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Abstract. We propose an approach for component based development
in such a way that interoperability between the different components
is proved. It is based on the use of existing notations and languages
with their associated tools allowing validation and verification steps: a
context diagram for analysing and structuring the problem, a component
architecture diagram for the description of the whole system in terms of
components and interfaces, sequence diagrams to describe the behaviour
of each component and the formal method B for specifying interfaces of
the different components.
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1 Introduction

In recent years, the paradigm of component orientation [13,23] has become more
and more important in software engineering. Its underlying idea is to develop
software systems not from scratch but by assembling pre-fabricated parts, as is
common in other engineering disciplines. Component orientation has emerged
from object orientation, but the units of deployment are usually more complex
than simple objects. As in object orientation, components are encapsulated, and
their services are accessible only via interfaces and their operations.

In order to really exploit the idea of component orientation, it must be possible
to acquire components developed by third parties and assemble them in such
a way that the desired behaviour of the software system to be implemented is
achieved. This approach leads to the following requirements:

— The specification of a component must contain sufficient information to de-
cide whether or not to acquire it for integration in a new software system.
This requirement concerns the access to the component’s source code that
may not be granted in order to protect the component producer’s interests.
Moreover, component consumers should not be obliged to read the source
code of a component to decide if it is useful for their purposes or not. Hence,
the source code should not be considered to belong to the component spec-
ification.



— It does not suffice to describe the interfaces provided interfaces of a given
component. Often, components need other components to provide their full
functionality. Hence, also the required interfaces must be part of a component
specification.

— For different components to interoperate, they must agree on the format of
the data to be exchanged between them. Hence, each interface of a compo-
nent must be equipped with an interface data model describing the format
of the data accepted and produced by the component.

— It does not suffice to give only the signature of interface operations (e.g.,
operation foo takes two integers and yields an integer as its result) as is
common in current interface description languages. It is also necessary to
describe what effect an interface operation has (e.g., operation foo takes two
integers and yields their sum as a result).

In order to fulfill the above requirements, we propose an approach for component
based development, using existing languages and notations with their associated
tools to help in the validation and the verification steps. It is based on the use
of:

— a context diagrams [15] for analysing and structuring the problem in terms
of domains and interfaces,

— UML2.0 diagrams [21] like a component architecture diagram to express the
overall architecture of the system, sequence diagrams to express the visible
behaviour of the different components involved,

— the B formal method [1] for its underlying concepts of machine and refine-
ment which fit well with components and their interoperability, and because
the method is equipped with powerful tool support. Thus, we can exploit
existing technology for proving component interoperability. Using for ex-
ample the object constraint language OCL [26] and generating verification
conditions from scratch would be much more tedious.

The rest of the paper is organised as follows. In Section 2 we present an overview
of the B method. We introduce our approach in Section 3 and illustrate it on a
case study of the access control system 4. In Section 5, we discuss related work.
The paper finishes with some concluding remarks in Section 6.

2 The B formal method

The B method [1] is a formal software development approach based on the set
theory, allowing to develop software for critical systems. The B method enables
an incremental development process, known as a refinement process. A system
development begins by the definition of an abstract view which can be refined
step by step until an implementation is reached. The refinement over models
is a key feature for developing incrementally models from a textually-defined
system, while preserving correctness. It implements the proof-based development
paradigm [18, 22].



The method has been successfully used in the development of several complex
real-life applications, like the METEOR, project [4]. It is one of the few formal
methods which has robust and commercially available support tools for the en-
tire development life-cycle from specification down to code generation [5].

Specifications are composed of abstract machines which are very closed to notions
well-known in programming under the name of modules, classes or abstract data
types. Each abstract machine consists of a set of variables, invariant properties
of those variables and operations. The state of the system, i.e. the set of variable
values, is modifiable by operations which must preserve its invariant. The B
method provides structuring primitives that allow one to compose machines
in various ways. Large systems can be specified in a modular way and in an
object-based manner [20,17]. Proofs for invariance and refinement are parts of
each development. The proof obligations are generated automatically by support
tools like AtelierB [22], B-Toolkit [18] and B4free [11], an academic version of
AtelierB. The check of proof obligations with B support tools either through
automatic or interactive proofs [2], is an efficient and practical way to detect
errors introduced during the specification development.

3 A general approach for component based software
development

Our goal is to propose an approach based for component based development in
such a way that interoperability between the different used components is proved.
Components are specified as black boxes, so that component consumers can
deploy them without knowing their internal details. Hence, component interface
specifications play an important role, as interfaces are the only access points to
a component. The approach is decomposed in several steps described as follow:

1. We first set up a generalized context diagram as proposed by Jackson [15].
This diagram is a good guide for the introduction of the different needed
interfaces starting from the control of the shared phenomena and the machine
domains.

2. We can then set up an architecture of the whole system with provided and
required interfaces. We use UML2.0 component architecture diagrams [21].
In this step, components with their required and provided interfaces are
identified.

3. For each component of the architecture, we propose to set up a specification
containing;:

— Sequence diagrams describing the visible behavior of the specified com-
ponent; the sequence diagrams may contain all components the specified
component is connected with.

— A B machine for each provided and each required interface. For all in-
terfaces that connect the specified component with the same outside
component, the interface data models must be the same, and the IDM
must be encoded in the B machine.



The specification of the interface data model specifies (i) the types used
in the interface, (ii) a data state as far as necessary to express the ef-
fects of operations, and (iii) invariants on that data state. Each machine
contains the operations belonging to its corresponding interface. An op-
eration specification consists of its signature (i.e., the types of its input
and output parameters), its precondition expressing under which circum-
stances the operation may be invoked, and its postcondition expressing
the effect of the operation. Both pre- and postcondition will refer to the
interface data model.

4. When constructing a software system from existing components, the com-
ponents must be connected in an appropriate way. To achieve this, for each
connection of a provided and a required interface contained in the architec-
ture:

— we show that, may be after some syntactic transformations, the provided
interface is a B refinement of the required interface [9];

— if this is not possible, we either try to change the specification of a
machine component, or we try to develop an adapter;

— if the latter approach is not possible either, the components cannot be
connected as shown in the architecture.

Each B specification contains a state invariant, allowing to make a link with
sequences diagrams expressing the behaviour of the component, dependencies
and an usage protocol, i.e. the order in which the operations may be invoked. It
also contains an initial state.

When a component manipulates data, it is possible to use a UML class diagram
to express the data model for reasons of readability. This class diagram is then
automatically transformed into a B specification [20].

4 Case study: a simplified access control system

The idea is to elaborate a system which will be able to control the access of
certains persons to a given building. The control takes place on the basis of the
authorization that each person who is concerned is supposed to possess. When
somehone is inside the building, his eventual exit must also be controlled by the
system, so as to be able to know at any moment how many persons are inside the
building. The entry or the exit of the building follows a systematic procedure.
We summerize the access protocol as follow:

— Each user involved received a magnetic card with a unique identifying sign,
which is engraved on the card reader. To enter the building, the user has to
insert the card into a card reader installed at the entrance of the building.
There is a data base where the information who is authorized to enter the
building is stored. According to that information, access is granted or not.



— If access is granted, a green light near the card reader is turned on for some
time, the card is ejected, and the entry turnstile which is normally blocked is
unblocked. Nobody can get through this turnstile without being controlled
by the system. This turnstile is only affectd to a single task, the entry.

— The entry turnstile is re-blocked either after entry of the user or after some
timeout. If the user does not take the card in some time limit, the card is
retracted and kept.

— If access is denied, a red light is turned on for some time, and the entry
turnstile remains blocked.

— The number of persons present in the building must be counted. Therefore,
there is also an exit turnstile which is never blocked, but just serves to
observe when a person leaves the building.

4.1 Context diagram

A context diagram for this simplified access control system is proposed Figure
1. We can see that the user interact with the different components except with
the data base one which is a passive component.

a e
Lights Controller Data Base
b c d
Card Reader Turnstyle Turns_tyle
i Entry Exit
f h
g
User
a: Cl{green_on, green_off, red_on, red_off} f: CR{eject_card, retract_card}
b: Cl{eject_card_c, retract_card_c} U! {insert_card, take_card}
CRY{card_inserted, card_taken} g: U{entry} TE! {block, unblock}
c: Cllock_c, unlock_c} h: U{leave}
TEY{entered} i: Li{see_green, see_red}

d: TXYleft}
e: Cl{enter_i, leave_i}
DB!{authorized}

Fig. 1. Context diagram for the access control system

4.2 Architecture of the system

The architecture of the system is depicted Figure 2, using the component ar-
chitecture diagram of UML2.0. We have used naming conventions for interfaces.
Each interface name has the form XYZ, where



— X is the abbreviation of the name of the specified component, i.e. the first
letter;

— Y is either “P” for provided or “R” for required;

— Z is the abbreviation of the name of the component the specified component
is connected to.

As an example, LPC is the provided interface of the Lights component which is
connected to the Controller component.

LPC CRL CRD_B D _BPC
Lights @ Controller @ Data Base
CRC CRT CRT_E™~_CPT_X
O
o) (°TPCc R 4 ©) T xR
C_RPC C RRC T_ER T EPC _
Card Reader Turnstyle Turnstyle
Entry Exit
o C RPU o T EPU T XPU ©

Fig. 2. Architecture of the global access control system

Note that even though the phenomenon authorized is controlled by the data
base, this does not correspond to a required interface of the data base connected
to the controller. In fact, the data base is a passive component without any
influence on the behaviour of the system. Hence it only has a provided interface.

4.3 The card Reader component

Let us specify one of the required component for the access control system, the
Card Reader one. Its three interfaces are:

— CRrPC, its provided interface relatively to the Controller component. The
two operations eject.ard, and retractcard, are controlled by the Controller;

— CRrRC, its request interface relatively to the Controller component. The two
operations card; nserted and card; aken are controlled by the Card Reader;

— CRrPU, its provided interface relatively to the User component. The two
operations insert.ard and takecard are controlled by the User.

Specification of the behaviour of the Card Reader component

To describe the behaviour of this component, a sequence diagram is introduced
Figure 3. Two other objects are used, namely the the controller and the reader
corresponding to the two components connected to the card reader.
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Fig. 3. Sequence diagram for the Card Reader component
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Fig. 4. Sequence diagram for the Card Reader component
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Fig. 5. Sequence diagram for the Card Reader component

Specification of the interface C_RPC

MACHINE C_RPC
SETS CardReaderStates = {card_inside, card_ejected, no_card_inside};
CONSTANTS mno_card
PROPERTIES no_card € CardID
VARIABLES state, nb_cards_kept, current_card
INVARIANT state € CardReaderStates N
nb_cards_kept € N A current_card € CardID A
state = card_inside < current_card # no_card
INITIALISATION state := state := no_card_inside ||
nb_cards_kept := 0 ||
current_card := no_card
OPERATIONS
eject_card_c ==
PRE state = card_inside
THEN state := card_ejected ||
current_card := no_card
END
retract_card_c ==
PRE state = card_ejected
THEN state := no_card_inside
|| nb_cards_kept := nb_cards_kept+1
END

END

CardID



Specification of the interface C_RPU

MACHINE C_RPU

SETS CardReaderStates = {card_inside, card_ejected, no_card_inside};
CardID

CONSTANTS mno_card

PROPERTIES no_card € CardID

VARIABLES state, nb_cards_kept, current_card

INVARIANT state € CardReaderStates A
nb_cards_kept € N A current_card € CardID A
state = card_inside < current_card # no_card

INITIALISATION state := state := no_card_inside ||
nb_cards_kept := 0 ||
current_card := no_card

OPERATIONS

insert_card(card_id) ==
PRE state = no_card_inside A card_id € CardID
THEN state := card_inside || current_card := card_id
END
take_card ==
PRE state = card_ejected
THEN state := no_card_inside
END
END

Specification of the interface C_RRC

MACHINE C_RRC

OPERATIONS

card_inserted(card_id) ==
PRE state = card_inside A card_id € CardID
THEN skip
END

card_taken ==
PRE state = card_ejected
THEN state := no_card_inside
END

END

4.4 Specifying the controller component

In the same way, we have to specify the Controller component. Since the con-
troller communicates with all other components, we get one quite complex se-
quence diagram for the entry protocol, and a simple one for the exit protocol.
Its interfaces are:



— CRL, its request interface relatively to the Light component. The for oper-
ations green,n, green,[f, red,n and red,ff are controlled by the Controller;

— C¢RCR, its request interface and CPCp its provided interface relatively to
the Card Reader component.

We have to verify that the global behaviour is satisfied by the behaviour of each
component.

Verification for the Card Reader component Let us see the connexion
with the Card Reader component.

Sequence diagram for the entrance of a user

Donner ici le diagramme (cf. note aout 2005, page 8 avec un nuage). We note
that all the operations provided by the Card Reader are used.

— Here, we use synchronous messages for the first time:

The message card_inserted(card_id) sent from the card reader is followed by
a call to the data base authorized(card_id), which has a boolean result.

— What is the specification of the operation card_inserted(card_id)? Intu-
itively, I would say, calling the operation authorized(card_id). But how could
we express this in B? The different operations belong to different interfaces!

— How should we specify the IDM of the interface CPC_R? It must be at least
as rich as the IDM of C_RRC! Otherwise, CPC_R could not be a refinement
of C_RRC.

Parler du raffinement

Verification for the Turnstile component It is used twice, once for the
entry, once for the exit.
Problem of initial state.

5 Related work

In an earlier paper, we have investigated the role of component models in compo-
nent specification [14]. The specification of a component model makes it possible
to obtain more concise specifications of individual components, because these
may refer to the specification of the component model. The component model
specification need not be repeated for each individual component adhering to
the component model in question. In this paper, we investigate the necessary in-
gredients a component specification must have in order to be useful for assembly
of a software system out of components. These ingredients are independent of
concrete component models. Several proposals for component specification have
already been made. They have in common that they have no counterpart of our

10



interface data model and that they do not consider interoperability issues, but
only the specification of single components.

A working group of the German “Gesellschaft fiir Informatik” (GI) has defined
a specification structure for business components [24]. That structure comprises
seven levels, namely marketing, task, terminology, quality, coordination, behav-
ioral, and interface. Our specification structure covers the layers terminology,
coordination, behavioral, and interface by proposing concrete ways of specify-
ing each of those levels. The other layers of the GI proposal have to do with
non-functional aspects of components.

Beugnard et al. [6] propose to define contracts for components. They distinguish
four levels of contracts: syntactic, behavioral, synchronization, and quality of
service. The syntactic level specifies only the operation signatures, the behavioral
level contains pre- and postconditions, the synchronization level corresponds to
usage protocols, and the quality of service level deals with non-functional aspects.
Beugnard et al. do not introduce data models for their interfaces. It cannot easily
be checked if two components can be combined.

The component specification approach of Lau and Ornaghi [16] is closer to ours,
because there, each component has a context that corresponds to our interface
data model. A context is an algebraic specification, consisting of a signature,
axioms, and constraints. In contrast, we deem it more appropriate to allow for
an object-oriented specification of the data model of a component interface.
This makes it possible to take side effects of operations into account and to use
inheritance, concepts that are frequently used in practice.

Cheesman and Daniels [8] propose a process to specify component-based soft-
ware. This process starts with an informal requirements description and produces
an architecture showing the components to be developed or reused, their inter-
faces and their dependencies. For each interface operation, a specification is de-
veloped, consisting of a precondition, a postcondition and possibly an invariant.
This approach follows the principle of design by contract [19]. Our specification
of component interfaces is inspired by Cheesman and Daniels’ work because that
work clearly shows that for each interface, a data model is necessary. However,
Cheesman and Daniels do not consider the case that already existing compo-
nents with possibly different data models have to be combined, and hence they
do not define a notion of interoperability.

Canal et al. [7] use a subset of the polyadic w-calculus to deal with component
interoperability only at the protocol level. The w-calculus is well suited for de-
scribing component interactions. The limitation of this approach is the low-level
description of the used language and its minimalistic semantics.

Bastide et al. [3] use Petri nets to specify the behavior of CORBA objects,
including operation semantics and protocols. The difference with our approach
is that we take into account the invariants of the interface specifications.
Zaremski and Wing [27] propose an interesting approach to compare two software
components. It is determined whether one component can be substituted for
another. They use formal specifications to model the behavior of components
and the Larch prover to prove the specification matching of components.

11



Others [12, 25] have also proposed to enrich component interface specifications by
providing information at signature, semantic and protocol levels. Despite these
enhancements, we believe that in addition, a data model is necessary to perform
a formal verification of interface compatibility.

The idea to define component interfaces using B has been introduced in an
earlier paper [10]. The use of the B refinement to prove that two components
are compatible at the signature and semantics levels has been explored in [9].

6 Conclusion

We have presented a manner of specifying component interfaces that is indepen-
dent of specific component models.
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