
Modeling Safety-Critical Systems with Z and

Petri Nets

Monika Heiner1 and Maritta Heisel2

1 Brandenburgische Technische Universität Cottbus, Fachbereich Informatik,
D-03013 Cottbus, email: mh@informatik.tu-cottbus.de

2 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, Institut für
Verteilte Systeme, D-39016 Magdeburg, Germany, email: heisel@cs.uni-magdeburg.de

1 Introduction

Safety-critical systems have data-oriented as well as behavioral aspects.

Combination of languages ...What are advantages of this particular combination?

(Animation, formality, ...)

2 Modeling Principles

Each transition of a Petri net corresponds to an operation specified in Z. The
goal of the combination is to obtain simple Petri nets. Data aspects need not be
encoded in the nets, but can be specified in Z.

If a Z operation makes a case distinction, the two different transitions corre-
spond to it.

To ensure compatibility of the two specifications, we have the following proof
obligations:

– The initial marking of the Petri net must be consistent with the Z specifica-
tion.

– The conditions associated with incoming places of transitions correspond
to preconditions of Z operations, the conditions associated with outgoing
places of transitions correspond to postconditions established by Z opera-
tions. Hence, for chains we have the obligation to show that the precondition
of a later operation in the chain must be compatible with the postcondition
established by the preceeding operation in the chain.

– For operations op1 and op2 where the Petri net admits concurrent execution,
we must show that

• the operations do not exclude each other, i.e., ¬ (pre op1 ∧ pre op2 ⇔
false)

• for all states where pre op1 ∧ pre op2 holds the order in which the oper-
ations are executed is irrelevant. Hence, our semantics of concurrency is
interleaving of the corresponding Z operations.



Z operations are used to resolve conflicts in Petri nets. The petri net can en-
gage in more behaviors than permitted by the Z specification. For safety-related
properties, this does not seem to be a problem, because there we show that cer-
tain things cannot happen. Hence, if the net with the more liberal behavior is
safe, than the more restricted behavior is also safe.

Model of environment also expressed as Petri net, e.g., sensors

3 Case Study: Production Cell

3.1 Z Part of the Specification

The specification follows the usual Z style. We begin with global definitions,
followed by the internal state of the system. Finally, we present the system
operations. Readers not familiar with Z are referred to [Spi92].

Global Definitions

YesNo ::= yes | no

OnOff ::= on | off

maxplates : 1

[Table Position]

load position, unload position : Table Position

next , prev : Table Position Table Position

< : Table Position Table Position

domnext = Table Position \ {unload position}
dom prev = Table Position \ {load position}

∀ tb : Table Position | tb ∈ domnext • tb < next(tb)
load position < unload position

System State

feed belt

fb mvt : OnOff

at front , at end : 0 . . 1
in between,number of plates : 0 . . maxplates

number of plates = at front + in between + at end

2



Init feed belt

feed belt ′

number of plates ′ = 0
fb mvt ′ = off

table

t position : Table Position

t loaded : YesNo

t mvt : OnOff

can receive : YesNo

can receive = yes

⇔ t position = load position ∧ t loaded = no ∧ t mvt = off

Init table

table ′

t loaded ′ = no

t mvt ′ = off

Operations

Table control operations

start unload to load

∆table

t loaded = no

t position = unload position

t mvt = off

t loaded ′ = no

t position ′ = unload position

t mvt ′ = on

move unload to load

∆table

t loaded = no

load position < t position

t mvt = on

t loaded ′ = no

t position ′ = prev(t position)
t mvt ′ = on

3



stop at load

∆table

t loaded = no

t position = load position

t mvt = on

t loaded ′ = no

t position ′ = load position

t mvt ′ = off

start load to unload

∆table

t loaded = yes

t position = load position

t mvt = off

t loaded ′ = yes

t position ′ = load position

t mvt ′ = on

move load to unload

∆table

t loaded = yes

t position < unload position

t mvt = on

t loaded ′ = yes

t position ′ = next(t position)
t mvt ′ = on

stop at unload

∆table

t loaded = yes

t position = unload position

t mvt = on

t loaded ′ = yes

t position ′ = unload position

t mvt ′ = off

4



unload table

∆table

t loaded = yes

t position = unload position

t mvt = off

t loaded ′ = no

t position ′ = unload position

t mvt ′ = off

Operations related to the feed belt environment

load fb

∆feed belt

number of plates < maxplates

at front = 0

at front ′ = 1
in between ′ = in between

at end ′ = at end

fb mvt ′ = fb mvt

move

∆feed belt

fb mvt = on

at front = 1

in between ′ = in between + 1
at front ′ = 0
at end ′ = at end

fb mvt ′ = fb mvt

detect

∆feed belt

fb mvt = on

at end = 0
in between > 0

at end ′ = 1
in between ′ = in between − 1
at front ′ = at front

fb mvt ′ = on

5



Feedbelt control cperations

switch on

∆feed belt

Ξtable

fb mvt = off

number of plates > 0
can receive = yes ∨ at end = 0

fb mvt ′ = on

in between ′ = in between

at front ′ = at front

at end ′ = at end

switch off

∆feed belt

Ξtable

fb mvt = on

at end = 1
can receive = no

fb mvt ′ = off

in between ′ = in between

at front ′ = at front

at end ′ = at end

fb to table

∆feed belt

∆table

fb mvt = on

at end = 1
can receive = yes

at end ′ = 0
in between ′ = in between

at front ′ = at front

fb mvt ′ = fb mvt

t loaded ′ = yes

t position ′ = t position

t mvt ′ = t mvt

6



3.2 The Petri Net Part of the Specification

Figure 1 shows the Petri net that specifies the order in which the various Z
operations can be executed.

We can identify the following concurrent operations:

– The operation load feed belt is concurrent with detect , switch on, switch off ,
and from fb to table.

– The operation move is concurrent with detect , and from fb to table.

3.3 Validation

With our modeling, we should be able to demonstrate the properties mentioned
in Section 2.3 of the LNCS book that concern the feed belt and the table, in
particular:

– Blanks do not fall off the feed belt. The feed belt is stopped before this
can happen. Hence, we must show that if at end = 1 ∧ fb mvt = on ∧
can recieve = no then fb mvt = off must hold in the next or the state after
the next one (due to concurrency with the load feed belt operation).

– The blanks have sufficient distance so that they can be distinguished.
– The table does not move beyond its extreme points.

To show the first property, we need to analyze the Petri net. For the other
two, I don’t know.

4 Related Work and Conclusions

References

[Spi92] J. M. Spivey. The Z Notation – A Reference Manual. Prentice Hall, 2nd
edition, 1992.

7



start load to unload

start unload to load

unload table

from fb to table

detectload fb

number

max plates moving

table unloaded

moving

table loaded

in between
not at end

at end

not at front

at front

max number

number

switch off fb to table

load fb

unload table

move

mvt on mvt on

SENSOR at front SENSOR at end

from fb to table

stop at load

stop at unload

at unload pos

at end

producer ready

consumer ready

switch on

mvt off

mvt on

can receive

Z Z

Z Z

Z
move unload to load

move load to unload

Fig. 1. Petri net for production cell

8


