
A Description Structure for Simulation Model Components

Maritta Heisel
University Münster

Germany
heisel@uni-muenster.de

Adelinde Uhrmacher
University Rostock

Germany
lin@informatik.uni-rostock.de

Johannes Lüthi
University of Apploed Sciences FHS KufsteinTirol

Austria
johannes.luethi@fh-kufstein.ac.at

Edwin Valentin

Delft University of Technology
The Netherlands

edwinv@tbm.tudelft.nl

Keywords: Model components; Semantics; Indexing
description; Discrete and Continuous formalism

INTRODUCTION
Simulation model components become more and more
commonly used in the development of simulation models
[Diamond et al, 2002]. The benefits of reuse, easier model
development, and the hiding of detailed and complex code
of a simulation environment make it possible that simulation
studies can be performed faster, that novices can develop
simulation models and that problem owners get more
support, because more experiments can be performed [Pater
and Teunisse, 1997; Davis et al, 2000].

When more model developers become aware of these
benefits and more simulation model components become
available, they will try to search for simulation model
components in repositories and databases before they
undertake the complex and time-consuming development of
these simulation model components themselves [Bruneton
et al, 2002]. So far, simulation model developers have been
reluctant to use simulation model components developed by
others [Page and Opper, 1999; Valentin and Verbraeck,
2002]. One main reason for this fact is known as the “not-
invented-here” syndrome. Simulation model components
developed by someone else are not supposed to be correct
and to constitute a valid representation of the system of the
model developer. Therefore, model developers do not dare
to use simulation model components developed by an
unknown source.

The not-invented-here syndrome does not always apply.
Examples exist where model developers successfully use
externally developed simulation model components. When
the model developer knows and trusts the developer of the
simulation model component and receives a detailed
description of the simulation model component, then model
developers dare to do some tests to evaluate the usability of
the simulation model component for their problem system.
Examples of usable simulation model components are

provided by commercial simulation environment vendors
who have developed extensions to their software for
specific domains, e.g. Contact Center, a discrete event
resource representation of call centers by Rockwell
Software for Arena (www.arenasimulations.com) and
Radar and Communications, continuous by Mathworks for
Simulink and Matlab (www.mathworks.com). These
commercial parties provide complete sets of simulation
model components, combined with extensive
documentation and training material. This material and the
status of the developers gave model developers the trust to
use the simulation model components.

We are convinced that a good description of a simulation
model component will support model developers to gain
trust in simulation model components and help them to
make a decision to use the component. Most description
structures of components only explain the interfaces with
other components, but in simulation models the reduction of
the system is important. As a result model developers
require understanding of the semantics of the interfaces and
the functionalities of a simulation model component.
Therefore, we need description structures for simulation
model components that put the stress on the semantics of
the component.

As a simulation model component does not describe a
system per se but a system given a certain objective, we
believe, as Overstreet et al [2002], that a key part of a model
component description must involve capturing the
objectives, assumptions and constraints under which the
original models were developed in an explicit manner. Due
to the different objectives, different model components can
describe the same system, and one model might be a valid
representation of the system with respect to one objective
but not with respect to another objective. Multi-facetted
modeling emphasizes the importance of developing families
of models and recognizes the existence of multiplicities of
objectives and models as a fact of life [Zeigler, 1984]. To
select one of the models for reuse requires understanding

their meaning, part of which refers to their objectives,
constraints, and underlying assumptions. These facts are
difficult to capture as they are often only implicitly
included, and modelers might not even be aware of many of
the assumptions and constraints that apply.

In this article we propose a structure enunciating how to
describe the characteristics of a simulation model
component focusing on semantics of interfaces and
functionalities. In detail we discuss a minimum set of items
that we expect model developers to use to gain trust in the
simulation model component. Moreover, the minimum
description should enable model developers to have
sufficient insight to start using the simulation model
component to compose their simulation models.

Before we introduce the description structure and minimum
items of a simulation model component, we will first
explain what simulation model components are. We then
discuss approaches for describing software components that
were developed in the software engineering community.
Based on these descriptions, we introduce our structure for
describing a simulation model component. We illustrate the
applicability of this structure by examples of simulation
model components of an agent representing local authority
in a city and a retailer of a supply chain. The paper
concludes with a summary and directions for future
research.

BACKGROUND ON SIMULATION MODEL
COMPONENTS
Simulation models describe different types of systems:
continuous, discrete and hybrid systems. They use different
formalisms, e.g. block diagrams, hybrid automata, hybrid
petrinets, timed petrinets, state charts, or DEVS,
implemented in different simulation environments with
different features. These simulation models have the
disadvantages that they are hard to adjust, that it is time-
consuming to develop them and that it is often very hard to
reuse parts of earlier developed simulation models
[Robinson, 1999; Keller et al. 1991]. Therefore currently a
lot of attention is paid to the ability to use component
technology as developed within electronics and software
engineering. The benefit of these components should be that
simulation models can be assembled from existing parts and
that developing a simulation model requires only some
parameterization. We call these parts “simulation model
components”. A simulation model component is a
component that is meant to be used as part of a simulation
model representing a sub-system with a predefined
reduction and generalization.

Simulation model components allow a model developer to
compose a simulation model, ideally without any additional
programming. The simulation model components are
developed by a component developer who performs the

simulation software coding and ensures that simulation
model components can be plugged together to form a
simulation model of a system in a specific domain, such as
the call center (www.arenasimulations.com) and the radar
systems (www.mathworks.com).

A simulation model aims at a valid, but reduced,
representation of a system. Currently, model developers
mainly use their own developed simulation model
components, because they are not aware of or interested in
model components developed by someone else. They fear
the risk of a different level of reduction and a different way
of referring to functionalities in a system.

Simulation model developers work with different simulation
paradigms and therefore use simulation model components
in different ways. In agent models, a component is seen as
an agent that can be reused in another simulation model; in
discrete event for resource allocation simulation models, a
simulation model component is part of a set of components
that enable simulation of specialized domains; and in
continuous simulation, the simulation model components
are a set of differential equations that are always operating
together. Even though model developers use simulation
model components differently, still they need comparable
insight in the usability of a simulation model component as
part of their simulation model.

A standardized description of a simulation model
component should enable a model developer to find existing
simulation model components and to judge whether a given
simulation model component is suitable for their simulation
model. Currently, developers of simulation model
components either do not describe their components or only
use an unstructured textual way of describing them. As a
result, model developers have difficulties to identify the
existence of usable simulation model components and to
judge their applicability. This is one of the main reasons
why model developers decide not to use simulation model
components and do not benefit from the advantages that
simulation model components could offer.

DESCRIPTIONS OF COMPONENTS IN SOFTWARE
ENGINEERING
In the area of software engineering, several component
technologies are now being used. The best-known of these
are Java Beans (java.sun.com/products/javabeans/) and
Enterprise Java Beans (java.sun.com/products/ejb/) of SUN
Microsystems, Component Object Model (COM, COM+,
DCOM, .NET - www.microsoft.com/com/) of Microsoft,
and the Corba Component Model of the Object
Management Group (www.corba.com). For these existing
technologies, no specification standards exist yet.

However, the software engineering community faces the
same problems as the simulation community: the

advantages of components can be exploited only if
component markets can be set up, where components can
effectively be searched for, and whose implementation may
be kept secret from component consumers. Therefore,
proposals how to specify software components describing
their semantics have been developed. We have analyzed
three of these proposals to judge their applicability to
describe simulation model components. The analyzed
proposals are the Web Service Description Language
(WSDL) (www.daml.org/services/), a specification standard
for business components developed by a working group of
the German “Gesellschaft für Informatik”
(www.fachkomponenten.de) and an approach developed by
one of the authors of this paper [Heisel and Souquières,
2004].

Even though a simulation model component is a special
kind of software component, a model component is
different from a software component due to its reduction of
reality and its notion of scheduled time. Therefore, the focus
of description needs to be different for simulation model
components. In this section, we first provide an overview of
the three above-mentioned software engineering structures
of describing components, and in the next section make our
selection of characteristics that are needed to describe a
simulation model component.

Web Services
To facilitate the use of services over the web, the Web
Service Description Language (WSDL) has been defined
(www.w3.org/TR/wsdl). As communication protocols and
message formats are standardized in the web community, it
becomes possible and increasingly important to be able to
describe the communications in some structured way as
well. In this context, the web ontology language OWL is
used to publish and share sets of terms called ontologies,
supporting advanced web search, software agents and
knowledge management.
In this context, OWL-S, an OWL-based web service
ontology (www.daml.org/services), supplies web service
providers with a core set of markup language constructs for
describing the properties and capabilities of their web
services in an unambiguous, computer-interpretable form.
To support the automation of web service tasks, including
automated web service discovery, execution, composition
and interoperation, the ontology comprises three parts:
• the service profile for advertising and discovering

services; it answers the question “What does the service
require of the user(s), or other agents, and provide for
them?”

• the process model, which gives a detailed description of
a service's operation, and answers the question “How
does it work?”

• the grounding, which provides details on how to
interoperate with a service, via messages, and answers
the question “How is it used?”

Simulation model components should be described
according to a similar direction as the WSDL. However,
simulation model components cannot be described exactly
like the WSDL. The goal of the WSDL is to provide a
better, unambiguous meaning of services and to support re-
use of services or components by others, where the context
of this re-use is not known in advance. However, simulation
model components are not necessarily executable, but will
be executed in specific simulation environments. This
results in constraints that restrict the applications of model
components, e.g. validity of the model component, or have
a different connotation, e.g. underlying assumptions. These
constraints and connotation do not apply in the field of web
services, therefore the WSDL does not describe these
issues.

Standardized Specification of Business Components
In 1999, the working group “Component Oriented Business
Application Systems” within the German “Gesellschaft für
Informatik” started to develop a standard specification for
business components (www.fachkomponenten.de). The
result of this working group is a description of a business
component structured along seven levels. The marketing
level describes business-organizational features of the
business component as well as technical initial conditions.
The task level contains the purpose of the business
component and the tasks that it automates. On the
terminology level, the functional terms of the business
domain are explained. The quality level describes non-
functional properties and quality features, and their
corresponding measurement units and methods. On the
coordination level, the succession relationships between the
services of the components and the cooperation with other
components are specified. The behavioral level contains
invariants and pre- and post-conditions. Finally, the
interface level describes the denomination of business
components, services, parameters, data types and failure
reports, as well as service signatures and assignment to
business tasks.

These seven levels constitute an adequate specification
structure for business components. However, for simulation
model components, it cannot be used as it is, because
business and simulation model components have different
characteristics, and hence their descriptions have to stress
different aspects. The purpose of business components is to
support business processes. The underlying software
systems are mostly information systems, where for example
the occurrence of events and timing constraints do not play
a major role, nor have these systems reductions of
functionality compared to reality. We encountered lack of
ability to describe those issues, which are important when a
model developer makes the decision to use a simulation
model component.

Specifiying software components for interoperability
Heisel and Souquières [2004] have developed a
specification structure for software components that covers
the functional aspects of such components. This structure is
aimed at supporting the decision whether two components
can be plugged together or not. The description of a
software component consists of the specification of its
export (supplied) interfaces, its import (required) interfaces,
a usage protocol relating the export interfaces, and a relation
between export and import interfaces. That relation states
which export service relies on which import service.

The specification of an interface consists of an interface
data model (IDM), a set of operation specifications, and a
usage protocol for the interface operations. The IDM gives
a definition of all data used by the interface operations.
Every caller of an interface operation must adhere to the
data format specified in the IDM. The IDM also contains
invariants that express integrity constraints on the data. The
specification of an operation consists of its signature (i.e.,
its name and the names and types of its input and output
parameters), a precondition (characterizing the situations
where the operation can be applied successfully), and a
post-condition (specifying the effect of the operation). The
usage protocol specifies the order in which the operations
may be applied.

The structure provided by Heisel and Souquières [2004]
focuses on the interfacing of components. This is very
important for good composition of any type of components,
but not the main issue in simulation model component
composition. The interfacing becomes an issue once the
semantics of functionalities and level of reduction are
clarified. Therefore, solely using the structure of Heisel and
Souquières [2004] is not enough for describing simulation
model components.

OVERVIEW OF ITEMS FOR DESCRIBING
SIMULATION MODEL COMPONENTS
All three specification frameworks described in the last
section have some added value, but none of them goes into
detail with relation to the representation of the simulation
model components functionalities. However, model
developers gain their trust and make decisions for use on
this information about the simulation model component,
because this will result in the level of reduction and
abstraction that is realized in simulation models. Another
difference between simulation model and software
components is that simulation model components have
several interface descriptions. In addition to “ordinary”
interface descriptions also the interfaces to model
developers, i.e. the user-interfacing for parameterization, is
of high importance with simulation model components.

Based on the work of Heisel and Souquières, the
“Gesellschaft für Informatik” and the WSDL we structure

the description of the model component into three
categories: profile (overview of possible use), interfaces
(how to access the service and parameterize the simulation
model component) and working principles (how does the
simulation model component perform its functions). In the
following we briefly discuss the different items that should
be described in these three categories.

 Profile of a model component
Application Domain: For a first decision whether or not a
model component is suitable to be used in a simulation
model, the application domain the component falls into
must be known. Examples of such domains include
computer networks, supply chain management, traffic,
military, or health care simulation.
Name: A clear and representative name that enables model
developers to grasp its intended purpose.
Existing ontology: Some domains have ontologies or
taxonomies to follow. If such a standard is followed this
should be identified.
Objective: Experiments that can be performed with models
that are composed with this simulation model component.
Responsible persons/developer: In order to increase the trust
that model component users have in the components, it may
be important for them to know the source of the component.
Is the developer of the component known as an expert in the
application domain?
Purpose: A natural language description of the model
component should include a rough sketch of the functional
behavior and thus the purpose that the simulation model
component can fulfill in a simulation model.
Simulation environment: many simulation model
components are only usable within a certain modeling
and/or runtime environment. For example, a component
described as a DEVS atomic model [Zeigler et al, 2000]
cannot easily be used to be part of an ARENA model
(www.arenasimulations.com).
Underlying assumptions: The underlying assumptions
identify when a model can be applied and when it cannot be
applied. For example, if a traffic model component assumes
that no blocking of crossings will occur, the model
component should not be used for situations where this
blocking plays a central role. Similarly, if a bus component
is modeled as a mass point, then single passenger movement
cannot be described with that component. The assumptions
are often closely related to the overall objective of
designing a model component.
Validation: Validation and verification (V&V) is one of the
key issues when building and using a simulation model
[Balci 1997]. Model validation makes sense only in the
context of a specific purpose of the model and question to
be answered with the model with known accuracy. Hence,
using a simulation model component that is valid in a
certain context does not guarantee that this component is
valid in another context, too. Therefore the validation will
show an overview of testing environments and experimental

frames that have been used to validate the behavior and
representation of the simulation model component.
Furthermore, case studies and problem descriptions that
show the successful and unsuccessful use of the component
may be valuable.
Classifications: there are a number of model (component)
classifications that should be used in order to decide
whether or not the component can be used in a given
context. These include:
1 Discrete vs. continuous time, or state model

components (or hybrid) respectively.
1.1 Continuous: partial/ordinary differential equations,

linear/non-linear, stiff/nonstiff.
1.2 Discrete: event-based/process-based/activity-scanning
2 Scope and use of the model component: metrically

scaled variables (e.g. reals), variables with ordinal or
nominal scale, or a mixture of both.

3 Stochastic vs. deterministic
4 Modeling paradigm: for example, resource-queue-

entity, state-charts, bond-graphs, Petri-nets.
 Interfaces of a model component
In- and out-ports including associated signatures: This is the
technical interface description as identified in all the
software structures. It provides an overview of the triggers
or messages the model component can receive and will call
to other components. The associated signatures are an
overview of the function or process started when something
enters by an in-port.
Relations between interfaces and invariants: Sometimes
models realize a simple reaction, which means they
consume certain resources and generate certain products
(e.g. in areas like Systems Biology). Invariants are known
relations and integrity constraints of in- and output values
should be listed. For example: “outputMoney <= taxes +
savingsMoney”.
Types of interfaces: In a software application, a software
component can only communicate with another software
component or a user. In a simulation model component,
more types of interfaces can exist. Examples are a
simulation model component with a software component or
a simulation model component with a model user in a
gaming situation.
Parameterization: Which values of the component can/must
be parameterized by the model developer to enable a system
specific representation? Parameterization information also
should include the allowed ranges of values for
parameterized attributes. Most often the model developer
can parameterize the behavior and attributes of a simulation
model component through a user interface of the simulation
environment.
Expected effects of changes to parameters: The influence of
parameterizable values should be clear to the simulation
model developer
Visualization / performance indicators: Output generated by
the simulation model component that provides insight in the
behavior and state of the component. Visualization mainly

refers to insight during the simulation run. Examples of
visualization are console with messages or even Virtual
Reality animations.

 Working principles of a model component
Description of the functionality: Model developers will not
use a simulation model component unless the behavior of
the model component is absolutely clear to them. Model
developers will have the risk of inconsistency in their
model, different use of resources, different levels of
abstraction, or a process flow that does not represent their
system. For software components, pre-and postconditions
and usage protocols suffice, but in simulation model
components, the functional behavior should be described in
detail, preferably with a standardized and formalized
description, like for example the DEVS-framework [Zeigler
et al., 2000]. Alternative ways of describing the
functionalities of the simulation model component and the
translations of input at in-ports to an output are state charts,
Petri-Nets, timed automata, flow charts, sequence diagrams
and pseudo code.
Illustrations of how it works: To support a faster decision
whether or not to use a component, as well as an easier
integration of a component into a composed model, the
description of the functionality should be complemented by
example models using the component, training material, or
animation movies, respectively.

EXAMPLE DESCRIPTION OF MODEL
COMPONENTS
We illustrate the description structure for simulation model
components with two examples. The first example is a
simulation model component representing a local authority.
The second example is a simulation model component
representing a retailer that should be usable in any supply
chain.

Example 1: Local Authority
 Profile of the local authority
Application domain: Simulation of social communities, i.e.
sociology, demography, and economy.
Name: Local Authority - a model of a rational, social actor1.
Existing ontology: . Unlike medical or biological
application areas, application areas like sociology,
demography, and economy do not maintain taxonomies to
structure the most widely used terms and describe their
semantics.
Objective: Analyse consequences of catastrophes
Responsible persons / developers: Mathias Roehl,
University of Rostock, Department of Computer Science
and Ulf Ewert, Technical University of Chemnitz,
Department of History.
Purpose: The model component models a rational actor who
controls a society and its economy. This control is based on

1 We follow the definition of Rapoport [1980] of rational actor.

qualitatively assessing the current situation in the society,
and based on preferences to derive a plan of activities that
are executed stepwise. Each “qualitative step”, e.g. the
increase of taxes, is translated into quantitative information,
e.g. an increase of 5 percent. The model component invokes
an external planner for plan generation, and thus depends on
its availability.
Simulation environment: The local authority is implemented
in James (www.informatik.uni-
rostock.de/mosi/en/research/projects/cosa.html). In the
future, the component should be re-usable in most DEVS-
based simulators, thanks to the standardization efforts of
DEVS-based simulators
(www.sce.carleton.ca/faculty/wainer/standard). Note that
although external software is invoked during the simulation
run, the basic DEVS is used. The computer time that is used
for planning is ignored. Efficiency plays no major role.
Hence, the planner is invoked synchronously within a
transition. See Schattenberg and Uhrmacher [2001] for
more sophisticated realizations.
Underlying assumptions:
1) The actor acts in a rational manner.
2) As long as a plan is executable, it will be executed. New

options are only taken into account when a re-planning
becomes necessary.

Validation: The model component has been tested for
evaluating management strategies in overcoming the
aftermath of disasters in pre-modern towns. The results are
documented in Ewert et al [2001 and 2003].
Classification
1) Discrete, time-stepped model. Although implemented in

a discrete-event simulation system, the model
component executes one time step after each other. In
the context of the pre-modern town, one time step of
simulation time corresponded to 7 days in physical
time.

2) Semi-quantitative. Whereas the model components’
interaction with the model environment is based on
quantitative data, its preferences and the developed
decisions to act are kept in qualitative terms. The
knowledge base is a collection of facts, and supports a
simple deduction algorithm.

3) Deterministic. The model component makes no use of
stochastic variables. Given the same initial state and
the same inputs, the local authority will develop the
same plans assuming that the invoked planning
mechanism works in a deterministic manner.

4) Process-Based World View using State Charts and,
Agent-Oriented Modelling Paradigm. The Local
Authority model component is based on a
B(eliefs)D(esire)I(ntention) Agent, which is a sub-
class of deliberative agents.

 Interfaces of the local authority
In- and outports: The model component expects inputs for
commodities and information. Ewert et al. [2001 and 2003]

mention the commodities grain, labour, and money. The
class information subsumes the following classes: grain
price, labour price, taxes, migration, public opinion, and
marriages.
The model component produces the class commodities, and
the class power as output. Ewert et al. [2001 and 2003]
describe that if money is sent to the grain market the local
authority simulation model component assumes that this
will be interpreted as a request to buy grain. If money is
sent to the labor market the local authority simulation model
component assumes that it initiates a job creation program.
The class power subsumes the following classes: minimum
and maximum prices for grain market and labor market,
taxes for the goods markets and the population (stove tax),
marriage restrictions for the marriage market, and migration
rules.
Relations between interfaces and invariants: The amount of
commodities is larger than or equal to zero. Further money
spent in the community is always less than or equal to the
current tax income added to the saved money. Thus, the
local authority does not spend more money than it has.
Taxes are always smaller than or equal to one hundred
percent. The sold grain is always less than or equal to the
stored grain, and the stored grain diminishes with a certain
depreciation rate.
Types of interfaces: Only the interfacing between
simulation model components is described above. The local
authority also has a connection to external software to
generate the plan to be executed. The model component
expects a partial plan as input from the external software. It
consists of a sequence of actions, each denoted by its name,
and numbers that indicate in which sequence the plan steps
have to be executed.
Parameterization: The possible parameterization of the
model component reflects its overall complexity. State
variables, as well as the local authority’s beliefs about itself
and its environment are initiated. This includes how much
money, how much grain etcetera are available. Variables
that do not change over the simulation run are goals, the
preferences among them, and the set of operators that can
be applied to reach these goals. Quantitative information is
transformed into qualitative information based on certain
parameters, e.g. when are prices to be considered low, when
are savings high etc. The set of initial plan operators can be
extended. Qualitative decisions are transformed to
quantitative measurements that can be applied in the town,
e.g. if an increase of taxes is decided, what will be the
increase, if grain is to be sold, what percentage of the grain
on stock shall be put on the market, et cetera.
Expected effects of change to parameters: The preferences
among the goals definitely have an impact on the
plan generated and the single activities, and thus on the
development of the monitored and controlled community.
For example, the default preference of the model
component favors the income of the local authority above
the fast recovery of the population [Ewert et al., 2003].

Visualization / performance indicators: Current beliefs,
goals and the developed plan can be inspected during the
simulation.

 Working principles of the local authority
The behavior of the local authority follows the typical BDI
architecture. The following pseudo-code explains its
behavior:

If inputs then currentBeliefs :=

updateBeliefs(beliefs, input);
If nonempty(plan) then
 currentPlanStep := selectNextPlanStep(plan);
If noPlan or notExecutable(currentPlanStep) then
 begin
 goals := selectGoals(beliefs, goals);
 plan:= generatePlan(beliefs, operators,

goals);
 currentPlanStep := selectNextPlanStep(plan);
 output := currentPlanStep;
 end
outputToModelComponent:=quantisize(beliefs,current

PlanStep);

Example 2: Retailer in Supply Chain
 Profile of retailer in supply chain
Application Domain: Supply Chain Management
Name of simulation model component: Retailer
Objective: Modelling of information exchange in supply
chains.
Responsible persons/developer: Designed by Corver [2001]
and implemented by Hee [2002].
Purpose: The retailer receives orders from customers and
places orders for goods at its suppliers. The complete
process is followed from initial order quotations to billing.
Simulation environment: The component is implemented in
eM-plant; Arena and Java to be used with D-SOL.
Underlying assumptions: The retailer always has enough
money; employment costs are not considered.
Validation: Component has been applied in several test-
cases; so far no serious use.
Classifications:
1) Discrete event
2) Money is in “units”; further sizes are not considered
3) Several sub-functionalities can contain stochastics
4) Modeling paradigm is resource-queue-entity

 Interfaces of retailer in supply chain
In- and out-ports including associated signatures: Signals
are identified for exchanging information with customers
and suppliers. Too much to mention all in and out-ports in
this article. For more details, see Hee [2002].
Relations between interfaces and invariants: Incoming
signals will result in execution of selected functionalities,
such as ordering, calculate price or start transportation.
Types of interfaces: During the execution of the model, only
signals are exchanged between simulation model
components. The implementation in Java is prepared for
exchange with real databases or even applying in a
simulation game.

Parameterization: Model developers can adjust almost
everything. Each functionality of the retailer contains its
own additional user-interfacing. Some examples are the
time for reacting to a request for quotation or the profit
margin.
Visualization / performance indicators: Overview of the
functionalities and selected performance indicators, such as
stock size and number of orders to be processed.

 Working principles of retailer in supply chain
The retailer has several functionalities. The figure below
shows the high-level process of an order. Actions 1 to 4 and
6 will be performed by the retailer when it orders goods at
its supplier. Hee [2002] describes in more detail how these
functionalities are performed.

CONCLUSIONS
In this paper, we have proposed a description structure for
simulation model components. Such a description structure
is crucial for fully exploiting the advantages a component-
based approach can offer. It supports the re-use of
components developed by third parties, without being
obliged to inspect every detail of the component itself. Only
with concise and meaningful descriptions can developers of
simulation models really save time and effort by using
components. The descriptions may also serve as a contract
between component supplier and component consumer.
Moreover, they support the development of a functioning
market for simulation model components.
The description structure we have developed is based on
specification approaches for software components and web
services. These specification approaches put the stress on
the semantics of components. Describing the semantics of a
component is a common goal for software and simulation
model components. However, software and simulation
model components are so different in nature that a
specialized description structure for simulation model
components is needed.

Our description structure is tailor-made for simulation
model components. It contains sections where the
simulation-specific characteristics of a model component

can be described, mainly focusing on the semantics of
interfaces and functionalities to represent reduction and
abstraction. On the other hand, it was our goal to
accommodate all kinds of simulation model components in
different paradigms, for example discrete as well as
continuous and stochastic as well as deterministic ones.

With two examples, we have demonstrated the usefulness of
our description structure. In the future, we intend to perform
further case studies, covering all relevant kinds of
simulation components.

The current description is a first attempt to describe model
components. Many of the proposed slots are filled in
unstructured text form. We made a first step towards
clarifying what information is needed to support reuse of
model components. The next step will be to find more
suitable representations, which make it easier to search for
and analyze this information.

ACKNOWLEDGEMENT
The authors want to thank the organizers of the Dagstuhl
seminar “Component-Based Modeling and Simulation” for
the energetic and motivating discussion environment they
prepared for us, which was the basis for the presented
framework.

REFERENCES
Balci, O. “Principles of Simulation Model Validation,

Verification, and Testing” In: Transactions of the
Society for Computer Simulation International, Volume
14, Issue 1, pp. 3-12, 1997

Bruneton, E.; T. Coupaye; J.B. Stefani “Recursive and
Dynamic Software Composition with Sharing” In:
Proceedings of the 7th ECOOP International Workshop
on Component-Oriented Programming, 2002

Corver, A. Supply chain visualization: Simulation as a
means to gain insight in the supply chain. Master
Thesis, Delft University of Technology, Netherlands,
2001

Davis, P.C.; P.A. Fishwick; C.M. Overstreet; C.D. Pegden.
“Model Composability as a Research Investment”. In:
J.A. Joines; R.R. Barton; K. Kang; P.A. Fishwick (Eds.),
Proceedings of the 2000 Winter Simulation Conference,
pp.1585-1591, 2000

Diamond, R.; J.O. Henriksen; C.D. Pegden; A.P. Walker;
C.R. Harrell; W.B Nordgren; M.W. Rohrer; A.M. Law.
“The Current and Future Status of Simulation Software
(Panel)” In: E.Yücesan; C.H. Chen; J.L. Snowdon; J.M.
Charnes (Eds.) Proceedings of the 2002 Winter
Simulation Conference, pp.1633-1640, 2002

Ewert, U.C.; M. Röhl; A.M. Uhrmacher. “The role of
deliberative agents in analyzing crises in pre-modern
towns”, Sozionik , Volume 1, Issue 3, 2001

Ewert, U.C.; M. Röhl; A.M. Uhrmacher. “Consequences of
Mortality Crises in Pre-Modern European Towns” In:

A.Fürnkranz-Prskawetz; F.C. Billari (Eds.) Agent Based
Computational Demography, pp.175-196, 2003

Hee, R.van der. Building blocks for Real-Time Supply
Chain, Master Thesis, Delft University of Technology,
Netherlands, 2002

Heisel M.; J. Souquières “Spécification de composants pour
assurer leur interopérabilité” Submitted for publication,
2004

Keller, L.; C. Harrell ; J. Leavy. “The three reasons why
simulation fails”. In: Industrial Engineering, Volume
23, Issue 4, pp.27-31, 1991

Nance, R.E. “A history of discrete event simulation
programming languages” In: ACM SIGPLAN Notices,
Volume 28, Issue 3, pp.149-175, 1993

Overstreet, C.M.; R.E. Nance; O. Balci. “Issues in
Enhancing Model Reuse”, In: W.H.Lunceford; E.H.
Page (Eds.) First International conference on Grand
Challenges for Modeling and Simulation, pp.1-5, 2002

Page, E.H.; J.M. Opper. “Observations on the complexity of
composable simulation” In: P.A. Farrington; H.B.
Nembhard; D.T. Sturrock; G.W. Evans (Eds.)
Proceedings of the 1999 Winter Simulation Conference,
pp.553-560, 1999

Pater, A.J.G.; M.J.G. Teunisse. “The Use of a Template-
Based Methodology in the Simulation of a New Cargo
Track from Rotterdam Harbor to Germany” In: S.
Andradottir; K.J. Healy; D.H. Withers; B.L. Nelson
(Eds.) Proceedings of the 1997 Winter Simulation
Conference, pp.1176-1180, 1997

Rao, A.S.; M.P. Georgeff. “Modeling rational agents within
a BDI-architecture”. In: J. Allen; R. Fikes; E. Sandewall
(Eds.) Proceedings of the Second International
Conference on Principles of Knowledge Representation
and Reasoning (KR'91), pp. 473-484, 1991

Rapoport, A. Mathematische Methoden in den
Sozialwissenschaften. Physica Verlag, Wuerzburg, 1980

Robinson, S. “Three sources of simulation inaccuracy (and
how to overcome them)” In: P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, G.W. Evans (Eds.)
Proceedings of the 1999 Winter Simulation Conference,
pp.1701-1708, 1999

Schattenberg, B.; A.M. Uhrmacher. “Planning Agents in
James” Proceedings of the IEEE, Volume 89, Issue 2,
pp. 158-173, 2001

Valentin, E.C.; A. Verbraeck. “Simulation using building
blocks” In: F.J.Barros; N.Giambiasi (Eds.) Proceedings
conference on AI, Simulation and Planning, pp.65-71,
2002

Zeigler, B.P.; H. Prähofer; T.G. Kim. Theory of Modeling
and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press, San Diego, 2000

Zeigler, B.P. Multi-Facetted Modelling and Discrete Event
Simulation. Academic Press, San Diego, 1984

