as
assumptions, which can be used to show that the software system is correctly
implemented. Requirements constrain the specification and implementation of
the software system. It must be demonstrated that they are fulfilled, once the
specification and the implementation are finished. In the specification phase, it
must be shown that the modeling of the software system takes the facts into
account and that the requirements are fulfilled, whereas the assumptions can be
taken for granted.

If it is not already done in the initial requirements document, the facts,
assumptions and requirements should be stated as fragments as small as possible.
Such fragments can correspond to (parts of) independent scenarios of system
behavior. For reasons of traceability, each fragment should be given a unique
name or number.

Step 3. List the possible system operations that can be invoked by the users,
together with their input and output parameters.

This step is concerned with the non-reactive part of the system to be described.
For purely reactive systems, it can be empty. System operations are usually inde-
pendent of the physical components of the system, but refer to the information
that is stored in the part of the system to be realized by software.

With each system operation Op, the events OpInvocation and Op Termination
are associated, where OpInvocation is controlled by the environment and shared
with the software system, whereas the OpTermination is controlled by the soft-
ware system and shared with the environment.

Step 4. List all relevant events that can happen in connection with the system,
together with their parameters.

This step only concerns the reactive part of the system. For purely transforma-
tional systems, the set of events may be empty. An event usually has a relation
with a physical part of the system, such as a button or a light.

Step 5. Classify the events.
According to Jackson and Zave! [10], events can be classified as follows:
1. events controlled by the environment and not shared with the software sys-
tem,
2. events controlled by the environment but observable by the software system,
3. events controlled by the software system and observable by the environment,
4. events controlled by the software system and not shared with the environ-
ment.

! They use the term “machine” for what we call software system.

If system design is not yet finished, classifying the events means deciding which
part of the task to be implemented will be fulfilled by the software system. If
system design is already completed, then the classification of the events must be
consistent with the system design. Phenomena that are internal to the software
system cannot be part of the requirements but only of the software specification.

The first five steps of our method can be carried out in any order or in parallel.
These steps result in several documents:

— an entity-relationship diagram to fix the domain vocabulary, expressing both
static and dynamic aspects of the system,

— a list of system operations, concerning the transformational part of the sys-
tem,

— a list of events, together with their classification, concerning the reactive
part of the system,

— an updated informal requirements document, where the fixed vocabulary is
used and the results of the communications with the customer are taken into
account.

These documents must be consistent: the vocabulary should contain exactly the
notions occurring in the facts, assumptions, requirements, operations and events.

Step 6. Formalize facts, assumptions and requirements as constraints on the
admissible traces of system events.

We express requirements, assumptions and facts referring to the current state of
the system, events that happen, and the time an event happens:

el 5] €n
Sl —)Sz—) Sn—)Sn+1
t1 to tn

The system is started in state S;. When event e; happens at ¢, then the system
enters state Sz, and so forth. An element of a trace of the system thus contains
a state, an event and a time. We require ¢; < ¢; for ¢ < j. Hence, concurrent
events are possible.

Sometimes, it may be necessary to introduce predicates on the system state
to be able to express the constraints formally. For example, an automatic teller
machine can grant money to a customer only if the available amount is high
enough. Expressing such a requirement makes it necessary to introduce a pred-
icate amount_available. Such predicates, however, are only declared in the re-
quirements elicitation phase. Their definition is part of the specification phase.
For each predicate, the events that establish it and the events that falsify it must
be given. These events must be shared with the software system.

Using constraints to express assertions on the behavior of the system has the
following advantages:

— It is possible to express negative requirements, i.e., to require that certain
things do not happen.

— It is possible to give scenarios, i.e., example behaviors of the system.

— Giving constraints does not fix the system behavior entirely. The constraints
do not restrict the specification unnecessarily. Any specification that fulfills
them is permitted.

In practice, requirements will often be inconsistent. We advocate to resolve con-
flicts at the requirements level, because no adequate specification can be derived
from inconsistent requirements and because the requirements are the basis of
the contract between customers and suppliers of software products. A formal
representation of requirements is much more suitable to detect inconsistencies
than an informal one. We have defined a heuristic approach to detect conflicting
requirements [8] that cannot be presented here for reasons of space.

2.2 Case study : an automatic teller machine

We carry out the agenda of Section 2.1 for an automatic teller machine. Be-
cause the example is fairly simple, we describe the system and fix the domain
vocabulary at the same time.

Step 1: Fix the domain vocabulary. A client has a card with which a
PIN is associated. The card can be inserted into a card reader, which is part
of the automatic teller machine (ATM). The client will be asked to enter the
PIN. If three times a wrong PIN is entered, the card will be kept. Otherwise,
the client will be asked to enter an amount. The ATM can either refuse or
grant the amount. In the latter case, the client takes the money, and the ATM
debits the account of the client, which is managed by a bank. Before money is
granted, the client can cancel the transaction at any time. When the transaction
is terminated, the card reader ejects the card, and the customer will take the
card. The bank that runs the ATM can query the amount available in the ATM,
and it can recharge the ATM.

Step 2: State the facts, assumptions and requirements concerning the
system. We present a selection of relevant facts, assumptions and requirements.

fact; The card reader can hold only one card at a time.
factz If the machine is out of service, it does not read an inserted card but ejects it
immediately. This is a fact because the chosen hardware behaves that way.

ass; When the machine grants money to the customer, the customer will take
the money.
asss When the machine ejects the card, the customer will take it.

req1 The inserted card must be valid. Otherwise, it is ejected immediately.

regz A transaction can always be canceled by the customer, as long as money is
not yet granted.

regs To withdraw money, customers have to insert their card and enter their PIN.

regs A customer has only three trials to type the right PIN. If three times a wrong
PIN is entered, the card is kept by the teller machine.

regs A user can only withdraw money if a weekly limit is not exceeded and if the
demanded amount does not exceed the amount currently available in the
teller machine.

regs All valid withdrawal transactions entail a withdraw order to the bank of the
client.

reg; The bank can recharge the machine with money between two withdrawal
transactions.

regs The bank can query the amount of money available in the teller machine.

Step 3: List the possible system operations that can be invoked by
the users. As far as the non-reactive aspects of the system are concerned, we
have two system operations that can be invoked by the bank to maintain the
teller machine, one to recharge the machine with money, the other to query the
amount of money available in the machine.

Step 4: List all relevant events that can happen in connection with
the system, together with their parameters. For the teller machine, we can
identify the following events: insert_card, enter _PIN (p : PIN), enter_amount(n :
N), grant_amount(n : N), refuse_amount, debit_account(c : CARD,n : N),
take_money, eject_card, keep_card, take_card, and cancel_transaction.

Step 5: Classify the events. We classify the events as follows:

— Environment controlled and shared with software system are the events
insert_card, enter_PIN (p : PIN), enter_amount(n : N), take_card, cancel-
_transaction.

— We assume that the hardware of the automatic teller machine does not have
a sensor to detect if the client really takes the money. Hence, the event
take_money is environment controlled and not shared with software system.

— Controlled by software system and shared with environment are the events
grant_amount(n : N), refuse_amount, debit_account(c : CARD,n : N),
eject_card and keep_card.

— As required by the validation condition associated with this step, there are
no events that are controlled by the software system but not shared with the
environment.

manage bank
1 reader

l \ |

=

account has client

®

has
L take J
card PIN

Fig. 1. Domain vocabulary for the teller machine

An entity-relationship-like diagram that summarizes the results of the informal
steps of the agenda is given in Figure 1. Boxes denote entities, and diamonds
denote relations. Arrows indicate the direction of the relations. The relation has

denotes static aspects of the system, whereas all other relations concern dynamic
aspects.

The reader can easily check the validation condition associated with Steps 1—
4: the diagram contains exactly the notions used to express the facts, assump-
tions, requirements, operations and events.

Step 6: Formalize facts, assumptions and requirements as constraints
on the admissible traces of system events. For each system, we call the
set of possible traces Tr. Constraints are expressed as formulas restricting the
set Tr. For a trace ¢tr € Tr, tr(i) denotes the i-th trace element, tr(¢).s denotes
the i-th state that is reached, and ¢r(7).e denotes the event that happens in that
state. For each possible trace, its prefixes are also possible traces. The definitions
of the specification macros immediately_followed by and subtraces used in the
following are obvious.

For reasons of space, we only present the formalizations of fact;, ass;, req
and regy.

factyVitr: Tr o (Vi:domtr e card_inside(tr(i).s) = tr(i).e # insert_card)

To formalize fact;, we have introduced a predicate card_inside on the system
state. The predicate is established by the event insert_card, and it is falsified by
the events eject_card and keep_card.

ass; Vn: Ny e grant_amount(n) immediately_followed _by take_money

requ Vir: Tr o (Yi:domtr|i# #tre
(tr(i).e = insert_card A tr(i + 1).e # eject_card
= wvalid_card(tr(i + 1).5)))

To formalize req;, we have introduced a predicate valid_card on the system
state. If an inserted card is not ejected immediately, the state reached after inser-
tion of the card must satisfy the predicate valid_card. The predicate valid_card
is established by the event insert_card and falsified by the events eject_card and
keep_card.
regs Vir: Tre
~ (Vtr' : subtraces(tr, insert_card, grant_amount) e

#{trit :ran¢r' | Ip : PIN e trit.e = enter_PIN(p)} <3 A
i :domtr'; p: PIN | ti.e = enter_PIN(p) e
right _PIN (tr'(i + 1).s))
A (Vtr' : subtraces(tr, insert_card, insert_card) |
(#{trit : rantr’' | 3p : PIN e trit.e = enter_PIN(p)} = 3 A
(Vi:domtr' |3p: PIN e tr'(i).e = enter_PIN(p) e
wrong _PIN (tr'(i + 1).5))) e
(3j : domitr' e tr'(j).e = keep_card))

The first conjunct of the formula states that if money is granted, then at most
three times a PIN has been entered, and one of them must have been valid?.

2 Note that we choose not to prescribe that after a correct PIN has been entered, no
more enter_PIN events will occur. This will be decided in the specification.

The second conjunct of the formula states that if three times the wrong PIN
is entered, then a keep_card event occurs before the next insert_card event. To
express this constraint, have introduced predicates right_PIN and wrong_-PIN
on states that express whether an entered PIN is valid or not.

Not only the formal constraints, but also the documents produced during the
first five steps of the agenda form the starting point for the specification phase.

3 Specification development

Jackson and Zave [10] consider a specification to be a special kind of requirement.
A requirement is a specification if all events constrained by the requirement are
controlled by the software system, and all information it relies on is shared with
the software system and refers only to the past, not the future. Requirements
(and thus specifications) do not make statements about the state of the software
system. In contrast to this view, we consider a specification to be a model of the
software system to be built in order to satisfy the requirements. It forms the basis
for refinement and implementation. Therefore, in our approach, a specification
may - in contrast to the requirements - make statements about the software
system that are not directly observable by the environment.

While requirements elicitation is independent of the specification language
that is used, the development of a specification depends to a certain extent on
the specification language and its means of expression. In the following, we use
the specification language Z [16]. If other specification languages are used, our
method is applicable, too. In this case, slight changes of the agenda might be
necessary.

3.1 Agenda for specification development from requirements

The starting point of the specification development is the whole material ob-
tained by the requirements elicitation phase presented in Section 2. Again, our
method for specification acquisition is expressed as an agenda, given in Table 2.
The steps have to be performed in the given order.

Step 1. Define a first approximation of the software system state.

This approximation should be defined in such a way that as many as possible
of the predicates on the system state that were introduced in the requirements
elicitation process can be defined. The initial states are specified in parallel with
the legal states.

Step 2. Augment the specification, incorporating the requirements one by one.

For each constraint, this step should be performed in two sub-steps. The basic
idea is to define a Z operation for each event identified in Step 4 of the require-
ments elicitation phase that is shared with the software system (according to
the classification made in Step 5), and for each system operation identified in
Step 3.

Step 2.1 can be performed by a simple syntactic inspection of the constraint in
question. Step 2.2, however, can be complex with several revisions of the current

[No[Step [Validation Conditions

1 |Define a first approximation of the soft-
ware system state and the initial states.
2 |Augment the specification, incorporat- |- The constraints expressing facts must
ing the requirements one by one. For|not be violated.

each constraint: o All events introduced in the require-
ments elicitation phase must be taken
into account.

2.1 List the events occurring in the
constraint.

2.2 For each event in the list, set up a
first definition of the corresponding

Z operation, or adjust an already F The post-states of the operations
existing operation. must be completely defined.

o The preconditions of the operations
must be defined appropriately.

 Each predicate on states used in the
requirements must be definable with
the final definition of the system state.

Table 2. Agenda for specification acquisition

version of the specification [12]. The state of the system and the operations have
to be re-considered in order to take into account the evolution introduced by new
constraints. Propagation of modifications is important here [15]. Incorporating a
new constraint may involve the following modifications: (i) adding or modifying
state components, (ii) adding or modifying data types, (iii) adding or modifying
the state invariant and (iv) propagating those modifications into the current
state of the specification.

The first two validation conditions require that all definitions and modifica-
tions must respect the domain properties as they are expressed by the facts, and
that no event may be “forgotten”.

To explain the third validation condition, we note that the preconditions for
system operations (see Step 3 of the agenda for requirements elicitation) should
be as weak as possible to make the software system more robust. For operations
corresponding to the reactive part of the system, however, the situation is differ-
ent. Strong preconditions may enforce a certain order in which operations can
be applied. This is a possible way to encode behavioral descriptions in Z. In our
case study (see Section 3.2), we will make use of this possibility.

Fourth, in most cases, an operation should give a condition for all state
components that specifies their value after the operation has terminated. If non-
determinism is introduced deliberately, this should be justified.

The last validation condition refers to the final definition of the system state.
It must contain enough information to define the predicates introduced to express
constraints in the requirements elicitation phase.

The agendas for requirements elicitation and specification acquisition provide
an integrated approach that introduces formality as early as possible in the
software engineering process. The formal expression of requirements and facts
as constraints guide the development of the formal specification.

Our approach even allows to define a notion of correctness of a specification
with respect to requirements, facts and assumptions: the set of possible traces
of the specification is the set of traces where each operation is executed only
if its precondition is satisfied. Assuming that the assumption constraints are

satisfied, it must be demonstrated that the set of possible traces induced by the
specification fulfills the constraints stated as requirements and facts.

3.2 Case study : the automatic teller machine

Taking the result of the requirements elicitation phase of Section 2.2 as the
starting point, we now use the agenda presented in Section 3.1 to develop a
formal Z specification of the automatic teller machine.

Step 1: Define a first approximation of the software system state.
In formalizing the requirements, we have introduced the predicates card_inside
out_of _service(st : STATE), valid_card(st : STATE), right_PIN (st : STATE),
wrong_PIN (st : STATE), amount_available(st : STATE,n : N) and customer-
_limit_not_exceeded(st : STATE,c: CARD,n : N). These motivate the following
definitions:

OP_MODES::=out_of _service | in_service get_PIN : CARD -+ PIN
[CARD, PIN] possible_withdraw : CARD + N

. valid_cards C dom get _PIN
valid_cards : P CARD .
valid_cards C
null_card : CARD

dom possible_withdraw
null_card ¢ valid_cards

—— Teller_machine — Init_Teller _machine
current_card : CARD Teller_machine’
op_mode : OP_MODES given? : N

] : ! . .
available_amount : N op-mode' = in_service

(current_card = null_card < op_mode € current_card = null_card

{in_service, out_of _service}) available_amount' = given?
(current_card € valid_cards < op_mode ¢

{in_service, out_of _service})

With this preliminary definition of the system state, we cannot define the
predicates right_PIN (st : STATE) and wrong_PIN (st : STATE). However, we
decide that the PIN should only be an input, and not a state component. We
have chosen to introduce a state component that stores the introduced card,
because we will need more information about this card in the following. The
predicate card_inside can be defined as card # null_card.

Step 2: Augment the specification, incorporating the requirements
one by one. For each event which is shared with the software system, we
introduce an operation. The definition of each operation is guided by analyzing
each requirement constraint, taking also into account the domain properties
expressed by the facts.

Goal: req; The inserted card must be valid. Otherwise, it is ejected immediately.

List of events: insert_card, eject_card

To define first approximation of the insert_card operation derived from req,
we introduce a new value wvalid_card for the operational modes of the teller
machine, which must be added to the type OP_MODES. We also must define a
second operation, eject_card, that returns the card to the customer:

— insert_card —— eject_card
ATeller_machine ATeller_machine
card? : CARD

!
current_card = null_card
op_mode # out_of _service
1 . .
= op_-mode’ = in_service

op_mode € {in_service, out_of _service}
(op-mode = out_of _service V
card? ¢ valid_cards) = eject_card
(op-mode = in_service A\ card? € valid_cards
= current_card' = card?
A op_mode’ = valid_card A
available_amount' = available_amount)

op_-mode = out_of _service
= op_mode' = op_mode
available_amount' = available_amount

Note that card # null_card is not a precondition for the operation eject_card,
because facty states that an invalid card is ejected immediately, as defined in
insert_card. To take fact; into account, we have given insert_card the precondi-
tion op_-mode € {in_service, out_of _service}. In the following, we must guaran-
tee that this precondition is established only by the operations eject_card and
keep_card.

Goal: regs A customer has only three trials to type the right PIN. If three times
a wrong PIN is entered, the card is kept by the teller machine.

List of events: insert_card, grant_amount, enter_PIN (p), keep_card

We have to add new values to the op_mode state component to count the
number of trials of the customer and to express if the customer is granted the
money or the card is kept.

OP_MODES::=out_of _service | in_service | valid_card | PIN _entered
| incorrect_PIN1 | incorrect_PIN2 | failure | success

— enter _PIN
ATeller _machine
pin? : PIN
op-mode € {valid_card, incorrect_PIN1, incorrect_PIN2}

get_PIN (current_card) = pin? = op_mode' = PIN _entered
get_PIN (current_card) # pin? =
(op_mode = valid_card => op_mode' = incorrect_PIN1) A
(op-mode = incorrect_PIN1 = op_mode' = incorrect_PIN2) A
(op-mode = incorrect_PIN2 = op_mode' = failure)

!
current_card = current_card
. 1l .
available_amount’ = available_amount

—— keep_card —— grant_amount

ATeller _machine ATeller_machine
op_mode = failure op_mode = PIN _entered
current_card’ = null_card op-mode’ = success

op-mode' = in_service
kept_cards' = kept_cards
U {current_card}
available_amount’ =
available_amount

With these definitions, fact; is not violated, because only keep_card estab-
lishes the precondition of insert_card. The operation grant_amount will be de-
fined further when taking into account regs and regs.

A new state component kept_cards : P CARD must be added to the schema
Teller _-machine, and the current specification has to be revised by adding the
equation kept_cards' = kept_cards to each operation schema except keep_card.

Note that in the requirements we have no statement about what happens
with the kept cards. As it is now, the set kept_cards can only be augmented.
Thus, we have detected a missing requirement.

The validation conditions of the agenda are fulfilled, as can be checked by in-
spection of the specification. As an application-dependent validation of the teller
machine specification, we can check if all operational modes that were introduced
during the specification acquisition phase are indeed reachable from an initial
state. It turns out that we have introduced a mode, out_of _service, without any
possibility to access it. Again, we have detected a missing requirement, which
should cause us to add a requirement describing when the teller machine goes
out of service.

4 Related work

Separating domain knowledge from requirements and checking consistency be-
tween these is frequent in the literature. For example, when Parnas describes
the mathematical content of a requirements document for a nuclear shutdown
system [14], he introduces different mathematical relations, one describing the
environment of the computer system, and one describing the requirements of
the computer system. The two relations must fulfill certain feasibility condi-
tions. Parnas also notes that a critical step in documenting the requirements
concerns the identification of the environmental quantities to be measured or
controlled and the representation of these quantities by mathematical variables.
He proposes to characterize environmental quantities as either monitored or con-
trolled. This corresponds to the classification of events in our and Jackson and
Zave’s approach [10]. Reading a monitored quantity corresponds to an event
observable by the software system, and controlling a quantity corresponds to
events controlled by the software system.

Whereas assumptions are not used by Parnas and by Jackson and Zave, they
do play a role in KAOS [2, 3]. KAOS supports the design of composite systems

(see also [5]). Such a system consists of human, software and hardware agents,
each of them being assigned responsibility for some goals. The KAOS approach
is goal-oriented: goals are stated and then elaborated into KAOS specifications
in several consecutive steps, starting with elaborating the goals in an AND/OR
structure and ending with the assignment of responsibilities to agents. KAOS is
similar to our approach in that it provides heuristics for requirements elicitation
and specification development. It is distinguished from our approach in that it
uses its own language and in that it takes a much broader perspective: not only
the software system, but also its environment are modeled in detail. This results
in a very rich terminology. In contrast, our approach is focussed on developing a
formal specification for a software component. We only model those aspects of
the environment that are necessary for an adequate specification.

Easterbrook and Nuseibeh [4] do not distinguish different phases for require-
ments elicitation and specification development. They elicit more requirements
when they detect inconsistencies in their specifications. On the one hand, their
approach makes it possible to delay the resolution of conflicts. On the other
hand, this kind of “lazy” requirements elicitation delays the point where a def-
inite contract between customers and providers of the software product can be
made. Moreover, it is harder to validate a specification with respect to the re-
quirements when no separate requirements document is set up that is checked
for consistency and completeness in its own right.

We have already contrasted our approach to the one of Jackson and Zave
[10,17]: first, we see a difference in requirements and specifications. As a result,
our method leads to a formal specification that is expressed in a conventional
specification language, whereas their approach stops when the requirements have
been transformed in such a way that they can be regarded as a specification.
The language in which the requirements are expressed (formulas of first-order
predicate logic) is not changed during this process. Second, the most important
part of our approach is the methodological guidance that is given to analysts and
specifiers in form of agendas, as well as the validation of the developed products.
These issues are not addressed explicitly by Jackson and Zave.

Of the object-oriented methods, we have only borrowed the very first steps,
where the relevant vocabulary is introduced in a systematic way. Our approach
is not biased toward object-oriented development.

5 Conclusions

Requirements define a set of conditions that must be met by a system or a sys-
tem component to satisfy a contract, standard or other imposed document or
description. For example, the IEEE Standard 1498 [9] defines a requirement as
a characteristic that a system or a software item must possess in order to be
acceptable to the acquirer. Requirements should be completely and unambigu-
ously stated. In our approach, achieving completeness is supported by the first
steps of the requirements elicitation agenda, where brainstorming processes are
performed, and by feedback from the specification phase. In our example, we
found missing requirements by analyzing the formal specification. Formalizing
the requirements as we do eliminates ambiguities.

Adequately integrating formal methods into the whole development process
is still an important challenge in software engineering. Integration strategies have
been classified by Fraser et al. [6] with respect to the following factors:

1. Does the strategy lead directly from the informal requirements to the formal-
ized specification, or does it introduce intermediate and increasingly formal
models of the requirements?

2. If the strategy introduces intermediate models, is the process one of parallel,
successive refinement of the requirements and the formal specification, or are
the formal specifications derived after the requirements models have been
finalized in a sequential strategy?

3. To what extend does the strategy offer mechanized support for requirements
capture and formalization?

In terms of these classification criteria, our approach can be classified as
transitional, because we introduce predicates over system event traces as an
intermediate representation of the requirements. Our approach is sequential, be-
cause the specification phase is only entered when the requirements are deemed
complete and correct. However, as already mentioned, feedback between the two
phases is possible. Mechanized support for our approach is not yet available.
Such support is conceivable for checking validation conditions, performing con-
flict analyses, and for developing the specification. First steps in this direction
have already been performed: there is a prototypical implementation of our algo-
rithm to detect conflicting requirements [8], and, furthermore, with Proplane [13]
a specification support system already exists that can be adjusted to support
the method presented here.

Requirements traceability is an important issue in requirements engineering.
Jarke [11] defines requirements traceability as the ability to describe and follow
the life of a requirement, in both a forward and backward direction. In our
method, traceability is guaranteed in the following way:

— Single requirements are fragments as small as possible. The smaller the re-
quirements, the better traceable they are, because their realization does not
distribute over large parts of the system.

— For each event and each predicate that is introduced, it is noted in which
requirements it is used.

— For each part of the formal specification, we can name the requirements that
lead us to define it in the way we did.

In summary, our approach can be characterized as follows: requirements/re-
quirements elicitation on the one hand and specifications/specification acquisi-
tion on the other hand are clearly distinguished. We give substantial methodolog-
ical guidance for the two activities, which are integrated smoothly. Our approach
does not introduce a new language or a new formalism. The requirements elic-
itation phase is independent of the specification language to be used, and the
specification development phase can be adjusted to support the usage of other
specification languages than Z. The method is suitable for transformational as
well as reactive systems. Also real-time considerations can be taken into account.

We propose a standardized way of expressing facts, assumptions and require-
ments. Constraints on the set of possible traces are a very flexible and powerful

means of describing a system and its interaction with the environment. Express-
ing requirements as constraints on traces makes it possible to systematically
detect conflicting requirements and to define a formal notion of correctness of a
specification with respect to a set of requirements.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

P. Chen. The entity-relationship model — towards a unified view of data. ACM
Transactions on Database Systems, 1(1), 1976.

A. Dardenne, A.v. Lamsweerde, and S. Fickas. Goal-directed requirements acqui-
sition. Science of Computer Programming, 20:3-50, 1993.

R. Darimont and A.v. Lamsweerde. Formal Refinement for Patterns for Goal-
Driven Requirements Elaboration. In Proc FSE-4, ACM Symposium on the Foun-
dation of Software Engineering, pages 179-190, 1996.

S. Easterbrook and B. Nuseibeh. Using ViewPoints for inconsistency management.
Software Engineering Journal, pages 31-43, January 1996.

M.S. Feather, S. Fickas, and R.B. Helm. Composite System Design : the Good
News and the Bad News. In Proc. 6th Knowledge-Based Software Engineering
Conference, pages 16-25. IEEE Computer Society Press, 1991.

M.D. Fraser, K. Kumar, and V.K. Vaisnavi. Strategies for Incorporating Formal
Specifications in Software Development. CACM, 37(10):74-86, Oct. 1994.

M. Heisel. Agendas — a concept to guide software development activites. In R. N.
Horspool, editor, Proc. Systems Implementation 2000, pages 19-32. Chapman &
Hall, 1998.

M. Heisel and J. Souquiéres. A heuristic approach to detect feature interactions in
requirements. In K. Kimbler and W. Bouma, editors, Proc. 5th Feature Interaction
Workshop, pages 165-171. I0S Press Amsterdam, 1998.

IEEE94. Software development. IEEE publications office, IEEE Standard 1498,
Los Alamitos, CA, March 1994.

M. Jackson and P. Zave. Deriving specifications from requirements: an example. In
Proceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15-24.
ACM Press, 1995.

M. Jarke. Requirements tracing. Communications of the ACM, pages 32-36,
December 1998.

N. Lévy and J. Souquitres. A “Coming and Going” Approach to Scenario. In
W. Schafer, J. Kramer, and A. Wolf, editors, Proc. 8th Int. Workshop on Software
Specification and Design, pages 115-158. IEEE Computer Society Press, 1996.

N. Lévy and J. Souquieres. Modelling Specification Construction by Successive
Approximations. In M. Johnson, editor, 6th International AMAST conference,
pages 351-364. Springer Verlag LNCS 1349, 1997.

D.L. Parnas. Using Mathematical Models in the Inspection of Critical Systems. In
M. Hinchey and J. Bowen, editors, Applications of Formal Methods, pages 17-31.
Prentice Hall, 1995.

S. Sadaoui and J. Souquiéres. Quelques approches de la réutilisation dans le
modele Proplane. In Conférence AFADL, Approches formelles dans l’assistance
au développement de logiciels, pages 8596, Toulouse, 1997. Onera—Cert.

J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd edition,
1992.

P. Zave and M. Jackson. Four dark corners for requirements engineering. ACM
Transactions on Software Engineering and Methodology, 6(1):1-30, January 1997.

