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Abstract : This paper demonstrates the use of a systematic approach to clarify and analyze re-
quirements of the light control case study. The approach includes a formalization of the requirements
and the analysis of interactions between them.

1 Motivation

Eliciting requirements for a software system is a complex conceptual and practical activity. In par-
ticular, communication between customers and software analysts often is not perfect, which leads to
misunderstandings. Customers may forget or may not be aware of requirements, and analysts, without
the deep domain knowledge of most customers, may not be able to fill in the gaps. In addition, some
requirements and constraints may be so obvious from an expert customer point of view that they do
not seem worth mentioning. But the lack of domain expertise among analyst teams means that these
unstated requirements may not be recognized and hence are not incorporated in the development pro-
cess. Customers seldom fully understand their requirements at the beginning of the project. They
often lack a clear vision of what the system should do and change their minds during development.
In general, they only learn more about what they want when they are delivered a software system that
does not exhibit the desired features [AP98].

Giving methodological guidelines for the first steps of the software development [DvLF93] is very
important to increase the reliability of software and to decrease its costs. Analysis errors are the most
numerous, the most persistent, and the most dangerous ones for the rest of the development lifecycle.
They are the most expensive to detect and correct: an analysis error detected during design is five
times as expensive as if it had been discovered during the analysis process; this ratio is about two
hundred if it is detected only during the operation stage of the software. These results, published by
the Standish Group1, are issued from recent inquiries about success and failure of American computer
science projects.

Because it is crucial for the success of software projects that the requirements be correct, unambi-
gious and complete, a systematic approach to requirements elicitation that helps detect incoherences,
incompletnesses and ambiguities is of great value.

1They can be found at the Internet address http://www.standishgroup.com/chaos.html.
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We have developed a method to perform the early phases of the software lifecycle in a system-
atic wayc̃iteHeiselSouquieres99b,HeiselSouquieres99a. The method supports two phases, nameley
requirements elicitation and specification development. In this paper, we describe the requirements
elicitation phase and apply it to the light control case study.

The requirements elicitation process begins with a reflection on the application domain and an
informal description of the customer needs. It consists in taking into account elements of an initial
informal requirements document and analyzing them exhaustively in order to obtain a coherent and
complete set of requirements. In particular, the objectives of our method for requirements elicitation
are to :

� understand the problem,

� fix the used vocabulary,

� disambiguate the requirements,

� find incoherences,

� find missing requirements,

� establish an adequate starting point for a formal specification of the software system.

We integrate some formalization very early in the development in order to analyze the customer
needs in a detailed way and to reveal problems by means of the encountered difficulties during the
formalization process. In particular, an analysis of possible interactions between requirements is
performed all along this formalization process. Requirements should be stated as fragments as small
as possible. Such fragments can correspond to parts of independent scenarios of system behavior. For
reasons of traceability, each fragment should be given a unique name or number. The starting point
of the requirements elicitation phase is a requirements document provided by the customer. Its result
includes an updated requirements document, a summary of the domain vocabulary in the form of an
entity-relationship diagram, and several formal documents.

Section 2 presents an overview of the requirements elicitation method. Section 3 discusses related
work. Section 4 illustrates the application of our method to the light control case study. Section 5
presents a discussion of the method and its benefits exhibited by its application to the case study.

2 Method for Requirements Elicitation

Our approach is inspired by the work of Jackson and Zave [JZ95, ZJ97] and by the first steps of object
oriented methods and notations such as Fusion [CAB

�

94], OMT [RBP
�

91], or UML [FS97]. It
starts with a brainstorming process where the application domain and the requirements are described
in natural language. This informal description is then transformed into a formal representation. On
the formal representation, consistency analyses are performed. Their purpose is to obtain a consistent
set of requirements. The method for requirements elicitation (and also for specification development)
is described in [HS99a], the method to detect interactions in requirements is described in [HS98]. In
the following, we give a brief overview of the main steps of the method.

Step 1 : Introduce the domain vocabulary. The different notions of the application domain are
expressed in a textual form.
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Step 2 : State the facts, assumptions, and requirements concerning the system as a set of frag-
ments corresponding to parts of scenarios. Facts express phenomena that always hold in the applica-
tion domain, regardless of the software system implementation. These are often hardware properties,
e.g., that a card reader can hold at most one card. Other requirements cannot be enforced because,
e.g., human users might violate regulations. In such a case, it may be possible that the system can
fulfill its purpose properly only under the condition that users behave as required. Such conditions
are expressed as assumptions, which can be used to show that the software system is correctly imple-
mented. Requirements constrain the specification and implementation of the software system. It must
be demonstrated that they are fulfilled, once the specification and the implementation are finished. In
the specification phase, it must be shown that the modeling of the system takes the facts into account
and that the requirements are fulfilled, whereas assumptions can be taken for granted.

Step 3 : List all relevant events that can happen in connection with the system, and classify
them. Events concern the reactive part of the system. The classification we adopt is the one proposed
by Jackson et Zave [JZ95]. It is stated who is in control of the event (the software system or its
environment) and who can observe it.

Step 4 : List the system operations that can be invoked by users. This step is concerned with
the non-reactive part of the system to be described. For purely reactive systems, it can be empty.
System operations are usually independent of the physical components of the system, but refer to the
information that is stored in the part of the system to be realized by software.

Steps 1 through 4 can be carried out in any order or in parallel, with repetitions and revisions.
There are validation conditions associated with the different steps, supporting quality assurance of the
resulting product. They state necessary semantic conditions that the developed artifact must fulfill in
order to serve its purpose properly. For Steps 1–4, the validation conditions are:

� The vocabulary must contain exactly the notions occurring in the facts, assumptions, require-
ments, operations, and events.

� There must not be any events controlled by the software system and not shared with the envi-
ronment.

Step 5 : Formalize the facts, assumptions, and requirements as constraints on the possible traces
of system events. In this step, the facts, assumptions, and requirements must be formalized one by
one. But before the formalized constraint is added to the set of already accepted constraints, its
possible interactions with other constraints should be analyzed, in order to detect inconsistencies or
undesired behaviors [HS98]. This step is itself decomposed into six steps described below.

Step 5.1 : Formalize the new constraint as a predicate on system event traces. To formalize
facts, assumptions and requirements, we use traces, i.e., sequences of events happening in a given
state of the system at a given time. The system is started in state S � . When event e � happens at time
t � , then the system enters the state S � , and so forth :

S �
e ����
t �

S �
e ����
t �

�	�	� Sn
en���
tn

Sn
� � �	�	�
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Let be Tr the set of possible traces. Constraints will be expressed as formulas restricting the set
Tr. For a given trace tr � Tr, tr

�
i � denotes the i-th element of this trace, tr

�
i � � s the state of the i-th

element, tr
�
i � � e the event which occurs in that state, and tr

�
i � � t is the time at which e occurs. For each

possible trace, its prefixes are also possible traces. A formal specification of traces is defined in the
Appendix A.

Sometimes, it may be necessary to introduce predicates on the system state to be able to express
the constraints formally. For each predicate, events that establish it and events that falsify it must be
given. These events must be shared with the software system.

In the following, we will use the term literal to mean predicate or event symbols, or negations of
such symbols. An event symbol e is supposed to mean “event e must or may occur”, whereas � e
is supposed to mean “event e does not occur”. If we refer to predicate symbols and their negations,
we will use the term predicate literal. The set of predicate literals is denoted PLit. Event literals
are defined analogously. For formal expressions, we use the syntax of the specification language
Z [Spi92].

In order to systematically express formal requirements and to facilitate interaction analysis, we
recommend to express – if possible – constraints as implications, where either the precondition of the
implication refers to an earlier state or an earlier point in time than the postcondition, or both the pre-
and postcondition refer to the same state (invariants).
Example. If a person occupies a room, there has to be safe illumination:
�

tr � Tr � room � ROOM � � i � dom tr � occupied
�
tr
�
i � � s � room �	� safe illumination

�
tr
�
i � � s � room �

The variable tr denotes an admissible system trace, and the variable i denotes the i-th element of the
trace, consisting of a state, an event, and a time. The expression dom tr denotes the valid indices of
the trace, i.e., 
 �	��� tr, where � denotes the length of a trace.

Step 5.2 : Give a schematic expression of the constraint. We have defined an algorithm that com-
putes interaction candidates for a new constraint with respect to a set of already accepted constraints,
which is described in Step 5.4. This algorithm uses schematic expressions of formalized constraints.
These schematic expressions have the following form :

x ��
 x � 
 �	�	� 
 xn � y ��
 y � 
 �	�	� 
 yk

where the xi, yj are literals (event symbols, predicates or their negations) and 
 denotes either con-
junction or disjunction. The � symbol indicates that the precondition refers to an earlier state than
the postcondition. If the constraint is an invariant of the system state, it is replaced by � .

For transforming a constraint into its schematic form, we abstract from quantifiers and from pa-
rameters of predicate and event symbols.
Example. If the last person hast left the roon and the room remains unoccupied for some time, the
lights must be switched off (cf. FM3): leave last ��� occupied � turn off

Step 5.3 : Update tables of semantic relations. The detection of constraint interactions cannot be
based on the syntax alone. We also must take into account the semantic relations between the different
symbols. A predicate may imply another predicate, an event may only be possible if the system state
fulfills a predicate, and for each predicate, we must know which events establish and which events
falsify it. We construct three tables of semantic relations :
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1. Necessary conditions for events. These state which predicates on the system state have to be
true in order for the event to occur. If the event e can only occur when predicate literal pl is true,
then this table has an entry pl � e.

Example. The event leave last can only occur if the room is occupied : occupied � leave last

2. Events establishing predicate literals. For each predicate literal pl, we need to know the events
e that establish it : e � pl

Example. The predicate occupied is established by the event enter first : enter first � occupied

3. Relations between predicate literals. For each predicate symbol p, we determine

� the set of predicate literals it entails : p ��� � q � PLit � p � q � .
� the set of predicate literals its negation entails : � p ��� � q � PLit � � p � q �
� the set of predicate literals that entail it: � p � � q � PLit � q � p �
� the set of predicate literals that entail its negation: � � p � � q � PLit � q � � p �

Example. occupied ��� � safe illumination �
By contraposition, the following equalities hold:

� � p � � pl � p � � � pl �
� p � � pl � � p � � � pl �
Hence, only two of the four sets must be determined explicitely.

These tables are not only useful to detect interactions; they are also useful to develop and
validate the formal specification of the software system.

Step 5.4 : Determine interaction candidates. Interaction candidates are calculated from the list of
schematic requirements set up in Step 5.2 and the semantic relation tables constructed in Step 5.3,
using an automatic procedure presented. In general, two constraints are interaction candidates for
one another if they have common preconditions but incompatible postconditions, as is illustrated in
Figure 1.

i+1statestate i state i

...

...pre(c )

i+kstate
k > 1

post(c )

post(c )

pre(c )1

2

1

2

post(c )

post(c )
pre(c )

pre(c )1

2

1

2

or

Figure 1: Interaction candidates

The left hand-side of the figure shows the situation where the incompatibility of postconditions
manifests itself in the state immediately following the state that is referred to by the precondition. The
right-hand side shows that the incompatibility may also occur in a later state.

Our method to determine interaction candidates consists of two parts : precondition interaction
analysis determines constraints with preconditions that are neither exclusive nor independent of each
other. This means, there are situations where both constraints might apply. Their postconditions have
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to be checked for incompatibility. Postcondition interaction analysis, on the other hand, determines
as candidates those constraints with incompatible postconditions. If in such a case the preconditions
do not exclude each other, an interaction occurs.

Precondition Interaction Analysis. To decide if two constraints x � y2 and u � w might interact
on their preconditions, we perform the following reasoning: if the two constraints have common
literals in their precondition (i.e., x � u ���� ), then they are certainly interaction candidates.

But the common precondition may also be hidden. For example, if x contains the event e, and u
contains the predicate literal p, where e is only possible if p holds (p � e), then we also have detected
a common precondition between the two constraints.

The common precondition may also be detected via reasoning on predicates. If, for example, x
contains the predicate literal p, u contains the predicate literal q, and p � q or vice versa, then there
is a common precondition.

Formally, the set Cpre of precondition interaction candidates of a new constraint c � with respect
to an already existing set far of facts, assumptions, and requirements is defined as follows. Figure 2
illustrates the definition.

Cpre
�
c � � far � ��
c � far � precond

�
c ��� precond

�
c � ������ ���

x 	 pre predicates 
 c �
� � c � far � � � � x
�

x � ��� precond
�
c ������ ��

���
e � precond

�
c ��� EVENT � y � � x

�
x � � y � e � �

where

� e � � pl � PLit � pl � e �
pre predicates

�
c � � � precond

�
c ��� PLit � �

�
e 	 precond 
 c �
� EVENT

� e

pre

post

e p

q => r
r => q
p => r
r => p

q

r

r

e

facts

ass.

req.

e

p   ep   e

Figure 2: Determining interaction candidates by precondition analysis

Postcondition Interaction Analysis. For determining candidates for postcondition interaction, we
proceed similarly. To find conflicting postconditions, we perform forward chaining on the postcon-
ditions of the new constraint, negate the resulting literals, and check if one of the negated literals
follows from the postcondition of another constraint. This constraint is then identified as an inter-
action candidate. To perform forward chaining on events, the information contained in the table of
events establishing predicate literals (e � p) is used. As in the definition of Cpre, no chaining is
performed on negative event literals. Figure 3 illustrates the formal definition of the function Cpost.

2Underlined identifiers denote sets of literals.
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q => r

ee   p e   p

Figure 3: Determining interaction candidates by postcondition analysis

Cpost
�
c � � far � ��
c � far � postcond

�
c � opposite postcond

�
c � � ��

�
c � far � � x � post predicates

�
c � � y � post predicates

�
c � � � x � opposite y � �

where

e� � � pl � PLit � e � pl �
post predicates

�
c � � � postcond

�
c ��� PLit � �

�
e 	 postcond 
 c � � EVENT e�

ls � opposite ls � � �
x � ls � � � x � ls �

where ls � and ls � are sets of literals and ��� l � l.

It must be noted that this approach for the detection of feature interactions is heuristic. This means,
we cannot guarantee that all interactions that might occur are found by our automatic procedure.

Step 5.5 : Decide if there are interactions of the new constraint with the candidates determined
in Step 5.4. It is up to the analysts and customers to decide if the conjunction of the new constraint
with the candidates yield an unwanted behavior or not and how detected interactions can be resolved.

Step 5.6 : Take into account each interaction. If an interaction occurs, take one of the following
actions : (i) correct a fact corresponding to the formalization of the domain knowledge, (ii) relax a
requirement (by adding a new pre- or postcondition, as preconditions are usually conjunctions, and
postconditions are usually disjunctions) or (iii) strengthen an assumption. Once a constraint has been
modified, perform an interaction analysis on those literals that were changed or newly introduced.

Validation conditions associated with Step 5 are the following :

� each requirement of Step 2 must be expressed,

� the set of constraints must be consistent,

� for each introduced predicate, events that modify it must be shared with the software system.

Steps 5.1 to 5.6 allow mutual coherence between the set of constraints to be preserved. Usually,
revisions and interactions with customers will be necessary.
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3 Related work

Before we apply our method to the light control case study, we discuss related work.
Separating domain knowledge from requirements and checking consistency between these is fre-

quent in the literature. For example, when Parnas describes the mathematical content of a require-
ments document for a nuclear shutdown system [Par95], he introduces different mathematical rela-
tions, one describing the environment of the computer system, and one describing the requirements
of the computer system. The two relations must fulfill certain feasibility conditions. Parnas also notes
that a critical step in documenting the requirements concerns the identification of the environmental
quantities to be measured or controlled and the representation of these quantities by mathematical
variables. He proposes to characterize environmental quantities as either monitored or controlled.
This corresponds to the classification of events in our and Jackson and Zave’s approach [JZ95]. Read-
ing a monitored quantity corresponds to an event observable by the software system, and controlling
a quantity corresponds to events controlled by the software system.

Whereas assumptions are not used by Parnas and by Jackson and Zave, they do play a role in
KAOS [DLF93, DL96]. KAOS supports the design of composite systems (see also [FFH91]). Such a
system consists of human, software and hardware agents, each of them being assigned responsibility
for some goals. The KAOS approach is goal-oriented: goals are stated and then elaborated into
KAOS specifications in several consecutive steps, starting with the elaboration of the goals in an
AND/OR structure and ending with the assignment of responsibilities to agents. KAOS is similar to
our approach in that it provides heuristics for requirements elicitation and specification development.
It is distinguished from our approach in that it uses its own language and in that it takes a much broader
perspective: not only the software system, but also its environment are modeled in detail.

Easterbrook and Nuseibeh [EN96] do not distinguish different phases for requirements elicitation
and specification development. They elicit more requirements when they detect inconsistencies in
their specifications. On the one hand, their approach makes it possible to delay the resolution of
conflicts. On the other hand, this kind of “lazy” requirements elicitation delays the point where a
definite contract between customers and providers of the software product can be made. Moreover, it
is harder to validate a specification with respect to the requirements when no separate requirements
document is set up that is checked for consistency and completeness in its own right.

We have already referred to the work of Jackson and Zave [JZ95, ZJ97] several times. But al-
though our method is inspired by their approach to requirements engineering, there are some impor-
tant differences: first, Jackson and Zave consider a specification to be a special kind of requirement.
Requirements (and thus specifications) do not make statements about the state of the software system.
In contrast to this view, we consider a specification to be a model of the software system to be built
in order to satisfy the requirements. It forms the basis for refinement and implementation. Therefore,
in our approach, a specification may - in contrast to the requirements - make statements about the
software system that are not directly observable by the environment. Second, the most important part
of our approach is the methodological guidance that is given to analysts and specifiers, as well as the
validation of the developed products. These issues are not addressed explicitly by Jackson and Zave.

Of the object-oriented methods, we have only borrowed the very first steps, where the relevant
vocabulary is introduced in a systematic way. Our approach is not biased toward object-oriented
development.
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4 Application of the Method to the Light Control Case Study

We now apply the method described in Section 2 to the light control system, carrying out the different
steps one by one. The starting point of the requirements elicitation process is the problem description
made available to all authors of this special issue. In this paper, we only treat the requirements
concerned with offices. The requirements for hallways, laboratories, and other rooms can be treated
analogously. We use the numbering of requirements as given in the problem description.

4.1 Informal Steps

Step 1 : Introduce the domain vocabulary. The domain vocabulary for this case study is given in
Table 3 of the problem description. Figure 4 contains those notions we actually used in carrying out
the part of the case study concerned with offices. This figure summarizes the results of Steps 1–4 of
our method.

Step 2 : State the facts, assumptions, and requirements. The problem description is quite well
structured with a good fragmentation of the different requirements, each of them being numbered.

Facts correspond to the descriptions given in Part 2 of the document. There are no assumptions on
user behavior. In the following, we concentrate on the requirements described in Part 3 of the problem
description.

Step 3 : List all relevant events that can happen in connection with the system, and classify them.

� One event is controlled by the environment and not shared with the software system, namely
move control panel.

� Events controlled by the environment and shared with the software system are :

– enter first : the first person enters the room, making the room occupied.

– leave last : the last person leaves the room, making the room unoccupied.

– press: a push button a room is pressed.

– select light scene : a light scene is selected using the room control panel.

– turn off manual : the facility manager turns off the lights.

– fail : a device fails.

� Events controlled by the software system and shared with the environment are :

– turn off : the control system turns off the lights in a room.

– inform user, inform facility manager : the users and the facility manager are informed in
case of a device failure.

� As required by the validation condition, there is no event controlled by the software system and
not shared with the environment.

9



Operation motivated by

set default light scene U6
set T 
 U7
set T � FM5
find reason FM8
report energy consumption FM9
report malfunctions FM10
enter malfunctions FM11

Table 1: System operations for the light control system

Step 4 : List the system operations that can be invoked by the users. They concern the transfor-
mational part of the system. An overview is given in Table 1.

Details of these functions are not specified in the requirements elicitation phase, but in the speci-
fication development phase, and hence are not given in this paper.

An entity-relationship like diagram gives a visual representation of the terminology used in the first
informal steps of our method, see Figure 4. Boxes denote entities and diamonds denote relations.
Arrows indicate the direction of the relations. The relation has denotes static aspects of the system,
whereas all other relations concern dynamic aspects.

4.2 Formalization and Interaction analysis

In the following, we carry out Step 5 of our method in some detail for a subset of the requirements
concerning offices. For each formalized requirement, we discuss unclear points and decisions taken.
A complete summary of the results of Step 5 can be found in Appendix B.

Requirement U1. If a person occupies a room, there has to be safe illumination, if nothing else is
desired by the chosen light scene.
Formalization :
�

tr � Tr � room � ROOM � � i � dom tr �

occupied
�
tr
�
i � � s � room �	� safe illumination

�
tr
�
i � � s � room �

To formally express U1, two predicates on the system state have been introduced, occupied and
safe illumination, both additionally parameterized with a room3.

Schematic expression : occupied � safe illumination

Semantic relations :
First, we specify which events modify the two new predicates:
enter first � occupied
leave last � � occupied
enter first � safe illumination

3To enhance readability of the constraints, we only state the requirements for single rooms in the following, i.e., we do
not mention rooms as parameters any more.
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turn_off

user

control
panel
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button

press

enter
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leave
last

control
system

energy_con-
sumption

malfunctions

fail

light sensor
outdoorfail

facility
manger

other relations: events
has: static aspects

select
light
scene

office
T1, T3
default_light

scene

has

ceiling
light group

detector
motion

inform
user

manual
turn_off

inform
facility

manager

move

panel
control

Figure 4: Domain vocabulary for the light control system

select light scene � safe illumination veut-on vraiment avoir ca?
turn off � � safe illumination
turn off manual � � safe illumination

Second, the predicate occupied and its negation are necessary conditions for some events:
� occupied � enter first
occupied � leave last
occupied � press
occupied � select light scene

Discussion :
Note that the formalization does not contain an equivalent of the phrase “if nothing else is desired
by the chosen light scene”. It is not clear what is meant by this phrase. Hence, we have detected an
ambigous requirement. In a real project, custumors would be asked for clarification.

As it stands now, the requirement is quite strong: from the formalized constraint, it follows that
the light must automatically be switched on when somebody enters the office, and that it is even im-
possible to switch off the light using a push button if there is not enough daylight for safe illumination.

In the following, our automatic procedure will detect inconsistencies of this formalization with
other requirements, which should cause us to weaken the constraint.
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Requirement U2. As long as a room is occupied, the chosen light scene has to be maintained.
Formalization :
�

tr � Tr � occupied
�
tr
�
i � � s �	� tr

�
i � � e �� turn off

Schematic expression : occupied � � turn off

Semantic relations : none, because no new symbols have been introduced

Interaction candidates:
U1 and U2 have the same precondition but their postconditions do no exclude each other.

Discussion :
Requirement U2 is ambigous, too. It is not clear what is meant by the word “maintain”. What if the
user pushes a button? According to the dictionary (Part 4 of the problem description), light scenes are
chosen using the room control panel. If pushing a button does not change the chosen light scene, what
effect is desired of this event?

We have chosen to intrepret U2 meaning that the system is not allowed to change the light scene
established in the office. Since the only event that could be used by the system to do so is turn off ,
our formalization says that this event is not allowed to occur while the room is occupied.

A similar problem occurs with Requirement U10 (see the discussion there).

Requirement U3. If the room is reoccupied within T 
 minutes after the last person has left the
room, the chosen light scene has to be reestablished.
Formalization : To formalize U3, we introduce a function

light scene � STATE � LIGHT SCENE

which denotes the light scene required for a room in a given state.

�
tr � Tr � � i � j ������� tr � j � i � j � 
 ������� tr �

tr
�
i � � e � leave last � tr

�
j � � e � enter first

� � � k � i �	� j � � occupied
�
tr
�
k � � s � � � tr

�
j � � t � tr

�
i � � t 	 T 


� light scene
�
tr
�
j � 
�� � s � � light scene

�
tr
�
i � � s �

The premise of the formula captures the fact that the interval in which the room is not occupied is
marked by the two events leave last and enter first. If these occur within T 
 time units, the light
scene afterwards must be the same as before.

Schematic expression : leave last � enter first ��� occupied � lesseqT 
 � same light scene

Two new predicates have been introduced, lesseqT 
 and same light scene to avoid functions in schematic
expressions.
Semantic relations 4:
It is clear that we should have the following relations:
enter first � same light scene

4We do not give events establishing or falsifying lesseqT 
 , because the passing of time needs no particular events.
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select light scene � � same light scene
But what about:
press � � same light scene
turn off � � same light scene
turn off manual � � same light scene ?
These are again questions to discuss with the customers.

Interaction candidates: U1 and U2 are candidates because occupied � leave last (i.e., occupied is a
common precondition of the three constraints), but there is no interaction.

Discussion :
The formalization of U3 shows how real-time requirements can be treated using our method. The
requirement itself seems clear to us, but it is not clear how a light scene required for a room can be
changed, see discussion of Requirement U2. Hence, the entries into the semantic tables are unclear.

Requirement U4. If the room is reoccupied after more than T 
 minutes since the last person has
left the room, the default light scene has to be established.

U4 is formalized in the same manner as U3, using a function default light scene that yields the default
light scene that is set for an office in a given state. For details, see Appendix B.

Requirement U5. For each room, the chosen light scene can be set by using the room control panel.
Formalization :
�

tr � Tr � ls � LIGHT SCENE � � i ������� tr � i � � tr �

tr
�
i � � e � select light scene

�
ls � � light scene

�
tr
�
i � 
�� � s � � ls

Schematic expression : select light scene � selected light scene established

Semantic relations:
select light scene � selected light scene established
turn off � � selected light scene established

Interaction candidates: Because the event select light scene is only possible if the predicate occupied
holds, U1–U4 are interaction candidates. We judge that there is no interaction with U2–U4, but there
might be an interaction with U1: what if the selected light scene does not guarantee safe illumination?
Is this possible at all? These questions need clarification, discussing with the customers.

Discussion :
Apart from the possible interaction with U1 and its resolution, there are no further unclear points in
this requirement.

Requirements U6 and U7. For each room, the default light scene/the value T1 can be set by using
the room control panel.

Although the wording is almost the same as for requirement U5, we treat U6 and U7 differently
from U5. We understand U5 in such a way that setting a current light scene is not fundamentally
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different from pushing buttons to switch on or off some light group. Hence, U5 concerns the reactive
part of the light control system.

In contrast, the default light scene and the value T1 can be regarded as attributes of an office.
Hence, U6 and U7 concern the transformational part of the light control system. In Step 4 of our
method, we have introduced the system operations set default light scene and set T 
 . The definition
of these functions is not part of the requirements elicitation phase of our method, but of the specifica-
tion phase, see [HS99a]. This phase is not treated in the present paper.

Requirement U8. If any outdoor light sensor or the motion detector of a room does not work cor-
rectly, the user of this room has to be informed.
Formalization :
�

device � � outdoor light sensor � motion detector � �

fail
�
device � immediately followed by inform user

�
device �

This formalization uses a type DEVICE with elements outdoor light sensor and motion detector5 .

Schematic expression : fail � inform user

Semantic relations: none.

Interaction candidates: none.

Discussion :
The requirement and its formalization say nothing about how a sensor failure is detected (this infor-
mation should be given in Section 2.8 of the problem description, where the sensors are described)
and how the user is to be informed.

Requirements U9 and U11 make statements about the functionality of the control panel, e.g., that
it should be movable and that it should contain the possibility to set the chosen light scene.

These requirements concern the hardware to be purchased. In our method, they are reflected in
Step 3 when we list the possible events: only if U9 and U11 are fulfilled, we can introduce events
like move control panel and select light scene. However, we propose to organize the requirements
document in a different way: the hardware requirements should be stated in a separate section.

Requirement U10. The ceiling light groups should be maintained by the control system depending
of the current light scene.

Formalization :
�

tr � Tr � � i ������� tr � conforms
�
light state

�
tr
�
i � � s � � light scene

�
tr
�
i � � s � �

Here, we have introduced a new function light state on the system state that yields the state of the
luminaries in the room. The predicate conforms is intended to mean that the “light state” of the room
is such that the ambient light level specified by the current light scene is achieved.

5For the definition of immediately followed by, see Appendix A.
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Schematic expression : true � conforms

Semantic relations: none.
Normally, we should give events that establish and events that falsify the predicate conforms. How-
ever, we require conforms to be an invariant of the system. Hence, there are no events that falsify it
(but see discussion of this requirement). Also there are no specific events that establish it, because the
underlying idea of the system design is that the state of the luminaries should always coincide with
the chosen light scene.

Interaction candidates: Because p � true for all predicates p, we get as interaction candidates all
requirements formalized so far, i.e., U1–U5, U8. As for U5, there might be an interaction with U1.
How exactly can safe illumination be guaranteed?

Discussion :
This requirement if formulated ambiguously. The word “maintain” could mean that the system is
not allowed to change the state of the luminaries as long as the room is occupied. More probably,
however, it is intended to mean that the system is required to change the state of the luminaries when,
e.g., the illumination measured by the outdoor light sensor changes.

The requirement refers to the current light scene, whereas Requirement U5 (as well as U1–U3)
talks about the chosen light scene. We have decided to use the same function light scene in both
formalizations. The function light scene is also used in the formalizations of Requirements U3 and
U4. It should be discussed with the customers if in all four requirements the same function can be used
or not. We intend the function light scene to yield the light scene that is required to be established
in a given state. Details of the functions light scene � light state, and the predicate conforms must be
defined in the specification phase of our method.

Our formalization says that the state of the luminaries must always satisfy the ambient light level
specified in the required light scene. In reality, this might not be possible, for example when luminaries
are broken. Hence, we have realized that requirements are probably missing. Note that in Section 3.2.1
of the problem description that discusses fault tolerance, only sensor failures are taken into account.

From this discussion, it follows that Requirement FM1 (use daylight to achieve the desired light
setting of each room whenever possible) is already taken into account. In the definition of light scenes
it is implicitly stated that the luminaries are switched on only if the daylight is not sufficient. It
would be more appropriate, however, to talk about using daylight explicitely in the description of
light scenes.

Requirement FM3. The ceiling light groups in a room have to be off when the room is unoccupied
for at least T3 minutes.
This requirement is similar to U3 and U4. Hence, we do not discuss it in detail. Its formalization is:

�
tr � Tr � � i � j ������� tr � tr � j � � t � tr

�
i � � t � T � �

tr
�
i � � e � leave last � � � k � i � 
 �	� j � � occupied

�
tr
�
k � � s � �

� ���
l � i � 
 �	� j � tr

�
l � � e � turn off � tr

�
l � � t � tr

�
i � � t � T � �

Requirement FM5 belongs to the transformational part of the system, as well as requirements FM8,
FM9, FM10, and FM11.
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Requirement FM6. The facility manager can turn off the ceiling light groups in a room that is not
occupied.

Formalization :
�

tr � Tr � � occupied
�
tr
� � tr � � s � ��

tr � � Tr � front tr � � front tr � tr � � � tr � � s � tr
� � tr � � s � tr � � � tr � � e � turn off manual

This formula says that a trace that ends with a state in which the room is not occupied can be
continued with an event turn off manual. Hence, when the room is not occupied, it is possible for the
event turn off manual to occur.

Schematic expression : � occupied � turn off manual

Semantic relations: none.

Interaction candidates: U3, U4, U10, FM3.
There could possibly be an interaction with FM3. If turn off has already occurred, is it possible or
allowed for turn off manual to occur and vice versa? If not both events are allowed, FM3 and FM6
could be replaced by the following constraint (a weakening of FM3), which expresses that either the
system turns off the light after T3 minutes, or the facility manager turns off the light before T3 minutes
have passed:

�
tr � Tr � � i � j ������� tr � tr � j � � t � tr

�
i � � t � T � �

tr
�
i � � e � leave last � � � k � i � 
 �	� j � � occupied

�
tr
�
k � � s � �

� ���
l � i � 
 �	� j �

tr
�
l � � e � turn off manual � tr

�
l � � t � tr

�
i � � t � T ��

tr
�
l � � e � turn off � tr

�
l � � t � tr

�
i � � t � T � �

Discussion :
First, it is not stated how the facility manager can turn off the lights. Probably this is achieved using
the facility manager control panel.

Second, the relation between FM3 and FM6 should be discussed with the customers.

Requirement FM7. If a malfunction occurs, the facility manager has to be informed.

Formalization :
�

d � DEVICE � fail
�
d � immediately followed by inform facility manager

�
d �

Schematic expression : fail � inform facility manager

Semantic relations: none.

Interaction candidates: U8, U10.
There is indeed an interaction with U8. Although it is not stated explicitely, it seems reasonable to
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inform not only the user but also the facility manager in case of a failure of the outdoor light sensor
or the motion detector. Hence, we revise the formalization of U8 as follows6:

�
device � � outdoor light sensor � motion detector � �

fail
�
device � followed by

�
inform user

�
device � � inform facility manager

�
device � �

Discussion :
We have decided to use the same event fail to model what is called “malfunction” and what is called
“failure” in the problem description. These two terms seem to be equivalent.

Note that the handling of fail events must be implemented in such a way that the failure is stored,
as required by Requirement FM10. This must be specified formally in the specification phase.

Requirement NF1. If any outdoor light sensor does not work correctly, the control system for rooms
should behave as if the outdoor light sensor had been submitting the last correct measurement of the
outdoor light constantly.

Formalization :
�

tr � Tr � � i ������� tr � failed
�
tr
�
i � � s � outdoor light sensor �

� outdoor sensor value
�
tr
�
i � � s � � last outdoor sensor value

�
tr
�
i � � s �

We have introduced two new functions and a new predicate on the system state. How these are exactly
defined must be stated in the formal specification.

Schematic expression : failed � last outdoor sensor value

Semantic relations:
fail � failed
failed � last outdoor sensor value
Note that there are no events that falsify the predicate failed.

Interaction candidates: U10.
We judge that there is no interaction.

Discussion :
We have detected missing requirements here : The state failed of a device should be reversable, i.e.,
there should be a possibility to repair the system after a failure. Nothing is said about repair in the
problem description.

Moreover, we do not see why NF1–NF5 are called “non-functional”. In our opinion they are
perfectly functional, only that they concern the function of the system in the presence of failures. An
example for a requirement that we would call non-functional is NF8.

Requirement NF2. If any outdoor light sensor does not work correctly, the default light scene for
all rooms is that all ceiling light groups are on.

6For the definition of followed by, see Appendix A.
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Formalization :
�

tr � Tr � � i ������� tr � failed
�
tr
�
i � � s � outdoor light sensor �

� default light scene
�
tr
�
i � � s � � ceiling lights on

where ceiling lights on is a constant of type LIGHT SCENE.

Schematic expression : failed � ceiling light default

Semantic relations: failed � ceiling light default.

Interaction candidates: U10, NF1.
We judge that there is no interaction.

Discussion :
The question arises if a sensor failure permanently overrides the default light scene of a room. In this
case, it would have to be freshy defined after a repair, which would not be user-friendly.

Requirement NF4 is treated similarly.

This concludes the formalization of the requirements and the interaction analysis. In the following,
we summarize our results.

4.3 A Summary of Produced Documents

The result of our work consists of several documents:

1. an entity-relationship diagram to fix the domain vocabulary and to express static aspects of the
system (see Figure 4);

2. a list of events, together with their classification, concerning the reactive part of the system (see
results of the Step 3);

3. a list of system operations, concerning the transformational part of the system (see results of
the step 4);

4. an updated informal requirements document;

5. a list of functions and predicates on the system state that were introduced when formalizing the
requirements :
We have defined the following predicates on the system state and an office: occupied

�
room � ,

safe illumination, conforms
�
light state � light scene � , failed

�
device � .

The functions defined on the system state are:

� light scene � STATE � LIGHT SCENE
� default light scene � STATE � LIGHT SCENE
� light state � STATE � LIGHT STATE
� outdoor sensor value � STATE � OUTDOOR SENSOR VALUE
� last outdoor sensor value � STATE � OUTDOOR SENSOR VALUE
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6. tables of semantic relations between event and predicate symbols, see Appendix B.3;

7. a formalization of the requirements, expressed as constraints on admissible system event traces
(see Appendix B.1);

8. schematic expressions for the requirements, together with interaction candidates, see Appendix B.2.

5 Discussion of the Approach and its Application to the Case Study

Performing this case study served us to further validate our approach. In the past, we have used
our method on several case studies, including an elevator system [HS99b], an automatic teller ma-
chine [HS99a], and an access control system [SH00].

In the Section 5.1, we discuss the results of our work specific to the case study. In Section 5.2, we
discuss the characteristics of our method in general.

5.1 Results Concerning the Informal Requirements Document

Using our systematic approach, we found several problems with the informal requirements document
that were discussed in Section 4.2. In summary, these problems concern the following aspects:

Incoherent vocabulary, glossary.

� We could not find out the difference between the current and the chosen light scene. This
difference should be explained in the glossary.

� The difference between between a light scene and a light setting is not clear for us. In the
glossary, the desired light setting is explained as a “setting of a ceiling light group”. A setting
could be what was called light state in Section 4.2, U10. However, this seems to contradict the
usage of the word “setting” in the definition of a light scene, where a light scene is a “predefined
setting of the ambient light level”.

� It seems to us that failure and malfunction are the same thing, but this does not become clear
from the text.

� The definition of a default light scene as a light scene for an unoccupied room seems to contra-
dict U4, which requires the default light scene to be established when be room is reoccupied.

Unused details. In paragraph 7 of the problem description, door closed contacts are mentioned.
However, the states or values of these contacts are not referred to in the requirements. It is not clear to
us what the contacts are used for. If they are not used at all, they should not be installed. Otherwise,
they should occur in the requirements.

Organization of the requirements document. Requirement U9 is of a different nature than (most
of) the other requirements. It concerns the hardware to be perchased, whereas the other requirements
concern the behavior of the light control system. We propose not to mix these different kinds of
requirements, but to state the requirements concerning the hardware in an extra section.

19



Confusion between functional and non-functional requirements. As already noted, we consider
NF1–NF5 to be functional. It is not clear to us why they are called non-functional.

Ambiguous requirements. We have identified the requirements U1, U2, and U10 as ambiguous.
These requirements should be further discussed with the customers.

Unsatisfiable requirements. It is not clear to us how Requirements U1 and U10 can be satisfied.

Incoherent requirements. Our heuristic algorithm points out pairs of requirements that might in-
teract. For the case study, we see possible interactions between U1 and U5, U1 and U10, and FM3
and FM6.

Missing requirements. A number of requirements should be stated additionally to the ones in the
problem description document:

� If parts of the system fail, how can it be brought back to normal functionality?

� What is the effect of pushing a button on the chosen and current light scene, respectively?

� How is the daylight used to achieve the desired light setting or to establish a light scene?

� How are users and the facility manager informed when a failure occurs?

� How are failures detected?

� What happens when luminaries are broken?

Redundant requirements. Requirements U2 and U10 seem to be similar. They should either be
joined or reformulated to make the difference clear.

5.2 Results Concerning the Method

Requirements define a set of conditions that must be met by a system or a system component to
satisfy a contract, standard or other imposed document or description. For example, the IEEE Standard
1498 [IEE94] defines a requirement as a characteristic that a system or a software item must possess in
order to be acceptable to the acquirer. Requirements should be completely and unambiguously stated.
Our method helps to detect missing, incoherent, and unsatisfiable requirements, as was demonstrated
in Section 4. Formalizing the requirements leads to eliminating ambiguities.

Furthermore, formal requirements have a second advantage: it is possible to define a notion of
correctness of a specification with respect to the requirements, see [HS99b].

Requirements traceability is an important issue in requirements engineering. Jarke [Jar98] defines
requirements traceability as the ability to describe and follow the life of a requirement, in both a
forward and backward direction. In our method, traceability is guaranteed in the following way:

� Single requirements are fragments as small as possible. The smaller the requirements, the better
traceable they are, because their realization does not distribute over large parts of the system.

� For each event and each predicate that is introduced, it is noted in which requirements it is used.
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� For each part of the formal specification, we can name the requirements that lead us to define it
in the way we did.

Performing the case study has shown that our method is well suited to achieve our goals stated in
Section 2). As could be expected, the different steps of the method were not performed separately and
in exactly the given order. Moreover, several repetitions of the various steps were necessary. But it
is nevertheless important to define separate steps, because they structure the requirements elicitation
process and help focus attention to crucial points.

In summary, in our approach we give substantial methodological guidance for requirements elici-
tation, without introducing a new language or a new formalism. The requirements elicitation phase is
independent of the specification language to be used later. We propose a standardized way of express-
ing facts, assumptions and requirements. Constraints on the set of possible traces are a very flexible
and powerful means of describing a system and its interaction with the environment. Expressing re-
quirements as constraints on traces makes it possible to systematically detect conflicting requirements
and to define a formal notion of correctness of a specification with respect to a set of requirements.
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A Formal Expression of Constraints on Traces

In the following formal specification of traces, we use the Z notation [Spi92].

�
STATE � EVENT � TIME �

TraceItem
s � STATE
e � EVENT
t � TIME

Each trace of the system is a sequence of trace items, where events later in the sequence must not
happen earlier in time than events earlier in the sequence. The sign 	 t denotes a relation “not later”
on time, which fulfills the axioms of a partial ordering relation.

For each valid system trace, we require that events later in the sequence do not happen at an earlier
time than events earlier in the sequence.
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TRACE ��� ������� TraceItem ��
tr � TRACER � � i ������� tr � i � � tr

� �
tr i � � t 	 t

�
tr
�
i � 
�� � � t

Let Tr be the set of admissible traces of a system. For each admissible trace tr, its prefixes are
also possible traces :

Tr ��� TRACE�
tr � Tr �

� �
tr � � TRACE � tr �
	��
����� tr � tr � � Tr �

To express constraints concisely, we define several specification macros.

immediately followed by � EVENT � EVENT�
e � � e � � EVENT �

e � immediately followed by e �
�

� �
tr � Tr �

� �
i ��� ��� tr � � tr i � � e � e � �

i � � tr
� �

tr
�
i � 
�� � � e � e ��� �

We may also want to express that event e entails a set of events that can occur in any order:

followed by � EVENT ��� EVENT�
ev � EVENT � es ��� EVENT �

ev followed by es
�

� �
tr � � tr � � Tr ��

last tr � � � e � ev � tr � 	��
����� tr � � � tr � � � tr � � � es �

�
i � � tr � � 
 �	��� tr � � 
 � � es �

�
tr � i � � e � � es �

B Results of the Formalization Process

B.1 Formal Expressions of Requirements

U1:
�

tr � Tr � room � ROOM � � i � dom tr � occupied
�
tr
�
i � � s � room �	� safe illumination

�
tr
�
i � � s � room �

U2:
�

tr � Tr � occupied
�
tr
�
i � � s � � tr

�
i � � e �� turn off

U3:
�

tr � Tr � � i � j ��� ��� tr � j � i � j � 
 � ����� tr �

tr
�
i � � e � leave last � tr

�
j � � e � enter first

� � � k � i �	� j � � occupied
�
tr
�
k � � s � � � tr

�
j � � t � tr

�
i � � t 	 T 


� light scene
�
tr
�
j � 
�� � s � � light scene

�
tr
�
i � � s �

U4:
�

tr � Tr � � i � j ��� ��� tr � j � i � j � 
 � ����� tr �

tr
�
i � � e � leave last � tr

�
j � � e � enter first

� � � k � i �	� j � � occupied
�
tr
�
k � � s � � � tr

�
j � � t � tr

�
i � � t � T 


� light scene
�
tr
�
j � 
�� � s � � default light scene

�
tr
�
i � � s �

U5:
�

tr � Tr � ls � LIGHT SCENE � � i ������� tr � i � � tr �

tr
�
i � � e � select light scene

�
ls � � light scene

�
tr
�
i � 
�� � s � � ls
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U8:
�

device � � outdoor light sensor � motion detector � �

fail
�
device � followed by

�
inform user

�
device � � inform facility manager

�
device � �

U10:
�

tr � Tr � � i � � ��� tr � conforms
�
light state

�
tr
�
i � � s � � light scene

�
tr
�
i � � s � �

FM3:
�

tr � Tr � � i � j � � ��� tr � tr � j � � t � tr
�
i � � t � T � �

tr
�
i � � e � leave last � � � k � i � 
 �	� j � � occupied

�
tr
�
k � � s � �

� ���
l � i � 
 �	� j � tr

�
l � � e � turn off � tr

�
l � � t � tr

�
i � � t � T � �

FM6:
�

tr � Tr � � occupied
�
tr
� � tr � � s � ��

tr � � Tr � front tr � � front tr � tr � � � tr � � s � tr
� � tr � � s � tr � � � tr � � e � turn off manual

FM7:
�

d � DEVICE � fail
�
d � immediately followed by inform facility manager

�
d �

NF1:
�

tr � Tr � � i ��� ��� tr � failed
�
tr
�
i � � s � outdoor light sensor �

� outdoor sensor value
�
tr
�
i � � s � � last outdoor sensor value

�
tr
�
i � � s �

NF2:
�

tr � Tr � � i ��� ��� tr � failed
�
tr
�
i � � s � outdoor light sensor �

� default light scene
�
tr
�
i � � s � � ceiling lights on

NF4:
�

tr � Tr � � i ��� ��� tr � failed
�
tr
�
i � � s � motion detector � � occupied

�
tr
�
i � � s �

B.2 Schematic Constraints and Interaction Candidates

Req. schematic expressions Candidates Interactions

U1 occupied � safe illumination – –
U2 occupied � � turn off U1 –
U3 leave last � enter first ��� occupied U1, U2 –

� lesseqT 
 � same light scene
U4 leave last � enter first ��� occupied U1, U2 –

� greaterT 
 � default light scene
U5 select light scene � U1, U2, U3, U4 U1?

selected light scene established
U8 fail � inform user ���������	��
 �
�	����������� 
��	��������� – –
U10 true � conforms U1–U5, U8 U1?
FM3 leave last � � occupied � turn off U1–U5, U10 –
FM6 � occupied � turn off manual U3, U4, U10,

FM3
FM3?

FM7 fail � inform facility manager U8, U10 U8
NF1 failed � last outdoor sensor value U10 –
NF2 failed � ceiling light default U10, NF1 –
NF4 failed � occupied U10, NF1, NF2 –

B.3 Semantic Tables

Necessary conditions for events

� occupied � enter first
occupied � leave last

occupied � press
occupied � select light scene
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Events establishing predicate literals

enter first � occupied
leave last � � occupied
enter first � safe illumination

select light scene � safe illumination
turn off � � safe illumination

turn off manual � � safe illumination
enter first � same light scene

select light scene � � same light scene
enter first � default light scene

select light scene � � default light scene
select light scene � selected light scene established

turn off � � selected light scene established
fail � failed

Relations between predicate literals

occupied � � � safe illumination �
failed � � � occupied � last outdoor sensor value � ceiling light default � safe illumination �
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