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INTRODUCTION 
Simulation model components become more and more 
commonly used in the development of simulation models 
[Diamond et al, 2002]. The benefits of reuse, easier model 
development, and the hiding of detailed and complex code 
of a simulation environment make it possible that simulation 
studies can be performed faster, that novices can develop 
simulation models and that problem owners get more 
support, because more experiments can be performed [Pater 
and Teunisse, 1997; Davis et al, 2000]. 
 
When more model developers become aware of these 
benefits and more simulation model components become 
available, they will try to search for simulation model 
components in repositories and databases before they 
undertake the complex and time-consuming development of 
these simulation model components themselves [Bruneton 
et al, 2002]. So far, simulation model developers have been 
reluctant to use simulation model components developed by 
others [Page and Opper, 1999; Valentin and Verbraeck, 
2002]. One main reason for this fact is known as the “not-
invented-here” syndrome. Simulation model components 
developed by someone else are not supposed to be correct 
and to constitute a valid representation of the system of the 
model developer. Therefore, model developers do not dare 
to use simulation model components developed by an 
unknown source. 
 
The not-invented-here syndrome does not always apply. 
Examples exist where model developers successfully use 
externally developed simulation model components. When 
the model developer knows and trusts the developer of the 
simulation model component and receives a detailed 
description of the simulation model component, then model 
developers dare to do some tests to evaluate the usability of 
the simulation model component for their problem system. 
Examples of usable simulation model components are 

provided by commercial simulation environment vendors 
who have developed extensions to their software for 
specific domains, e.g. Contact Center, a discrete event 
resource representation of call centers by Rockwell 
Software for Arena (www.arenasimulations.com) and 
Radar and Communications, continuous by Mathworks for 
Simulink and Matlab (www.mathworks.com). These 
commercial parties provide complete sets of simulation 
model components, combined with extensive 
documentation and training material. This material and the 
status of the developers gave model developers the trust to 
use the simulation model components.  
 
We are convinced that a good description of a simulation 
model component will support model developers to gain 
trust in simulation model components and help them to 
make a decision to use the component. Most description 
structures of components only explain the interfaces with 
other components, but in simulation models the reduction of 
the system is important. As a result model developers 
require understanding of the semantics of the interfaces and 
the functionalities of a simulation model component. 
Therefore, we need description structures for simulation 
model components that put the stress on the semantics of 
the component. 
 
As a simulation model component does not describe a 
system per se but a system given a certain objective, we 
believe, as Overstreet et al [2002], that a key part of a model 
component description must involve capturing the 
objectives, assumptions and constraints under which the 
original models were developed in an explicit manner. Due 
to the different objectives, different model components can 
describe the same system, and one model might be a valid 
representation of the system with respect to one objective 
but not with respect to another objective. Multi-facetted 
modeling emphasizes the importance of developing families 
of models and recognizes the existence of multiplicities of 
objectives and models as a fact of life [Zeigler, 1984]. To 
select one of the models for reuse requires understanding 



their meaning, part of which refers to their objectives, 
constraints, and underlying assumptions. These facts are 
difficult to capture as they are often only implicitly 
included, and modelers might not even be aware of many of 
the assumptions and constraints that apply. 
 
In this article we propose a structure enunciating how to 
describe the characteristics of a simulation model 
component focusing on semantics of interfaces and 
functionalities. In detail we discuss a minimum set of items 
that we expect model developers to use to gain trust in the 
simulation model component. Moreover, the minimum 
description should enable model developers to have 
sufficient insight to start using the simulation model 
component to compose their simulation models. 
 
Before we introduce the description structure and minimum 
items of a simulation model component, we will first 
explain what simulation model components are. We then 
discuss approaches for describing software components that 
were developed in the software engineering community. 
Based on these descriptions, we introduce our structure for 
describing a simulation model component. We illustrate the 
applicability of this structure by examples of simulation 
model components of an agent representing local authority 
in a city and a retailer of a supply chain. The paper 
concludes with a summary and directions for future 
research. 
 
BACKGROUND ON SIMULATION MODEL 
COMPONENTS 
Simulation models describe different types of systems: 
continuous, discrete and hybrid systems. They use different 
formalisms, e.g. block diagrams, hybrid automata, hybrid 
petrinets, timed petrinets, state charts, or DEVS, 
implemented in different simulation environments with 
different features. These simulation models have the 
disadvantages that they are hard to adjust, that it is time-
consuming to develop them and that it is often very hard to 
reuse parts of earlier developed simulation models 
[Robinson, 1999; Keller et al. 1991]. Therefore currently a 
lot of attention is paid to the ability to use component 
technology as developed within electronics and software 
engineering. The benefit of these components should be that 
simulation models can be assembled from existing parts and 
that developing a simulation model requires only some 
parameterization. We call these parts “simulation model 
components”. A simulation model component is a 
component that is meant to be used as part of a simulation 
model representing a sub-system with a predefined 
reduction and generalization. 
 
Simulation model components allow a model developer to 
compose a simulation model, ideally without any additional 
programming. The simulation model components are 
developed by a component developer who performs the 

simulation software coding and ensures that simulation 
model components can be plugged together to form a 
simulation model of a system in a specific domain, such as 
the call center (www.arenasimulations.com) and the radar 
systems (www.mathworks.com). 
 
A simulation model aims at a valid, but reduced, 
representation of a system. Currently, model developers 
mainly use their own developed simulation model 
components, because they are not aware of or interested in 
model components developed by someone else. They fear 
the risk of a different level of reduction and a different way 
of referring to functionalities in a system.  
 
Simulation model developers work with different simulation 
paradigms and therefore use simulation model components 
in different ways. In agent models, a component is seen as 
an agent that can be reused in another simulation model; in 
discrete event for resource allocation simulation models, a 
simulation model component is part of a set of components 
that enable simulation of specialized domains; and in 
continuous simulation, the simulation model components 
are a set of differential equations that are always operating 
together. Even though model developers use simulation 
model components differently, still they need comparable 
insight in the usability of a simulation model component as 
part of their simulation model.  
 
A standardized description of a simulation model 
component should enable a model developer to find existing 
simulation model components and to judge whether a given 
simulation model component is suitable for their simulation 
model. Currently, developers of simulation model 
components either do not describe their components or only 
use an unstructured textual way of describing them. As a 
result, model developers have difficulties to identify the 
existence of usable simulation model components and to 
judge their applicability. This is one of the main reasons 
why model developers decide not to use simulation model 
components and do not benefit from the advantages that 
simulation model components could offer. 
 
DESCRIPTIONS OF COMPONENTS IN SOFTWARE 
ENGINEERING 
In the area of software engineering, several component 
technologies are now being used. The best-known of these 
are Java Beans (java.sun.com/products/javabeans/) and 
Enterprise Java Beans (java.sun.com/products/ejb/) of SUN 
Microsystems, Component Object Model (COM, COM+, 
DCOM, .NET - www.microsoft.com/com/) of Microsoft, 
and the Corba Component Model of the Object 
Management Group (www.corba.com). For these existing 
technologies, no specification standards exist yet. 
 
However, the software engineering community faces the 
same problems as the simulation community: the 



advantages of components can be exploited only if 
component markets can be set up, where components can 
effectively be searched for, and whose implementation may 
be kept secret from component consumers. Therefore, 
proposals how to specify software components describing 
their semantics have been developed. We have analyzed 
three of these proposals to judge their applicability to 
describe simulation model components. The analyzed 
proposals are the Web Service Description Language 
(WSDL) (www.daml.org/services/), a specification standard 
for business components developed by a working group of 
the German “Gesellschaft für Informatik” 
(www.fachkomponenten.de) and an approach developed by 
one of the authors of this paper [Heisel and Souquières, 
2004]. 
 
Even though a simulation model component is a special 
kind of software component, a model component is 
different from a software component due to its reduction of 
reality and its notion of scheduled time. Therefore, the focus 
of description needs to be different for simulation model 
components. In this section, we first provide an overview of 
the three above-mentioned software engineering structures 
of describing components, and in the next section make our 
selection of characteristics that are needed to describe a 
simulation model component. 
 
Web Services 
To facilitate the use of services over the web, the Web 
Service Description Language (WSDL) has been defined 
(www.w3.org/TR/wsdl). As communication protocols and 
message formats are standardized in the web community, it 
becomes possible and increasingly important to be able to 
describe the communications in some structured way as 
well. In this context, the web ontology language OWL is 
used to publish and share sets of terms called ontologies, 
supporting advanced web search, software agents and 
knowledge management. 
In this context, OWL-S, an OWL-based web service 
ontology (www.daml.org/services), supplies web service 
providers with a core set of markup language constructs for 
describing the properties and capabilities of their web 
services in an unambiguous, computer-interpretable form. 
To support the automation of web service tasks, including 
automated web service discovery, execution, composition 
and interoperation, the ontology comprises three parts:  
• the service profile for advertising and discovering 

services; it answers the question  “What does the service 
require of the user(s), or other agents, and provide for 
them?” 

• the process model, which gives a detailed description of 
a service's operation, and answers the question “How 
does it work?” 

• the grounding, which provides details on how to 
interoperate with a service, via messages, and answers 
the question “How is it used?” 

 
Simulation model components should be described 
according to a similar direction as the WSDL. However, 
simulation model components cannot be described exactly 
like the WSDL. The goal of the WSDL is to provide a 
better, unambiguous meaning of services and to support re-
use of services or components by others, where the context 
of this re-use is not known in advance. However, simulation 
model components are not necessarily executable, but will 
be executed in specific simulation environments. This 
results in constraints that restrict the applications of model 
components, e.g. validity of the model component, or have 
a different connotation, e.g. underlying assumptions. These 
constraints and connotation do not apply in the field of web 
services, therefore the WSDL does not describe these 
issues. 
 
Standardized Specification of Business Components 
In 1999, the working group “Component Oriented Business 
Application Systems” within the German “Gesellschaft für 
Informatik” started to develop a standard specification for 
business components (www.fachkomponenten.de). The 
result of this working group is a description of a business 
component structured along seven levels. The marketing 
level describes business-organizational features of the 
business component as well as technical initial conditions. 
The task level contains the purpose of the business 
component and the tasks that it automates. On the 
terminology level, the functional terms of the business 
domain are explained. The quality level describes non-
functional properties and quality features, and their 
corresponding measurement units and methods. On the 
coordination level, the succession relationships between the 
services of the components and the cooperation with other 
components are specified. The behavioral level contains 
invariants and pre- and post-conditions. Finally, the 
interface level describes the denomination of business 
components, services, parameters, data types and failure 
reports, as well as service signatures and assignment to 
business tasks. 
 
These seven levels constitute an adequate specification 
structure for business components. However, for simulation 
model components, it cannot be used as it is, because 
business and simulation model components have different 
characteristics, and hence their descriptions have to stress 
different aspects. The purpose of business components is to 
support business processes. The underlying software 
systems are mostly information systems, where for example 
the occurrence of events and timing constraints do not play 
a major role, nor have these systems reductions of 
functionality compared to reality. We encountered lack of 
ability to describe those issues, which are important when a 
model developer makes the decision to use a simulation 
model component. 
 



Specifiying software components for interoperability 
Heisel and Souquières [2004] have developed a 
specification structure for software components that covers 
the functional aspects of such components. This structure is 
aimed at supporting the decision whether two components 
can be plugged together or not. The description of a 
software component consists of the specification of its 
export (supplied) interfaces, its import (required) interfaces, 
a usage protocol relating the export interfaces, and a relation 
between export and import interfaces. That relation states 
which export service relies on which import service.  
 
The specification of an interface consists of an interface 
data model (IDM), a set of operation specifications, and a 
usage protocol for the interface operations. The IDM gives 
a definition of all data used by the interface operations. 
Every caller of an interface operation must adhere to the 
data format specified in the IDM. The IDM also contains 
invariants that express integrity constraints on the data. The 
specification of an operation consists of its signature (i.e., 
its name and the names and types of its input and output 
parameters), a precondition (characterizing the situations 
where the operation can be applied successfully), and a 
post-condition (specifying the effect of the operation). The 
usage protocol specifies the order in which the operations 
may be applied. 
 
The structure provided by Heisel and Souquières [2004] 
focuses on the interfacing of components. This is very 
important for good composition of any type of components, 
but not the main issue in simulation model component 
composition. The interfacing becomes an issue once the 
semantics of functionalities and level of reduction are 
clarified. Therefore, solely using the structure of Heisel and 
Souquières [2004] is not enough for describing simulation 
model components. 
 
OVERVIEW OF ITEMS FOR DESCRIBING 
SIMULATION MODEL COMPONENTS 
All three specification frameworks described in the last 
section have some added value, but none of them goes into 
detail with relation to the representation of the simulation 
model components functionalities. However, model 
developers gain their trust and make decisions for use on 
this information about the simulation model component, 
because this will result in the level of reduction and 
abstraction that is realized in simulation models. Another 
difference between simulation model and software 
components is that simulation model components have 
several interface descriptions. In addition to “ordinary” 
interface descriptions also the interfaces to model 
developers, i.e. the user-interfacing for parameterization, is 
of high importance with simulation model components. 
 
Based on the work of Heisel and Souquières, the 
“Gesellschaft für Informatik” and the WSDL we structure 

the description of the model component into three 
categories: profile (overview of possible use), interfaces 
(how to access the service and parameterize the simulation 
model component) and working principles (how does the 
simulation model component perform its functions). In the 
following we briefly discuss the different items that should 
be described in these three categories. 
 
     Profile of a model component 
Application Domain: For a first decision whether or not a 
model component is suitable to be used in a simulation 
model, the application domain the component falls into 
must be known. Examples of such domains include 
computer networks, supply chain management, traffic, 
military, or health care simulation. 
Name: A clear and representative name that enables model 
developers to grasp its intended purpose. 
Existing ontology: Some domains have ontologies or 
taxonomies to follow. If such a standard is followed this 
should be identified. 
Objective: Experiments that can be performed with models 
that are composed with this simulation model component. 
Responsible persons/developer: In order to increase the trust 
that model component users have in the components, it may 
be important for them to know the source of the component. 
Is the developer of the component known as an expert in the 
application domain? 
Purpose: A natural language description of the model 
component should include a rough sketch of the functional 
behavior and thus the purpose that the simulation model 
component can fulfill in a simulation model. 
Simulation environment: many simulation model 
components are only usable within a certain modeling 
and/or runtime environment. For example, a component 
described as a DEVS atomic model [Zeigler et al, 2000] 
cannot easily be used to be part of an ARENA model 
(www.arenasimulations.com). 
Underlying assumptions: The underlying assumptions 
identify when a model can be applied and when it cannot be 
applied. For example, if a traffic model component assumes 
that no blocking of crossings will occur, the model 
component should not be used for situations where this 
blocking plays a central role. Similarly, if a bus component 
is modeled as a mass point, then single passenger movement 
cannot be described with that component. The assumptions 
are often closely related to the overall objective of 
designing a model component. 
Validation: Validation and verification (V&V) is one of the 
key issues when building and using a simulation model 
[Balci 1997]. Model validation makes sense only in the 
context of a specific purpose of the model and question to 
be answered with the model with known accuracy. Hence, 
using a simulation model component that is valid in a 
certain context does not guarantee that this component is 
valid in another context, too. Therefore the validation will 
show an overview of testing environments and experimental 



frames that have been used to validate the behavior and 
representation of the simulation model component. 
Furthermore, case studies and problem descriptions that 
show the successful and unsuccessful use of the component 
may be valuable. 
Classifications: there are a number of model (component) 
classifications that should be used in order to decide 
whether or not the component can be used in a given 
context. These include: 
1 Discrete vs. continuous time, or state model 

components (or hybrid) respectively. 
1.1 Continuous: partial/ordinary differential equations, 

linear/non-linear, stiff/nonstiff. 
1.2 Discrete: event-based/process-based/activity-scanning 
2 Scope and use of the model component: metrically 

scaled variables (e.g. reals), variables with ordinal or 
nominal scale, or a mixture of both. 

3 Stochastic vs. deterministic 
4 Modeling paradigm: for example, resource-queue-

entity, state-charts, bond-graphs, Petri-nets. 
     Interfaces of a model component 
In- and out-ports including associated signatures: This is the 
technical interface description as identified in all the 
software structures. It provides an overview of the triggers 
or messages the model component can receive and will call 
to other components. The associated signatures are an 
overview of the function or process started when something 
enters by an in-port. 
Relations between interfaces and invariants: Sometimes 
models realize a simple reaction, which means they 
consume certain resources and generate certain products 
(e.g. in areas like Systems Biology). Invariants are known 
relations and integrity constraints of in- and output values 
should be listed. For example: “outputMoney <= taxes + 
savingsMoney”. 
Types of interfaces: In a software application, a software 
component can only communicate with another software 
component or a user. In a simulation model component, 
more types of interfaces can exist. Examples are a 
simulation model component with a software component or 
a simulation model component with a model user in a 
gaming situation. 
Parameterization: Which values of the component can/must 
be parameterized by the model developer to enable a system 
specific representation? Parameterization information also 
should include the allowed ranges of values for 
parameterized attributes. Most often the model developer 
can parameterize the behavior and attributes of a simulation 
model component through a user interface of the simulation 
environment. 
Expected effects of changes to parameters: The influence of 
parameterizable values should be clear to the simulation 
model developer 
Visualization / performance indicators: Output generated by 
the simulation model component that provides insight in the 
behavior and state of the component. Visualization mainly 

refers to insight during the simulation run. Examples of 
visualization are console with messages or even Virtual 
Reality animations. 
 
     Working principles of a model component 
Description of the functionality: Model developers will not 
use a simulation model component unless the behavior of 
the model component is absolutely clear to them. Model 
developers will have the risk of inconsistency in their 
model, different use of resources, different levels of 
abstraction, or a process flow that does not represent their 
system. For software components, pre-and postconditions 
and usage protocols suffice, but in simulation model 
components, the functional behavior should be described in 
detail, preferably with a standardized and formalized 
description, like for example the DEVS-framework [Zeigler 
et al., 2000]. Alternative ways of describing the 
functionalities of the simulation model component and the 
translations of input at in-ports to an output are state charts, 
Petri-Nets, timed automata, flow charts, sequence diagrams 
and pseudo code. 
Illustrations of how it works: To support a faster decision 
whether or not to use a component, as well as an easier 
integration of a component into a composed model, the 
description of the functionality should be complemented by 
example models using the component, training material, or 
animation movies, respectively. 
 
EXAMPLE DESCRIPTION OF MODEL 
COMPONENTS 
We illustrate the description structure for simulation model 
components with two examples. The first example is a 
simulation model component representing a local authority. 
The second example is a simulation model component 
representing a retailer that should be usable in any supply 
chain.  
 
Example 1: Local Authority 
     Profile of the local authority  
Application domain: Simulation of social communities, i.e. 
sociology, demography, and economy. 
Name: Local Authority - a model of a rational, social actor1. 
Existing ontology: . Unlike medical or biological 
application areas, application areas like sociology, 
demography, and economy do not maintain taxonomies to 
structure the most widely used terms and describe their 
semantics. 
Objective: Analyse consequences of catastrophes 
Responsible persons / developers: Mathias Roehl, 
University of Rostock, Department of Computer Science 
and Ulf Ewert, Technical University of Chemnitz, 
Department of History.  
Purpose: The model component models a rational actor who 
controls a society and its economy. This control is based on 

                                                           
1 We follow the definition of Rapoport [1980] of rational actor. 



qualitatively assessing the current situation in the society, 
and based on preferences to derive a plan of activities that 
are executed stepwise. Each “qualitative step”, e.g. the 
increase of taxes, is translated into quantitative information, 
e.g. an increase of 5 percent. The model component invokes 
an external planner for plan generation, and thus depends on 
its availability. 
Simulation environment: The local authority is implemented 
in James (www.informatik.uni-
rostock.de/mosi/en/research/projects/cosa.html). In the 
future, the component should be re-usable in most DEVS-
based simulators, thanks to the standardization efforts of 
DEVS-based simulators 
(www.sce.carleton.ca/faculty/wainer/standard). Note that 
although external software is invoked during the simulation 
run, the basic DEVS is used. The computer time that is used 
for planning is ignored. Efficiency plays no major role. 
Hence, the planner is invoked synchronously within a 
transition. See Schattenberg and Uhrmacher [2001] for 
more sophisticated realizations. 
Underlying assumptions: 
1) The actor acts in a rational manner.  
2) As long as a plan is executable, it will be executed. New 

options are only taken into account when a re-planning 
becomes necessary.  

Validation: The model component has been tested for 
evaluating management strategies in overcoming the 
aftermath of disasters in pre-modern towns. The results are 
documented in Ewert et al [2001 and 2003]. 
Classification 
1) Discrete, time-stepped model. Although implemented in 

a discrete-event simulation system, the model 
component executes one time step after each other. In 
the context of the pre-modern town, one time step of 
simulation time corresponded to 7 days in physical 
time.  

2) Semi-quantitative. Whereas the model components’ 
interaction with the model environment is based on 
quantitative data, its preferences and the developed 
decisions to act are kept in qualitative terms. The 
knowledge base is a collection of facts, and supports a 
simple deduction algorithm. 

3) Deterministic. The model component makes no use of 
stochastic variables. Given the same initial state and 
the same inputs, the local authority will develop the 
same plans assuming that the invoked planning 
mechanism works in a deterministic manner. 

4) Process-Based World View using State Charts and, 
Agent-Oriented Modelling Paradigm. The Local 
Authority model component is based on a 
B(eliefs)D(esire)I(ntention) Agent, which is a sub-
class of deliberative agents. 

 
     Interfaces of the local authority 
In- and outports: The model component expects inputs for 
commodities and information. Ewert et al. [2001 and 2003] 

mention the commodities grain, labour, and money. The 
class information subsumes the following classes: grain 
price, labour price, taxes, migration, public opinion, and 
marriages.  
The model component produces the class commodities, and 
the class power as output. Ewert et al. [2001 and 2003] 
describe that if money is sent to the grain market the local 
authority simulation model component assumes that this 
will be interpreted as a request to buy grain. If money is 
sent to the labor market the local authority simulation model 
component assumes that it initiates a job creation program.  
The class power subsumes the following classes: minimum 
and maximum prices for grain market and labor market, 
taxes for the goods markets and the population (stove tax), 
marriage restrictions for the marriage market, and migration 
rules. 
Relations between interfaces and invariants: The amount of 
commodities is larger than or equal to zero. Further money 
spent in the community is always less than or equal to the 
current tax income added to the saved money. Thus, the 
local authority does not spend more money than it has. 
Taxes are always smaller than or equal to one hundred 
percent. The sold grain is always less than or equal to the 
stored grain, and the stored grain diminishes with a certain 
depreciation rate.  
Types of interfaces: Only the interfacing between 
simulation model components is described above. The local 
authority also has a connection to external software to 
generate the plan to be executed. The model component 
expects a partial plan as input from the external software. It 
consists of a sequence of actions, each denoted by its name, 
and numbers that indicate in which sequence the plan steps 
have to be executed.  
Parameterization: The possible parameterization of the 
model component reflects its overall complexity. State 
variables, as well as the local authority’s beliefs about itself 
and its environment are initiated. This includes how much 
money, how much grain etcetera are available. Variables 
that do not change over the simulation run are goals, the 
preferences among them, and the set of operators that can 
be applied to reach these goals. Quantitative information is 
transformed into qualitative information based on certain 
parameters, e.g. when are prices to be considered low, when 
are savings high etc. The set of initial plan operators can be 
extended. Qualitative decisions are transformed to 
quantitative measurements that can be applied in the town, 
e.g. if an increase of taxes is decided, what will be the 
increase, if grain is to be sold, what percentage of the grain 
on stock shall be put on the market, et cetera. 
Expected effects of change to parameters: The preferences 
among the goals definitely have an impact on the 
plan generated and the single activities, and thus on the 
development of the monitored and controlled community. 
For example, the default preference of the model 
component favors the income of the local authority above 
the fast recovery of the population [Ewert et al., 2003]. 



Visualization / performance indicators: Current beliefs, 
goals and the developed plan can be inspected during the 
simulation. 
 
     Working principles of the local authority 
The behavior of the local authority follows the typical BDI 
architecture. The following pseudo-code explains its 
behavior:  
 
If inputs then currentBeliefs := 

updateBeliefs(beliefs, input);  
If nonempty(plan) then 
 currentPlanStep := selectNextPlanStep(plan); 
If noPlan or notExecutable(currentPlanStep) then 
 begin 
  goals := selectGoals(beliefs, goals);  
  plan:= generatePlan(beliefs, operators, 

goals); 
  currentPlanStep := selectNextPlanStep(plan); 
  output := currentPlanStep; 
 end 
outputToModelComponent:=quantisize(beliefs,current

PlanStep); 
 
Example 2: Retailer in Supply Chain 
     Profile of retailer in supply chain 
Application Domain: Supply Chain Management 
Name of simulation model component: Retailer 
Objective: Modelling of information exchange in supply 
chains. 
Responsible persons/developer: Designed by Corver [2001] 
and implemented by Hee [2002]. 
Purpose: The retailer receives orders from customers and 
places orders for goods at its suppliers. The complete 
process is followed from initial order quotations to billing. 
Simulation environment: The component is implemented in 
eM-plant; Arena and Java to be used with D-SOL. 
Underlying assumptions: The retailer always has enough 
money; employment costs are not considered. 
Validation: Component has been applied in several test-
cases; so far no serious use. 
Classifications:  
1) Discrete event 
2) Money is in “units”; further sizes are not considered 
3) Several sub-functionalities can contain stochastics 
4) Modeling paradigm is resource-queue-entity 
 
     Interfaces of retailer in supply chain 
In- and out-ports including associated signatures: Signals 
are identified for exchanging information with customers 
and suppliers. Too much to mention all in and out-ports in 
this article. For more details, see Hee [2002]. 
Relations between interfaces and invariants: Incoming 
signals will result in execution of selected functionalities, 
such as ordering, calculate price or start transportation. 
Types of interfaces: During the execution of the model, only 
signals are exchanged between simulation model 
components. The implementation in Java is prepared for 
exchange with real databases or even applying in a 
simulation game. 

Parameterization: Model developers can adjust almost 
everything. Each functionality of the retailer contains its 
own additional user-interfacing. Some examples are the 
time for reacting to a request for quotation or the profit 
margin. 
Visualization / performance indicators: Overview of the 
functionalities and selected performance indicators, such as 
stock size and number of orders to be processed. 
 
     Working principles of retailer in supply chain 
The retailer has several functionalities. The figure below 
shows the high-level process of an order. Actions 1 to 4 and 
6 will be performed by the retailer when it orders goods at 
its supplier. Hee [2002] describes in more detail how these 
functionalities are performed. 

 
 
CONCLUSIONS 
In this paper, we have proposed a description structure for 
simulation model components. Such a description structure 
is crucial for fully exploiting the advantages a component-
based approach can offer. It supports the re-use of 
components developed by third parties, without being 
obliged to inspect every detail of the component itself. Only 
with concise and meaningful descriptions can developers of 
simulation models really save time and effort by using 
components. The descriptions may also serve as a contract 
between component supplier and component consumer. 
Moreover, they support the development of a functioning 
market for simulation model components. 
The description structure we have developed is based on 
specification approaches for software components and web 
services. These specification approaches put the stress on 
the semantics of components. Describing the semantics of a 
component is a common goal for software and simulation 
model components. However, software and simulation 
model components are so different in nature that a 
specialized description structure for simulation model 
components is needed. 
 
Our description structure is tailor-made for simulation 
model components. It contains sections where the 
simulation-specific characteristics of a model component 



can be described, mainly focusing on the semantics of 
interfaces and functionalities to represent reduction and 
abstraction. On the other hand, it was our goal to 
accommodate all kinds of simulation model components in 
different paradigms, for example discrete as well as 
continuous and stochastic as well as deterministic ones.  
  
With two examples, we have demonstrated the usefulness of 
our description structure. In the future, we intend to perform 
further case studies, covering all relevant kinds of 
simulation components. 
 
The current description is a first attempt to describe model 
components. Many of the proposed slots are filled in 
unstructured text form. We made a first step towards 
clarifying what information is needed to support reuse of 
model components. The next step will be to find more 
suitable representations, which make it easier to search for 
and analyze this information. 
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