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Abstract. We are interested in specifying component models in a way that al-
lows us to analyze the interplay of components in general, and to concisely spec-
ify individual components. As a starting point for coming up with a technique of
specifying component models, we consider JavaBeans. We capture the JavaBean
component model using UML class diagrams, Object-Z, and life sequence charts.

1 Introduction

Component-based software engineering [20] is an emerging field of great interest in
research and practice. Its goal is to develop software systems not from scratch but by
assembling pre-fabricated parts, as is done in other engineering disciplines. These pre-
fabricated parts are called components.

Components are independently deployable pieces of software. Several component
models, such as JavaBeans [17], Enterprise Java Beans [18], Microsoft COM [12], and
CORBA [13] have been proposed. A component model is designed to allow components
to interoperate that are implemented according to the standards set by the model. Build-
ing a system from components means selecting components that adhere to a particular
component model and composing them in a way that is suitable to achieve the desired
system behavior.

To ensure the interoperability of components, a component model must address the
following aspects: the syntactic conventions for building component interfaces (often
called the “interface specification”); the dynamic behavior describing allowed and for-
bidden flows of events between connected components; and the semantics of operations
of a component, e.g. registering a call-back procedure with a component has an effect
on the state of the component, although that may not be immediately visible.

An analysis of a component model must demonstrate that the interplay of compo-
nents fulfills the expectations described in the component model in any case, i.e. that the
component model is consistent (components can interoperate), and that it is complete
(all possible behaviors are covered).

For an individual component, a concise way of instantiating the component model
(saying that it is a component) is needed. Additionally, a specification describing the
specifics of the individual component is necessary to analyze whether a specific way of
composing individual components actually achieves a desired system behavior.
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Fig. 1. The JavaBean Interface

The general aim of our research is to come up with a technique of specifying the
different semantic aspects of a component model, capturing the dynamic behavior and
the effects of operations in sufficient detail for analyzing consistency and completeness
of the model. A component model specification should be easily instantiable to yield a
concise, easily extensible specification of concrete components. We use a combination
of UML class diagrams [14], an extension of sequence diagrams called life sequence
charts (LSC) [6], and the formal specification language Object-Z [15] to capture the
different aspects of a component model. In the present work, we focus on the JavaBean
component model [17]. JavaBeans are a well-established technology. The JavaBean
component model is reasonably simple to allow us to illustrate our general approach
to specifying component models without obscuring the presentation with the technical
detail of a more elaborate component model.

2 Introduction to JavaBeans

JavaBeans is a component model originally introduced by Sun in 1996. It has an event-
based communication model between components, which are called Beans: a Bean no-
tifies registered listener Beans about the events that it generates, and it registers with
other Beans to be notified about their events. As we will see in Section 3, cooperating
Beans thus realize three variants of the observer design pattern [8].

More specifically, the main aspects of the Bean model include [20]:

— A Bean can generate and receive arbitrary events.

— A Bean has a number of properties, which are manipulated with specific setter and
getter operations.

— Changing a property may generate an event. For a bound property, a Bean generates
a change event whenever the value of that property changes. For a constrained
property, the Bean generates a change event like for a bound property. Additionally,
the listeners to that event may vefo the change, causing the Bean to revert the value
of that property to the one before the change.

— In addition to the operations implementing the event-based communication be-
tween Beans, a Bean may provide an arbitrary number of ordinary operations in
its interface.
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Fig. 2. Overview of the JavaBean component model

Figure 1 illustrates the interfaces of two Beans and their connections. For the events,
an interface is divided into two parts: one to receive events, and one to generate them.
When connecting Beans, the generating side of an interface can be connected to several
receiving sides of other Beans that will be notified of events. The set and get operations,
and other operations provided by a Bean can be called by other Beans in an arbitrary
fashion.

3 The JavaBean Component Model

In order to adequately specify all relevant aspects of the JavaBean component model,
we use several complementary formalisms: UML class diagrams [14] describe the static
structure of the component model. Because of their graphical nature, class diagrams
provide a readily accessible overview of the component model. Object-Z [15] serves to
specify the detailed semantics of the classes contained in the class diagram and their
features. In particular, it states properties such as class invariants, and it specifies the
effect of operations. As the information shown in the class diagrams is also contained
in the Object-Z specification, the class diagrams are not strictly necessary. However,
they are useful to provide an overview of the component model. Life sequence charts
(LSCs) [6] specify the behavioral aspects of the component model. Such aspects cannot
be expressed in languages like Object-Z in a satisfactory way. We use LSCs instead of
message sequence charts [10] or UML sequence diagrams, because, first, they have a
formal semantics [11], and second, they are more expressive than message sequence
charts or UML sequence diagrams. In particular, we need to distinguish between op-
tional and mandatory behavior, and we need to use activation conditions and forbidden
messages.

3.1 Top-level Model

We now present a formal specification of the JavaBean component model. Figure 2
shows the top-level class diagram of the component model. In general, a JavaBean
comprises the functionalities of generators, listeners and properties (c.f. Figure 1). The
class JavaBean in the center of Figure 2 illustrates this fact. It specializes the three
abstract classes Generator, Listener, and Property, and thus serves as a focus relating
those three classes.



Corresponding to the three variants of events (simple events, change events for
bound properties, and for constrained properties), there are three specializations on
the generator and on the listener sides of the class diagram. A concrete component
ConcreteBean will specialize those classes rather than the abstract classes Generator
and Listener. Therefore the class JavaBean and its associated generalization / special-
ization- relations are not strictly necessary in the component model.

A Bean can take the role of a generator and of a listener at the same time. This
results in multiple inheritance in two ways: first, a concrete Bean can inherit from the
descendants of the class Generator as well as from the descendants of the class Listener.
Second, it may have several bound properties or listen to several events, for example.
Hence, multiple inheritance — with a suitable renaming — from the same class will occur.

For the specification of the component model, we are not interested in the ques-
tion whether the programming language in which the components are implemented (in
our case Java) supports multiple inheritance. We rather aim at clearly describing the
essentials of the component model.

3.2 Constrained Properties

In the following, we present the part of the component model describing constrained
properties in more detail. The specification of events, simple properties, and bound
properties can be found in [9].

Class Diagram Figure 3 shows the class diagram for JavaBeans with constrained prop-
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Fig. 3. Constrained properties VetoableChangeListener. Each Vetoable-

ChangeListener incorporates objects of the class ObservedProperty. This class provides
an operation VetoableChange to process change events. Processing a change event may
amount to vetoing the proposed change.

As in Figure 2, we indicate in Figure 3 that a concrete Bean can multiply inherit
from both classes ConstrainedPropertyBean and VetoableChangeListener.



Property Specification The following Object-Z specification gives a precise meaning
to all classes, attributes, and methods mentioned before.

In Object-Z, each class is defined using a “box” that shows the class name at
its top, e.g., ConstrainedPropertyBean. The symbol “[” is used to specify which at-
tributes and operations of a class are publicly visible. Following the export list, the
constant attributes of a class are specified (for example, name and vcs in the class
ConstrainedProperty below). The unnamed box inside a class box contains the specifi-
cation of the mutable attributes of the class. These are declared above a horizontal line.
Below that horizontal line, the class invariant is given. It states integrity constraints that
each object of the class must satisfy. The state box of a class definition is followed by
the definition of the class operations.

The class ConstrainedPropertyBean offers the operations addVetoableChangeListener
and removeVetoableChangeListener to its environment. It contains two private attributes,
namely an object ves of class VetoableChangeSupport and a set (expressed by the pow-
erset operator P) of objects of the class ConstrainedProperty. The class invariant stip-
ulates that the same vcs object be used by all objects belonging to the set cps. The
operations of the class ConstrainedPropertyBean are defined to be the promotion of the
operations provided by the vcs object.

A ConstrainedProperty has two constant attributes: the name of the property, and
a reference vces to the VetoableChangeSupport that handles its change messages. The
value of the property is its mutable private attribute. The operation get copies the value
to its output v!. In Object-Z, there is a convention to decorate output variables with an
exclamation mark, and input variables with a question mark.

—— ConstrainedPropertyBean
| (addVetoableChangeListener, removeVetoableChangeListener)

addVetoableChangeListener =

ves : VetoableChangeSupport ves.addVetoableChangeListener
cps : P ConstrainedProperty removeVetoableChangeListener =
Vcp : cps ® cp.ves = ves ves.removeVetoableChangeListener

The operation set is defined as a combination of several auxiliary operations. First,
get is invoked to provide the current value as an input to ves.fire VetoableChange, which
also takes the name of the property as an input. The sequential composition operator §
pipes outputs of its first argument to inputs of its second argument that have the same
base name.

A boolean value veto! is the output of the operation vcs.fireVetoableChange. It in-
dicates whether the change of the property has been vetoed by one of the listeners. De-
pending on the value of veto!, one of the operations setSuccess and setVetoed is invoked.
The operation setSuccess has a precondition — vefo?, whereas setVetoed has a precon-
dition vero?. Therefore, the choice operator setSuccess [| setVetoed invokes setVetoed
in case of a vetoed change, and setSuccess otherwise. The operation setVetoed has no
effect: it does not mention a A-list, and therefore it cannot change the state of the bean.
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Fig. 4. A Non-Vetoed Property Change

The operation setSuccess changes value as indicated by A(value). The new value' is
determined by the input parameter v?.

—— ConstrainedProperty

I (name, set, get) name : String

ves : VetoableChangeSuppport

‘ value : Object

— get — setSuccess ——— — —— setVetoed
vl : Object A(value) v? i Object
v! = value v? : Object veto? : B

veto? : B veto?
= veto?
value' = v?

~

set = (get § ves.fireVetoableChange[name [name?]) [v?/V'?] §

(setSuccess [| setVetoed)

Component Collaboration To specify how intended changes of a constrained prop-
erty are processed, we need life sequence charts that show which objects send which
messages in which order. Figure 4 shows how a property change is handled when no
veto occurs. The expression “forbidden msgs: throw(PropertyVetoException)” states
that no veto may occur in the sequence of messages in Figure 4. The possibility to state
such negative conditions is a means of expression not available in message sequence
charts.

Moreover, the chart has an activation condition, which means that it is only invoked
if the corresponding condition holds. In this case, we must require that the object vcl
of class VetoableChangeListener be registered for the ConstrainedPropertyBean whose
constrained property is to be changed.

Once a listener vcl has been registered, it will receive appropriate property change
events whenever the operation set for a constrained property is invoked. The object vcl
prototypically stands for all registered listeners. Here, we see that the Object-Z and
the LSC specifications are complementary. In the LSC, it cannot be expressed that the
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Fig. 5. A Vetoed Property Change

vetoableChange message must be sent to all registered listeners. This fact is stated in
the Object-Z specification of the class VetoableChangesupport, however.

Figure 5 shows the more complex behavior in the case that one of the listeners ve-
toes the change of a constrained property. In that situation, we need to consider two pro-
totypical listeners, vel and ovcl. An invocation of set causes a call to fireVetoableChange.
All listeners, i.e. vel and ovcl are notified of the proposed change. Vetoing the change,
vel throws a PropertyVetoException. As a consequence, all listeners must be notified
of the veto. A way to do so [7] is to notify all listeners of a change of the property’s
value back from the new value to the previous one. This may indeed be the only way
to notify listeners of a veto, because the JavaBean component model does not enforce
explicit confirmations of (vetoable) changes. Therefore, a listener must assume that a
change is not vetoed unless it receives a vetoableChange message reverting the value
of a property back to its previous one.

The class VetoableChangeSupport defines the general infrastructure for the gener-
ator side of vetoable changes. The class definition expresses crucial information about
processing vetoable changes that cannot be expressed in LCSs or are not expressed
in the LSC specification for reasons of conciseness and readability. For example, the
parameters of all operations are not given in the LSCs, but only in the Object-Z specifi-
cation.

In addition to the set of listeners vcl, the boolean state variable vero holds the status
of veto for an execution of fireVetoableChange. Several private operations manipulate
velto.

The operations addVetoableChangeListener and removeVetoable ChangeListener just
add or remove a new listener to or from the set vcl.

The definition of fireVetoableChange reflects the complexity of catching a veto and
possibly notifying all listeners of a change back to the old value of a property. The
operation mkVCE ! constructs a vetoable change event evt!, which is input to the first

! The definition of mkVCE can be found in [9].



invocation of vetoableChange on all members of vcl. It also returns evtRev!, a change
event reverting the value of the property back to its previous value. The invocation
of vote in parallel with each vetoableChange serves to accumulate possible vetoes: if
one call to vetoableChange returns veto! = true, then the attribute veto becomes (and
remains) true.

—— VetoableChangeSupport
| (addVetoableChangeListener, removeVetoableChangeListener,

fireVetoableChange)
—— addVetoableChangeListener ——

vel : P VetoableChangeListener A(vel)

veto : B vel? : VetoableChangelListener

vel' = vel U {vcl?}
—— removeVetoableChangeListener ——— —— resetVeto

A(vel) A(veto)

vel? : VetoableChangelListener = veto'

vel' = vel \ {vel?}

—— vote — vetoed ——  —  —— notVetoed —
A(veto) veto! : B veto! : B
veto? : B veto = veto
veto' = veto V veto? veto! = veto veto! = veto

fireVetoableChange =
mkVCE § resetVeto §
(3 ve : vel o ve.vetoableChange || vote) §
(notVetoed
I
(vetoed ||
(5 ve : vel o (ve.vetoableChangeleviRev? [evt?) \ {veto'}))))

The choice notVetoed [| (vetoed . ..) processes a possible veto. If veto is false, the
left branch is taken and the property change succeeds, because notVetoed is a no-op
with precondition — veto. If veto is true, then all listeners are notified of the reverse
change event evtRev!. In this case, hiding the output veto! of vetoableChange prevents
a veto to the reverse change from succeeding.

Here, an unresolved issue of the JavaBean component model has become obvious:
what happens if one of the listeners vetoes the second vetoableChange that reverts the
first vetoed change? In our Object-Z specification, we have decided to forbid that kind
of behavior.

The specifications presented in this section give the reader an impression of how the
formal specification of component models might look. The specifications of the other
classes shown in Figure 3 can be found in [9].
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Fig. 6. A component specification and its expansion

4 Specification of a Bean

This section illustrates by way of an example how our JavaBean component model
can be instantiated to specify individual Beans very concisely, without repeating all the
details already stated in the component model specification.

The simple Bean MyButton implements a text button for a graphical user interface
[19]. The button has a text field of a certain size which displays the label of the button.
Using the mouse pointer, which is implemented as another Bean, the button can receive
a number of events signaling the status of the mouse pointer and the mouse button. An
instance of MyButton generates an event called action if the mouse button is pressed
while the mouse pointer is on the button.

We specify an individual Bean such as MyButton in Object-Z augmented by some
keywords, as the left-hand side of Fig. 6 shows. Replacement rules define the mean-
ing of those keywords. There is no need to give additional class diagrams or repeat
any of the LSCs of the component model. Specializing operations inherited from the
component model describes their effect particular to the individual Bean.

The specification of MyButton declares the generated and received events action,
pressed, clicked, etc. The phrases declaring those events mention the classes ActionEvent
and MouseEvent. These classes — which we do not show here — implement the type of
information those events carry: an ActionEvent identifies the source of the event, which
is an instance of MyButton; a MouseEvent carries the coordinates of the mouse pointer.



The state box declares the mutable attributes of MyButton: sized and down are pri-
vate boolean flags; debug, the font and color information (font, fontSize, foreground,
background) are bound properties, and the text label displayed by the button is a con-
strained property.

We exemplify the keyword translation process by considering the expansion of the
declaration of label, which the right-hand side of Fig. 6 shows, leaving out the parts
concerning the other attributes of the Bean.

The value of each property is stored in a mutable attribute. Therefore, the decla-
ration of label remains part of the state box. Because label is a constrained property,
MyButton inherits from ConstrainedPropertyBean. This provides all the infrastructure
discussed in Section 3.2. In particular, MyButton has attributes vcs and c¢ps. An invari-
ant relates the attribute label to a member of cps, namely one with the name “label”. It
also relates the value of that ConstrainedProperty to label. Finally, to conform to the
naming conventions for JavaBeans, the operations getLabel and setLabel are defined to
be promotions of the get and set operations of that object.

This example shows how the keywords related to JavaBeans hide formal noise in
the Object-Z specification of a Bean. It also shows that we are actually working at the
specification level: how an implementation ensures that label is realized as a constrained
property is of no interest at this level of abstraction; it suffices to require that the attribute
label be related to a constrained property including all the necessary operations.

5 Related Work

Although much has been published about component-based software engineering, the
formal specification of components in general and JavaBeans in particular has not yet
been undertaken by many researchers.

Cimato [4,5] proposes an algebraic specification technique for Java objects and
components, where the term “component” does not denote an independently deployable
piece of software — as in the context of component-based software engineering — but an
entity of computation that is connected to other components in a software architecture
Consequently, Cimato focuses on architectural issues in his specification of JavaBeans.
A Bean architecture consists of Beans as components and adapters as connectors. A
configuration specifies how these are connected. These architectural descriptions do
not describe the interaction of Beans as we have done in Section 3 using life sequence
charts. Properties, bound properties, and constrained properties are not dealt with.

Brucker and Wolff [2] use UML class diagrams annotated with OCL formulas to
support the run-time checking of constraints on Enterprise Java Beans. They do not at-
tempt to specify the component model of Enterprise Java Beans as such, but they exploit
the structure of interfaces that the component model imposes on Beans to generate spe-
cific run-time checks of Java code from OCL constraints that annotate the various parts
of the class diagram for a Bean. They observe that the constraints on the implementation
of an abstract enterprise bean interface should be a data refinement of the constraints on
the interface, and they exploit that observation when checking constraints at run-time.

Beugnard [1] and Cariou [3] use UML to describe communication components
called mediums. A medium is a means to define communication services needed in dis-
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tributed applications, offering a specific interface, transportation services and specific
services (shared memory, configuration, quality of service). They specify components
by collaboration diagrams, OCL for class invariants and service specifications, and state
diagrams for temporal and synchronization constraints. In contrast to our work, Beug-
nard and Cariou do not aim at specifying component models in general, but propose a
specific component model.

6 Conclusions

A component model is the basis for many applications. Therefore, it deserves a thor-
ough analysis based on a precise description of its semantics. Our approach of speci-
fying component models provides such a precise description. As we have seen for the
example of the JavaBean component model, just specifying a component model can
make contradictions and omissions in the informal description explicit: the literature
[7,17,19] does not resolve the problem of “vetoed vetoes”. We are probably not the
first to detect that problem, but setting up a specification systematically leads one to ask
the questions that make problems as this one obvious.

We specify components independently of a target programming language. In the
JavaBeans case, for example, we do not restrict inheritance in specifications, even if it
is restricted in Java. Component specifications should provide all necessary informa-
tion concerning the component that is needed either to incorporate the component in a
system or to implement the component.

Not referring to specific features of a programming language, specifications of com-
ponent models support the comparison of different component models — a research that
may lead to improved interoperability between different component models.

There inevitably is some “formal noise” in a formal specification. We believe this
is acceptable for a component model, because the goal of interoperable components
requires a consistent and complete description of the infrastructure that they can build
on.

For an individual component, however, the specification highlights the specific ser-
vices, abstracting from details of the component model by means of specific key-
phrases. Specifications of individual components — and the underlying component model
— can be the basis for advanced assembly tools that analyze components not only on the
level of interface syntax but also on the level the semantics of the services that com-
ponents provide, and their interaction in a specific system. Such an analysis cannot be
provided based on the code alone.

Future Work. We have presented a way of formally describing component models with
the motivation of analyzing those models for consistency and completeness. The ques-
tion how such an analysis is best conducted and what appropriate tool-support for an-
alyzing component model specifications is must still be addressed. An embedding of
Object-Z in the logic of a theorem prover [16] can be a starting point to come up with
mechanized support for component models analysis.

A long term goal of this research is to find a general understanding of what the
characteristics of components are by way of specifying and comparing different com-
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ponent frameworks. This understanding could serve as a basis for unifying component
frameworks and allowing components of different frameworks to interoperate.

To reach this goal, it is necessary to investigate other, more complex component
models such as EJB and CORBA. It will also be necessary to take the process of com-
posing systems from components into account.
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