
Confidentiality-Preserving Refinement

Maritta Heisel
Fakultät für Informatik
Universität Magdeburg

39016 Magdeburg
Germany

heisel@cs.uni-magdeburg.de

Andreas Pfitzmann
Fakultät für Informatik

Technische Universität Dresden
01062 Dresden

Germany
pfitza@inf.tu-dresden.de

Thomas Santen
Fachbereich Informatik

Technische Universität Berlin
10587 Berlin

Germany
santen@acm.org

Abstract

We develop a condition for confidentiality-preserving re-
finement which is both necessary and sufficient. Using a
slight extension of CSP as notation, we give a toy example
to illustrate the usefulness of our condition.

Systems are specified by their behavior and a window.
For an abstract system, the window specifies what infor-
mation is allowed to be observed by its environment. For
a concrete system, the window specifies what information
cannot be hidden from its environment. A concrete system
is a confidentiality-preserving refinement of an abstract sys-
tem, if it behaviorally refines the abstract system and if the
information revealed by the concrete window is allowed to
be revealed according to the abstract window.

1 Introduction

Dependable IT-systems [10] of relevant size can only
be built if all dependability attributes have a clear mean-
ing. This meaning has to be consistent both with the com-
mon understanding of the people building and using the IT-
system as well as with the tools they use and the develop-
ment process they adhere to. Therefore, a formal meaning
of all dependability attributes is needed which is compatible
with the usual refinement process of systems engineering.

Our goal is to establish a formal meaning of security at-
tributes. Confidentiality, integrity, and availability are seen
as the generic properties of security [20, 3]. Some authors
propose to add accountability as a fourth one [2], others pro-
pose to refine confidentiality, integrity and availability ac-
cording to the kind of information they relate to [21]. Then,
e.g. accountability can be interpreted as an integrity prop-
erty concerning the circumstances of an action, anonymity
can be interpreted as a confidentiality property concerning
the circumstances, and so on.

The relationship between the security attributes integrity
and availability, and formal notions compatible with re-
finement is roughly clear. For terminating computations,
integrity corresponds to partial correctness and availabil-
ity corresponds to assured termination combined with suf-
ficient computational resources to fulfill real-time require-
ments. Integrity and availability together correspond to total
correctness and sufficient computational resources. For re-
active systems, integrity means that the defined processes
satisfy certain required predicates, and availability corre-
sponds to fairness and liveness combined with sufficient
computational resources.

To date, the relationship between confidentiality and re-
finement is less well understood. This is our motivation to
develop a formal notion of a confidentiality-preserving re-
finement. This notion must be consistent with all proper-
ties of refinement, which mainly provide for integrity and
partially for availability. We must add requirements which
guarantee that each refinement step demonstrably preserves
all relevant confidentiality properties. To allow for step-
wise refinement, the definition of refinement to be devel-
oped must be transitive: If system 2 is a confidentiality-
preserving refinement of system 1 and system 3 is a
confidentiality-preserving refinement of system 2, then sys-
tem 3 must be a confidentiality-preserving refinement of
system 1.

When specifying a secure system, we do not only define
its functionality, but also specify what information about
it its environment may observe. A refinement of a system
consists of a functional description and the specification of
what information its environment can possibly observe. The
refinement is confidentiality-preserving if the more concrete
system conveys only information to its environment about
the data represented in the abstract system that the abstract
system allows the environment to observe.

In describing the refinement relation between the more
abstract and the more concrete system, we do not only de-
fine relations between abstract and concrete data and be-

havior, but we also consider probabilistic behavior of the
involved systems. We derive a condition on these probabil-
ities, which is both sufficient and necessary for preserving
confidentiality.

The paper is organized as follows: Section 2 discusses
different approaches to formally capture confidentiality and
to preserve confidentiality in refinements. Section 3 briefly
describes an extension of CSP with probabilistic choice
and the concept of behavioral refinement. In Section 4,
we describe how systems with confidentiality requirements
are specified. The notion of indistinguishability, which is
the basis of our confidentiality property, is introduced in
Section 5. In Section 6, we state our main definition –
confidentiality-preserving refinement – and show the tran-
sitivity of the definition. All our definitions are illustrated
by a running example. In Section 7, we summarize our con-
tributions and point out directions for further research.

2 Formal Approaches to Confidentiality and
Refinement

Non-interference [4] is a security property, which has
been studied extensively and has been formally treated us-
ing CSP [6], see for example the work of Allen [1], Graham
and Cumming [5], and Roscoe, Woodcock and Wulf [13].
Given a system S and two users u and v, non-interference
states that v’s view of S is completely unaffected by u’s ac-
tions. Non-interference thus guarantees that no information
can flow from u to v. Roscoe et. al. [13] have shown how
non-interference can be preserved by refinement for deter-
ministic systems.

Mantel [11] considers the preservation of information
flow properties under refinement. It is well-known that
CSP-style refinement does not preserve information flow
properties in general [7]. Mantel shows how refinement
operators tailored for specific information flow properties
can modify an intended refinement such that the resulting
refinement preserves the given flow property. Working top-
down from the specification to an implementation, the re-
finement operators may lead to concrete specifications that
are practically hard to implement, because the changes in
the refinement they induce are hard to predict and may not
be easy to realize in an implementation.

Our way of describing the confidentiality properties of
an implementation is independent of the refinement and –
in that respect – we work more in a bottom-up rather than
in a top-down fashion. In contrast to Mantel’s approach,
where the refinement operators partly determine the imple-
mentation, in our approach, it is the developers’ responsi-
bility to construct the implementation in such a way that
it preserves confidentiality. A further difference to Man-
tel’s setting is that we consider data refinements whereas he
works with atomic events only. Also, Mantel does not con-

sider the probabilistic behavior of systems but works in a
possibilistic setting.

In general, a specification is a model of the system to
be implemented and as such it is an abstraction of the im-
plementation (e.g. it does not make statements about re-
sources). It is unavoidable that an adversary can distinguish
more data in an implementation than the data about which a
specification can even make statements. When considering
confidentiality-preserving refinement, it is therefore neces-
sary to find a way of preventing an adversary from gaining
information about confidential data even if s/he derives in-
formation from data which cannot be expressed in the spec-
ification.

J ürjens [9] pursues a goal similar to ours. He distin-
guishes two kinds of non-determinism. The first kind cor-
responds to under-specification, leaving room for imple-
mentation decisions. This kind of non-determinism may
be eliminated in a refinement. The second kind of non-
determinism serves to protect secrets and is not meant to
be eliminated in a refinement. J ürjens correctly observes
that the distinction between those kinds of non-determinism
has previously been blurred in formal approaches to define
security properties, which has lead to anomalies in the re-
sulting theories.

J ürjens uses stream processing functions to model sys-
tems. He defines a notion of secrecy which is only neces-
sary in the sense that it does not prevent implicit informa-
tion flows. His condition is also only necessary because an
observing adversary gains a secret either completely or not
at all. J ürjens does not consider that an adversary may gain
information about the secret in a probabilistic sense. He
identifies conditions under which certain refinement opera-
tors on stream processing functions preserve his notion of
secrecy.

In J ürjens’ approach, the secrets to be kept confidential
must be expressed explicitly. Hence, omissions in a speci-
fication may lead to an insecure system. The approach we
present in this paper explicitly specifies what is allowed to
be observed – all other data are to be kept confidential.

There is a variety of formal notions of confidentiality,
ranging from very strong sufficient conditions such as non-
interference (which are not necessary) to weaker neces-
sary conditions such as the one of J ürjens [9] (which are
not sufficient). We come up with a characterization of
confidentiality-preserving refinement, i.e., with a condition
being both necessary and sufficient. To be able to state
such a condition, we take probabilistic mechanisms into ac-
count, whose indispensability is acknowledged by the se-
curity community, but which are missing in most formal
treatments of the subject.

An exception is Toussaint’s work on protocol verifica-
tion [17, 18, 19]. Augmenting protocol states by “known”

and “believed” terms of an algebra of encryption and com-
munication, she models the knowledge of the participants
in a cryptographic protocol. Considering transition prob-
abilities between protocol states, she can analyze whether
probabilistic constraints make protocols secure [17].

Toussaint also separates the protocol proper from the
cryptographic system used to “implement” the protocol
[19], which allows her to analyze protocols independently
of the properties of specific encryption algorithms. Her no-
tion of an “implementation”, however, covers only a small
fraction of ours, because we consider the concrete choice of
data representations (of plain text, cipher text, keys, etc.) in
addition to the choice of a cryptographic algorithm.

In contrast to the approaches discussed so far, Jacob [8]
does not define an “absolute” confidentiality property that
is either fulfilled by a given system or not. Instead, he con-
siders varying degrees of confidentiality. To be able to com-
pare confidentiality, he uses windows, which are defined to
be sets of atomic interactions. A system is more confiden-
tial than another with respect to a given window if it allows
less interactions on that window. For a refinement, Jacob
requires that each window’s “view” does not change. As
before, this definition does not capture a quantitative gain
of information.

We have taken up the idea of using a window that allows
us to define selective views on a given system, which may
be attributed to an observer or an adversary. However, in
our approach, a window will be a communication channel
to which all data an observer can gather are written. Ev-
erything that cannot be distinguished using the data made
available by the window channel is hence kept secret by the
system.

3 Formal System Specification and Behav-
ioral Refinement

On a conceptual level, the definition of confidentiality-
preserving refinement that we develop in this paper is inde-
pendent of a particular formalism. For illustrative purposes,
we use the process specification language CSP [6] to specify
the behavior of systems. We are aware of the fact that cer-
tain relevant properties of systems that may affect confiden-
tiality, such as real-time behavior and use of computational
resources, cannot be expressed in CSP. Choosing a different
formalism to capture those properties would complicate the
presentation but would not change the conceptual argument
that underlies our definitions.

CSP is a process calculus. A process Q has an alphabet� Q that denotes the set of names of the channels over which
Q communicates with the outside world. An event c � v de-
scribes an instance of communicating the value v over the
channel c.

There are several variants of semantics of CSP processes.
All are based on the notion of the traces of a process Q,
traces

�
Q � . A trace of Q is a sequence of events in which the

process can engage. After Q has engaged in a trace s, it may
refuse to engage in a number of events. The set X of those
events is called the refusals of the process Q � s, which is Q
after performing s. The set of failures of Q, failures

�
Q � ,

contains all pairs
�
s � X � where s � traces

�
Q � and X the set

of refusals of process Q � s.
The failure semantics of CSP distinguishes more pro-

cesses than the trace semantics. There is a third, even finer
semantics of CSP, called the failure-divergence semantics.
It distinguishes certain infinite behaviors in which we are
not interested. We therefore use the failure semantics.

3.1 Probabilistic Processes

The internal choice operator of CSP serves to specify
nondeterministic processes: A � B is a process that either
behaves like A or like B; the environment has no means to
influence that choice. No statement is made about the prob-
ability with which the process exhibits the behavior of A or
of B.

In the context of secure systems, it is necessary to dis-
tinguish that form of non-determinism from a probabilistic
one (an observation we share with J ürjens [9]): the prob-
ability of choosing A or B may serve an adversary to infer
information about confidential data in the system. To model
such a situation, we extend the notation of CSP by a proba-
bilistic choice operator that is parameterized by a probabil-

ity distribution. The process � P

k
Q

�
k � chooses a value for

k according to the probability distribution P; then it behaves
like Q

�
k � , where Q is a family of processes indexed by k.

The probabilistic choice must be reflected in the seman-

tics: the failures of � P

k
Q

�
k � with a probability greater

than zero are failures of the usual nondeterministic choice
�

k
Q

�
k � ; in addition, a probabilistic choice induces a fam-

ily of probability distributions Pn
Q on the failures of a pro-

cess Q: for each n, Pn
Q is a distribution on the failures con-

taining traces of length n. To keep our notation concise, we
will use the term “distribution on the failures of Q”, denoted
PQ, when referring to traces of the same length.

3.2 Behavioral Refinement

In the following definition of behavioral refinement,
we disregard the probabilistic behavior of processes and
treat the probabilistic choice as if it were a usual non-
deterministic choice. We will consider the probabilistic as-
pects of process refinement when we define confidentiality-
preserving refinement in Section 6.2.

The notion of refinement between processes describes
that a process B “implements” the behavior of process A,

written A � B. Refinement in CSP is usually defined
as set inclusion on the chosen semantics, i.e. for the fail-
ure semantics, we get that process B refines process A if
failures

�
B ��� failures

�
A � . Process B is then called the con-

crete, process A the abstract process of that refinement.
We are interested in a generalization of that notion that

makes it possible to consistently replace data in events. Re-
placing data is necessary because confidentiality-preserving
refinement as we define it in Section 6 not only allows im-
plementors to refine the behavior of a system but also to
refine the concrete data that it uses to communicate with the
outside world. A retrieve relation R models that substitu-
tion of data. It relates the traces of two processes A and
B with identical alphabets, � A � � B, by consistently re-
placing events c � w of B by events c � v of A. Thus, a retrieve
relation maps concrete traces to abstract ones.

We say that a process A is behaviorally refined by pro-
cess B if there exists a retrieve relation R such that the set
of abstractions of the failures of B with respect to R is con-
tained in the set of failures of A. Formally, we write

A � R B � R
� �

failures
�
B � � ��� failures

�
A �

where R
� �

D
� � maps the set D to the union of the sets of

images of members of D under R. We assume the obvious
extension of R from traces to failures. We indicate a suitable
retrieve relation R as an index to the refinement symbol,
because we often need to refer to it in proofs.

4 System and Adversary Specification

The basis of our approach is to augment a specification
of the intended behavior of a system – given in terms of a
CSP process – by a window that models the possible obser-
vations an adversary may make about the system. The win-
dow is a distinguished channel to which the system writes
data. These data can be used by the environment and be fur-
ther processed without any restriction. We assume an open
system design process that does not try to realize “security
by obscurity”. Therefore, we must assume the adversary to
know the structure and behavior of the system. The adver-
sary may use that knowledge to derive information about
the internal state of the system from the observations at the
window. Specifying the behavior of the system on the win-
dow channel thus completely describes the information an
adversary can obtain by observing the system. A system
specification consists of the process describing the system
behavior and the window channel.

Definition 1 (System, Window)
A system specification S � �

Q � w � is a pair of a process
definition Q and a distinguished channel w � � Q, called
the window of S.

21 llinp

w

ANet AReceiver outASender

ASystem

Figure 1. The abstract system

In our presentation, we consider only one adversary. Dif-
ferentiating between adversaries with different capabilities
would mean to introduce distinct windows for each adver-
sary.

Example. We illustrate our approach by the example of a
communication between two parties via an untrusted chan-
nel. Figure 1 illustrates the following CSP specification of
an abstract view of that system. Events on the channels
inp and out model the data that the sender process ASender
transmits over the untrusted network ANet to the receiver
process AReceiver. The internal channels l � and l � serve to
describe the communication between the three processes.
The events on those channels are not visible from outside
the system.

The purpose of the window w at this stage of the specifi-
cation is to describe what information an external observer
(malicious or not) may obtain about the communication be-
tween sender and receiver. We decide that an observer is
allowed to see the length (in whatever suitable measure) of
the messages exchanged between sender and receiver – but
nothing else.

Formally, we specify ASystem as a CSP process that is
the parallel composition of the three processes ASender,
ANet, and AReceiver. The first two communicate via chan-
nel l � and the last two via channel l � . Hiding l � and l � , we
make the events taking place on those channels internal to
the system.

ASystem 	� �
ASender

�

l ��� � ANet

�

l �� � AReceiver ����� l � � l ���

The behavior of ASender and AReceiver is simple:
ASender writes whatever data msg it receives on the input
channel inp to the channel l � ; similarly, AReceiver copies
all data it receives on l � to out.

ASender 	� inp � msg � l ���msg � ASender

AReceiver 	� l ��� msg � out �msg � AReceiver

The network ANet, however, not only copies the data
msg from l � to l � , but it also writes the length of each re-
ceived data item to the window w. Thus we model the infor-
mation the network conveys to the outside world about the

communication taking place between sender and receiver.

ANet 	� l � � msg � w � length
�
msg � � l � �msg � ANet

5 Indistinguishability

Inferring information about a system
�
Q � w � through the

window w means to distinguish data the system processes
by different observations on w. Conversely, to keep infor-
mation confidential, the system must be designed in such a
way that the data the window provides to an observer can-
not be used to distinguish data it internally stores and that it
should keep confidential. In other words, the window of a
system specifies the confidentiality property of the system:
its “secret” is given by the data that are indistinguishable by
observing the window only.

Formally, indistinguishability is an equivalence relation
on the traces of a system. Two system traces cannot be
distinguished by the environment if their projections to the
window are the same. Considering just single data items
that appear on the window would be insufficient, because
an adversary might accumulate information by observing
the window for a longer time.

Definition 2 (Indistinguishability)
Let S � �

Q � w � be a system specification. Let win be the
function projecting traces in traces

�
Q � to traces of Q �� � Q � � w � � , i.e. to the sequences of events on the win-

dow w. Two traces s � t � traces
�
Q � are indistinguishable iff

the projections to w are equal:

s � t � win s � win t

Example. The possible traces of ASystem are given by se-
quences of events on the channels inp, w, and out: some
data item msg is input on inp, its length is written to w, and
it is output to out. Then the system recurs and produces a
similar sequence of events for another data item.

traces
�
ASystem � �

� msg � � inp � msg � w � length
�
msg � � out � msg �����

We use the notation of set comprehension known from Z
[15]: The comprehension � x � y � z

�
P

�
x � y � z ��� t

�
x � y � z ���

denotes the set of all t
�
x � y � z � for which there exist x, y,

and z such that the predicate P
�
x � y � z � holds; if P

�
x � y � z �

is universally true or if t
�
x � y � z � � �

x � y � z � , then we write
� x � y � z � t

�
x � y � z �� and � x � y � z

�
P

�
x � y � z ��� , respectively.

For a set of sequences T, the set T � is the set of all possible
concatenations of members of T.

Knowing what the traces of ASystem are, we can derive
a condition characterizing their indistinguishability. Two
traces s � t � traces

�
ASystem � cannot be distinguished by

1 2ch chinp

w

outCSender CNet CReceiver

CSystem

kch

Figure 2. The concrete system

observing w if they are of equal length and the lengths of
corresponding messages are equal.

s � a t � win s � win t
� 	 s �
	 t ��

i ������ s �
length

�
Msg

�
s � i � � � length

�
Msg

�
t � i � �

The domain ����� s of a sequence s is the set of indexes
��� ��� ��� � � � ��	 s � , where 	 s is the length of s. The function
Msg

�
s � i � denotes the data msg that appeared most recently

in an event inp � msg before or at position i in s, i.e. at the
maximal index j � i where s

�
j � is an event at channel inp.

Hence, Msg
�
s � i � is the data item the system processes at the

i-th event of s.
In our example, the equality win s � win t implies that

the sequences s and t have the same length. In general, this
is not true, because different internal behavior with a dif-
ferent number of events that are not visible at the window
channel may still result in the same projection to the win-
dow channel.

6 Confidentiality-Preserving Refinement

We now introduce the main contribution of this paper:
confidentiality-preserving refinement. By way of motiva-
tion, we extend our example and describe a concrete system
that we consider one step in refining ASystem to an imple-
mentation. Then, we generalize our observations to define
confidentiality-preserving refinement formally.

Example. Figure 2 shows CSystem, which we wish to use
as an implementation of ASystem. With respect to the inter-
face, both systems are very similar: we again have the three
channels inp, out, and w. The data transmitted from inp to
out shall remain the same, but the data on w changes with
the transition from ASystem to CSystem: In ASystem, we
had a quite abstract view on the network, which allowed us
to express the confidentiality property that only the length
of transmitted messages may be observed by the outside
world. In CSystem, we now consider a more realistic model
that will expose the full data transmitted over the network

to an external observer. Therefore, we specify the network
process CNet so as to copy all data ct it receives unchanged
to the window w.

CNet 	� ch �� ct � w � ct � ch � � ct � CNet

Obviously, to use such a network for confidential com-
munication that reveals only the length of messages but not
their content – as specified in ASystem – we need to en-
crypt the transmitted data. We introduce a channel kch be-
tween CSender and CReceiver that allows them to exchange
keys in a secure way. To transmit a data item msg, CSender
first chooses a key k randomly according to some proba-
bility distribution P. CSender transmits k to CReceiver via
kch and then transmits the ciphertext cipher

�
msg � k � over

the network. Using the same key k, CReceiver decrypts the
ciphertext it receives from the network.

CSystem 	� �
CSender

�

kch � �CReceiver�

ch � � ch � � �CNet � ��� kch � ch � � ch � �

CSender 	� � P

k

�
kch � k � inp � msg �
ch ��� cipher

�
msg � k � � skip ���

CSender

CReceiver 	� kch � k � ch � � ct �
out � decipher

�
ct � k � � CReceiver

To keep the example simple, CSender synchronously
transmits keys and ciphertexts. A further refinement would
transmit a number of keys in advance and only later use
those keys for encryption. This would require a more com-
plex synchronization between CSender and CReceiver.

What information can an observer obtain about the com-
munication between CSender and CReceiver? As for the
abstract system, the traces of CSystem consist of recurring
data input on inp, and outputs to w and out. The data copied
to w is the ciphertext for the data msg and some key k.

traces
�
CSystem � �

� msg � k � � inp � msg � w � cipher
�
msg � k � � out � msg �����

The distribution PCSystem on traces
�
CSystem � is determined

by P: each key k used in a trace t � traces
�
CSystem � is inde-

pendently chosen according to P. Thus, with the sequence
K

�
t � � �

k � msg � i
�

i � ����� t � t
�
i � � w � cipher

�
msg � k � �

k � of keys used in t, for given plaintexts Msg
�
t � i � , the prob-

ability PCSystem
�
t � that the system performs t is the product

of the probabilities to choose the keys in K
�
t � :

PCSystem
�
t � ��� i �����
	 KP

�
K

�
t � �

i � �

An observer cannot distinguish two traces s � t �
traces

�
CSystem � if they are equally long and for each data

communication the keys used for that communication map
the possibly different plain texts to identical ciphertexts.

s � c t � win s � win t
� 	 s � 	 t ��

i ������ s �
cipher

�
Msg

�
s � i � � Key

�
s � i � � �

cipher
�
Msg

�
t � i � � Key

�
t � i � �

The function Key
�
s � i � returns the key k used to encrypt

Msg
�
s � i � . The events in s do not contain k explicitly, but

only the plaintext Msg
�
s � i � and its corresponding cipher-

text. To keep the example simple, we assume that the func-
tion cipher is invertible in its second argument such that k
is uniquely determined by msg and cipher

�
msg � k � .

Neither the messages Msg
�
s � i � and Msg

�
t � i � nor the keys

Key
�
s � i � and Key

�
t � i � need to be equal. At this stage of the

argument, we cannot deduce how much information an ad-
versary actually obtains by observing ciphertexts at w. This
depends on the properties of the encryption function cipher.

6.1 Preservation of Indistinguishability

In the transition from an abstract to a concrete system
specification, the interpretation of a window changes: The
window of an abstract system specifies what information is
allowed to be visible to the outside world. The window of a
concrete system specifies what information cannot be hid-
den from the environment. In the following, we present a
necessary and sufficient condition for a refinement to pre-
serve confidentiality.

The concrete system must not convey more information
through its window to the environment than specified in the
abstract window. How can we make that intuition precise?
Two indistinguishable traces of the concrete system do not
convey any information about the differences of internal
data in the system to the environment. But how much infor-
mation do two distinguishable traces of the concrete system
provide about data that shall be kept confidential, i.e. indis-
tinguishable, according to the abstract system specification?

Here, a purely logical argument – that many approaches
to formally describe secure systems prefer, see Section 2
– is insufficient, because it is not enough to ask whether
a distinction in the concrete system definitely allows an
observer to distinguish confidential data, but we must de-
scribe whether such a distinction provides more informa-
tion1 about the confidential data than the abstract window
reveals. Therefore, we consider the respective probabilities
of internal data that may cause a particular observable be-
havior on a window. Figure 3 illustrates our approach to
formalizing that probabilistic argument:

Let r and s be two abstract traces that are indistinguish-
able with respect to the window. According to R, trace r

1Note that information is a probabilistic notion [14].

==a

==c

==c

r s

abstract

concrete
0.4

w y

v x

t

t’R

0.6 0.4 0.6

Figure 3. Probabilistic concretization and in-
distinguishability

can be represented by the concrete traces v and w, and trace
s can be represented by the concrete traces x and y, where v
and x as well as w and y are indistinguishable by observing
the concrete window. For keeping r and s indistinguishable
in the concrete system, we must require that the probability
that r is represented by v be the same as the probability that
s is represented by x. If this were not the case, an adversary
might be able to gain information whether r or s happened
on the abstract layer: if the probability that r is represented
by v is greater than the probability that s is represented by
x, for an adversary, the observation of some element t � c v
increases the probability of r with respect to s. Therefore,
the condition just described and formally expressed in Def-
inition 3 is necessary.

On the other hand, the condition also is sufficient: Sup-
pose that an adversary is only able to distinguish the sets
� v � x � and � w � y � as runs of the concrete system. Fur-
ther suppose that the probability that the concrete system
chooses v to implement r is the same as the probability that
the concrete system chooses x to implement s. Then the ob-
servation of a behavior indistinguishable from v and x does
not convey any information to the adversary whether the
abstract system performs r or s. The same is true for the
adversary observing the set � w � y � .

The fact that there are different probabilities of repre-
senting an abstract trace by a concrete one are caused by
non-determinism in the concrete system that is used to
provide confidentiality. In our example, probabilistically
choosing the key to encrypt data is the source of that kind of
non-determinism. In the relation between the abstract and
the concrete system, probabilistic non-determinism is re-
flected by different possibilities to represent abstract data on
the window (“lengths” in our example) by concrete data (ci-
phertexts). The concrete system probabilistically chooses
one of those possibilities. The distribution of that choice

must satisfy the restrictions on indistinguishability we just
discussed. This insight is the key to defining confidentiality-
preserving refinement.

6.2 Refinement

Each confidentiality-preserving refinement must of
course be a correct behavioral refinement. For two systems
A � �

Qa � w � and C � �
Qc � w � , we must ensure Qa � R Qc

for some retrieve relation R. Moreover, on the concrete
level, it must not be possible to distinguish more traces than
on the abstract level via the respective windows. For two in-
distinguishable abstract traces r � s � traces

�
Qa � , this means

that the probability of representing r by a concrete trace
u � R �

� �
r � that is indistinguishable from a given trace t

must be equal to the probability of representing s by such a
trace. The probabilities of those representations are deter-
mined by the distribution of the traces of system C. Phrased
more precisely, the probability of representing r by u is the
probability that process Qc chooses u among the ones in
R �

� �
r � under the condition that Qc simulates the abstract

behavior r.

Definition 3 (Confidentiality-Preserving Refinement)
Let A � �

Qa � w � and C � �
Qc � w � be two system specifi-

cations. Let � a be the observational equivalence in A (wrt.
w), � c be the observational equivalence in C, and let Pc be
the probability distribution on traces

�
Qc � . The system C is

a confidentiality-preserving refinement of the system A iff
there exists a retrieve relation R mapping the data of C to
the data of A with inverse R �

� such that:

1. Qc is a behavioral refinement of Qa, i.e. Qa � R Qc, and

2.
�

r � s traces
�
Qa � � t traces

�
Qc � � r � a s

� Pc
�
u �

c t
�
u � R �

� �
r � � �

Pc
�
v � c t

�
v � R �

� �
s � �

Even though this definition mentions traces only, refusals
are taken into account implicitly: after performing a certain
trace s, the sum of the probabilities of all possible further
behaviors of the system, i.e., events and refusals, is equal
to � . If the probabilities of all possible next events do not
change, the probabilities of refusals do not change either.

The definition also covers active adversaries, because no
assumption is made on the distribution of the probabilistic
non-determinism of the abstract system. Therefore, active
adversaries, imposing a particular distribution on the events
at the system interface, cannot distinguish more behavior
than Condition 2 allows them to, i.e., they cannot gain in-
formation from their knowledge of that distribution.

Even adversaries not adhering to the interface protocol
prescribed by the abstract system are covered, because the
condition of correct behavioral refinement implies that the

concrete system either is tolerant against protocol violating
attacks or that it prevents such attacks.

Example. To prove that ASystem is behaviorally refined
by CSystem, we need to find a suitable retrieve relation.
The data on the channels inp and out do not change. For
the data on w, however, the retrieve relation must translate
ciphertexts to suitable lengths of messages. This means, it
must relate a given concrete trace t to all abstract traces s
where the events on inp and out (obtained by the functions
Inp and Out) are the same as the corresponding ones on t,
and the events on w are the lengths of possible decipherings
of the ciphertexts in t.

R � � t traces
�
CSystem � � s traces

�
ASystem � �

	 t �
	 s �
Inp

�
t � � Inp

�
s � � Out

�
t � � Out

�
s � �� �

i ������ t � ct � t
�
i ��� w � ct

� s
�
i � � w � �

length
�
decipher

�
ct � Key

�
t � i � � � � ��

The term decipher
�
ct � Key

�
t � i � � is equal to Msg

�
t � i � , but we

prefer to use the former in the definition of R to make the
relation between corresponding items in t and s explicit.

Proving ASystem � R CSystem is straightforward, and we
do not go into details here.

It remains to show that the refinement ASystem � R

CSystem preserves confidentiality. The inverse of R is de-
fined as follows:

R �
� � � s traces

�
ASystem ��� t traces

�
CSystem � �

	 s � 	 t �
Inp

�
t � � Inp

�
s � � Out

�
t � � Out

�
s � �� �

i ������ s � n � s
�
i � � w � n

� t
�
i � � w � �

cipher
�
Msg

�
s � i � � Key

�
t � i � � � ��

With that definition of R�
� , we can instantiate Condition 2

of Definition 3.

�
r � s traces

�
ASystem ��� t traces

�
CSystem � �

	 r � 	 s �� �
i ������ s �
length

�
Msg

�
s � i � � � length

�
Msg

�
t � i � � �

� Pc
�
Indist

�
u � t � �

Repr
�
u � r � � �

Pc
�
Indist

�
v � t � �

Repr
�
v � s � �

(1)

Here, the indistinguishability Indist
�
u � t � of u (or v) from t,

and the condition Repr
�
u � r � that u is a representation of r

(or v of s) are given by

Indist
�
u � t � � 	 u �
	 t ��
i ������ u � cipher

�
Msg

�
u � i � � Key

�
u � i � � �

cipher
�
Msg

�
t � i � � Key

�
t � i � �

Repr
�
u � r � � 	 u � 	 r �

Inp
�
u � � Inp

�
r � � Out

�
u � � Out

�
r � �� �

i ������ r � n � r
�
i � � w � n

� u
�
i � � w � cipher

�
Msg

�
r � i � � Key

�
u � i � � �

Indist
�
u � t � requires that the lengths of u and t are equal.

By Repr
�
u � r � and Repr

�
v � s � and the assumption 	 r �
	 s,

the lengths of u and v are equal. Therefore, if 	 r �� 	 t,
then both probabilities in (1) are equal to � .

In the following, we assume that the lengths of all in-
volved traces are equal. This entails that the domains of u
and v are equal, too. From the definition of CSystem, we
know that for all i �� j the keys Key

�
u � i � and Key

�
u � j � are

chosen independently, and that the same holds for the keys
in v. Therefore, it suffices to consider corresponding data
transmissions in the involved traces independently. This
means, instead of probabilistically choosing u according to
distribution Pc, we choose a key ku � i according to distribu-
tion P. For all i � ����� t, the required equality between
probabilities is therefore equivalent to

P
�
cipher

�
Msg

�
r � i � � ku � i � � cipher

�
Msg

�
t � i � � Key

�
t � i � ��

cipher
�
Msg

�
r � i � � ku � i � � cipher

�
Msg

�
r � i � � ku � i � �

�
P

�
cipher

�
Msg

�
s � i � � kv � i � � cipher

�
Msg

�
t � i � � Key

�
t � i � ��

cipher
�
Msg

�
s � i � � kv � i � � cipher

�
Msg

�
s � i � � kv � i � �

We observe that the conditions on the chosen keys ku � i and
kv � i are trivially true.

The ciphertexts in t are arbitrary if only they are mem-
bers of the range of cipher. Further, the assumptions impose
a restriction on the lengths of the Msg

�
u � i � and Msg

�
v � i �

only. Therefore, condition
� � � is equivalent to

�
msgu � msgv � ct �
length

�
msgu � � length

�
msgv � �

ct ������� cipher
� P

�
cipher

�
msgu � ku � � ct � �

P
�
cipher

�
msgv � kv � � ct �

(2)

This condition is not universally true. If we assume,
however, that cipher is defined in such a way that for given
msg and ct there is exactly one k such that cipher

�
msg � k � �

ct, then we get the usual condition that all keys are chosen
with equal probability.

6.3 Transitivity

In order to be useful at all, refinement must be transitive.
This means that several consecutive refinement steps can be

performed, and each of the concrete system specifications
is a refinement of the original abstract system specification.

Theorem 1 (Transitivity)
Let A � �

Qa � w � , B � �
Qb � w � , and C � �

Qc � w � be system
specifications where A � Rba B and B � Rcb C, and both re-
finements preserve confidentiality. Then A � Rba � � Rcb C, and
this refinement preserves confidentiality.

Here, Rba � � Rcb denotes the forward relational composition
of Rba and Rcb.

Proof

CSP refinement is known to be transitive. We therefore con-
centrate on the question whether the refinement A � Rba � � Rcb

C preserves confidentiality.
We assume that the refinements A � Rba B and B � Rcb C

preserve confidentiality, i.e. we know:

�
ra � sa traces

�
Qa ��� tb traces

�
Qb � �

ra
�

a sa
� Pb

�
ub

�
b tb

�
ub � R �

�
ba

�
ra � � �

Pb
�
vb
�

b tb
�
vb � R �

�
ba

�
sa � �

(3)

�
rb � sb traces

�
Qb ��� tc traces

�
Qc � �

rb
�

b sb
� Pc

�
uc
�

c tc
�
uc � R �

�
cb

�
rb � � �

Pc
�
vc
�

c tc
�
vc � R �

�
cb

�
sb � �

(4)

Now we must show:
�

ra � sa traces
�
Qa ��� tc traces

�
Qc � �

ra
�

a sa
� Pc

�
uc
�

c tc
�
uc � �

Rcb � � Rba � �
� �

ra � � �
Pc

�
vc
�

c tc
�
vc � �

Rcb � � Rba � �
� �

sa � �
(5)

We first observe that the involved systems A, B, and C
are stochastically independent as far as their probabilistic
behavior is concerned

��� � , because the probabilistic non-
determinism of a system as defined in Section 3.1 is inde-
pendent of the choices in another system.

We further note that the probability to choose a trace
ub � R �

�
ba

�
ra � that is indistinguishable from tb is equal to

the total of the probabilities to choose an ub � R �
�

ba

�
ra � that

is equal to a given x with x � b tb.

Pb
�
ub

�
b tb

�
ub � R �

�
ba

�
ra � � ��

x � btb

Pb
�
ub � x

�
ub � R �

�
ba

�
ra � � (6)

Now, we calculate:

Pc
�
uc
�

c tc
�
uc � �

Rcb � � Rba � �
� �

ra � � (7)

� Pc
�
uc
�

c tc
�
uc � �

R �
�

ba � � R �
�

cb � �
ra � � (8)

� Pc
�
uc
�

c tc
�
uc � R �

�
cb

�
R �

�
ba

�
ra � � � (9)�

���� �
tb � traces

�
Qb �

	
Pb

�
ub � tb

�
ub � R �

�
ba

�
ra � ��
 (10)

Pc
�
uc
�

c tc
�
uc � R �

�
cb

�
tb � ��

Indistinguishability induces a partition on traces.

�
�

�
ub � � � traces

�
Qb ��� � b � (11)

�
tb � bub

	
Pb

�
x � tb

�
x � R �

�
ba

�
ra � ��

Pc
�
uc
�

c tc
�
uc � R �

�
cb

�
tb � ��

By (4) and tb
�

b ub,

substitute ub for tb and factor out constant term.

��� �� �
�
ub � � � traces

�
Qb ��� � b �
	
Pc

�
uc
�

c tc
�
uc � R �

�
cb

�
ub � ��
 (12)

�
tb � bub

Pb
�
x � tb

�
x � R �

�
ba

�
ra � � �

��� �� �
�
ub � � � traces

�
Qb ��� � b �Pc

�
uc
�

c tc
�
uc � R �

�
cb

�
ub � ��
 (13)

Pb
�
x � b ub

�
x � R �

�
ba

�
ra � �

Substitute sa for ra.

��� �� �
�
vb � � � traces

�
Qb ��� � b �Pc

�
vc
�

c tc
�
vc � R �

�
cb

�
vb � ��
 (14)

Pb
�
x � b vb

�
x � R �

�
ba

�
sa � �

Transformations similar to (13)-(7).

� Pc
�
vc
�

c tc
�
vc � �

Rcb � � Rba � �
� �

sa � � (15)

7 Conclusions and Future Work

We have defined a notion of confidentiality-preserving
refinement that allows developers of systems where con-
fidentiality is an issue to proceed by stepwise refinement.
Confidentiality is defined as indistinguishability of system
traces, given the view of a window only. For each system,
not only its behavior but also the data that need not be kept
secret have to be specified. In refining the system, the secu-

rity of solutions has to be characterized on the level of more
concrete system descriptions. The refinement preserves the
required confidentiality of a system if the refined system
does not reveal more information – in the sense of Shannon
[14] – on the abstract data than permitted by the abstract
specification.

Our way of specifying confidentiality properties is robust
against human error: omissions in window specifications
would lead to a system that keeps more information confi-
dential than necessary. Failing to implement such a specifi-
cation may reveal such an error. It is, however, impossible
that an omission in a specification leads to an insecure sys-
tem.

Moreover, we explicitly take into account the fact that
when refining an abstract system specification, it is in-
evitable that more data become distinguishable. It cannot be
avoided that an adversary can gain more information. How-
ever, it can be prevented that confidential information can
be inferred.

Our central contribution to the formal specification of
confidentiality and to confidentiality-preserving refinement
is that we fully take probabilistic choices of systems into
account. Only considering probabilities as used in crypto-
graphic approaches makes it possible to identify a sufficient
and necessary condition for confidentiality-preserving re-
finement.

It is obvious that CSP as a specification language cannot
express all aspects of a system that are relevant for confi-
dentiality. We view our use of CSP in this paper as an illus-
tration of our concepts. We are confident that our definitions
are applicable to other formalisms as well, even though the
techniques to verify confidentiality-preserving refinement,
e.g., with respect to real-time aspects or sharing of com-
putational resources, may differ significantly from the ones
used to verify CSP refinements.

Using a toy example, we have demonstrated that our ap-
proach is feasible in principle. It remains to use our no-
tion of refinement on more realistic examples. For this pur-
pose, tool support will be desirable if not necessary, because
manipulating large formulae by hand is tedious and error-
prone. A CSP model checker such as FDR2 and theorem
proving support such as Tej and Wolff’s [16] embedding
of CSP in Isabelle/HOL [12] offer themselves as starting
points of investigations on tool-support. Extensions of such
tools supporting probabilistic reasoning are necessary.

We have proven that our confidentiality-preserving re-
finement is transitive. Another important property that is
indispensable for the usefulness of refinement in practical
applications is compositionality. It states that in a compos-
ite system, parts of the system may be refined in isolation,
and the composite system containing the refined parts can
be guaranteed to be a refinement of the original system. Al-

2see http://www.formal.demon.co.uk/FDR2.html

though we are confident that our confidentiality-preserving
refinement is compositional under certain conditions, this
still must be demonstrated.

Our notion of refinement is confidentiality-preserving.
However, as noted in the introduction, there is much more
to security than confidentiality. We seek to extend our ap-
proach and define a formal framework for the development
of secure systems in the broader sense of the word. For
example, availability should be covered in the future.

Being formal, our approach is idealistic in the sense
that it guarantees confidentiality for perfect implementa-
tions only. A worthwhile goal is to study how confiden-
tiality can be achieved in the presence of implementation
errors.

All in all, we consider the results presented in this paper
as a promising starting point for a comprehensive formal
treatment of security issues that works for realistic cases.

Acknowledgments. We thank Heiko Mantel for com-
ments on a draft of this paper. We also thank the anonymous
referees for pointing us to Mantel’s and Toussaint’s work.

References

[1] J. Allen. A comparison of non-interference and non-
deducibility using CSP. In Proceedings of the 1991 IEEE
Computer Security Workshop, pages 43–54. IEEE Computer
Society Press, 1991.

[2] Canadian System Security Centre. The Canadian
trusted computer product evaluation criteria (version 3.0e).
Communications Security Establishment; Government of
Canada, 1993.

[3] European Communities – Commission. ITSEC: Information
Technology Security Evaluation Criteria (Provisional Har-
monised Criteria, Version 1.2, 28 June 1991). Office for
Official Publications of the European Communities, Luxem-
bourg, 1991. ISBN 92-826-3004-8.

[4] J. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the 1982 IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer Society
Press, 1982.

[5] J. Graham-Cumming. Laws of non-interference in CSP.
Journal of Computer Security, 2:37–52, 1993.

[6] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[7] J. Jacob. On the derivation of secure components. In IEEE
Symposium on Security and Privacy, pages 242–247. IEEE
Press, 1989.

[8] J. Jacob. Basic theorems about security. Journal of Com-
puter Security, 1:385–411, 1992.

[9] J. J ürjens. Secrecy-preserving refinement. In J. N. Oliveira
and P. Zave, editors, FME 2001: Formal Methods for In-
creasing Software Productivity, LNCS 2021, pages 135–
152. Springer-Verlag, 2001.

[10] J.-C. Laprie, editor. Dependability: Basic Concepts and Ter-
minology in English, French, German, Italian and Japanese.
Springer-Verlag, 1992.

[11] H. Mantel. Preserving information flow properties under
refinement. In IEEE Symposium on Security and Privacy.
IEEE Press, 2001. to appear.

[12] L. C. Paulson. Isabelle – A Generic Theorem Prover. LNCS
828. Springer-Verlag, 1994.

[13] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-
interference through determinism. In D. Gollmann, edi-
tor, European Symposium on Research in Computer Secu-
rity (ESORICS), LNCS 875, pages 33–53. Springer-Verlag,
1994.

[14] C. E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379–423, 623–656,
1948.

[15] J. M. Spivey. The Z Notation – A Reference Manual. Prentice
Hall, 2nd edition, 1992.

[16] H. Tej and B. Wolff. A corrected failure-divergence model
for CSP in Isabelle/HOL. In J. Fitzgerald, C. B. Jones,
and P. Lucas, editors, FME’97: Industrial Applications and
Strengthened Foundations of Formal Methods, LNCS 1313,
pages 318–337. Springer-Verlag, 1997.

[17] M.-J. Toussaint. Formal verification of probabilistic prop-
erties in cryptographic protocols (extended abstract). In
H. Imai, R. L. Rivest, and T. Matsumoto, editors, Advances
in Cryptology—ASIACRYPT ’91, LNCS 739, pages 412–
426. Springer-Verlag, 1991.

[18] M.-J. Toussaint. Deriving the complete knowledge of partic-
ipants in cryptographic protocols. In J. Feigenbaum, editor,
Advances in Cryptology (CRYPTO ’91), LNCS 576, pages
24–43. Springer-Verlag, 1992.

[19] M.-J. Toussaint. Separating the specification and implemen-
tation phases in cryptology. In Y. Deswarte, G. Eizenberg,
and J.-J. Quisquater, editors, European Symposium on Re-
search in Computer Security (ESORICS ’92), LNCS 648,
pages 77–102. Springer-Verlag, 1992.

[20] V. L. Voydock and S. T. Kent. Security mechanisms in
high-level network protocols. ACM Computing Surveys,
15(2):135–171, 1983.

[21] G. Wolf and A. Pfitzmann. Properties of protection goals and
their integration into a user interface. Computer Networks,
32:685–699, 2000.

