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Abstract

We use the formal method B for specifying interfaces of software components. Each
component interface is equipped with a suitable data model defining all types oc-
curring in the signature of interface operations. Moreover, pre- and postconditions
have to be given for all interface operations. The interoperability between two
components is proved by using a refinement relation between an adaptation of the
interface specifications.
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1 Introduction

In recent years, the paradigm of component orientation [9,19] has become
more and more important in software engineering. Its underlying idea is to
develop software systems not from scratch but by assembling pre-fabricated
parts, as is common in other engineering disciplines. Component orientation
has emerged from object orientation, but the units of deployment are usually
more complex than simple objects. As in object orientation, components are
encapsulated, and their services are accessible only via interfaces and their
operations.

In order to really exploit the idea of component orientation, it must be pos-
sible to acquire components developed by third parties and assemble them in
such a way that the desired behavior of the software system to be implemented
is achieved. This approach leads to the following requirements:

(i) The description (i.e., specification) of a component must contain suffi-
cient information to decide whether or not to acquire it for integration in a new
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software system. First, this requirement concerns the access to the compo-
nent’s source code that may not be granted in order to protect the component
producer’s interests. Moreover, component consumers should not be obliged
to read the source code of a component to decide if it is useful for their pur-
poses or not. Hence, the source code should not be considered to belong to the
component specification. Second, it does not suffice to describe the interfaces
offered by a component (called provided interfaces in the following). Often,
components need other components to provide their full functionality. Hence,
also the required interfaces must be part of a component specification.

(ii) For different components to interoperate, they must agree on the for-
mat of the data to be exchanged between them. Hence, each interface of a
component must be equipped with a data model that describes the format
of the data accepted and produced by the component. It does not suffice to
give only the signature of interface operations (e.g., operation foo takes two
integers and yields an integer as its result) as is common in current interface
description languages. It is also necessary to describe what effect an interface
operation has (e.g., operation foo takes two integers and yields their sum as a
result).

In order to fulfill the above requirements, a component interface specifica-
tion must contain the following information:

e a data model associated with each required and provided interface of a
component (interface data model),

» pre- and postconditions for each interface operation, such that design by
contract [13] becomes possible.

We use UML class diagrams [4] to express the interface data model and the
formal notation B [1]. Based on these ingredients, we prove the interoperability
between two components by using a refinement relation between an adaptation
of their interface specifications. Part of this notion of interoperability between
component interfaces is based on a specification matching approach [24].

We chose to use the B method because its underlying concepts of ma-
chine and refinement fit well with components and their interoperability, and
because the method is equipped with powerful tool support. Thus, we can
exploit existing technology for proving component interoperability. Using for
example the object constraint language OCL and generating verification con-
ditions from scratch would be much more tedious.

Note that our approach takes into account only the functional aspects of
components. Non-functional aspects such as security and performance are of
course also important, and we aim to treat these issues in future work.

The rest of the paper is organized as follows: in Section 2, we discuss
related work. Then, we present an overview of the B method in Section 3. We
introduce the specification of component interfaces in Section 4. The notion
of interoperability between two components is defined in Section 5 with its
verification using the notion of refinement as it is defined for B. The case
study of a hotel reservation system serves to illustrate our approach. The
paper finishes with some concluding remarks in Section 6.
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2 Related Work

In an earlier paper, we have investigated the role of component models in
component specification [10]. The specification of a component model makes
it possible to obtain more concise specifications of individual components, be-
cause these may refer to the specification of the component model. The compo-
nent model specification need not be repeated for each individual component
adhering to the component model in question. In this paper, we investigate
the necessary ingredients a component specification must have in order to be
useful for assembly of a software system out of components. These ingredients
are independent of concrete component models. Several proposals for compo-
nent specification have already been made. They have in common that they
have no counterpart of our interface data model and that they do not consider
interoperability issues, but only the specification of single components.

A working group of the German “Gesellschaft fiir Informatik” (GI) has
defined a specification structure for business components [20]. That structure
comprises seven levels, namely marketing, task, terminology, quality, coordi-
nation, behavioral, and interface. Our specification structure covers the layers
terminology, coordination, behavioral, and interface by proposing concrete
ways of specifying each of those levels. The other layers of the GI proposal
have to do with non-functional aspects of components.

Beugnard et al. [3] propose to define contracts for components. They
distinguish four levels of contracts: syntactic, behavioral, synchronization, and
quality of service. The syntactic level specifies only the operation signatures,
the behavioral level contains pre- and postconditions, the synchronization level
corresponds to usage protocols, and the quality of service level deals with non-
functional aspects. Beugnard et al. do not introduce data models for their
interfaces. It cannot easily be checked if two components can be combined.

The component specification approach of Lau and Ornaghi [11] is closer
to ours, because there, each component has a context that corresponds to our
interface data model. A context is an algebraic specification, consisting of a
signature, axioms, and constraints. In contrast, we deem it more appropriate
to allow for an object-oriented specification of the data model of a component
interface. This makes it possible to take side effects of operations into account
and to use inheritance, concepts that are frequently used in practice.

Cheesman and Daniels [6] propose a process to specify component-based
software. This process starts with an informal requirements description and
produces an architecture showing the components to be developed or reused,
their interfaces and their dependencies. For each interface operation, a spec-
ification is developed, consisting of a precondition, a postcondition and pos-
sibly an invariant. This approach follows the principle of design by contract
[13]. Our specification of component interfaces is inspired by Cheesman and
Daniels’ work because that work clearly shows that for each interface, a data
model is necessary. However, Cheesman and Daniels do not consider the case
that already existing components with possibly different data models have to
be combined, and hence they do not define a notion of interoperability.
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Canal et al. [5] use a subset of the polyadic 7-calculus to deal with compo-
nent interoperability only at the protocol level. The 7-calculus is well suited
for describing component interactions. The limitation of this approach is the
low-level description of the used language and its minimalistic semantics.

Bastide et al. [2] use Petri nets to specify the behavior of CORBA objects,
including operation semantics and protocols. The difference with our approach
is that we take into account the invariants of the interface specifications.

Zaremski and Wing [24] propose an interesting approach to compare two
software components. It is determined whether one component can be sub-
stituted for another. They use formal specifications to model the behavior
of components and the Larch prover to prove the specification matching of
components.

Others [8,21] have also proposed to enrich component interface specifi-
cations by providing information at signature, semantic and protocol levels.
Despite these enhancements, we believe that in addition, a data model is
necessary to perform a formal verification of interface compatibility.

The idea to define component interfaces using B has been introduced in
an earlier paper [7].

3 The B method

The B method [1] is a formal software development approach allowing to
develop software for critical systems. It covers the entire development process
from an abstract specification to an implementation. Its basis is set theory.
The basic building block is the abstract machine that is similar to a module
or a class in an object-oriented development. A B specification consists of one
or several abstract machines (examples of B machines are given in Section 4).
Each of them describes a set of variables, invariance properties (also called
safety properties) referring to these variables, an initialization, which is a
predicate initializing the variables, and a list of operations. The specification of
an operation consists of a precondition part and a body part. The precondition
expresses the requirement that must be met whenever the operation is called.
The body expresses the effect of the operation. The states of a specified
system are only modifiable by operations that must preserve its invariant. A
B operation OP is defined as : OP < PRE P THEN S END, where P is a
precondition, and S is the body part, expressed as a generalized substitution.
S may for example take the following shapes:

. def . . .
e assignment statement: S = x := E where z is a variable and E is an

expression,
* multiple assignment: S Y5 ...,y=E,... F,

o IF statement: S £ IF P’ THEN &' ELSE T END, where P’ is a predicate,
S" and T" are substitutions.

The formula [S]Post (where S is a substitution, and Post is a predicate) is
called the weakest precondition for S to achieve Post. It denotes the predicate
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which is true for any initial state, from which the execution of S is guaranteed
to achieve Post.

The B method provides structuring primitives that allow one to compose
machines in various ways. Large systems can be specified in a modular way
and in an object-based manner [14,12]. A system is developed by refinement
used to transform an abstract specification step by step into more concrete
ones. For each refinement step, we have to prove that the refined specification
is correct with respect to the more abstract specification. In the end, we arrive
at an implementation that refines its abstract specification. Verification can
be done with the B theorem prover, Atelier B [18].

4 Specification of component interfaces

Our goal is to propose a way of specifying components as black boxes, so
that component consumers can deploy them without knowing their internal
details. Hence, component interface specifications play an important role, as
interfaces are the only access points to a component.

4.1 Definition

A component specification must contain all information necessary to decide
whether the component can be used in a given context or not. This concerns
the data used by the component as well as its behavior visible to its envi-
ronment. This behavior is realized by services which can be used by other
components or software systems. These services are collected in provided in-
terfaces. However, in many cases, a component depends on services offered
by other components. In this case, the component can work correctly only
in the presence of other components offering the required services. The ser-
vices required by a component are collected in required interfaces. Required
interfaces are an important part of a component specification, because with-
out the knowledge what other components must be acquired in addition, it is
impossible to use the component in a component-based system. An interface
specification consists of the following parts:

(1) The specification of its interface data model which specifies (i) the types
used in the interface, (ii) a data state as far as necessary to express the effects
of operations, and (iii) invariants on that data state. In the following, we use
UML class diagrams [4] to express the data model. This class diagram is then
automatically transformed into a B specification [14]. Other languages, such
as Object-Z [17], are also suitable for specifying the interface data model (see
110]).

(2) A set of operation specifications. An operation specification consists of
its signature (i.e., the types of its input and output parameters), its precon-
dition expressing under which circumstances the operation may be invoked,
and its postcondition expressing the effect of the operation. Both pre- and
postcondition will refer to the interface data model.

For each component interface, a B machine is defined that contains speci-
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. IMakeReservation
<<comp spec>> |IHotelMgt N IHotelHandling
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ICustomerHandling

Fig. 1. Component architecture of the hotel reservation system

ReservationDetails HotelDetails
hotel: Hotelld id: Hotelld
dates: DateRange name: String
Customer Reservation Hotel Room
id: Custld 1 resRef: Integer * id: Hotelld 1 number: String
«| dates: DateRange 1| name: String 1.
claimed: Boolean " available(during: DateRange): Boolean
stayPrice(for: DateRange): Currency

0.1

allocation

Fig. 2. Interface data model of I Hotel Handling

fications of the interface data model and of the operations.

4.2 Case study

We illustrate our approach by considering a hotel reservation system, a vari-
ant of the case study used by Cheesman and Daniels [6]. The architecture
of the global reservation system using components is described in Fig.1 using
UML 2 notation [15]. It has two export interfaces, IMakeReservation and
ITakeReservation, and two import interfaces I Hotel Handling and ICustomer-
Handling. One of the used components is Hotel M gr with its export interface
IHotelMgt.

In the following, we will consider the interfaces I Hotel Handling and I H otel-
Mgt in more detail in order to prove that the component Hotel M gr with its
interface I Hotel M gt satisfies the needs of the interface I Hotel Handling.

4.2.1 Specification of the interface IHotelHandling
Figure 2 shows the interface data model, expressed as a class diagram.

The corresponding B specification is obtained by systematic transforma-
tion rules applied on the UML class diagram in the following way. Since in B
all variables must have different names, we use the naming convention that all
variable names are prefixed by an abbreviation of the name of the class they
belong to. For example, the attribute hotel of the class ReservationDetails
becomes the variable RD_hotel in the B machine I Hotel Handling.

Classes. As we can see in Fig. 3, the classes of the interface data model and
the types of their attributes are represented as sets. Attributes are defined as
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variables which are functions. The sets of objects that exist in the system,
such cust, res, hotels and rooms are also defined as variables. For example,
cust is declared to be a subset of the set Customer.

Associations between classes. They are specified as variables whose type
is a function or relation (depending on the multiplicities of the association)
between the sets that model the associated classes. Figure 4 shows the B spec-
ification of the associations between the classes: Reservation and Customer,
Reservation and Hotel, Reservation and Room.

Integrity constraints. They are specified as predicates in the INVARIANT
clause of the B machine. For example, the constraint which expresses that a
reservation is claimed if and only if a room is allocated to it is expressed as:

V(re).((re € res) = ((RES_claimed(re) = TRUE) < (re € dom(assoc_Allocation))))

MACHINE IHotelHandling
SETS ReservationDetails; Hotelld; DateRange; Hotel Details;
Customer; CustID; Reservation; Hotel; Room; Currency
VARIABLES RD_hotel, RD_dates, HD_id, HD _name, C_id, cust, RES_resRef, RES_dates,
RES_claimed, RES_number, Hotel _id, Hotel _name, hotels, res, R_number,
R_available, R_stayPrice,rooms
INVARIANT
/ * classReservationDetails x /
RD _hotel € ReservationDetails — HotellD A RD_dates € ReservationDetails — DateRange A
/ * classHotelDetails x /
HD_id € HotelDetails -+ HotellD AN HD_name € HotelDetails - STRING A
/ * classReservation x [
RES_resRef € Reservation - INTEGER A RES_dates € Reservation — DateRange A
RES_claimed € Reservation - BOOL A RES_number € INTEGER A
/ * classHotel x /
Hotel_id € Hotel -+ Hotelld A Hotel_name € Hotel - STRING
/ * state of the system x/

cust <: Customer A hotels <: Hotel A res <: Reservation A rooms <: Room ...

Fig. 3. B specification of the classes in I Hotel Handling

VARIABLES ...
assoc_ResCust,assoc_ResHot,assoc_Allocation
INVARIANT ...
assoc_ResCust € Reservation — Customer A assoc_ResHot € Reservation — Hotel A

assoc_Allocation € Reservation # Room

Fig. 4. B specification of associations between classes

Class operations. Operations R_availabale and R_stayPrice of the class
7



CHOUALI, HEISEL AND SOUQUIERES

Room are specified as variables whose type is a function as expressed in the
INVARIANT clause of the B machine as follows:

R_available € Room x DateRange — BOOL

R_stayPrice € Room x DateRange — Currency

Operations. They are specified in the OPERATIONS clause of the B
machine. Figure 5 gives two examples of operations: getHotelDetails yields
at its result a collection of hotel details, where the hotel name must match the
input parameter match; makeReservation creates a reservation, given some
customer and some reservation details. It has the precondition that the hotel
contained in the reservation details actually exists. The notation “||” denotes
a parallel assignment.

OPERATIONS ...
hotdets + getHotelDetails(match) =
PRE match € STRING
THEN hotdets := {hdz|hdxz € HotelDetails A 3Fho.((ho € Hotel) N (HD_id(ho) = HD_id(hdz)) A
(HD_name(ho) = HD_name(hdz)) A (matches(match, HD_name(hdz)) = TRUE))}
END;
resref < makeReservation(pres,cus) =
PRE pres € ReservationDetails A cus € CustID A Jho.(ho € hotels A HD_id(ho) = RD_hotel(pres))
THEN ANY ho WHERE (ho € hotels AN H_id(ho) = RD_hotel(pres)) THEN
ANY nres WHERE nres € Reservation A nres € res A
nres € dom(assoc_Allocation) A nes & dom(assoc_ResHot) THEN
res := res Unres || assoc_ResHot(nres) := ho || C_id(assoc_ResCust(nres)) := cus
|| resref := RES_number +1 || RES_resRef(nres) := RES_number + 1

|| RES_dates(nres) := RD_dates(pres) || RES_claimed(nres) := FALSE END END

Fig. 5. B specification of operations

All that information is collected in a single abstract B machine, called
I'HotelHandling is available at http://www.loria.fr/~chouali/specB.

4.2.2  Specification of the interface I Hotel M gt

We assume that a component HotelM gr is available that can manage hotels
with different kinds of rooms. Figure 6 shows the interface data model for its
provided interface I Hotel M gt.

The differences between the interface I Hotel Handling and the interface
IHotelM gt are due to the new class RoomType in IHotelM gt to take into
account different kinds of rooms. All the classes present in the interface data
model of IHotelHandling are also present in the interface data model of
IHotelMgt. However, the classes ReservationDetails and Hotel Details now
have one more attribute related to RoomType.

In the following, we only show a part of the B specification of the interface
I Hotel M gt that expresses the changes as compared to I Hotel Handling.
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ReservationDetails HotelDetails
hotel: Hotelld id: Hotelld
dates: DateRange name: String
roomType: String roomTypes: String[]
Customer Reservation Hotel Room
id: Custld 1 resRef: Integer * id: Hotelld 1 number: String
« | dates: DateRange 1| name: String 1.+
claimed: Boolean available(during: DateRange): Boolean
stayPrice(for: DateRange): Currency

) 0.1
allocation

1

RoomType

name: String

Fig. 6. Interface data model of I HotelM gt

The class RoomType and its associations. Figure 7 presents the specifi-
cation of the class RoomType, its attribute and the associations between the
classes Room and Roomtype, Reservation and RoomType.

MACHINE IHotelMgt
SETS ...
RoomType
VARIABLES ...
RT _name, RD_roomType, HD _roomTypes
INVARIANT ...
/ * classRoomType * /
RT _name € RoomType - STRING A RD_roomType € ReservationDetails - STRING A
HD_roomTypes € HotelDetails - POW(STRING)
/ * associations * /

assoc_RoomRt € Room — RoomType A assoc_ResRt € Reservation - RoomType AN ...

Fig. 7. B specification of the class RoomType in I Hotel M gt

Invariant properties. The operations must respect two important invariant
properties:

e for each object of the class ReservationDetails which is associated to an
object of the class Hotel, the value of its variable RD_roomType is the
value of the attribute name of an object of type RoomType associated to a
room that belongs to the hotel:

V(pres, ho).(pres € ReservationDetails A
ho € hotels N HD_id(ho) = RD_hotel(pres) =
RD _roomType(pres) € {rtn|ritn € STRING A
A(rty,ro).((rty € RoomType) A ro € Room A ro € assoc_ResHot ‘[{ho}] A

9



CHOUALI, HEISEL AND SOUQUIERES

assoc_RoomRt(ro) = rty N RT_name(rty) = rin)})

» for each object of class HotelDetails which is associated to a hotel, the
value of its variable RD_roomTypes is the set of the attribute name of the
objects of class RoomType associated to a room that belongs to the hotel:
V(hdz, ho).(hdz € HotelDetails A ho € hotels N HD_id(ho) = HD_id(hdz) =

RD _roomTypes(hdz) = {rtn|rtn € STRING A I(rty,ro).
((rty € RoomType) A To € Room A ro € assoc_ResHot™'[{ho}] A
assoc_RoomRt(ro) = rty N RT_name(rty) = rin)})

Operations. The interface [ HotelMgt offers operations having the same
names as in the interface I Hotel Handling. However, the specification of the
operation makeReservation is different from the specification of the same
operation in I Hotel Handling, due to the class RoomType (see Fig. 8).

OPERATIONS ...
resref < makeReservation(pres, cus) =
PREpres € ReservationDetails N cus € CustID A 3Fho.(ho € hotels A H_id(ho) = RD_hotel(pres))
THEN ANY ho WHERE (ho € hotels N HD_id(ho) = RD_hotel(pres)) THEN
ANY romt, ro WHERE romt € RoomType A RT_name(romt)= RD_roomType(pres) A
ro € rooms A ro € assoc_RHot ~![{ho}] A assoc_RoomRt(ro) = romt
THEN ANY nres WHERE nres € Reservation ...(see figure 5)
|| assoc_ResRt(nres):= romt END END

END

Fig. 8. makeReservation in 1Hotel Mgt

5 Interoperability between Components

Interoperability means the ability of two or more components to communi-
cate and cooperate despite differences in their implementation language, the
execution environment, or the model abstraction [22]. Three main levels of
interoperability have been distinguished: (i) The signature level (signature of
operations); this level covers the static aspects of component interoperation.
(ii) The semantic level (meaning of operations); this level covers the behav-
ioral aspects of component interoperation. (iii) The protocol level: this level
deals with the order in which a component expects its methods to be called.

In this paper we only deal with the verification of component interoper-
ability at signature and semantic levels. Interoperability at protocol level is
treated in [7]. Checking component interoperability is crucial for component-
based software development and modification, because it allows system design-
ers and implementors to determine whether two components can interoperate
or whether one component can be replaced by another one. Since components
are described by their interfaces, verifying component interoperability must
be performed on the level of component interfaces. Therefore, in order to
verify that two components interoperate, it is necessary to verify that their
interfaces are compatible.

10
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To fully exploit the advantages of the component-based approach, it must
be possible to check the compatibility of two interfaces relying on their specifi-
cations only and ignoring implementation details. Our approach to specifying
component interfaces given in Section 4 has been designed in such a way that
a notion of compatibility can be based on it in a straightforward way.

5.1 Definitions

We first give an intuitive description of component interface compatibility in
Sections 5.1.1 and 5.1.2. We then show how that intuitive notion can be
mapped to refinement in B (Section 5.1.3).

The provided interface PI of a component C’ can play the role of the
required interface RI of a component C| if their interface data models and
their operations are compatible.

5.1.1 Compatibility of interface data models

The basic idea of compatibility between interface data models is that the
interface data model (IDM) of RI is not more restrictive than the one of PI.
Only in this case, the IDM of PI can be used in place of the IDM of RI. In
particular, each type or class of RI must have a counterpart in PI, but not
necessarily vice versa. This means that PI may contain data that are not
needed to implement RI. The following cases have to be distinguished:

* Basic types are compatible if they have the same name, or there is an explicit
rule stating that the two types are compatible.

* For classes, the following conditions must hold:
(i) For each class class, of the IDM of RI, there exists a class class, in the

IDM of PI such that

- For each attribute of class,, there exists an attribute of class, that has
a compatible type.

- For each operation op, of class,, there exists an operation op, of class,,
such that for each type of the signature of op,, there is a compatible type
in the signature of op,. !

- There exists an injective function ¢r : class, — classp, which transforms
an object of class, into an object of class,. It must be possible to
transform RI objects into PI objects in order to use them as input
parameters of Pl operations. The inverse transformation is necessary to
transform the output parameters of PI operations into RI objects.

For data types of PI that have no counterpart in R/, no transformation
function is necessary, because such data can be ignored by RI.
(ii) Each association in the IDM of RI has a counterpart in the IDM of PI,
whose cardinality constraints are not stronger than in the IDM of PI.
(iii) The invariant inwv, of the IDM of PI implies the transformed invariant
tr(inv,) of the IDM of RI. This condition ensures that the states permit-

L This is a simple version of signature matching. Different variants of signature matching
in an algebraic context are given by Zaremski and Wing [23]. A discussion of signature
matching in the context of components can be found in [16].

11
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ted by the IDM of RI are also permitted by the IDM of PI. However, to
show the desired implication, it is necessary that both conditions refer to
the same data model. Therefore, the data occurring in the invariant inv,
(which belongs to the IDM of RI) must be replaced by their counterparts
in the IDM of PI, as defined by the function ¢r.

5.1.2  Compatibility of operations
For each operation op, of interface RI there must exist an operation op, of
interface PI such that:

(i) Their signatures are compatible, i.e., for each type of the signature of
opr, there is a compatible type in the signature of op,.

(ii) The transformed precondition of op,, tr(pre(op,)) implies the precondi-
tion of op,. As for the implication relation on the IDM invariants required
for compatibility of the IDMs, we must transform the data occurring in
the precondition of op;.

(iii) The postcondition of op,, post(op,), implies the transformed postcondi-
tion of op,., tr(post(op,)).

This definition of compatibility of operations corresponds to the notion of
plug-in-matching as defined by Zaremski and Wing [24].

5.1.3 Verification of the interface compatibility with the B refinement

In this section, we show that it is possible to use refinement in B to prove
that two components are compatible at the signature and semantic levels. We
first give the definition of refinement in B [1] and then show how component
interface compatibility can be mapped to B refinement.

Let M and N be two B specifications. In the following we give the main
conditions that must hold between M and N in order to show that N refines
M. M is more abstract than N, but it can also be a refinement of some other
specification; we refer to M as the abstract specification.

(i) The state variables of a refinement machine must be different from the
state variables of the abstract machine.

(ii) The abstract specification M has an initialization T, that establishes its
invariant I,,,. A refinement specification N has an initialization 7;, and a
coupling invariant J,. So, if N refines M, then T,, is required to establish
Jy, in a way which is coherent (non-contradictory) with 7,,,. Formally, T,
is a refinement of T, if and only if —[T,,|—J, is true for any state that
can be reached from T,,.

(iii) Every operation defined in M must be defined in N, i.e., all abstract
operations must be refined.

(iv) If an operation OP, defined in N refines an operation OP,, in M, then
OP,, and OP, must have the same signature.

(v) Let OP, “ PRE P,, THEN S,, END and OP, £ PRE P, THEN &S,
END be two operations in M and N, respectively. Let I,,, be the invariant

12
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defined in M and J, the coupling invariant defined in N. When the

operation OPF, is a refinement of the operation OF,,, then the following

conditions hold :

I, N Jn N Py = [Sy]7[Sm]Jn, if the operations have no outputs.

e If out,, and out, are the outputs of respectively OP,, and OP, then
the following condition must hold:

Iy N Jy N Py = [Splouty/outn]]-[Sm]—(Jn A outy = outy).

e I, N J, N\ P, = P,,

These conditions express that when the operation OF,, is refined by
OP,, then for any refined execution of S,, on a state in which I,, A J, A P,
holds, there exists an abstract execution of S,, (S, and S,, are general-
ized substitutions). We can conclude that for any OP,, refined by OP,,
the precondition of OP,, implies the precondition of OP, (because the
refinement weakens preconditions), and the states in which the postcon-
dition of O P, holds are linked with the states in which the postcondition
of OP,, holds.

Let us now consider the case where M is a B specification of a required
interface RI, and N is a B specification of a provided interface PI. Then
the refinement conditions of M with N concerning the initialization? and
the operations imply the conditions for compatibility between required and
provided interfaces, i.e., refinement in B is sufficient for interface compatibility.

However, the refinement condition concerning the disjointness of state vari-
ables (condition (i)) cannot be guaranteed to hold (and is not necessary for the
compatibility of component interfaces). Hence, in order to use B refinement
for proving the compatibility between RI and PI, it is necessary to transform
the B specification of PI in order to satisfy the refinement condition 1. That
transformation is performed as follows:

* the B specification of PI is transformed into a specification New_PI which
is a refinement specification of RI,

* New_PI does not contain the sets already defined in both RI and PI,

* the variables defined in both RI and PI are renamed in New_PI,

 the invariant of New_PI consists of the invariant of PI, where the variable
renaming has been applied, and a coupling invariant that relates the newly
introduced names to their counterparts in RI.

After performing these steps, we can verify that R is compatible with PI
by proving that New_PI refines RI.

5.2  Case study

We want to prove that the required interface IHotelHandling is compat-
ible with the provided interface I HotelMgt using B refinement. Figure 9
presents a part of the B specification New_I Hotel M gt obtained by trans-

2 A reasonable initialization must be chosen when representing component interfaces as B
machines, for example, using empty sets.
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forming I Hotel M gt according to the steps described above. The main changes
concern the renaming of the variables that are also defined in I Hotel Handling,
the definition of the coupling invariant and the definition of the sets and in-
variance properties that are also defined in I Hotel Handling.

We use the tool Atelier B [18] to verify that New_IHotel Mgt refines
I Hotel Handling. The verification results are as follows.

o Atelier B generated 197 obvious proof obligations and 22 proof obligations
for the B specification I Hotel Handling. All these proof obligations were
proven automatically.

o Atelier B generated 243 obvious proof obligations and 13 proof obligations
for the B specification New_I HotelM gt. 12 proof obligations were proven
automatically, and 1 was easily proven manually.

According to these results, we conclude that New_I Hotel M gt refines I Hotel-
Handling. Consequently, the required interface I Hotel Handling is compat-
ible with the provided interface I HotelMgt at the signature and semantic
levels? .

REFINEMENT New_IHotelMgt
REFINES IHotelHandling
SETS RoomType
VARIABLES RD_hotelRef, RD_datesRef, HD_idRef, HD_nameRef, C_idRef,custRef,
RES _resRefRef, RES _datesRef, RES_claimedRef, RES _numberRef, Hotel_idRef,
Hotel_nameRef, hotelsRef,resRef, R_numberRef, R_availableRef, R_stayPriceRef, RT _name,
RD_roomType, HD _roomTypes,assoc_RoomRt,assoc_ResRt
INVARIANT
/ * renaming wvariables x /
RD_hotelRef = RD_hotel AN RD_datesRef = RD_dates N HD_idRef = HD_id A
HD_nameRef = HD_name A C_idRef = C_id A custRef = cust A
RES_resRefRef = RES_resRef A RES_datesRef = RES_dates A
RES_claimedRef = RES_claimed A RES_numberRef = RES_number A
Hotel_idRef = Hotel_id N Hotel_nameRef = Hotel_name A
hotelsRef = hotels A resRef =res A R_numberRef = R_number A
R_awvailableRef = R_available A R_stayPriceRef = R_stayPrice A
/ x type of the attributes related to RoomType /[
RT _name € RoomType - STRING A RD_roomType € ReservationDetails - STRING A
HDroomTypes € HotelDetails - POW(STRING) A assoc_RoomRt € Room — RoomType A

assoc_ResRt € Reservation — RoomType N ...

Fig. 9. B specification of New_I Hotel M gt

3 To transform objects of the classes ReservationDetails and Hotel Details (function tr),
we use a default room type called “Standard”.
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6 Conclusion and Future Work

We have presented a manner of specifying component interfaces that is inde-
pendent of specific component models. Based on that specification, we have
defined a notion of compatibility between component interfaces that allows
one to check whether two components can interoperate via the given inter-
faces or not. We have shown that it is possible to use refinement in B to prove
that two components are compatible at the signature and semantic levels.

In contrast to previous work, our specification contains a data model asso-
ciated with each component interface. Without such an explicit interface data
model, it would not be possible to check the interoperability of components
without knowing details of the component’s implementation.

To construct a working system out of components, however, it does not
suffice just to check our compatibility conditions. Once compatibility is es-
tablished, the conventions of a chosen component model must be followed in
actually combining the components in question. Moreover, glue code, i.e.,
adapters, have to be developed that implement the transformation of required
interface data into provided interface data and vice versa.

In the version of interoperability given in Section 5, the adapters only
transform the data and call an operation of the provided interface of the com-
ponent to be used. However, one can relax the compatibility conditions and
use more liberal versions of specification matching, e.g., plug-in-post matching
[24]. In this case, an adapter must check if the precondition of the provided op-
eration holds. If not, it has to take appropriate actions other than calling the
provided operation. Thus, the construction of adapters becomes a program
synthesis problem. This problem becomes more complex for weaker versions
of specification matching. In the future, we intend to investigate alternative
versions of compatibility and their mappings to refinement in B, and to give
patterns for the corresponding adapters.
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