A Systematic Approach to Software Evolution

Maritta Heisel
Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg
39106 Magdeburg, Germany
Tel. +49-391-67-12640
Fax +49-391-67-12810
email: heisel@cs.uni-magdeburg.de

ABSTRACT

We present an approach to adjust existing software to new
or changed requirements in an systematic way. The ap-
proach relies on a set of intermediate artifacts linked by
mappings that bridge the gap between requirements and
code. Those artifacts and the links between them can be
constructed and maintained with reasonable effort. Addi-
tional support is supplied by bookkeeping and validation
concepts. We demonstrate the usefulness of our approach
by performing our method on a real-life application.

KEY WORDS
Reusability, Software Methodologies, Software Mainte-
nance, Software Evolution

1 Introduction

Existing software engineering techniques usually treat the
case where a new software system has to be built. All docu-
ments are developed from scratch, without any reference to
existing documents. However, this situation is no longer
realistic, because more often than not, no new software
systems are constructed but existing systems are evolved
and adapted to new requirements. Hence, a task that be-
comes increasingly important is to engineer existing soft-
ware. Methods for software evolution — i.e., for adjusting
existing software to new or changed requirements — are still
missing, even though object orientation and component-
based software engineering enhance the possibility to re-
use existing software.

An important question for software evolution is the
choice of an appropriate basis. Even though in the end soft-
ware evolution leads to changing the code, it is not advis-
able to take the code as the starting point for evolution for
the following reasons:

e The motivation for changing the existing system are
additional or changed requirements. Hence, the re-
quirements must be the starting point for software evo-
lution.

e The different documents that make up the software
system must be kept consistent. An evolution strat-
egy that is based on code will almost certainly lead to

Carsten von Schwichow
Fakultét fur Informatik und Automatisierung
Technische Universitit llmenau
98684 lImenau, Germany
Tel. +49-3677-69-4561
Fax +49-3677-69-4540

email: carsten.von.schwichow@tu-ilmenau.de

neglecting the other documents. The result would be
an undocumented and hence unmaintainable system.

We conclude that software evolution should be based on
more abstract descriptions than only the code. Moreover,
several descriptions on different levels of abstraction are
necessary, because the gap between requirements and code
is too large to be bridged by one mapping alone.

This paper proposes a number of artifacts to be con-
structed and linked by mappings, as shown in Figure 1.
These artifacts can then be used to perform software evolu-
tion in a systematic way, following the different mappings,
beginning at the requirements level and ending at the code
level.

high
A requirements
£
I
£ pure problem
[=) .
S domain concepts
£
Q L
rs] specification
| &
o
2 shared
3] A NN
E I i H N & < Y
@
8 c concepts
5 g software
5 S architecture
S ©
21 & pure solution
% domain concepts
@ abstracted
source code
source code
low

Figure 1. Artifacts and mappings

In the following, we describe the different intermedi-
ate artifacts (Section 2), the links between them (Section 3),
and validation rules that allow us to check general integrity
constraints (Section 4). A method for software evolution
based on the different artifacts and mappings is presented
in Section 5. We illustrate our approach by the real-life
case study of a software system employed in German vo-
cational schools in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Artifacts

We now explain the artifacts to be constructed (see Figure
1) in more detail. As advocated by Jackson and Zave [1, 2],
we carefully distinguish a software development problem
from its solution. The problem is expressed in the require-
ments. The requirements make statements about how the
environment the software is intended to operate in will be-
have after the software is in function. They say nothing
about the inner workings of the software. The solution of
a software development problem, on the other hand, con-
sists of the program code plus all documents set up when
producing the code, including documentation.

In Figure 1, we use the term “concept”. Concepts in
the sense of this paper are (descriptions of) semantic units.
That includes real world objects, relations, working prin-
ciples, and operations. Solution domain concepts may be
implementation language constructs, such as modules, ob-
ject classes and functions, as well as architectural elements
such as repositories, pipes, and filters, or even patterns and
roles, like models, views, controllers, and observers.

2.1 Problem domain concepts

Problem domain concepts are those concepts that have a
meaning within the problem domain. The problem domain
comprises all parts of the environment of the software that
it will have to influence or communicate with. That in-
cludes various (hardware) devices, but also other programs,
such as server or client processes, for example operation
system facilities like a graphical user environment. Note
that for now “pure” problem domain concepts are not dis-
tinguished from “shared” (problem domain) concepts. The
difference will be explained in Section 2.6.

Problem domain concepts can be found in the require-
ments, as the requirements will mention objects, relations
and working principles that will be found or observed in the
problem domain. Requirements state that some of the rela-
tions and operations will have to be performed or fulfilled
by the software to be developed. Such properties are called
optative properties [2]. On the other hand, there are proper-
ties of the problem domain which are always true, no mat-
ter if the software exists or what it does. Such fixed prop-
erties of the problem domain are called indicative proper-
ties and are said to form the domain knowledge. Note that
the domain knowledge will never be expressed completely.
This is because the domain knowledge on the one hand
is typically very complex and on the other hand is taken
for granted by those who use it every day. Nevertheless,
it plays an important role in understanding the problem to
be solved. Section 2.2 will underline the meaning of the
domain knowledge for this approach.

2.2 Requirements and specification

As already mentioned, requirements make optative state-
ments about the problem domain. According to Jackson

and Zave [2], specifications are implementable require-
ments. This means that the specification must be expressed
in terms of concepts accessible and manipulable by the
software.

The specification is a description that suffices to build
the software. It is derived from the requirements by using
domain knowledge. For example, consider a library admin-
istration system to be required to set off an alarm when-
ever a book is removed from the library without permis-
sion. Unfortunately, the software is obviously not able to
directly detect the removal of a book. There must be some
technical facilities (sensors) that will send a signal to the
software when a book that has not been checked out before
is carried out of the library. Here the domain knowledge
guarantees that this property will hold in the problem do-
main.® Without this knowledge, the requirement would not
be implementable.

2.3 Code and abstracted code

A program’s source code alone is not the most suitable doc-
ument for understanding its working principles. Program
comprehension becomes much easier when distracting de-
tails can be hidden, i.e., the code can be viewed on higher
levels of abstraction. This can be done by identifying frag-
ments of code for which a description of their purpose can
be given. In the most simple case, this can be a descriptive
name for the fragment. For example, a sequence of instruc-
tions which are found to exchange the values of variables
fooand bar can be given the description “exchange foo with
bar”. This naming process can be applied recursively, so
that if the surrounding instructions of the fragment men-
tioned above are found to sort the elements of an array list,
this (bigger) code fragment can be given the name “sort
list”. The fragment “exchange foo with bar” thereby be-
comes a part of the fragment “sort list”. Another applica-
tion of code abstraction is to assign a short description to
complex boolean expressions used as a branching condi-
tion. Such a step eases the understanding of what is being
inspected by the condition and why the branching might
be necessary. In Section 3, we show how this abstraction
process can be performed with tool support.

The highest level of abstraction obtainable by this
technique is the level of object classes, function groups,
modules or alike. Abstractions of higher levels must be
represented in the software’s architecture.

2.4 Software architecture

Code abstraction is a good mechanism for raising the ab-
straction level of code in order to make it more understand-
able. But this technique is limited. As soon as a certain

IHowever, this “knowledge” may be falsified on a power failure, be-
cause then it might be possible to remove a book without the system rec-
ognizing it. Also, a skilled person might be able to remove the theft pre-
vention mechanism from the book.

level is reached, code abstraction will not be useful any-
more, because high-level interactions between a program’s
components are difficult, if not impossible, to be observed
from within the code. Such high-level working principles
must be expressed separately in the program’s architecture.
The architecture describes which components the program
consists of and how they interact. That includes communi-
cation paths and protocols, as well as cooperation patterns
and roles. The architecture is the highest-level description
within the solution domain. If the architecture of an exist-
ing software system is not documented, it must be retrieved
using design recovery techniques [3].

2.5 Solution domain concepts

Solution domain concepts can be found in the abstracted
code and the software architecture. Examples are language
constructs, such as modules, object classes, functions, and
data structures, as well as architectural elements, such as
components and connectors. Also, operations and relations
can be concepts, like “exchanging the values of two vari-
ables” or sorting an array”. All of these concepts have a
meaning within the solution domain. Once again, for now
there is no distinction between “pure” solution domain con-
cepts and “shared” concepts.

2.6 Shared concepts

In Sections 2.1 and 2.5 problem domain concepts and so-
lution domain concepts have been introduced. In order
to solve a problem, problem domain and solution domain
must somehow be linked. Otherwise there would be no re-
lation between the problem and the solution, and therefore
it would be impossible to check if the solution really solves
the problem. Hence, at least some of the problem domain
concepts must be transferred to the solution domain, that is,
they must have a proper representation within the solution
domain. In other words, there must be a (non-empty) match
between the concepts of the problem domain and those of
the solution domain.

For example, in a library administration system, there
exist books. On the one hand, these books exist in the
problem domain as physical entities. On the other hand,
they also exist in the solution domain, typically in the form
of special data structures called records. Both concepts,
the “physical book” (problem domain) and the “logical
book” (solution domain) refer to the same semantic con-
cept, namely the book. Therefore these two concepts con-
stitute a single semantic unit called “book”. Neither one of
them will be useful without the other. If the system does not
have any representations for the books, the library system
will not solve the problem. If there are no physical books,
the book records, just consisting of some bits, cannot be
interpreted, and thus, will have no meaning in the problem
domain.

As a consequence, only by merging problem domain

concepts with matching solution domain concepts, shared
concepts can be brought into existence. The key for this
matching process are the semantics contained in the con-
cepts. Only those concepts referring to the same semantic
entity can be matched. While each of the original con-
cepts remains in its domain, the unit formed by merging
the two crosses the line between problem and solution do-
main. Only those concepts are said to be “shared concepts”.
All other concepts, for which no matching partner from the
opposite domain can be found, are called “pure problem
domain concepts” or “pure solution domain concepts” re-
spectively.

3 Constructing mappings between artifacts

We now describe how to construct the mappings between
the artifacts, as shown in Figure 1. Note that even tough
the construction of the mappings may proceed in only one
direction (e.g., the abstracted code is constructed from the
code and not vice versa), navigation between the artifacts is
always possible in both directions (e.g., for each abstracted
code fragment, one can obtain the concrete code and vice
versa). The mappings can be constructed and maintained
with reasonable effort.

e Problem domain concepts are all the concepts used
in the requirements or those introduced by domain
knowledge.

e The mapping between requirements and specifications
and the mapping of pure problem domain concepts to
shared concepts have already been explained in Sec-
tion 2.2. (There, we have mapped the pure problem
domain concept of book removal to the shared con-
cept of a sensor signal.)

e The software architecture represents the overall struc-
ture of the software in terms of components and con-
nectors. It is a realization of the specification. Hence,
each element of the architecture must be related to a
shared concept. Moreover, for each pure solution do-
main concept, there must be an architectural element
in which it is used.

e To construct the mapping between pure solution do-
main concepts and shared concepts, it must be docu-
mented for each pure solution domain concepts what
shared concepts it supports. Since the software spec-
ification is expressed in terms of shared concepts, a
pure solution domain concept is only useful if it is re-
lated to a shared concept.

e For each code fragment, we must be able to identify
an architectural element it belongs to.

e The process of code abstraction as described in Sec-
tion 2.3 can be performed using a tool that is currently
under development. It allows the user select an ar-
bitrary code section and assign it a name or descrip-
tion. The user will then be able to choose whether
the code fragment should be displayed fully or by its

description only. Since this process can be applied re-
cursively, the source code can be represented in the
form of a tree, consisting of nested code fragments.?
This kind of representation enables the user to choose
the level of abstraction at which the code is to be
displayed. It also maps higher level code structure
and purpose to distinct pieces of code and thereby es-
tablishes links between abstracted code and ordinary
code.

Note that we choose not to construct a direct mapping be-
tween the specification and the software architecture, be-
cause the structure of the two documents may be com-
pletely different. Hence, an indirect mapping via the shared
concepts is easier to establish and to understand.

4 Validation rules

Constructing the artifacts and the mappings between them
is a crucial prerequisite for our software evolution method
to work. Therefore, we have conceived a number of val-
idation rules that allow us to check general integrity con-
straints that the artifacts and mappings must fulfill, re-
gardless of the particular problem and solution domains.
Checking the validation rules can be performed automati-
cally.

(1) Each solution domain concept must have an associ-
ated code fragment.

(2) Each architectural element must have an associated
code fragment.

(3) Each concept mentioned in the requirements must be
a shared concept itself or must have an associated
shared concept.

(4) Each architectural element must have an associated
shared concept.

(5) Each pure solution domain concept must have an as-
sociated shared concept.

(6) Each code fragment must have an associated solution
domain concept.

(7) Specifications must not be directly associated with
pure problem domain concepts.

In Section 5.2 we describe a mechanism that uses
these validation rules to track changes down to the code
level.

5 Evolution method

We now show how the intermediate artifacts and the map-
pings between them as displayed in Figure 1 can be used to

2In some cases, e.g. in aspect oriented programming, it might be de-
sirable to link code fragments in a way that would violate the hierarchical
structure. Such cases can be handled by bundling (semantically) related
fragments into groups, which might be independent of the hierarchical
code structure.

adjust a so documented software system to new or changed
requirements in a systematic way.

5.1 Descending from the requirements to the
code level

Once the change requests are defined, we begin our soft-
ware evolution process by adjusting the problem domain
concepts. Changing or adding a requirement might in-
fluence the definitions of existing problem domain con-
cepts, make some of them obsolete or add new ones. The
set of possibly affected concepts can be obtained by fol-
lowing the existing links between requirements and prob-
lem domain concepts. Up to this point, no distinction be-
tween pure problem domain concepts and shared concepts
is needed. However, every change in the requirements will
yield changes in one or more shared concepts. Some of
these influences may be direct, while others are indirect via
associated pure problem domain concepts.

In any case, some shared concepts will have to be
changed. This means that the semantics of the those shared
concepts is subject to change. For example, additional at-
tributes of an object may have to be considered, or relations
must be represented that were not needed before. When-
ever shared concepts are changed, this has an impact on
solution domain concepts. Via the links to pure solution
domain concepts and the architecture, the changes spread
out to these artifacts, too. While small changes will influ-
ence a few solution domain concepts only, more complex
ones are likely to have an impact on a larger number of
concepts and might even make modifications to program’s
architecture necessary.

Finally, the changes have to be propagated to the code
level. In order to do so, the code structure hierarchy must
be followed to the actual code fragments. The abstracted
code artifacts support this last part of the descent.

5.2 Using tags to guide the way

To support this descent, tagscan be issued in order to guide
the way to the affected code fragments. Every tag has a
short piece of text associated with it and can be attached to
an arbitrary artifact. There are two kinds of tags: a change
tag is attached to each requirement, concept or architectural
element which is altered, added or declared obsolete during
the descent. Each change tag must contain a description of
the necessary modifications. Violation tags are created au-
tomatically by checking the validation rules described in
Section 4, which must hold at any time. Whenever a vali-
dation rule is violated, the responsible artifacts are tagged
with a short description, indicating which rule has been vi-
olated.

During the descent the issued tags, especially the hints
on them, can be used to determine which lower-level arti-
fact must be considered for modification. For example, if a
certain solution domain concept has an associated change

tag, all code fragments linked to this concept have to be
considered for modification. The hints on the change tag
now guide this process of seeking and modifying. Violation
tags assist the process in the same way: if a violation tag
states that a solution domain concept has no corresponding
code fragment, this code fragment has to be added. Sec-
tion 6.2 gives an example on the use of tags for tracking
changes down to the code level.

6 Case study

In order to validate the method described above, a program
called “LusdPlaner” was chosen as a case study. “Lusd-
Planer” is a Windows program used mainly by vocational
schools to create schedules. It does not calculate the sched-
ules but prevents collisions® as the user manually puts the
lessons into the schedules. “LusdPlaner” is implemented
in C++. At the time a request for a number of changes was
made, it consisted of more than 20,000 lines of code, not
including the framework that was being used. For reasons
of space we will present the processing of only one of the
new requirements.

The older version of “LusdPlaner” showed only one
schedule in its application window. The users now re-
quested the possibility to display another two schedules.
These two schedules should appear beneath the main
schedule, but should be much smaller and should not be
used for editing. The purpose of the new “miniature sched-
ules” should be that, whenever the user selects a lesson in
the main schedule, the three schedules together would dis-
play the schedule of the respective teacher, student group
and room.

6.1 Identifying and adjusting the concepts

First of all, the problem domain concepts used within the
requirement had to be identified. The requirement men-
tioned the schedule window, the selected lesson and the
miniature schedule windows, as well as teachers, student
groups and rooms. Obviously, these expressions all have a
certain meaning in the problem domain.

As the next step, the program’s documentation and
code was searched for matching representations of these
concepts. Where documentation was not sufficient, reverse
engineering techniques were applied to the code, in or-
der to gain more abstract descriptions of it and make its
meaning and purpose more comprehensible. In this pro-
cess an object class “TScheduleWindow” was encountered,
which was found to be a representation of the schedule
window. Moreover, object classes “TRecTeacher”, “TRec-
Group” and “TRecRoom” were found, representing the rel-
evant data of a teacher, a student group and a room, respec-
tively. Therefore teacher, group and room turned out to be

3Whenever the user tries to assign a teacher, a student group or a room
more than once at a time, this is called a collision. (However, there are
certain cases where exceptions are possible.)

shared concepts.

Finding a representation of the selected lesson was
more difficult, though. It was clear that a lesson is an ele-
ment of a schedule. It was found out that schedules were
represented by a list of objects of the class “TRecBlock”
which represented a consecutive block of identical lessons.
When used in a schedule, a boolean variable “highlighted”
was associated with each block, indicating whether the re-
spective block was selected or not. In fact, the program did
not allow the user to select a single lesson. Instead, only
whole lesson blocks could be selected. Even more, if a les-
son block was selected, all blocks of the same kind (same
teacher, same student group, same subject) were selected
as well. Although all selected lessons therefore referred to
the same teacher and the same student group, the program
allowed the user to assign a different room to each lesson
block. On order to fulfill the requirements and make the
selection of a single room schedule possible, the way of
selecting lessons had to be changed, such that at any time
there would be at most one selected lesson block. Never-
theless, it should be possible to highlight more than one
lesson block, as could be done before. Only by this change
was it possible to make the selected lesson a shared con-
cept. Otherwise it would have remained a problem domain
concept without a matching representation within the solu-
tion domain.

Of course there was no implementation of the minia-
ture schedules in the original version of the program. In or-
der to make them a shared concept, a proper representation
within the solution domain had to be created. It turned out
that it would be most reasonable to simply add a boolean
member variable “isMiniView” to the already existing ob-
ject class “TScheduleWindow”, indicating whether the rep-
resented schedule should be displayed in normal or reduced
size.

The requirement also states that miniature plans
should not serve editing purposes. Therefore the behavior
also had to be changed. The same boolean member variable
“isMiniView” could have been used to solve this problem.
But when other implications of having three instead of one
schedule window were taken into account, it seemed more
appropriate to separate control logic from view function-
ality, which was not the case for the “TScheduleWindow”
object class. In fact, it was decided to use the model-view-
controller (MVC) pattern, which was not regarded neces-
sary before. This resulted in “TScheduleWindow” to be
split into two classes, one containing the view functionality
(“TScheduleView”) and one containing the controller func-
tionality (“TScheduleController”). This yielded a simple
solution for having miniature schedules behave differently
from standard schedules: while standard schedule objects
are connected to a controller of class “TStandardViewCon-
troller”, miniature schedule windows are connected to con-
troller objects of class “TMiniViewController”, which do
not permit modifications.

Table 1 shows the definitions of all concepts identified
so far. Concepts having both a definition in the problem

concept meaning in problem domain

meaning in solution domain

standard schedule window

interactive screen area showing schedule object of class “TScheduleView” having “is-
grid, normal size, editing possible

MiniView” = false, attached to a controller
object of class “TStandardViewController”

miniature schedule window

interactive screen area showing schedule object of class “TScheduleView” having “is-
grid, reduced size, no editing

MiniView” = true, attached to a controller
object of class “TMiniViewController”

teacher person teaching at a school record object of class “TRecTeacher”

student group set of persons being taught at a school record object of class “TRecGroup”

room physical part of a building, enclosed by record object of class “TRecRoom”
walls

schedule MVC sub-system -

combination of a schedule view, a schedule
controller and a schedule model

schedule view -

object of class “TScheduleView”

schedule controller -

object of class “TScheduleViewController”
or any of its sub-classes

schedule model -

object of class “TSchedule”

Table 1. Definitions of all identified concepts

domain and the solution domain are shared concepts. Con-
cepts having a definition in only one domain are specific to
that domain. There are also pure problem domain concepts.
For example, a teacher might be ill, in which case he or she
cannot be assigned lessons.

6.2 Propagation of changes

As soon as the affected concepts were identified, the fol-
lowing steps had to be taken:

Adjusting the concept sets The three sets of pure prob-
lem domain concepts, pure solution domain concepts and
shared concepts were adjusted according to Table 1. As
a result, some links had to be removed, such as those re-
lated to the “TScheduleWindow” class, which had been
discarded.

Adjusting the specification Since no explicit specifica-
tion document existed nor was requested, this step was not
performed.

Adjusting the architecture The MVC pattern was intro-
duced into the software architecture. This resulted in ad-
ditional links being established, such as the one between
the pure solution domain concept “schedule view” and the
respective component in the architecture document.

Identifying the affected code fragments In order to

identify the affected code fragments, two kinds of tags were
issued.

e Change tags. All concepts or architectural elements

whose definition had been changed were tagged with

a short hint specifying what had to be changed. Also,

tags were added to artifacts which should be handled

specifically. For example, the new “TScheduleView”

class (abstracted code) was added a tag stating that

it should be created by splitting the former “TSched-
uleWindow” class. Another tag was added, stating
that a boolean member variable “isMiniView” should
be added to the new class.

e Violation tags. All concepts, architectural elements
and code fragments violating any validation rule were
tagged with a hint specifying which validation rule
was violated. For example, the newly added (pure so-
lution domain) concept “schedule view” was tagged,
because it had no associated code fragment, which vi-
olated validation rule (1). The associated architecture
component was tagged for the same reason.

Changing the code fragments After the tagging process
was performed, all directly or indirectly affected code frag-
ments were changed, removed, or new code fragments were
added, according to the respective mismatch. Each time a
processing tag was handled, this tag was removed. For ex-
ample, the “add boolean member variable isMiniView” tag
was removed from the “TScheduleView” class, when this
variable was actually introduced to the code and properly
handled.

Checking the validation rules After all modifications on
the code had been performed, the validation rules were
checked again. All violation tags were removed if the
formerly violated rule was now met. Artifacts remaining
tagged were examined (and modified) again, until all tags
could be removed.

7 Related work

Our systematic approach to software evolution makes use
of different established techniques of software engineering.

The conceptual basis — in particular the distinction be-
tween problems and solutions and requirements and speci-

fications — is taken from the work of Jackson and Zave [2].
This conceptual basis allowed us to identify and distinguish
the different artifacts of Figure 1.

Our approach allows us to trace requirements from the
requirements document to all the other artifacts produced,
including the code, and vice versa. We use requirements
tracing as a means to locate those parts of the code affected
by new or changed requirements. In addition to locating
the affected code, our method also provides guidance for
really performing the changes.

In the literature, requirements tracing is primarily
considered to be a technique to support requirements engi-
neering. As Jarke [4] puts it, “(A trace) must capture link-
ages between the documents produced during a require-
ments process.” (emphasis ours). Tools (e.g., [5]) are used
to keep requirements documents up-to-date and to docu-
ment their relation to other artifacts, but not to change the
software. Hence, requirements tracing is part of our ap-
proach, but does not cover it entirely.

Reverse engineering [6] and design recovery tech-
niques [3] are useful when constructing the different arti-
facts.

Before incorporating changes, it might be appropri-
ate to refactor the code, i.e., to enhance the code structure
without changing its semantics [7].

Lightweight approaches to software development, for
example extreme programming [8], construct software in
an incremental way. However, the increments are per-
formed in a relatively short period of time. Since the
lightweight approaches do not require much documenta-
tion, they cannot support the evolution of a software system
over a long time period very well, as is the case with our
method.

Let us note that all the work mentioned in this sec-
tion only covers isolated aspects of our method, the added
value of which consists in combining different notions and
techniques to conceive a concrete process for software evo-
lution.

8 Conclusions

In this paper, we have presented a systematic approach to
software evolution, relying on a number of different arti-
facts that bridge the gap between requirements and code,
and mappings between the artifacts. We have shown that
the documentation constructed in this way is suitable to
perform changes of an existing software system in a sys-
tematic way.

In particular, the contributions of this work are the
following:

e We have identified a set of artifacts on different lev-
els of abstraction that makes up a suitable basis for
software evolution. The artifacts reflect the distinction
between problem and solution domains.

e We have shown how to construct mappings between
the different artifacts that can be used to navigate

among the artifacts, allowing us to identify those parts
of the code that must be changed in order to adjust the
software system to new or changed requirements.

¢ We have identified validation rules that help avoiding
errors in the construction of the artifacts and the map-
pings.

e We have given a concrete method for incorporating
changes in a software system. Besides the artifacts
and mappings, we have introduced bookkeeping facil-
ities that support software developers in actually per-
forming our method.

e We have pointed out possibilities for automation and
tool support.

o \We have shown the feasibility and the appropriateness
of the method by a real-life application.

In the future, we intend to provide tool support for the
whole method, i.e., for constructing and maintaining ar-
tifacts and links, as well as for performing evolutionary
changes.

Acknowledgment We thank Thomas Santen for his com-
ments on this paper.

References

[1] Michael Jackson. The world and the machine. In Pro-
ceedings: 17th International Conference on Software
Engineering, pages 283-292. IEEE Computer Society
Press / ACM Press, 1995.

[2] P. Zave and M. Jackson. Four dark corners
for requirements engineering. ACM Transac-
tions on Software Engineering and Methodology,
6(1):1-30, January 1997. Also availble under
http://www.research.att.com/~pamela/ori.html#fre.

[3] Ted J. Biggerstaff. Design recovery for maintenance
and reuse. In Robert S. Arnold, editor, Software
Reengineering, pages 520-533. IEEE Computer Soci-
ety Press, 1992.

[4] Matthias Jarke. Requirements tracing. Communica-
tions of the ACM, 41(12):32-36, December 1998.

[5] Francisco A. C. Pinheiro and Joseph A. Goguen. An
object oriented tool for tracing requirements. 1EEE
Software, 13(2):52—64, March 1996.

[6] Hausi A. Miller, Jens H. Jahnke, Dennis B. Smith,
Margaret-Anne Storey, Scott R. Tilley, and Kenny
Wong. Reverse engineering: A roadmap. In Anthony
Finkelstein, editor, The Future of Software Engineer-
ing. ACM Press, 2000.

[7] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[8] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, 1999.

