A Heuristic Approach to Detect Feature I nteractions
in Requirements: Application to the Lift System

Maritta Heisel! and Jeanine Souquiéres?

! Fakultit fiir Informatik, Universitit Magdeburg, D-39016 Magdeburg
2 LORIA—Université Nancy2, B.P. 239 Bétiment LORIA, F-54506 Vandceuvre-les-Nancy

Abstract. We present a method to systematically detect feature interactions in requirements,
which are expressed as constraints on system event traces. We show its application on the lift
system, incorporating new features to a simple lift, concerning the lift overfull and the execu-
tive floor with priority. This method is part of a broader approach to requirements elicitation
and formal specification.

1 TheGeneral Approach

Our work aims at providing methological support for analysts and specfiers of
software-based systems. To this end, we have developed an integrated approach to
requirements elicitation and formal specification, which is sketched in [HS98]. We
do not invent any new languages, but give guidance how to proceed to (i) identify
and formally express the requirements concerning the system to be constructed, and
(i) systematically transform these requirements into a formal specification. The dif-
ference between requirements and a specification is that requirements refer to the
entire system to be realized, whereas a specification refers only to the part of the
system to be implemented by software.

Our method begins with an explicit requirements elicitation phase. The result of
this first phase is a set of requirements, which are expressed formally as constraints
on sequences of events or operations that can happen or be invoked in the context
of the system. These constraints form the starting point for the development of the
formal specification. The two phases provide feedback to one another: not only is the
specification based on the requirements, but the specification phase may also reveal
omissions and errors in the requirements. In the present paper, however, we will
not describe the specification phase, because the detection of feature interactions is
part of the requirements elicitation phase. Expressing requirements formally greatly
supports the systematic detection of feature interactions.

We use agendas [Hei98] to express our methods. An agenda is a list of steps to
be performed when carrying out some task in the context of software engineering.
The result of the task will be a document expressed in a certain language. Agendas
contain informal descriptions of the steps. With each step, schematic expressions of
the language in which the result of the activity is expressed can be associated. The
schematic expressions are instantiated when the step is performed. The steps listed
in an agenda may depend on each other. Usually, they will have to be repeated to
achieve the goal, because later steps will reveal errors and omissions in earlier steps.

Agendas are not only a means to guide software development activities. They
also support quality assurance because the steps of an agenda may have validation

2 Maritta Heisel and Jeanine Souquiéres

conditions associated with them. These validation conditions state necessary seman-
tic conditions that the artifact must fulfill in order to serve its purpose properly.

Section 2 presents a brief overview of our requirements elicitation method. Sec-
tion 3 details the incorporation of a single constraint into a set of existing constraints.
Section 4 describes the algorithm for detecting interaction candidates. Section 5 il-
lustrates the application of the approach to the integration of new features to a simple
lift system. Section 6 presents a discussion of the approach and its benefits.

2 Agendafor Requirements Elicitation

Requirements elicitation is performed in five steps, which provide methodological
guidance for analysts. In the following, we list the steps of the agenda we have de-
veloped for requirements elicitation. Only the most important validation conditions
are mentioned. For more detail on the approach, see [HS99a].

1. Introduce the domain vocabulary. The different notions of the application do-
main are expressed in a textual form.

2. State the facts, assumptions, and requirements concerning the system in natural
language, as a set of fragments corresponding to parts of scenarios of the sys-
tem behavior. It does not suffice to just state requirements for the system. Often,
facts and assumptions must be introduced to make the requirements satisfiable.
Facts express things that always hold in the application domain, regardless of
the implementation of the software system. Other requirements cannot be en-
forced because e.g., human users might violate regulations. These conditions
are expressed as assumptions.

3. List all relevant events that can happen in connection with the system, and clas-
sify them. Events concern the reactive part of the system. The classification
we adopt is the one proposed by Jackson et Zave [JZ95] in which events are:
(i) controlled by the environment and not shared with the software system, (ii)
controlled by the environment but observable by the software system, (iii) con-
trolled by the software system and observable by the environment, and (iv) con-
trolled by the software system and not shared with the environment.

Validation condition: there must not be any events controlled by the software
system and not shared with the environment.

4. List the system operations that can be invoked by users. This step is concerned
with the non-reactive part of the system to be described. For purely reactive sys-
tems, it can be empty. System operations are usually independent of the physical
components of the system, but refer to the information that is stored in the part
of the system to be realized by software.

5. Formalize the facts, assumptions, and requirements as constraints on the possi-
ble traces of system events.

Using constraints to talk about the behavior of the system has the following advan-
tages:

e |tis possible to express negative requirements, i.e., to require that certain things
do not happen. Such constraints are often related to safety conditions of the
system to be realized.

A Heuristic Approach to Detect Feature Interactions 3

e It is possible to give scenarios, i.e., example behaviors of the system [FS97].
Such constraints are often related to liveness conditions for the system to be
realized.

e Giving constraints do not fix the system behavior entirely. They do not restrict
the specification unnecessarily. Any specification that fulfills the constraints is
admitted [HS99b].

Adding constraints may either restrict or enlarge the set of possible system behav-
iors.

Steps 1 through 4 can be carried out in any order or in parallel, with repetitions
and revisions. There are validation conditions associated with the different steps,
supporting quality assurance of the resulting product. They state necessary seman-
tic conditions that the developed artifact must fulfill in order to serve its purpose
properly. For Steps 1-4, the validation conditions are :

e The vocabulary must contain exactly the notions occurring in the facts, assump-
tions, requirements, operations, and events.

e There must not be any events controlled by the software system and not shared
with the environment.

3 Agendato Incorporate Single Constraints

In Step 5 of the agenda for requirements elicitation, the facts, assumptions, and re-
quirements must be formalized one by one. But before the formalized constraint
is added to the set of already accepted constraints, its possible interactions with
them should be analyzed, in order to detect inconsistencies or undesired behav-
iors [HS98]. The following agenda gives guidelines how to incorporate a hew con-
straint into a set of already existing constraints.

Our method is a heuristic one, in the sense it does not exist a rigourous definition
of the interaction concept. Unwanted behaviours are the choice of the customer.

In the following, we will use the term literal to mean predicate or event symbols,
or negations of such symbols. An event symbol e is supposed to mean “event e must
or may occur”, whereas — e is supposed to mean “event e does not occur”. If we
refer to predicate symbols and their negations, we will use the term predicate literal.
Event literals are defined analogously.

1. Formalize the new constraint as a formula on system traces. To formalize facts,
assumptions and requirements, we use traces, i.e., sequences of events happen-
ing in a given state of the system at a given time. The system is started in state
S1. When event e; happens at time t;, then the system enters the state S,, and
so forth:

S S 2y S 2y Sy ..
t ta tn
Let be Tr the set of possible traces. A constraint is expressed as a formula re-

stricting the set Tr. For a given trace tr € Tr, tr(i) denotes the i-th element of
this trace, tr(i).s the state of the i-th element, tr(i).e the event which occurs in

Maritta Heisel and Jeanine Souquiéres

that state, and tr(i).t is the time at which e occurs. For each possible trace, its
prefixes are also possible traces. A formal specification of traces is defined in
Appendix A.

Sometimes, it may be necessary to introduce predicates on the system state to be
able to express the constraints formally. For each predicate, events that establish
it and events that falsify it must be given. These events must be shared with the
software system.

We recommend to express — if possible — constraints as implications, where
either the precondition of the implication refers to an earlier state or an earlier
point in time than the postcondition, or both the pre- and postcondition refer to
the same state, i.e. we have an invariant of the system.

. Give a schematic expression of the constraint. We have defined an algorithm
that determines interaction candidates for a new constraint with respect to a
set of already accepted constraints, which is described in Section 4. Interaction
analysis and its automation needs to manipulate schematic expressions of for-
malized constraints. These schematic expressions have the following form:

X1 0X290...0Xn Y1 0Y20...0Yk

where the x;, y; are literals and ¢ denotes either conjunction or disjunction. The
~» symbol separates the precondition from the postcondition.
For transforming a constraint into its schematic form, we abstract from quanti-
fiers and from parameters of predicate and event symbols.
. Update the tables of semantic relations. The detection of constaint interactions
cannot be based on syntax alone, the algorithm being completely automatic,
without anay user intervention. We also must take into account the semantic
relations between the different symbols. A predicate may imply another predi-
cate, an event may only be possible if the system state fulfills a predicate, and
for each predicate, we must know which event establish and which events falsify
it. We construct three tables of semantic relations:
(a) Necessary conditions for events. If an event e can only occur if predicate

literal pl is true, then this table has an entry pl « e.
(b) Events establishing predicates. For each predicate literal pl, we need to

know the events e that establish it: e ~» pl
(c) Relations between predicate literals. For each predicate symbol p, we de-

termine.

o the set of predicate literals it entails: p—. = {q: PLit | p = q}
o the set of predicate literals its negation entails: - p— = {q : PLit |
p=

These {)able;q gre not only useful to detect interactions; they are also useful

to develop and validate the formal specification of the software system.
. Determine interaction candidates, based on the list of schematic requirements
(Step 2) and the semantic relation tables (Step 3). The definition of the interac-
tion candidates is given in Section 4.
. Decide if there are interactions of the new constraint with the determined can-
didates. The algorithm determines a set of candidates to examine. It does not
proof that an interaction exists between the new constraint and ech candidate.
It is up to the analyst and the customer to decide if the conjunction of the new
constraint with the candidates yields an unwanted behaviour or not.

A Heuristic Approach to Detect Feature Interactions 5

6. Resolve interactions. To resolve an interaction, it is usual to relax requirements
or to strengthen assumptions. Once a constraint has been modified, an interac-
tion analysis on those literals that were changed or newly introduced must be
performed.

The following validation conditions are associated with Step 5 of the agenda for
requirements elicitation :

e each requirements of Step 2 must be expressed,

o the set of constraints must be consistent,

o for each introduced predicate, events that modify it must be observable by the
software system.

Step 1 to step 6 preserve the mutual coherence between the set of constraints. Usu-
ally, revisions and communication with customers will be necessary.

@ @) @
state ; statej, 1 state ; state
k>1

i

Fig. 1. Interaction candidates

4 Determining Interaction Candidates

Our method to determine interaction candidates is based on the following observa-
tions: two constraints are interaction candidates for one another if they have com-
mon preconditions but incompatible postconditions, as is illustrated in Figure 1.

The left hand-side of the figure shows the situation where the incompatibility
of postconditions manifests itself in the state immediately following the state that is
referred to by the precondition. The right-hand side shows that the incompatibility
may also occur in a later state.

Our method to determine interaction candidates consists of two parts: precon-
dition interaction analysis determines constraints with preconditions that are neither
exclusive nor independent of each other. This means, there are situations where both
constraints might apply. Their postconditions have to be checked for incompatibil-
ity. Postcondition interaction analysis, on the other hand, determines as candidates
those constraints with incompatible postconditions. If in such a case the precondi-
tions do not exclude each other, an interaction occurs.

Constraints® x ~» y and u ~» w are possible interaction candidates, when their
preconditions (x and u) are neither exclusive nor independent of each other. This

L Underlined identifiers denote sets of literals.

6 Maritta Heisel and Jeanine Souquiéres

means, there are situations where both x ~» y and u ~» w might apply. If in such a
case the postconditions (y and w) are incompatible, we have found an interaction.

Constraints x ~» y and u ~» w may interact on the postcondition, if we can find
a literal | such that y entails | and w entails — I. If in such a case the preconditions x
and u do not exclude each other, an interaction occurs.

4.1 Precondition Interaction

Two constraints x ~ y and u ~» w have common literals in their precondition
(x N'w # @), then they are certainly interaction candidates.

But the common precondition may also be hidden. For example, if x contains the
event e, u contains the predicate literal p, and e is only possible if p holds (p « e),
then we also have detected a common precondition between the two events.

The common precondition may also be detected via reasoning on predicates.
If, for example, x contains the predicate literal p, u contains the predicate literal g,
and there is a predicate literal w with p = w and q = w, then w is a common
precondition.

Figure 2 shows the general approach to find interaction candidates Cpe(c’, far)
by a precondition analysis for a new constraint ¢’ among the far facts, assumptions,
and requirements already defined.

pI 2 pl
N * 1
, p|:>]] p|:>
pre € P"\NBLI) %] pl phel- pre
postT rpost
e

Fig. 2. Determining interaction candidates by precondition analysis

Let be
precond(X; ¢ X2 ¢ ... 0Xn~> Y1 0Y2 0. .. 0Yk) = {X1,...Xn}

True predicate in the precondition of a constraint ¢ are the predicate literals
pl € precond(c) and the predicate literals pl with pl « e, for all event symbol
e € precond(c) :

«~&={pl:PLit | pl «~ e}
pre_predicates(c) = (precond(c) N PLit) U Uecprecond(cjnevent @

The complete precondition of a constraint ¢ results from the transitive and re-
flexive closure of the pre_predicates(c) set with respect to the implication, i.e.

Uplepre_predicates(c) pl=
A constraint ¢ € far is an interaction candidate with a new constraint ¢’ if their
preconditions or their complete preconditions only contain common literals.

A Heuristic Approach to Detect Feature Interactions 7

Core(C’, far) =
{c : far | precond(c) N precond(c’) # &}
U
{c:far | 3pl: pre_predicates(c); pl’ : pre_predicates(c’) e pl_, Npl., # &}

Two cases are distinguished because the precondition of a constraint can contain
event literals, whereas the complete precondition only contains predicate literals.

¢From the definition of Cpe(c’, far), it follows that the set of candidates is in-
dependent of the order in which the constraints are added, and that the candidate
function distributes over set union of the preconditions of contraints:

V¢, Cy, Co : Constraint; cs : PConstraint e
C2 € Cpre(C1,c5U {C2}) & €1 € Cpre(C2,C5U {C1})
A
precond(c) = precond(c;) U precond(cs) =
Cpre(c’ CS) = Cpre(C]_’ CS) U Cpre(cz, CS)

The latter implies that, when a constraint is changed by adding a new literal
to its precondition, the interaction analysis has to be performed only on this new
precondition.

4.2 Postcondition I nteraction

To find conflicting postconditions, we perform the complete postcondition of the
new constraint ¢’ and the one of each constraint ¢ € far in the same way as for the
preconditions. A constraint ¢ is an interaction candidate with the new constraint ¢’
if there exists a literal x in its postcondition or in its complete postcondition, the
negation of which is in the postcondition or in the complete postcondition of c’.
Figure 3 gives an overview of the procedure.

’ - | P e~pl
pl,, . ~{ pl_s
pl

Fig. 3. Determining interaction candidates by postcondition analysis

We need the auxiliary definitions

postcond(Xy ©Xg ¢ ... o Xn~> Y1 Y2 O ... 0 Vi) = {Y1,-.-Yk}

e., = {pl: PLit | e ~ pl}

post_predicates(c) = (postcond(c) N PLit) U Ueepostcond(c)nevent &~
Is; oppositelsy < Ix :1s; @ = x € sy

where Isy, Iss are sets of literalsand = — 1 = I.

8 Maritta Heisel and Jeanine Souquiéres

Now, we can define
Cpog(c',far) =
{c : far | postcond(c) opposite postcond(c’) }

U
{c:far | 3pl: post_predicates(c); pl’ : post_predicates(c’) e pl_, opposite pI_, }

Of course, this definition is symmetric, too, and Cpeg distributes over set union
of postconditions of contraints.

5 Example theLift System

We first consider a simple lift with the following requirements:

1. The lift is called by pressing a button.

2. Pressing a call button is possible any time.

3. Acall is served when the lift arrives at the corresponding floor.

4. When the lift passes by a floor f, and there is a call from this floor, then the lift
will stop at this floor.

5. When the lift has stopped, it will open the door.

6. When the lift door has been opened, it will close automatically after d time

units.

7. The lift only changes its direction when there are no more calls in the current
direction.

8. When the lift is halted at a floor with the door open, a call for this floor is not
taken into account.

9. When the lift is halted at a floor with the door closed and receives a call for this
floor, it opens its door.

10. Whenever the lift moves, its door must be closed.

As a fact, we formalize that the door can only be opened when it is closed and
vice versa. Afterwards, we will add the following features:

11. When the lift is overloaded, the door will not close. Some passengers must get
out.
12. The lift gives priority to calls from the executive landing.

5.1 Starting Point

The following tables present the schematic constraints for the fact and Require-
ments 1-10, and the corresponding tables of semantic relations. The formalized fact
and Requirements 1-10 are given in Appendix B.

The schematic constraints, see Step 2 of the agenda of Section 3, are given in
Table 1. In the formal expressions corresponding to fact, req; and reqy, the precon-
dition refers to a later state than the postcondition, because necessary conditions for
events to happen or predicates to be true are expressed. Our algorithm for feature
interaction detections, however, requires the precondition to refer to an earlier or

A Heuristic Approach to Detect Feature Interactions 9

the same state as the postcondition. Hence, the schematic expression for fact, req;
and reqy are based on the contraposition of the constraints given in Appendix B (i.e.
- Q = — Pinstead of P = Q).

Table 2 shows the necessary conditions for the events. The events establishing
the predicates and their negations are given in Table 3. Finally, Table 4 gives the
implicative closures of the various predicate literals. This information is collected
when performing Step 3 of the agenda of Section 3.

[Constraint [schematic expression
fact - door_closed ~» — open
- door_open ~» = close
req: — press ~ — call
reg true ~» press
regs at ~» - call
regs passes_by A call ~» stop
regs stop ~» open
reges open ~» close
reqy direction_up A call_from_up ~» direction_up
direction_down A call_from_down ~» direction_down
regs halted A at A door_open A press ~» = call
redo halted A at A door_closed A press ~» open
reqio - halted ~» door_closed

Table 1. Overview of schematic constraints

door_open « close halted <« move
at «~ move door_closed « open

call « move - halted <« stop
door_closed «~ move passes_by «. stop

Table 2. Necessary conditions for events

5.2 Adding new features

We now incorporate the features of overloading and executive floor, following the
agenda of Section 3.

Requirement 11:

When the lift is overloaded, the door will not close. Some passengers must get out.

10 Maritta Heisel and Jeanine Souquiéres

stop ~ at close ~ door_closed
move ~» — at open ~» = door _closed
press ~» call open ~» door_open
stop ~ — call close ~» — door_open
press ~» call_from_up stop ~» halted

stop ~ — call_from_up move ~+ — halted
press ~» call_from_down move ~» passes_by
stop ~» = call_from_down stop ~+ — passes_by

Table 3. Events establishing predicate literals

at—, = {halted, - passes_by, - call}
- ato, = {passes_by, — halted, door_closed, — door_open}

— door_closed—, = {door_open, halted, at, - passes_by}
door_open— = {- door_closed, halted, at, - passes_by}
- door_open=, = {door_closed}
halted—. = {at, — passes_by}
- halted—. = {passes_by, — at, door_closed, — door_open}
passes_by-. = {- at, - halted, door_closed, - door_open}
- passes_by, = {at, halted}

calls = @
= callo, = {- call_from_up, — call_from_down}
call_from_down—, = {call}
- call_from_down—= = &
call_from_up=, = {call}
- call_from_ups, = &
door_closed—. = {- door_open}

Table 4. Relations between predicate literals

Step 1: Formalize the new constraint as a formula on system traces.
Vitr:Tr e (Vi:domtr e overloaded(tr(i).s) = door_open(tr(i).s))

Step 2: Give a schematic expression of the constraint. overloaded ~» door_open

Step 3: Update the tables of semantic relations. With this constraint, we have in-
troduced a new predicate symbol overloaded for which we must specify the events
that modify it. Hence, we must introduce two new events enter and leave. We add
the lines

enter ~» overloaded leave ~» — overloaded
to Table 3 and the lines
door_open « enter door_open « leave

to Table 2. Table 4 must be changed in the following way : we add the lines

overloaded-, = {door_open, — door_closed, halted, at, — passes_by}
- overloaded_, = @

A Heuristic Approach to Detect Feature Interactions 11

The entries of all predicates related to overloaded must be updated. We get the
following changes:

— door_open-, = {door_closed, — overloaded}
door_closed—. = {- door_open, - overloaded}
- halted—, = {passes_by, — at, door_closed, — door_open, — overloaded }
- ato, = {passes_by, — halted, door_closed, = door _open, - overloaded}
passes_by-, = {- at, — halted, door_closed, — door _open, - overloaded }

Step 4: Determine interaction candidates. To determine the precondition interaction
candidates, we determine the sets used in the definition of Cye in Section 4.1:

pre_predicates(reqs;) = {overloaded}

Hence, the precondition interaction candidates are the ones that have one of the
elements door_open, — door_closed, halted, at, - passes_by in their precondition.
According to Table 1, these are fact because of — door _closed, reqs because of true,
regs and reqy because of halted.

To determine the postcondition interaction candidates, we proceed according to
the definition of Cpog in Section 4.2:

post_predicates(req;;) = {— door_open}

Because door_open—, = {— door_closed, halted, at, = passes_by}, we must look
for postconditions door _closed, passes_by, — halted, — at and related events ac-
cording to Table 3. These are close and move. According to Table 1, we get the
candidates and regg requo.

Step 5: Analyze possible interactions. We do not have interactions with fact, reqs,
redo, requo, but with reqg, because the door will not close automatically after d units
time if the lift is overloaded.

Step 6: Eliminate interactions, if necessary. The new definition of regs is:

Vitr:Tr e Vi:domtr e tr(i).e = open A last(tr).t > tr(i).t +d
= 3j:dom(tr(j).t <tr(i).t+d Atr(j+1).t > tr(i).t +d
V — overloaded(tr(j).s))
= tr(j).e = close A tr(j).t = tr(i).t + d)

Informal requirements reqg has to be updated: when the lift door has been
opened, it will close automatically after d time units if the lift is not overloaded.

The new schematic constraint becomes
open ~ closed Vv overloaded

Since we have added the new postcondition overloaded to the constraint, we
must now perform postcondition interaction analysis on this literal. With overloaded—, =

12 Maritta Heisel and Jeanine Souquiéres

{door_open, — door_closed, halted, at, — passes_by} it follows that we must look

for constraints with postconditions — door _open, door closed, — halted, — at, passes_by.
Related events according to Table 3 are close and move. In Table 1, we find the can-
didates reqy. There is no interaction with it.

Requirement 12:

The lift gives priority to calls from the executive landing.

Step 1: Formalize the new constraint as a formula on system traces.
Vir:Tr e (Vi:domtr e call(tr(i).s, executive_floor)
= next_stop(tr(i).s) = executive_floor)

Step 2: Give a schematic expression of the constraint.
call = next_stop_at_executive_floor

Step 3: Update the tables of semantic relations. With this constraint, we introduce
a new predicate symbol next_stop_at_executive floor for which we must specify the
events that modify it. We add the lines

press ~» next_stop_at_executive_floor stop ~» — next_stop_at_executive floor
to Table 3. We get the following entry Table 4 :

next_stop_at_executive_floor—, = {call}

Step 4: Determine interaction candidates. To determine the precondition interaction
candidates, we determine the sets used in the definition of Cpe in Section 4.1:

pre_predicates(req;2) = {call}

Hence, the precondition interaction candidates are the ones that have one of the
elements call, call_from_up, call_from_down in their precondition. According to Ta-
ble 1, these are req4 and reqy.

The postcondition interaction candidates are the ones who have — call in the
postcondition. According to Table 1 we get req;, regs and regs.

Step 5: Analyze possible interactions. We have interactions with req4 and req, but
not with reqs and reqg, because req;o gives priority to the executive floor and not
to the current floor as expressed in reqy or to the current direction as expressend in

regy.

A Heuristic Approach to Detect Feature Interactions 13

Step 6: Eliminate interactions, if necessary. To adjust req4, we add a new precon-
dition to it; reqs becomes

Vtr:Tr e (lettr' == remove(tr,{b : Button e press(b)}) e
Vi:domtr’; k: FLOOR |i # #tr' e
passes_by(tr'(i).s, k) A call(tr'(i).s, k)
A (k = executive_floor V — call(tr/(i).s, executive floor))
= tr'(i + 1).e = stop(k))

The new schematic expression for reqy is:
passes_by A call A next_executive_floor ~ stop
passes_by A call A — call ~ stop

Note that now we have call as well as — call in the schematic precondition of
the constraint. This is not a contradition (call and — call have different arguments),
but only enlarges the set of possible interaction candidates.

We must now perform a precondition interaction analysis on the new precondi-
tion — call. Because there are no related events, our candidates are the constraints
with precondition — call, — call_from_up, — call_from_down. There are no interac-
tion candidates.

To adjust regr, we also add new preconditions.

Vtr:Tr e Vi:domtr |i# #tre
(direction(tr(i).s) = up A direction(tr(i + 1).s) = down
= (- call_from_up(tr(i).s)V call(tr(i).s, executive_floor)))
A
(direction(tr(i).s) = down A direction(tr(i + 1).s) = up
= (- call_from_down(tr(i).s)V call(tr(i).s, executive floor)))

The new schematic expressions for req; are
direction_up A call_from_up A — call ~ direction_up
direction_down A call_from_down A — call ~> direction_down

As for reqs, we must perform a precondition interaction analysis on the new
precondition — call. This yields the same candidates as before, plus the new version
of reqy. Again, there is no further interaction.

6 Discussion

The approach for the detection of feature interactions we have presented is truly
heuristic. This means, we cannot guarantee that all interactions that might occur are
found by our procedure. The virtue of our approach lies in the fact that interactions
on the requirements level can be detected very early, before the formal specification
is set up, and with relatively little effort. Even though determining the interaction
candidates is tedious if performed by hand, the procedures to determine the sets
Cpre and Cpog as defined in Section 4 are very easy to implement. Theorem proving

14 Maritta Heisel and Jeanine Souquiéres

techniques are unnecessary. The number of interaction candidates that are yielded
by our procedure and that must be inspected is much less than if a complete analysis
were performed.

The semantic information collected in the tables of necessary conditions for
events, events establishing predicate literals, and relations between predicate literals
not only contributes to a better understanding of the requirements, but also greatly
facilitates the process of setting up and validating a formal specification for the
software system to be built.

Our approach to detect feature interactions is independent of the order in which
the features are added. We do not attempt to resolve feature interactions automati-
cally. Such decisions are best taken by the customers.

References

[FS97] M. Fowler and K. Scott. UML distilled. Applying the standard Object Modelling
Language. Addison-Wesley, 1997.

[Hei98] M. Heisel. Agendas — a concept to guide software development activites. In R. N.
Horspool, editor, Proc. Systems Implementation 2000, pages 19-32, London, 1998.
Chapman & Hall.

[HS98] M. Heisel and J. Souquiéres. A heuristic approach to detect feature interactions in
requirements. In K. Kimbler and W. Bouma, editors, Proc. 5th Feature Interaction
Workshop, pages 165—171. 10S Press Amsterdam, 1998.

[HS99a] M. Heisel and J. Souquieres. A Method for Requirements Elicitation and Formal
Specification. In J. Akoka and M. Bouzeghoub and I. Comyn-Wattiau and E. Métais,
editor, Proceedings of the 18th International Conference on Conceptual Modeling,
LNCS 1728, pages 309—-324. Springer Verlag, November 1999.

[HS99b] M. Heisel and J. Souquiéres. De I’élicitation des besoins a la spécification formelle.
TSI, 18(7), 1999.

[JZ95] M. Jackson and P. Zave. Deriving Specifications from Requirements : an Example.
In Proceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15—24.
ACM Press, 1995.

[Spi92] J. M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 2nd edition,
1992.

A Formal Expression of Constraintson Traces
In the following formal treatment of traces, we use the Z notation [Spi92].

[STATE, EVENT, TIME]

Traceltem
s: STATE
e : EVENT
t: TIME

Each trace of the system is a sequence of trace items, where events later in the
sequence must not happen earlier in time than events earlier in the sequence. The

A Heuristic Approach to Detect Feature Interactions 15

sign <; denotes a relation “not later” on time, which fulfills the axioms of a partial
ordering relation (reflexivity, transitivity, and anti-symmetry).

For each valid system trace, we require that events later in the sequence do not
happen at an earlier time than events earlier in the sequence.

| TRACE : IP(seq Traceltem)
| Vtr: TRACE e Vi:domtr e i = #tr v (tri).t <, (tr(i +1)).t

For each system, we will call the set of admissible traces Tr. Constraints will be
expressed as formulas restricting the set Tr. For each possible trace, its prefixes are
also possible traces.

| Tr : PTRACE
| Vtr:Tr e (Vtr' : TRACE | tr' prefix tr o tr' € Tr)

The function remove takes a trace and a set of events as its arguments and re-
moves all trace elements whose event is in the given set.

| remove : TRACE x PEVENT — TRACE
| Vtr : TRACE; evs : PEVENT e remove(tr, evs) = tr [{ti : Traceltem | ti.e ¢ evs}

B Formal Versions of Requirements and Facts

Fact

The door can only be opened when it is closed and vice versa.

Vir:Tr e Vi:domtre
(tr(i).e = open = tr(i).s = door_closed) A
(tr(i).e = close = tr(i).s = door_open)

Requirement 1:

The lift is called by pressing a button.

Vitr:Tr e (Vi:domtr; b: BUTTON e
call(tr(i).s, floor(b)) = (3j : domtr | j < i e tr(j).e = press(b)))

16 Maritta Heisel and Jeanine Souquiéres

Requirement 2:

Pressing a call button is possible any time.

Vtr:Tr; b: BUTTON e (3tr' : Tr e front(tr’) = tr A last(tr’).e = press(b))

Requirement 3:

A call is served when the lift arrives at the corresponding floor.

Vtr:Tr e (Vidomtr; f : FLOOR e at(tr(i).s,f) = — call(tr(i).s, f))

Requirement 4:

When the lift passes by a floor f, and there is a call from this floor, then the lift will
stop at this floor.

Vtr: TR; f : FLOOR e (let tr’ == remove(tr, {b : BUTTON e press(b)}) e
Vi:domtr' |i# #tr'e
passes_by(tr'(i).s, f) A call(tr'(i).s,f) = tr'(i + 1).e = stop(f))

Because press events are always possible, we must remove them from the traces
when we want to express liveness conditions for the lift.

Requirement 5:

When the lift has stopped, it will open the door.

Vtr:Tr; f : FLOOR e (let tr' == remove(tr,{b : BUTTON e press(b)}) e
Vi:domtr' | i# #tr' e tr'(i).e = stop(k) = tr'(i + 1).e = open)

Requirement 6:

When the lift door has been opened, it will close automatically after d time units.

Vir:Tr e Vi:domtr e tr(i).e = open A last(tr).t > tr(i).t + d
= Jj: domtr e tr(j).e = close A tr(j).t = tr(i).t +d

A Heuristic Approach to Detect Feature Interactions 17

Requirement 7:

The lift only changes its direction when there are no more calls in the current direc-
tion.

Vtr:Tr e Vi:domtr|i# #tre
(direction(tr(i).s) = up A direction(tr(i + 1).s) = down
= - call_from_up(tr(i).s))
A
(direction(tr(i).s) = down A direction(tr(i + 1).s) = up
= - call_from_down(tr(i).s))

Requirement 8:

When the lift is halted at a floor with the door open, a call for this floor is not taken
into account.

Vitr:Tr; b: BUTTON e Vi:domtr|i## #tre
halted(tr(i).s) A at(tr(i).s, floor(b)) A door_open(tr(i).s) A tr(i).e = press(b)
= - call(tr(i + 1).s, floor(b))

Requirement 9:

When the lift is halted at a floor with the door closed and receives a call for this

floor, it opens its door.
The following formula expresses that the first event different from press is open.

Vtr:Tr; b: BUTTON e Vi € domtre
halted(tr(') s) A at(tr(i).s, floor(b)) A door _closed(tr(i).s) A tr(i).e = press(b)
((3] domtr e j > i AVDb:BUTTON e tr(j) # press(b))
= (3k:domtr |k > i e tr(k).e = open A
Viei+1..k—1 e 3b:BUTTON e tr(l).e = press(b)))

Requirement 10:

Whenever the lift moves, its door must be closed.

Vtr:Tr e (Vi:domtr e — halted(tr(i).s) = door_closed(tr(i).s))

