
Specification and Refinement of Secure IT-Systems
— Extended Abstract —

Thomas Santen
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin
10587 Berlin, Germany

santen@acm.org

Andreas Pfitzmann
Fakultät für Informatik

Technische Universität Dresden
01062 Dresden, Germany
pfitza@inf.tu-dresden.de

Maritta Heisel
Institut für Praktische Informatik und Medieninformatik

Technische Universität Ilmenau
Max-Planck-Ring 14, 98693 Ilmenau, Germany

maritta.heisel@prakinf.tu-ilmenau.de

1 Some Remarks on Formal Methods from a
Security Perspective

Dependable IT-systems [11] of relevant size can only
be built if all dependability attributes have a clear mean-
ing. This meaning must be consistent both with the com-
mon understanding of the people building and using the IT-
system, and with the tools they use and the development
process they adhere to. Therefore, a formal meaning of all
dependability attributes is needed which is compatible with
the usual refinement process of systems engineering.

Consider the meaning of security attributes. Some rela-
tionships with established formal notions are clear whereas
others are not understood so well. Confidentiality, integrity,
and availability are seen as the generic properties of secu-
rity [17, 5]. Some authors propose to add accountability
as a fourth one [4], others propose to refine confidential-
ity, integrity and availability according to the kind of in-
formation they relate to [18]. Then, e.g. accountability can
be interpreted as an integrity property concerning the cir-
cumstances of an action, anonymity can be interpreted as a
confidentiality property concerning the circumstances of a
communication, and so on.

The relationship between the security attributes integrity
and availability, and formal notions compatible with re-
finement is roughly clear. For terminating computations,
integrity corresponds to partial correctness, and availabil-
ity corresponds to assured termination combined with suf-
ficient computational resources to fulfill real-time require-
ments. Integrity and availability together correspond to total
correctness and sufficient computational resources. For re-

active systems, integrity means that the defined processes
satisfy certain required predicates, and availability corre-
sponds to fairness and liveness combined with sufficient
computational resources.

To date, the relationship between confidentiality and for-
mal notions of refinement is less well understood. One of
the reasons is that a possibilistic framework is not enough
to prove security in general and confidentiality in particu-
lar. Such a framework only makes it possible to find some
security flaws. To positively prove security, a probabilistic
framework is needed.

An Example: Protocol Verification Consider the state
of the art of (cryptographic) “protocol verification”. Ap-
proaches such as specially designed logics to describe and
analyse protocols [3], and approaches that use proving tech-
niques such as model checking [12] or interactive theorem
proving [14] all have several deficiencies in common.

First, their verdict is based on a possibilistic analysis
only. They may find flaws in protocols that definitely com-
promise a secret to an adversary. They will usually not com-
plain about a protocol that leaks sufficient information for
an adversary to deduce a secret with a probability of 99.9%.
From a practical point of view, however, the latter protocol
is as insecure as the former.

Second, the notion of security against which a protocol
is analyzed usually remains implicit in the definition of the
analysis. Therefore, it is unclear what positive reassurance
a protocol “verification” that does not find a flaw in a given
protocol actually establishes. One of the reasons for this
kind of vagueness is that a possibilistic framework does not

suffice to characterize security properties. Another reason is
that security requirements – and those related to confiden-
tiality in particular – often involve implicitly negative argu-
ments: “the system is allowed to do only what is explicitly
required – and nothing else”.

Security properties which are not achieved perfectly may
be even harder to prove than perfect ones, but these non-
perfect security properties are often the best you can achieve
in practice. Then, counting arguments of equally probable
possibilities are not enough.

Very large and varying numbers of participants may par-
ticipate in future protocols. In addition, the security prop-
erty to be proved may depend on the number of participants
and even the development of their number. Nearly all se-
curity protocols providing anonymity properties in general
and anonymous communication in particular are of that na-
ture.

Future protocol runs may be long lived in the sense that
in the midst of the protocol run, some participants may get
dishonest (e.g. their Windows ME machine gets subverted),
but others get honest (e.g. they re-install their Windows
operating system and application software and disable Ac-
tiveX).

It is not enough to specify all security properties a pro-
tocol is intended to achieve, but in addition the complete
environment, in particular all security relevant assumptions,
have to be specified. If this is not done, you neither can hope
that security can be proved nor that security protocols are
compositional. An example what happens if relevant prop-
erties of the environment are ignored is a ”secure” remote
login protocol (SSH), which transmits each keystroke of the
human user in a separate message immediately: Even when
all crypto is perfect (probabilistic encryption), the mere tim-
ing of the messages sent gives an attacker information he
can exploit – the time intervals between messages corre-
spond to the time intervals between keystrokes – and the
time intervals give, when observed long enough and ana-
lyzed cleverly, all characters typed with significant proba-
bility. That way, an attacker gets valuable information on
all passwords and on all pass phrases, e.g. to unlock cryp-
tographic keys.

2 Ingredients for Security-Aware Software
Engineering

While the formalisms and tools of the formal meth-
ods community are reasonably well suited for developing
safety-critical systems, much is lacking to really support the
development of secure IT-systems.

2.1 Specification

We need languages to express the specific requirements
concerned with security. In our established formal lan-
guages (model-based or algebraic specification languages,
process calculi, statecharts, etc.) – and also in not-so-formal
modeling notations such as UML – one will search in vain
for means to express protection goals and to model the ca-
pabilities of possible adversaries. A clear understandig of
both is the key to assessing the appropriateness of security
mechanisms with respect to the requirements for a given IT-
system.

It is also not clear what a suitable semantic domain for
such languages should be. As we have argued in the pre-
ceeding section, probabilistic models are necessary to re-
ally capture the meaning of confidentiality properties. If we
take into account that some aspects of integrity, e.g. mutu-
ally establishing the authenticity of principals in protocols
for e-commerce, are implemented using cryptographic tools
such as authentication systems, it is clear that probabilistic
arguments are also necessary for other aspects of security
than confidentiality.

2.2 Refinement

Of course, just formally specifying the security require-
ments of an IT-system is not enough. For critical require-
ments, a rigorous notion of what it means that an imple-
mentation faithfully realizes those requirements is needed.
Then, we can develop methods and tools to help demon-
strate that an implemented system actually fulfils the secu-
rity requirements, expressed as protection goals, against an
adversary described by a suitable adversary model.

3 State of Formal Methods Research in Secu-
rity

Much of current research of the formal methods commu-
nity on security related topics addresses protocol verifica-
tion [3, 12, 14]. Although, as we have argued above, “pro-
tocol falsification” might be a more suitable name for that
branch of research, it does provide some insight in designs
of secure protocols because tool-supported analyses using
model checking or theorem proving can find non-obvious
flaws that human inspection may not be able to find.

Another branch of research considers the implementa-
tion of security mechanisms such as authentication proto-
cols, e.g. for the CORBA authentication service in the con-
text of component based software engineering [2]. This
work addresses the internal consistency of security mecha-
nisms (“Is the service specification contradictory?”), and it
can support demonstrating that an implementation is a func-
tionally correct refinement of a service specification. It can-

21 llinp

w

ANet AReceiver outASender

ASystem

Figure 1. System Model

not, however, demonstrate that an implementation does not
contain a “trojan horse” that allows an adversary to circum-
vent the protection that the service is design to establish.

Little research focusses on notions of “secure refine-
ment”. Roscoe et. al. [15] have shown how non-interference
[1, 6, 7] can be preserved by refinement for deterministic
systems.

Mantel [13] considers the preservation of information
flow properties under refinement. It is well-known that
CSP-style refinement does not preserve information flow
properties in general [9]. Mantel shows how refinement
operators tailored for specific information flow properties
can modify an intended refinement such that the resulting
refinement preserves the given flow property. Working top-
down from the specification to an implementation, the re-
finement operators may lead to concrete specifications that
are practically hard to implement, because the changes in
the refinement they induce are hard to predict and may not
be easy to realize in an implementation.

Jürjens [10] uses stream processing functions to model
systems. He defines a notion of secrecy which is only nec-
essary in the sense that it does not prevent implicit infor-
mation flows. His condition is also only necessary because
an observing adversary gains a secret either completely or
not at all. Jürjens does not consider that an adversary may
gain information about the secret in a probabilistic sense.
He identifies conditions under which certain refinement op-
erators on stream processing functions preserve his notion
of secrecy.

4 Confidentiality-Preserving Refinement – A
First Step to Probabilistic Secure Refine-
ments

As a first step towards a formally based refinement tech-
nique for secure systems that takes probabilities into ac-
count, we have developed a definition of confidentiality-
preserving refinement [8]. To specify confidentiality prop-
erties we use a system model illustrated in Figure 1 for the
case of a communication system between a sender and a re-
ceiver communicating over an untrusted network. We spec-
ify a system for which confidentiality is an important re-

quirement by a pair of a process and a window channel. We
use CSP extended with a probabilistic choice operator to
specify processes.

Definition 1 (System, Window)
A system specification S � �Q�w� is a pair of a process
definition Q and a distinguished channel w � �Q, called
the window of S.

The window channel w models the information flow
from the system to an adversary. Observing the channel
w, the adversary gains information about the system. Any
distinction the adversary can make about the internal state
of the system based on the observations on w is informa-
tion that the system does not keep confidential. Conversely,
the system keeps confidential any aspect of its behavior
that an adversary cannot distinguish by observing w. We
formally capture that confidentiality property by defining
equivalences over system traces.

Definition 2 (Indistinguishability)
Let S � �Q�w� be a system specification. Let win be the
function projecting traces in traces�Q� to traces of Q �
��Q � �w��, i.e. to the sequences of events on the win-
dow w. Two traces s� t � traces�Q� are indistinguishable iff
the projections to w are equal:

s � t � win s � win t

In the transition from an abstract to a concrete system
specification, the interpretation of a window changes: The
window of an abstract system specifies what information
is allowed to be visible to the outside world. The window
of a concrete system specifies what information cannot be
hidden from the environment.

Here, a purely logical argument is insufficient because it
is not enough to ask whether a distinction in the concrete
system definitely allows an observer to distinguish confi-
dential data, but we must describe whether such a distinc-
tion provides more information1 about the confidential data
than the abstract window reveals. Therefore, we consider
the respective probabilities of internal data that may cause
a particular observable behavior on a window. Figure 2 il-
lustrates our approach to formalizing that probabilistic ar-
gument:

Let r and s be two abstract traces that are indistinguish-
able with respect to the window. According to R, trace r
can be represented by the concrete traces v and w, and trace
s can be represented by the concrete traces x and y, where v
and x as well as w and y are indistinguishable by observing
the concrete window. For keeping r and s indistinguishable
in the concrete system, we must require that the probability
that r is represented by v be the same as the probability that

1Note that information is a probabilistic notion [16].

==a

==c

==c

r s

abstract

concrete
0.4

w y

v x

t

t’R

0.6 0.4 0.6

Figure 2. Probabilistic concretization and in-
distinguishability

s is represented by x. If this were not the case, an adversary
might be able to gain information whether r or s happened
on the abstract layer: if the probability that r is represented
by v is greater than the probability that s is represented by
x, for an adversary, the observation of some element t � c v
increases the probability of r with respect to s.

The following definition reflects this argument: A
confidentiality-preserving refinement is one that ��� is a
usual behavioral and data refinement of the processes de-
scribing a system, and ��� it (probabilistically) preserves
the indistinguishability of system traces.

Definition 3 (Confidentiality-Preserving Refinement)
Let A � �Qa�w� and C � �Qc�w� be two system specifica-
tions. Let�a be the observational equivalence in A (wrt. w),
�c be the observational equivalence in C (wrt. w), and let
Pc be the probability distribution on traces�Qc�. The system
C is a confidentiality-preserving refinement of the system A
iff there exists a retrieve relation R mapping the data of C to
the data of A with inverse R�� such that:

1. Qc is a behavioral refinement of Qa,
i.e. Qa � �w� �R Qc � �w�, and

2. 	 r� s � traces�Qa�� t � traces�Qc�
 r �a s
� PR���r��u �c t� � PR���s��v �c t�

In Definition 3, the probability PR���r��u �c t� is the
probability of choosing u � R���r� such that u is indistin-
guishable from the given trace t of Qc. For different traces
r and s of Qa, the sets of possible implementations R���r�
and R���s� of r and s, respectively, may be different. There-
fore, the probability distributions PR���r� and PR���s� can be
different, too.

Properties of Confidentiality-Preserving Refinement

Confidentiality-preserving refinement is transitive [8]. Un-
fortunately, in general, it is not compositional, i.e. if C is a

1

1

2

2

1

1

2

2

w

w

Cin

K

A

out

in A

K

A

w

out

w = length(in)

w = cipher(in,k) w = k

out = in in

aux = k

out = in in

aux = 0

k

Figure 3. Confidentiality-preserving refine-
ment is not compositional

confidentiality-preserving refinement of A and we use A in
a context K�A�, then it is in general not true that K�C� is a
confidentiality-preserving refinement of K�A�. The exam-
ple in Figure 3 illustrates that observation.

In the abstract system, the component A� specifies a se-
cure communication service. It lets its environment ob-
serve the length of messages transmitted from channel in
to channel out, but no other information about the content
of messages. The implementation C� is a confidentiality-
preserving refinement of A�. It randomly chooses keys k
with equal probabilities to conceal the messages transmitted
over the network. An adversary can observe the cipertext
cipher�in� k�, which will reveal the lenght of the message
but nothing else about its content.

In the context shown in Figure 3, replacing A� by C�

does not preserve confidentiality, because the channel aux,
which is of no use in A�, is data-refined by C� to transmit the
keys k to the second subsystem. That system makes the key
visible to the environment over its window channel w� and
thus compromises the confidentiality requirement of A�.

5 Conclusions

We have argued that probabilistic definitions are neces-
sary to capture security aspects (in particular confidential-
ity) in formal notions of refinement. We have proposed a
definition of confidentiality-preserving refinement, which

we consider the starting point of more research into secure
refinement. It remains to find sufficient (or better: necessary
and sufficient) conditions for such a refinement to be com-
positional. It is also clear that our definition is too strong
for many cryptographic systems used in practice, because
those systems are (inevitably) insecure in exponentially few
cases. We are working on a variation of our notion of re-
finement that will accept those systems without admitting
“truely” insecure refinements.

References

[1] J. Allen. A comparison of non-interference and non-
deducibility using CSP. In Proceedings of the 1991 IEEE
Computer Security Workshop, pages 43–54. IEEE Computer
Society Press, 1991.

[2] D. Basin, F. Rittinger, and L. Viganò. A formal analysis of
the CORBA security service. In 2nd International Z and B
Conference (ZB 2002). Springer-Verlag, 2002. to appear.

[3] M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, 8(1):18–
36, 1990.

[4] Canadian System Security Centre. The Canadian
trusted computer product evaluation criteria (version 3.0e).
Communications Security Establishment; Government of
Canada, 1993.

[5] European Communities – Commission. ITSEC: Information
Technology Security Evaluation Criteria (Provisional Har-
monised Criteria, Version 1.2, 28 June 1991). Office for
Official Publications of the European Communities, Luxem-
bourg, 1991. ISBN 92-826-3004-8.

[6] J. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the 1982 IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer Society
Press, 1982.

[7] J. Graham-Cumming. Laws of non-interference in CSP.
Journal of Computer Security, 2:37–52, 1993.

[8] M. Heisel, A. Pfitzmann, and T. Santen. Confidentiality-
perserving refinement. In 14th IEEE Computer Security
Foundations Workshop, pages 295–305. IEEE Computer So-
ciety Press, 2001.

[9] J. Jacob. On the derivation of secure components. In IEEE
Symposium on Security and Privacy, pages 242–247. IEEE
Press, 1989.

[10] J. Jürjens. Secrecy-preserving refinement. In J. N. Oliveira
and P. Zave, editors, FME 2001: Formal Methods for In-
creasing Software Productivity, LNCS 2021, pages 135–
152. Springer-Verlag, 2001.

[11] J.-C. Laprie, editor. Dependability: Basic Concepts and Ter-
minology in English, French, German, Italian and Japanese.
Springer-Verlag, 1992.

[12] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In T. Margaria and B. Stef-
fen, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), LNCS 1055. Springer-
Verlag, 1996.

[13] H. Mantel. Preserving information flow properties under
refinement. In IEEE Symposium on Security and Privacy,
pages 78–91. IEEE Computer Society Press, 2001.

[14] L. C. Paulson. The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security, pages
85–128, 1998.

[15] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-
interference through determinism. In D. Gollmann, edi-
tor, European Symposium on Research in Computer Secu-
rity (ESORICS), LNCS 875, pages 33–53. Springer-Verlag,
1994.

[16] C. E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379–423, 623–656,
1948.

[17] V. L. Voydock and S. T. Kent. Security mechanisms in
high-level network protocols. ACM Computing Surveys,
15(2):135–171, 1983.

[18] G. Wolf and A. Pfitzmann. Properties of protection goals and
their integration into a user interface. Computer Networks,
32:685–699, 2000.

