
Problem Frames and Architectures for Security
Problems

Denis Hatebur1 and Maritta Heisel2

1 Universiẗat Duisburg-Essen, denis.hatebur@uni-duisburg-essen.de and Institut für technische
Systeme GmbH, d.hatebur@itesys.de

2 Universiẗat Duisburg-Essen, Germany, Fachbereich Ingenieurwissenschaften,
maritta.heisel@uni-duisburg-essen.de

Abstract. We present several problem frames that serve to structure, character-
ize and analyze software development problems in the area of software and sys-
tem security. These problem frames constitutepatternsfor representing security
problems, variants of which occur frequently in practice. Solving such problems
starts with the development of an appropriate software architecture. To support
that process, we furthermore present architectural patterns associated with the
problem frames. We illustrate our approach by the example of an electronic purse
card.

1 Introduction

Problem frames were developed by Michael Jackson [6]. He describes them as fol-
lows (emphasis ours): “A problem frame is a kind ofpattern. It defines an intuitively
identifiable problem class in terms of its context and the characteristics of its domains,
interfaces and requirement.”

Patterns are a means to reuse software development knowledge on different levels of
abstraction. They classify sets of software development problems or solutions that share
the same structure. Patterns are defined for different activities at different stages of the
software life cycle.Problem Frames[6] are patterns that classify software development
problems. Architectural stylesare patterns that characterize software architectures [1,
11]. They are also called “architectural patterns” (see Section 2.2).Design Patterns[5]
are used for finer-grained software design3, while idiomsare low-level patterns related
to specific programming languages [3].

Using patterns, we can hope to construct software in a systematic way, making
use of a body of accumulated knowledge, instead of starting from scratch each time.
The problem frames defined by Jackson cover a large number of software development
problems, because they are quite general in nature. To support software development in
more specific areas, however, specialized problem frames are needed.

In this paper, we present four problem frames that capture software development
problems occurring frequently in the area of software and system security. We call these
problem framessecurity frames. Two of our security frames concern authentication. The
third one deals with the secure (i.e., encrypted) transmission of data, and the fourth one
is suitable for generating and storing security information (such as public and private
keys, PINs).

3 Design patterns for security have also been defined, see Section 5.



2

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Application

Editor 

User (E3)

Storage
Data User 

Interface

Workpieces (E1, Y2)

Fig. 1. Workpieces Frame Diagram and Architectural Pattern

Architectural patterns are suitable solution structures for problem frames, because
architectural design is one of the first activities in solving software development prob-
lems. Hence, the gap between the problem description and the software architecture
is not too large, and we can establish direct relations between problem structures and
solution structures. As we have shown in [4], one can define architectural patterns that
reflect the characteristics of the different problem frames. In much the same way, we
equip our security frames with corresponding architectural patterns.

Section 2 describes the basics of our work, while the security frames and corre-
sponding architectures are presented in Section 3. We illustrate our approach by devel-
oping a secure electronic purse card in Section 4. Section 5 discusses related work, and
we conclude in Section 6.

2 Problem Frames and Architectural Patterns

In this paper, we present new problem frames for security problems and the correspond-
ing architectural patterns. As a notation for our architectural patterns, we use composite
structure diagrams of UML 2.0 [12]. In the following, we give brief descriptions of
these basic concepts of our work.

2.1 Problem Frames

Problem frames are described byframe diagrams, which basically consist of rectangles
and links between these, see left-hand side of Fig. 1. The task is to construct amachine
that improves the behavior of the environment it is integrated in.

Plain rectangles denote application domains (that already exist), a rectangle with
a double vertical stripe denotes the machine to be developed, and requirements are
denoted with a dashed oval. The connecting lines represent interfaces that consist of
sharedphenomena. A dashed line represents a requirements reference, and the arrow
shows that it is aconstrainingreference.

Jackson distinguishescausaldomains that comply with some laws,lexicaldomains
that are data representations, andbiddabledomains that are usually people. Jackson
defines five basic problem frames (Required Behaviour, Commanded Behaviour, Infor-
mation Display, WorkpiecesandTransformation). As an example, we present theWork-
piecesframe in more detail. The following problems fit to that problem frame [6]: “A



3

tool is needed to allow a user to create and edit a certain class of computer processable
text or graphic objects, or similar structures, so that they can be subsequently copied,
printed, analyzed or used in other ways. The problem is to build a machine that can
act as this tool.” The “X” indicates that theWorkpiecesdomain of the frame diagram
shown on the left-hand side of Fig. 1 is a lexical domain. The notation “U!E3” means
that the user commandsE3are controlled by the (biddable)Userdomain. Similarly, the
phenomenaE1are the commands used by theEditor to change theWorkpiecesdomain.
The shared phenomenaY2 represent the state of a workpiece; they are controlled by
theWorkpiecesdomain. The shared phenomenaY4need not be the same asY2. They
will often have some meaning to the user, whereas the phenomenaY2are phenomena
accessible by the machine.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by acontext diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown who is in control of the
shared phenomena. An example of a context diagram is shown in Fig. 8. Then, the
problem is decomposed into subproblems. If ever possible, the decomposition is done
in such a way that the subproblems fit to given problem frames. To fit a subproblem
to a problem frame, one must instantiate its frame diagram, i.e., provide instances for
its domains, phenomena, interfaces and requirements. The instantiated frame diagram
is called aproblem diagram(for an example, see Fig. 9). It describes the problem as
a whole. Since the requirements refer to the environment in which the machine must
operate, the next step consists in deriving aspecificationfor the machine, using domain
knowledge. In that process, non-implementable requirements are transformed into im-
plementable ones. (For a more detailed description, see [7].) The specification is the
starting point for the development of the machine.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. Since all problems fitting in a problem frame share the
same characteristic properties, their solutions will have common characteristic prop-
erties, too. Therefore, it is worthwhile to look for solution structures that match the
problem structures defined by problem frames.

2.2 Architectural Styles

According to Bass, Clements, and Kazman [1], “the software architecture of a pro-
gram or computing system is the structure or structures of the system, which comprise
software components, the externally visible properties of those components, and the
relationships among them.” Architectural styles are patterns for software architectures.

When choosing an architecture for a system, usually several architectural styles are
possible. However, instead of consideringall possible architectures, we proposespecific
architectural patterns for our security frames in order to provide a concrete starting point
for the further development of the machine. The architectural patterns we have defined
for Jackson’s problem frames (see [4]) and the ones we will define for security frames
are based on alayered architecture. The components in this layered architecture are
eithercommunicating processes(active components), or they are used with acall-and-



4

P1:  {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)

P1_if

Fig. 2. Notation for Architectures

return mechanism (passive components). That design decision is taken in a later step
of the development. In [4], we also show how therepositoryand thepipe-and-filter
architectural styles can be integrated into the layered architecture. We use UML 2.0
composite structure diagrams (see Section 2.3) to represent architectural patterns as
well as concrete architectures.

The architectural pattern shown on the right-hand side of Fig. 1 contains a user
interface component, because the problem frame diagram contains a user. The data
storage component of the architecture corresponds to theWorkpiecesdomain of the
frame diagram. TheEditor Applicationcomponent is responsible for manipulating the
data storage according to the user commands. Note that there is only one interface with
the environment – namely the interface with the user – because the lexicalWorkpieces
domain is part of the machine.

2.3 Composite Structure Diagrams

Composite structure diagrams [12] are a means to describe architectures. They contain
named rectangles, calledparts. These parts are components of the software. Each com-
ponent may contain other (sub-) components. Atomic components can be described by
state machines and operations for accessing internal data. In our architectures, compo-
nents for data storage are only included if the data are stored persistently. Otherwise
they are assumed to be part of some other component. Parts may haveports, denoted
by small rectangles. Ports may have interfaces associated to them. Provided interfaces
are denoted using the “lollipop” notation, and required interfaces using the “socket”
notation.

Fig. 2 shows how interfaces in problem diagrams are transformed into interfaces
in composite structure diagrams. The partial problem diagram shown on the left-hand
side of Fig. 2 states that the phenomenaphen1andphen2shared between the machine
and a domain are controlled by the machine. In the composite structure diagram (with
associated interface class) shown in the middle of Fig. 2, this is expressed by a required
interfaceP1 if of thepart component of the machine, which is the same as for the whole
machine. Shared phenomena controlled by a domain correspond to provided instead of
required interfaces of thepart and the machine, respectively. Because of this direct
correspondence, we do not use the socket and lollipop notation in the following, but use
connectors between ports, as shown on the right-hand side of Fig. 2. These connectors
can be implemented e.g. as data streams, function calls, asynchronous messages or
hardware access.



5

AA!{success,
failure} X

success, failure

S1 matches S2
S1

S2

CK!S1

S!S2

X

Security
state

Auth.
Accept

Subject

knowledge
Common

B

sucess iff
DataCommon

(Secret)
Transmission

Subject (S2)S1

knowledge

AcceptAuth Application

AcceptAuth

Interface
Driver

Fig. 3. Accept Authentication Information Frame Diagram and Architectural Pattern

3 Security Frames and Architectural Patterns

We now present the four security frames we have developed, together with the corre-
sponding architectural patterns that define structures for the machine domains of the
security frames.

The first two security frames are concerned with authentication. We distinguish
two authentication frames. In the first frame, a subject must authenticate itself to the
machine to be constructed. In the second frame, the machine to be constructed must
authenticate itself to some other subject. The third security frame deals with the secure
transmission of data over an insecure channel, and the fourth frame is applicable when
common security knowledge must be distributed with the help of a trust center. None
of these problem classes is addressed by Jackson’s problem frames.

3.1 Accept Authentication Frame

For security systems, authentication of users and other components is an important
concern. Authentication is necessary to allow access to some other information. That
information is not part of the problem and hence not part of the frame diagram shown
on the left-hand side of Fig. 3.

The Subjectin the frame diagram can be a user or another machine. To make au-
thentication possible, there must be a common knowledge between subject to be authen-
ticated and the machine. If the authentication informationS2provided by the subject
matches the common knowledgeS1stored in the machine, then the authentication is
successful. Otherwise, it fails. That information is represented by the domainSecurity
state.

In the corresponding architectural pattern on the right-hand side of Fig. 3, we in-
clude theCommon knowledge, but we do not include theSecurity statebecause it should
not be stored persistently and hence does not correspond to an architectural component.
Instead, it is reflected in the internal state of the partAcceptAuth Applicationthat is
responsible for enabling or disabling other functionality.

3.2 Submit Authentication Frame

Because the subject might be a system, there exists the problemSubmit Authentica-
tion. The frame diagram and the corresponding architectural pattern are shown in Fig.



6

Auth.
S1

S2

CommonCK!S1Submit

X

Identification
SA!S2

S2 matches
      S1

Data of
XMachine

knowledge

S1

Data
Transmission

Common
Knowledge
(Secret)

Identification Data
of Machine (S2)

SubmitAuth Application

SubmitAuth

Interface
Driver

Fig. 4. Submit Authentication Information Frame Diagram and Architectural Pattern

Channel
Insecure

Intrusion
or detect
D1 ~ D2

RcvData
X

X
SntData

Compon.
Security
Receive

Compon.
Security
Send

SD!D2

D2

D1

SC!EncrData

IC!{EncrData, IntrData}

RSC!D1

Channel
Insecure

RcvData
X

X
SntData

Compon.
Security
Send

SD!D2

D2

D1

SC!EncrData

IC!{EncrData, IntrData}

RSC!D1

Compon.
Security
Receive

Encr D1 ~ D2 /
D2 cannot be 
derived from 
EncrData

Data

Fig. 5. Secure Data Transmission Frame Diagrams

4. For this problem, theSecurity stateis part of the subject to which the machine to
be built wants to authenticate itself. Therefore theSecurity Stateit is not part of the
frame diagram. The machine has to use theCommon knowledgeto generate matching
Identification Datafor the subject.

3.3 Secure Data Transmission Frames

Another important security problem is the secure transmission of data. We need to build
a security component that receives data from another component or sends data to an-
other component over an insecure channel. That situation is depicted in Fig. 5 on the
left-hand side for receiving data and on the right-hand side for sending data.

The security component at the bottom of the figure wants to send data (domain
SntData, phenomenaD2) to the security component at the top of the figure. Because
the transmission channel is insecure, the data is encrypted (phenomenaEncrData). It
is possible that the insecure channel transmits some intruder dataIntrData instead of
the original encrypted data. The encrypted data or intruder data will be decrypted by
the security component shown on the top of the figure, yieldingD1. The requirement
for receiving data states that either the dataD1 andD2 match, or the intrusion will be
detected (integrity). The requirement for sending data states that the dataD1 andD2
match, and that theD1 cannot be derived fromEncrData(integrity and confidentiality).

For this class of problems, we propose the architectural patterns shown in Fig. 6. In
this architecture, a storage for a secret is necessary in addition to the data storage. If this
storage is persistent it is an additional part in the architecture. Otherwise, the storage
component is not included, as indicated by the notation [0..1].



7

3.4 Distribute Security Information Frame

For the architecture shown in Fig. 6, it is necessary that each machine has some common
knowledge. This raises the problem of how to distribute that common knowledge. Fig. 7
shows the frame diagram. The common (secret) knowledge is transferred to the machine
by a trusted component, theTrust Center, over a secure channel. The requirement states
that indeed the correct common knowledge is stored in the machine.

The corresponding architectural pattern contains a partManageSecretApplication
that has to store the secret (or common knowledge) and restrict the access to it. Its
purpose is to manage the secret.

4 Case Study: Electronic Purse Card

The illustrate the usage of security frames, we consider a smart card with a simplified
electronic purse application using asymmetric encryption. This smart card is used to
ensure secure payment. To pay with the card, the user has to enter a PIN at a card
reader. The authorization of the card is checked via a website. The card also has to
check the authorization of the website. The transmitted data have to be protected against
unauthorized read and change access. To allow payment, money must be loaded on the
card. This is only possible if the the account information allows this transaction (the
card can be locked).

4.1 Requirements and Context Diagram

The following requirements must be met. We number them in order to reference them
in the description of the different subproblems.

R1 Loading money on the card is possible if the account information allows to do this
transaction.

R2 Paying with the card is possible if there is enough money on the card.
R3 Authentication of the card is necessary for paying and loading money.
R4 Authentication of the website is necessary for paying and loading money.
R5 Authentication of the user using a PIN is necessary for paying.

Data

Data

Common
Knowledge

Secure Transmission

Transmission

Outputs (D1) Inputs (D2)

Receive Application

Receive Security Component Send Security Component

Send Application

Secure Transmission
Data

Common
Knowledge 

Data
Transmission

Insecure connection

Interface
Driver

Interface
Drivert

(Secret)
[0..1]

(Secret)
[0..1]

Fig. 6. Secure Data Transmission Architectural Pattern



8

S1 matches
S2

Manage
Secret X

Secret

X

Common
Secret

Trust
Center

B

 

S2

TC!S1

MC!S1
S1

S2

Add direction when instantiate

Secure Storage or Transfer

Secure Channel
Data
Transmission

Common
Knowledge
(Secret)

Trust Center (S1)S1

Manage Secret Application

Manage Secret

Interface
Driver

Fig. 7. Distribute Security Information Frame Diagram and Architectural Pattern

R6 The card should prevent replay-intrusion and even prevent somebody else from
reading transmitted information (man-in-the-middle attack).

R7 It should not be possible to copy the card.

R8 Only a card and a website personalized by a trust center should be usable for trans-
actions.

Card
Reader

User

PC
Internet
Intruder

Trust 
Center

Smart
Card

CalculatedSignature,

RandomNo, EncrRandomNo 

EnterAmountToPay
EnterAmountToLoad,
EnterPIN,

EnteredAmount,
CheckPIN,

TransferAmountEncr,
AuthCardAndWebsite

GeneratedPIN

Website

PIN

Account

TransferAmountEncr,
DenyTransferEncr,

RequestedAmountToLoad/PayEncr,

RandomNo, EncrRandomNo 

RequestedAmountToLoad/PayEncr,
TransferAmountEncr,
DenyTransferEncr,

GetAccountAmount, AccountInformation, UpdateAccountAmount

PublicSignatureKey
CalculatedSignature,
GeneratedKeyPair,

GeneratedKeyPair,

PublicSignatureKey,

Fig. 8. Context diagram for Electronic Purse Card

Fig. 8 shows the context diagram corresponding to this problem. It contains the
relevant domains and shared phenomena. The domainsSmartCard, Websiteand Ac-
countoccur only once in the diagram. However, the system will work with different
instances of these domains. It will be able to handle different smart cards, and it will be
connected via different websites to different accounts. Moreover, the interface between
theCardReaderand theUser has been simplified. The domainPC, Internet, Intruder
denotes the insecure channel that involves a PC, the Internet, and possibly an intruder.

The following table shows the subproblems that can be identified, the problem/security
frame the subproblem fits to, and the requirements that are covered. In the following,
we present one instantiation for each of the introduced problem/security frames.



9

Website

R1

Load

Money

Money on 
Card

Account

User
EnterAmount
ToLoad

CardAmount

LM!{UpdateCardAmount}

LM!{Requested
AmountToLoadEncr}

W!{TransferAmountEncr, 
DenyTransferEncr}

Account

U!{EnterAmountToLoad}

A!{AccountInformation}

Information

W!{UpdateAccountAmount, GetAccountAmount}

Secure
Data
Transmission

Money
on
Card

LoadMoney

LoadMoney Application

Interface
Driver

WebsiteUser,

Fig. 9. Load Money Subproblem Diagram and Architecture

Subproblem Frame Reqs.

Load Money Workpieces R1
Pay Workpieces R2
Authenticate Card Submit Authentication R3
Authenticate Website Accept Authentication R4
PIN Authentication Accept Authentication R5
Receive Secure Data Secure Data Transmission R6
Send Secure Data Secure Data Transmission R6
Distribute Keys Distribute Security Information R7, R8
Distribute PIN Distribute Security Information R7, R8

4.2 Subproblem: Load money

This subproblem is concerned with loading money on the card (R1). It fits to a variant
of Jackson’sWorkpiecesproblem frame. It is extended with the constraint that only
if the account information allows it, the amount of money can be loaded onto card.
The problem shown in Fig. 9 states that theCardAmountshould change according to
EnterAmountToLoadandAccountInformation.

The problem diagram of Fig. 9 is derived from the context diagram of Fig. 8 as fol-
lows: the domainTrust Centeris not relevant for this subproblem. The connection do-
mains4 Card ReaderandPC, Internet, Intruderare left out in this subproblem, because
the connection is assumed to be secure, the security of the connection being covered
by other subproblems. To describe this problem, we split the domainSmartCardinto
Money on CardandLoad Money.

The problem of Fig. 9 shows the requirements the machine must achieve when in-
tegrated into its environment. As noted earlier, the requirements must be transformed
into a specification that describes the behavior of the machine. In the area of security,
protocols [9] exist that make it possible to transform requirements such as “secure trans-
mission” of “authentication” into sequences of messages exchanged between different
partners.

4 These are domains that serve to connect two other domains. If a connection domain is reliable
and does not cause significant delays, it may be ignored, see [6].



10
sd considerloadmoney

UpdateCardAmount () TransferAmountEncr ()

DenyTransferEncr ()

UpdateCardAmount,EnterAmountToLoad, RequestedAmountToLoadEncr, 
TransferAmountEncr, DenyTransferEncr, Get/UpdateAccountInformation, AccountInformation

: Money on Card : Website : Account: User

EnterAmountToLoad ()

ALT

Application
: Load Money

GetAccountAmount ()

AccountInformation (OK)

RequestedAmountToLoadEncr ()

AccountInformation (NotOK)

UpdateAccountInformation ()

Fig. 10.Load Money Sequence Diagram

Security
state

 Auth
Website

AW!{Allow,

Website

R4
natureKey

RandomNo
PublicSig−Key}

RN,Key

AW!{RN}

RP!{RN,

SignedPublicKey
SignatureRN, 

W!{SignatureRN,
SignedPublicKey}

Allow/Forbid 
     any Access, RNForbid, RN}

Website

Card
Reader

Auth Website Application

Driver

Auth Website

natureKey
PublicSig−

Fig. 11.Website Authentication Subproblem Diagram and Architecture

Fig. 10 shows a UML 2.0 sequence diagram that represents the specification of
the machineLoad Money. When theUserenters the amount of money (EnterAmount-
ToLoad) the messageRequestedAmountToLoadEncrwill be sent to theWebsite. The
Websitewill check theAccountInformation. The sequence diagram in Fig. 10 describes
the following two alternatives, marked with the keywordALT. If the AccountInforma-
tion allows to load the requested amount of money on card, the amount of money on
theAccountwill be updated (UpdateAccountInformation), the amount will be transmit-
ted (TransferAmountEncr), andMoney on Cardwill be updated (UpdateCardAmount5).
Otherwise the phenomenonDenyTransferEncroccurs. For reasons of space, we do not
give the sequence diagrams for the other subproblems. For this subproblem, theWebsite
is the website of the user’s bank, and theAccountis the user’s account, which is debited
with the account loaded onto the card.

The right-hand side of Fig. 9 shows the corresponding architecture, which is an
instantiation of the pattern given in Fig. 1. Here,UserandWebsiteare connected to the
machine via aSecure Data Transmission Interface.

4.3 Subproblem: Authenticate Website

An authentication of the website is required in R4. Here, we instantiate the “Accept
Authentication” frame as shown in Fig. 11. For this authentication, aRandom Num-
ber should be used to prevent replay intrusion. Therefore, we need to add the random
numberRN as a shared phenomenon between theAuth Websitemachine andWebsite,
controlled by the machine.

5 With the new domainMoney on Cardthe shared phenomenonUpdateCardAmounthas to be
added.



11

The partAuth Websiteof the architecture shown in Fig. 11 must contain a partRan-
domNo PublicSignatureKeythat can generate random numbers with sufficient quality.
To check the authenticity of the website, the website encrypts the random number pro-
vided by the card with its private key (it generates the signature of the random number
(SignatureRN). This signature can be checked using the public key of the website. To
make it possible that new websites can be added to the system without replacing all
cards, the website has to provide its own public key. The card can check the provided
public key using a signature of a Trust Center. The interaction for a combination of
submitting and accepting authentications can be found in [10].

4.4 Subproblem: Receive Secure Data

To prevent replay intrusion and read access on transmitted data, we define the subprob-
lem shown in Fig. 12. TheCard Readerand theTrust Centerare not directly relevant
for this subproblem. Moreover, is not relevant what data are transmitted. Therefore we
take an abstraction fromLoad MoneyandPay. Also the messagesTransmitAmountEn-
crMessageandCheckAmountEncrMessageare merged toAccessAmountEncr.

A common secret as described in the architectural pattern of Fig. 6 is not stored
persistently on the card. It can be derived from the random number and can be changed
for each transmission. Hence, the architecture of Fig. 12 (derived from the pattern given
in Fig. 6) does not contain a corresponding component.

4.5 Subproblem: Distribute Keys

Requirements R7 and R8 express that only the trust center may generate a valid card.
Important for a valid card are the PIN and the keys. In this subproblem, we focus on the
keys. The requirements are covered partly in the subproblem shown in Fig. 13, where
the Common Secretdomain that is part of theTrust Centeris shown separately. That
subproblem is an instance of the “Distribute Security Information” frame.

The trust center has to generate an individual public/private key pair for each card
and write it onto the card. To guarantee that this key pair is valid and originated from
the trust center, it is signed with the private key of the trust center. To allow the card
to authenticate other systems, it needs the public key of the trust center. This also is
written onto the card.

R6

Money
on Card

Receive
Secure
Data

Website

Money to

Account
transfer from

PC
Internet
Intruder

PII!{AccessAcountEncr,
IntrAccess}

W!{AccessAmountEncr}

AccountAmount

CardAmount

RSD!{AccessCardAmount}

W!{AccessAccountAmount}

Update Money On Card

Money
on 
Card

Secure Transmission

Card
Reader

ReceiveSecureData

Driver

WebsiteUser,

Fig. 12.Receive Secure Data Subproblem Diagram and Architecture



12

The subproblem the machineManage Secretshas to solve is to manage the access to
the security information. After producing the card, everybody owning an uninitialized
card can initialize it. But only the trust center is able to generate a signature with its
private key that allows the key to be used in the payment system. The machine has to
manage the access to the secrets. After initializing the card, the functionality to change
the security information is disabled. The private part of the key pair must also be pro-
tected against read access. Moreover, all other functionality has to be disabled as long
as the card is not yet initialized.

The architecture of Fig. 13 is an instantiation of the pattern given in Fig. 7.

4.6 Composed Architecture

We now must compose the architectures developed for the subproblems to obtain an
architecture for the whole Smart Card. For doing this, we must find the parts occurring
in different subproblem architectures that must be mapped to the same component in
the composed architecture.

The composed architecture for the Smart Card is shown in Fig. 14. The component
Amount Of Moneycombines the persistent storage of the subproblemsPay andLoad
Money. TheLoad Money/Pay-Applicationcombines the behavior of the machinesLoad
Moneyand Pay. The componentSecure Data Transmission Interfaceis replaced by
the components of the security subproblem architectures (including the ones given in
Figs. 11–13). TheCard Reader Driveris the same in all security subproblem architec-
tures and can be used directly in the composed architecture. The functionality of the
remaining two components have to be derived from those in the security subproblem
architectures.

For all components, their exact specifications must be set up, and it must be shown
that the components work together in such a way that they fulfill the specifications
of all machines corresponding to the different subproblems. The functionalities of the
different architectural parts are now clear, as well as the interfaces between them. Thus,
we have established an appropriate starting point for the further development of the
smart card system in a systematic way.

Secure Channel

Secret

Center

Manage

Common

Trust

Card
Secret

TC!{generatedKeyPair, 
PublicSignatureKey,
calculatedSignature}

PrivateSignatureKey}

Secrets

Secure Storage 

PublicSignatureKey,
PrivateSignatureKey

calculatedSignature
PublicSignatureKey,

generatedKeyPair, 

PublicSignatureKey,
calculatedSignature}

CS!{PublicSignatureKey,

MS!{generatedKeyPair, 

 R7 partly
R8 partly KeyPair

Signature
PublicSig−
natureKey

CardReader

TrustCenter

Manage Secrets Application

Driver

Manage Secrets

Fig. 13.Distribute Keys Subproblem Diagram and Architecture



13

Amount
of
Money PIN

KeyPair
Signature
PublicSig−
natureKey

CardReader
Driver

Manage Secrets / PIN Access

Secure Transmission / Check PIN
Submit Auth / Auth Website

EPC

LoadMoney/Pay−Application

User, Website, TrustCenter

Fig. 14.Composed Architecture

5 Related Work

Our security frames are related to abuse frames on the one hand and to security patterns
on the other hand.

Security frames treat security requirements in the same way as other (functional) re-
quirements, and the goal is to construct a machine that fulfills the security requirements.
Lin et al. [8] take another approach to use the ideas underlying problem frames in secu-
rity. They define so-called anti-requirements and the corresponding abuse frames. An
anti-requirement expresses the intentions of a malicious user, and an abuse frame repre-
sents a security threat. The purpose of anti-requirements and abuse frames is to analyze
security threats and derive security requirements. Thus, the two approaches comple-
ment each other. Abuse frames can be used to derive the security requirements that can
then be addressed with security frames.

While abuse frames can be used earlier in the software development process than
security frames, security patterns [2] are applied in a later phase, namely the phase of
detailed design. The relation between security frames and security patterns is much the
same as the relation between problem frames and design patterns: the frames describe
problems, whereas the design/security patterns describe solutions on a fairly detailed
level of abstraction. Moreover, design and security patterns are applicable only in an
object-oriented setting, while problem and security frames are independent of a partic-
ular programming paradigm.

6 Conclusion

In this paper, we have presented a new kind of problem frames tailored for represent-
ing security problems, called security frames. Security frames are patterns for software
development problems occurring frequently when security-critical software has to be
developed.

The security frames presented in this paper are intended to be the first in a more
complete collection. Once a (relatively) complete collection of security frames is de-
fined, it is of considerable help for developers. For a new security-critical system to be



14

constructed, the security frame catalogue can be inspected in order to find the frames
that apply for the given problem. Thus, a security frame catalogue helps to avoid omis-
sions and to cover all security aspects that are relevant for the given problem.

Furthermore, the security frames help to decompose complex security problems to
simpler ones that can be handled by standard mechanisms. Like design and security
patterns, security frames can establish a common vocabulary and shared knowledge
between developers of security-critical systems.

While the security frames themselves “only” help to comprehend, locate and rep-
resent problems, our architectural patterns associated with the different security frames
propose concrete structures forsolvingthe problems fitted to security frames. The ar-
chitectural patterns also help to compose the solutions of the different subproblems in
order to construct the complete system, as is shown in more detail in [4].

With the concept of security frames and corresponding architectural patterns (in
addition to abuse frames and security patterns), one can hope to cover large parts the
development of security-critical software with a pattern-based approach.

References

[1] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice. Addison-Wesley,
1998.

[2] B. Blakley and C. Heath. Technical Guide: Secu-
rity Design Patterns. The Open Group, April 2004.
http://www.opengroup.org/publications/catalog/g031.htm .

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[4] C. Choppy, D. Hatebur, and M. Heisel. Architectural patterns for problem frames.IEE
Proceedings – Software, Special issue on Relating Software Requirements and Architecture,
2005. To appear.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, 1995.

[6] M. Jackson.Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[7] M. Jackson and P. Zave. Deriving specifications from requirements: an example. InPro-
ceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15–24. ACM Press,
1995.

[8] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames for
analysing security requirements. InProceedings of 11th IEEE International Requirements
Engineering Conference (RE’03), pages 371–372, 2003. Poster Paper.

[9] C. P. Pfleeger.Security in Computing. Prentice Hall, 1996.
[10] T. Rottke, D. Hatebur, M. Heisel, and M. Heiner. A problem-oriented approach to common

criteria certification. In S. Anderson, S. Bologna, and M. Felici, editors,Proceedings of the
21st International Conference on Computer Safety, Reliability and Security (SAFECOMP),
LNCS 2434, pages 334–346. Springer-Verlag, 2002.

[11] M. Shaw and D. Garlan.Software Architecture. Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

[12] UML Revision Task Force.OMG UML Specification. http://www.uml.org .


