
Component composition through architectural patterns for problem frames

Christine Choppy1 Denis Hatebur2,3

Maritta Heisel2

1 LIPN, Institut Galiĺee - Universit́e Paris XIII, France, email: Christine.Choppy@lipn.univ-paris13.fr
2 Universiẗat Duisburg-Essen, Fachbereich Ingenieurwissenschaften, Institut für Medientechnik und Software-Engineering, Germany,

email: maritta.heisel,denis.hatebur@uni-duisburg-essen.de
3 ITESYS Institut f̈ur technische Systeme GmbH, Germany, email: d.hatebur@itesys.de

Abstract

In this paper, we present a pattern-based software devel-
opment process using problem frames and corresponding
architectural patterns. In decomposing a complex problem
into simple subproblems, the relationships between the sub-
problems are recorded explicitly. Based on this information,
we give guidelines on how to derive the software architec-
ture for the overall problem from the software architectures
of the simple subproblems.

1 Introduction

Pattern-orientation is a promising approach to software
development. Patterns provide structuring concepts that
are of invaluable help for problem understanding and sys-
tem design, and are a means to reuse software development
knowledge on different levels of abstraction. They clas-
sify sets of software development problems or solutions that
share the same structure.

Patterns were introduced on the level of detailed object
oriented design [10], and are now defined for different ac-
tivities. Problem Frames[13] are patterns that classify soft-
ware developmentproblems. Architectural styles(or “ar-
chitectural patterns”) are patterns that characterize software
architectures [19]. Patterns for further development phases
includedesign patterns, frameworks, and idiomsor “code
patterns”. Using patterns, we can hope to construct software
in a systematic way, making use of a body of accumulated
knowledge, rather than starting from scratch.

It is acknowledged that the first steps of software devel-
opment are essential. Therefore, we propose to use pat-
terns starting from the requirements elicitation phase of the
software development life-cycle. M. Jackson [13] pro-
poses the concept ofproblem framesfor presenting, clas-
sifying and understanding software development problems.
A problem frame is a characterization of a class of problems
in terms of their main components and the connections be-
tween these components. Once a problem is successfully
fitted to a problem frame, its most important characteristics

are known.

The construction of the solution of a software develop-
ment problem should begin with the decision on the main
structure of the solution, i.e., a decision on the software ar-
chitecture. We exploit the knowledge gained in representing
a problem as an instance of a problem frame in taking that
decision. In a recent paper [5], we define architectural
patterns corresponding to Jackson’s problem frames, taking
into account the characteristics of the problems fitting to the
given problem frame. The structure provided by an archi-
tectural pattern constitutes a concrete starting point for the
process of constructing a solution to a problem that is rep-
resented as an instance of a problem frame.

Different subproblems of a complex problem can be re-
lated in various ways. They can be related sequentially, by
alternative or they can be independent (parallel). Such in-
formation can be used to combine the solution structures of
the subproblem to a solution structure of the overall prob-
lem.

In this paper, we present a pattern-based software devel-
opment process using problem frames and the correspond-
ing architectural patterns. In decomposing a complex prob-
lem into simple subproblems, the relationships between the
subproblems are recorded explicitly. Based on this infor-
mation, we give guidelines on how to derive the software
architecture for the overall problem from the software ar-
chitectures and the component specifications of the simple
subproblems. Throughout this work, we use object-oriented
notations, mostly from UML 2.0 [21].

The rest of the paper is organized as follows: after in-
troducing the basic concepts of our work in Section 2, we
briefly introduce the architectural patterns we developed for
the various problem frames in Section 3. Then, we discuss
related work in Section 4. Our pattern-based software de-
velopment process is presented in Section 5 and illustrated
by a case study in Section 6. In Section 7, we conclude
with a discussion of our approach and directions for future
research.

1

2 Basic Concepts

The patterns used in our development process are prob-
lem frames and architectural patterns. As a notation for our
architectural patterns, we use composite structure diagrams
of UML 2.0. In the following, we give brief descriptions of
these three ingredients of our work.1

2.1 Problem Frames

Jackson [13] describes problem frames as follows: “A
problem frame is a kind of pattern. It defines an intuitively
identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.”

Solving a problem is accomplished by constructing a
“machine” and integrating it into the environment whose
behavior is to be enhanced.

For each problem frame a diagram is set up (see top of
Fig.1). Plain rectangles denote application domains (that al-
ready exist), rectangles with a double vertical stripe denote
the machine domains to be developed, and requirements are
denoted with a dashed oval. They are linked together by
lines that represent interfaces, also calledshared phenom-
ena.

The following problems fit to theRequired Behaviour
problem frame:

‘There is some part of the physical world whose
behaviour is to be controlled so that it satisfies
certain conditions. The problem is to build a ma-
chine that will impose that control.’

The corresponding frame diagram is shown on the top of
Fig.1. The “C” in the frame diagram indicates that theCon-
trolled domainmust be causal. The machine is always a
causal domain (so an explicit “C” is not needed). The no-
tation “CM!C1” means that the causal phenomenaC1 are
controlled by the Control machineCM. The dashed line rep-
resents a requirements reference, and the arrow shows that
it is aconstrainingreference.

This problem frame is appropriate for embedded sys-
tems, where the machine to be developed is embedded in a
physical environment that must be controlled. The commu-
nication between the machine and the physical environment
takes place via sensors and actuators. Thus, only by virtue
of sensors and actuators can there be shared phenomena be-
tween the machine and its environment. Sensors realize the
phenomenaC2 of the frame diagram, i.e., the phenomena
controlled by the environment but observable by the ma-
chine. Actuators realize the phenomenaC1 of the frame
diagram, i.e., the phenomena controlled by the machine and
observable by the environment.

Jackson defines five basic problem frames, namelyRe-
quired Behaviour, Commanded Behaviour, Information Dis-
play, Workpiecesand Transformation. In order to use a
problem frame, one must instantiate it, i.e., provide in-
stances for its domains, interfaces and requirement.

1In the following, we will also use sequence diagrams and state ma-
chines. However, these notations are well-known and intuitive, and we
will not explain them here.

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Controlled Controlled
Domain (C2) Domain (C1)

C2’

C2’’

C1’

C1’’

Application

Sensor IAL

Sensor HAL

Actuator IAL

Actuator HAL

Control Machine

Figure 1. Required Behaviour Frame Diagram
and Architecture

2.2 Architectural Styles

According to Bass, Clements, and Kazman [2], “the
software architecture of a program or computing system is
the structure or structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationships among them.”

Architectural styles are patterns for software architec-
tures. A style is characterized by (i) a set of component
types that perform some function at runtime, (ii) a topo-
logical layout of these components indicating their runtime
interrelationships, (iii) a set of semantic constraints , and
(iv) a set of connectors that mediate communication, coor-
dination, or cooperation among components [2].

When choosing an architecture for a system, usually sev-
eral architectural styles are possible, which means that all
of them could be used to implement the functional require-
ments. We use UML 2.0 composite structure diagrams (see
Section 2.3) to represent architectural patterns as well as
concrete architectures.

2.3 Composite Structure Diagrams

Composite structure diagrams [21] are a means to de-
scribe architectures (cf. bottom of Fig.1). They contain
named rectangles, calledparts. These parts are components
of the software. Each component may contain other (sub-)
components. Atomic components can be described by state
machines and operations for accessing internal data. Parts
may haveports, denoted by small rectangles, and ports may
have interfaces associated to them. Interfaces may be re-
quired or provided.

The architecture of software is multi-faceted: there ex-
ists a structural view, a process-oriented view, a function-
oriented view, an object-oriented view with classes and rela-
tions, and a data flow view on a given software architecture.
We use the structural view from UML 2.0 that describes
the structure of the software at runtime. After that struc-
ture is fixed, the interfaces need to be refined using sockets,

2

lollipops and interface classes to describe the possible data
flow. Then the corresponding active or passive class with
its data and operations can be added for each component.
Thereby the process-oriented and object-oriented views can
be integrated seamlessly into the structural view. That ap-
proach and the corresponding process are described in [12].

3 Architectural Patterns for Problem Frames

The architectural patterns we have defined for the dif-
ferent problem frames in [5] take the characteristics of the
respective problem frame into account. They are based on a
Layeredarchitecture, as shown on the bottom of Fig. 1.

The lowest layer is thehardware abstraction layer
(HAL). This layer covers all interfaces to the external com-
ponents in the system architecture and provides access to
these components independently of the used controller or
processor. For porting the software to another hardware
platform, only this part of the software needs to be replaced.

The hardware abstraction layer is used by theinterface
abstraction layer(IAL). This layer provides an abstraction
of the (low-level) values yielded by the sensors and actu-
ators. For example, a frequency of wheel pulses could be
transformed into a speed value. Thus, in the interface ab-
straction layer, values for the monitored and controlled vari-
ables (see [17]) of the system are computed. It is possi-
ble that these variables have to be computed from the val-
ues of several hardware interfaces. For safety-critical soft-
ware components, the interface abstraction layer will usu-
ally make use of redundant arrangements of sensors and ac-
tuators.

The highest layer of the architecture is theApplication
layer. This layer only has to deal with variables from the
problem description. Therefore, the system requirements
can be directly mapped to the software requirements of the
application layer, as described by Bharadwaj and Heitmeyer
[3].

Note that the phenomenaC3 do not occur in the archi-
tecture2, because they do not belong to the interface of the
machine domain.

Thus, the architecture shown on the bottom of Fig. 1 rep-
resents an adequate structure for theControl machine
of the top of Fig. 1. The interfaces of the architectural pat-
terns correspond exactly to the interfaces of the machine
domains as defined in the different frame diagrams. Hence,
the architecture refines exactly the machine to build; it nei-
ther adds nor leaves out any shared phenomena as compared
to the problem description.

Of course, our architectural patterns are not the only
possible way to structure the machine domain solving the
problem that fits to a given problem frame. However, the
kind of (layered) architecture we propose has proven use-
ful in practice (see for example [4, 12, 20]), and allows for
combining solutions to different subproblems of complex

2In the following, we use the word “architecture” instead of “archi-
tectural pattern” for reasons of readability. It is clear, however, that the
components shown in the architectural diagrams have to be instantiated in
order to obtain a concrete software architecture.

problems in a systematic way. It is also flexible enough to
be combined with other architectural styles. We have vali-
dated this kind of architecture in several industrial projects,
dealing for example with smart cards, protocol converters,
web/mail-servers, and real-time operating systems.

4 Related Work

A number of research activities deal with the use of pat-
terns in the software development process. We consider
here mainly those related with the use of problem frames,
also in relationship with architectural styles.

Aiming to integrate problem frames in a formal develop-
ment process, Choppy and Reggio [9] show how a formal
specification skeleton may be associated with some prob-
lem frames. Choppy and Heisel show in [7, 8] that this idea
is independent of concrete specification languages. In that
work, they also give heuristics for the transition from prob-
lem frames to architectural styles. In [7], they give criteria
for (i) helping to select an appropriate basic problem frame,
and (ii) choosing between architectural styles that could be
associated with a given problem frame.

In [8], a proposal for the development of information
systems is given using update or query problem frames. A
component-based architecture reflecting the repository ar-
chitectural style is used for the design and integration of the
different system parts.

The approach developed by Hall, Rapanotti et al. [11,
18] is quite complementary to ours, since the idea devel-
oped there is to introduce architectural concepts into prob-
lem frames (introducing “AFrames”) so as to benefit from
existing architectures. In [11], the applicability of problem
frames is extended to include domains with existing archi-
tectural support, and to allow both for an annotated ma-
chine domain, and for annotations to discharge the frame
concern. In [18], “AFrames” are presented corresponding
to the architectural styles Pipe-and-Filter and Model-View-
Controller (MVC), and applied to transformation and con-
trol problems.

Let us also mention Lavazza and Del Bianco [15] who
do not use architectures, but provide a description of com-
manded and required behavior problem frames in UML-
RT, focusing on active objects or “capsules” communicat-
ing through ports (defined by protocols). Moreover, they
provide a real time version of OCL, called OTL.

Barroca et al. [1] extend the problem frame approach
with coordinationconcepts. This leads to a description of
coordination interfacesin terms ofservicesandevents(re-
ferred to respectively here as actuators and sensors) together
with required properties, and the use ofcoordination rules
to describe the machine behavior.

5 Software Development Process

In the following, we describe a pattern-based software
development process. That process is based on problem
frames [13] and the corresponding architectural patterns
that we propose in [5]. We mostly use concrete object-
oriented notations (often taken from UML [21]) to express

3

the results of the different steps of the process. In principle,
the process could be carried out using other notations, but
the procedures we give below on how to execute the steps
would have to be adjusted in that case.

The novelty of the process is that the relationships be-
tween the subproblems are expressed explicitly, and that
these relationships are exploited when generating a global
software architecture for the overall problem. Although
Jackson [13] gives some hints on how to decompose prob-
lems into subproblems, there is no general procedure for
constructing the solution of the overall problem from the
solutions of the subproblems. The current paper proposes
an approach on how to achieve that composition.

Our pattern-based software development process using
problem frames and architectural patterns proceeds as fol-
lows: first, a context diagram showing the problem context
is set up (for an example, see Fig.2). Then, the overall prob-
lem is decomposed into subproblems that should fit to ex-
isting problem frames. This decomposition can be achieved
in various ways, for example by use-case decomposition, or
by projection, as proposed by Jackson [13]. The decompo-
sition results in a set of problem diagrams that should be
instantiated frame diagrams whenever possible (for an ex-
ample, see Fig. 3) and the information on how the differ-
ent subproblems are related, expressed e.g. as a grammar.
For each subproblem, a specification for the machine do-
main must be derived, thus addressing the frame concern.
Each machine domain corresponding to a subproblem is
then structured by instantiating the architectural patterns we
have proposed in [5]. The instantiated patterns must after-
wards be merged to obtain the architecture of the machine
solving the overall problem. It is the main contribution of
the present paper to show how that composition can be per-
formed in a systematic way, making use of the relations be-
tween the subproblems that were expressed during problem
decomposition. Finally, the components of the combined
architecture must be specified in more detail, and it must be
shown that the combined architecture fulfils the specifica-
tions of all subproblems.

The process consists of twelve steps that we explain one
by one. The steps that are the most important for the task
of constructing the overall solution structure from the sub-
problem solution structures are Steps 3, 9, and 10.

1. Collect requirements and domain knowledge.
Input An informal description of the task.
Procedure The requirements (optative statements)
have to be expressed, as well as knowledge about
the environment in which the machine (i.e. the soft-
ware system to be developed) has to operate (indica-
tive statements). Whereas the requirements have to
be achieved by constructing the machine, the domain
knowledge expresses facts that are true no matter how
the machine is built. (For a more details, see [22].)
Output A set R of requirements, and a setD of do-
main knowledge statements. These can be expressed
in natural language, or in semi-formal or formal nota-
tions.
Validation The statements contained inR andD must
be non-contradictory.

2. Draw a context diagram.
Input An informal description of the task.
ProcedureWe must identify all domains that are rel-
evant to the problem at hand, and the phenomena that
are shared by different domains.
Output A context diagram containing all relevant do-
mains and shared phenomena. (For a more details, see
[13].)
Validation The results of Steps 1 and 2 must be con-
sistent, i.e., all domains and phenomena mentioned in
R and D must be contained in the context diagram,
and all domains and phenomena of the context diagram
must be related to some element ofR or D.

3. Decompose the problem into simple subproblems, and
express the relations between the different subprob-
lems. If possible, the subproblems should fit to known
problem frames (or variants).
Input Results of Steps 1 and 2.
ProcedureThere are different possibilities to decom-
pose a complex problem into subproblems. Jackson
[13] proposes a parallel decomposition using projec-
tion, but a decomposition by use-cases (for an exam-
ple, see [8]) or a top-down decomposition are also pos-
sible. Subproblems refer to related sets of require-
ments, and they should only constrain a single domain
(otherwise, the subproblem is not simple but needs fur-
ther decomposition).

The following relationships between subproblems are
possible: parallel subproblems are largely indepen-
dent of one another, and the composed machine will
have to treat the problems in parallel.Sequentialsub-
problems have to be treated one after the other.Alter-
nativeproblems are exclusive. Only one of them will
have to be treated at a given time.

However, composing the solution of the overall prob-
lem from the solutions of the subproblems doesnot
mean to develop an independent program for each sub-
problem and then compose these programs. Instead,
the solutions to the subproblems will contain common
components that have to be identified and then merged
accordingly (cf. Steps 9 and 10). This is the challenge
of the composition problem.
Output A set of problem diagrams, being mostly in-
stantiated frame diagrams, and an expression of the
subproblem relationships. To express subproblem rela-
tionships, different means of expression are appropri-
ate, for example process algebra-like notations, gram-
mars, high-level sequence charts, or sequence charts
using combined fragments (the latter two introduced
in UML 2.0).
Validation All requirements have to be captured, and
each requirement must be assigned exactly to one sub-
problem, otherwise the requirement must be split. The
problem diagrams must be consistent with the context
diagram of Step 2. The following operations preserve
consistency:
- leave out domains (with corresponding interfaces)
- combine several domains into one domain
- divide one domain

4

- reduce an interface between domains
- refine phenomena
- combine (i.e., abstract) phenomena

4. Derive a specification for each subproblem.
Input Results of Steps 1–3.
Procedure Whereas requirements describe how the
environment should behave once the machine is in-
tegrated in it, the specification describes the machine
and forms the basis for its construction. Specifications
are implementable requirements, and they are derived
from the requirements using domain knowledge. For
more details, see [14].
Output A specification for each subproblem, ex-
pressed as a set of sequence diagrams. State invariants
should be annotated for the domains in the environ-
ment of the machine.
Validation Specification and domain knowledge must
be non-contradictory. The specification, together with
the domain knowledge, must imply that the require-
ments are fulfilled. In performing that proof, the frame
concern is addressed. The frame concern provides a
structure for the correctness proof.

Additionally, the phenomena of the machine domain
must be consistent with the signals in the sequence di-
agrams, i.e., they must have the same name, or a map-
ping must be created. All phenomena at the interfaces
of the machine must be used in at least one sequence
diagram. The annotated state invariants must allow to
combine the sequence diagrams in the same way as the
relationships of Step 3 describe.

5. Define an architecture for each subproblem.
Input Problem diagrams resulting from Step 3.
Procedure If a subproblem fits to a known problem
frame, then a simple instantiation of the pattern we
gave in [5] will suffice. If a subproblem is not an
exact instance of a problem frame but a variant, then
modifications of our architectural patterns will be nec-
essary. If a subproblem is unrelated to any problem
frame, then an appropriate architecture has to be de-
veloped from scratch.
Output A subproblem architecture for each subprob-
lem, expressed as a composite structure diagram.
Validation If the architectural diagrams are instantia-
tions of the given patterns, no validation is necessary.
Otherwise, it must be checked that all domains of the
problem diagram are captured in the architecture and
that the external interface of the architecture coincides
with the machine interface of the problem diagram.

6. Specify the interface classes for all interfaces of all
subproblem architectures.
Input Results of Steps 3 and 5.
ProcedureFor each interface contained in a subprob-
lem architecture, the corresponding operations or sig-
nals, respectively, have to be defined, and provided and
required interfaces must be distinguished.
Output A set of interface classes.
Validation All interfaces must be covered. The signals
or operations in the interfaces classes must be the same
as the signals in the sequence diagrams of Step 4.

7. Specify all components of all subproblem architec-
tures.
Input Results of Steps 4–6.
ProcedureFor each component, its external behavior
is expressed using sequence diagrams. For the applica-
tion layer (cf. bottom of Fig.1), it should be possible to
re-use the specifications developed in Step 4. To reuse
the specifications, the interface phenomena have to be
adjusted according to the functionality of the IAL and
the HAL. Moreover, in order to prepare for the next
step, the sequence diagrams should be annotated with
state invariants, as in Step 4.
Output A set of sequence diagrams, annotated with
state information.
Validation All components must be covered. The sig-
nals in the specification must be defined in the inter-
face classes. The sequence diagrams for the compo-
nents must describe the same behavior as described in
Step 4.

8. Define a state machine and the used data for each ar-
chitectural component.
Input Result of Step 7.
ProcedureUse the state information contained in the
sequence diagrams to construct a state machine spec-
ifying the behavior of each architectural component.
This step may seem redundant, because we have al-
ready developed a specification for each component
using sequence diagrams. However, the sequence di-
agrams only show specific scenarios and are possibly
incomplete. A state machine and the used data spec-
ify the overall behavior of the component in question
and will later serve as the basis for the specification
of the composed architecture and for the implementa-
tion. An approach to construct state machines from
sequence diagram is described in [16]. The sequence
diagrams, on the other hand, can be used for testing.
The local data for each component can be defined us-
ing class diagrams.
Output A set of state machines and class diagrams.
Validation Each architectural component is covered,
and each state machine iscomplete, i.e., each possible
input signal (as specified in Step 6) is taken into ac-
count. Each state machine must behave as described
in its corresponding sequence diagrams.

Moreover, all referenced interface classes must be the
same as the interface classes of the subproblem archi-
tecture of the respective component (Step 6).

9. Develop the global architecture of the machine to be
developed by combination of the subproblem architec-
tures.
Input Relationships between subproblems as specified
in Step 3, results of Steps 5 and 6.
Procedure The crucial point of this step is to decide
if two components contained in different subproblem
architectures should occur only once in the global ar-
chitecture, i.e., they should be merged. To decide this
question, we make use of the information gathered
when decomposing the overall problem into subprob-
lems. We distinguish the following cases, where all

5

cases but the first one concern application components:

(a) The components are hardware (HAL) or interface
abstraction layers (IAL), establishing the connec-
tion to some hardware device.
Such components should be merged if and only if
they are associated to the same hardware device.

(b) Two application components belong to subprob-
lems being related sequentially or by alternative.
Such components should be merged into one ap-
plication component.

(c) Two application components belong to parallel
subproblems and share some output phenomena.
Such components should be merged, because the
output must be generated in a way satisfying both
subproblems.

(d) Two application components belong to parallel
subproblems and share some input phenomena.
If the components do not share any output phe-
nomena, both alternatives (merging the compo-
nents, or keeping them separate) are possible. If
the components are not merged, then the com-
mon input must be duplicated.

(e) Two application components belong to parallel
subproblems and do not share any interface phe-
nomena.
Such components should be kept separately.

Output A composite structure diagram for the global
architecture, i.e. the architecture of the machine solv-
ing the original problem, and a set of interface classes
for the global architecture.
Validation The global architecture must contain all
components and interfaces of all subproblem architec-
tures. It must be possible to map all signals in the ex-
ternal interfaces to the phenomena at the machine in-
terfaces of the context diagram developed in Step 2.

10. Define state machines for all components of the global
architecture that were merged from components of dif-
ferent subproblem architectures by merging their re-
spective state machines.
Input Results of Steps 8 and 9.
ProcedureAccording to the case distinction we made
in Step 9, we proceed as follows:

• Case 9a. Often, the state machines will already
be equal, because they describe the same device.
If not, the state machines must be merged man-
ually. In many cases, we only need to add the
additional signals to the appropriate states.

• Case 9b. The composition can be achieved by
using composite states. The connecting arcs be-
tween the sub-automata depend on the problem.

• Case 9c. Here, the merge depends on the prob-
lem to be solved. Often, there will be a prior-
ity between the different subproblems that has
to be taken into account when defining the com-
mon state machines. As a heuristic, we can note
that priorities between subproblems will be nec-
essary when the two subproblems constrain the
same domain.

Card
reader

Account
data

Admin

take_banknotes_from supply
put_banknote_to_case

retract_banknotes_from_case
open_case, close_case

banknotes_removed

*

Money supply /

ATMaccount_balance
withdraw_money

Customer

insert_card, remove_card

ask_pin, granted_OK
refuse_withdrawal
enter_request
enter_pin

take_banknotes

insert_money

*request_log
display_log

card_inside

retract_card, eject_card
no_card_inside

case

Figure 2. Context Diagram for ATM Problem

• Case 9d. The merge has to be performed manu-
ally.

Output A set of state machines.
Validation Each composed state machine is complete
and covers all input events that can be sent by the com-
ponents with an interface to the composed state ma-
chine. All sequence diagrams of all subproblems for
the component specified in Step 7 describe the same
behavior as the corresponding state machine.

11. Specify operations and private data types.
12. Implement and test the software system.

As the last two steps are beyond the scope of this paper,
we do not describe them here.

6 Case Study

We now illustrate the process by the case study of an
automatic teller machine (ATM). This case study is also
treated in [5], however with a different problem decomposi-
tion (and while the focus in [5] is on architectures associated
with problem frames, we here discuss the combination of
the architectures). For reasons of space, we cannot present
the case study in detail, but the full case study is available
in [6].

Figure 2 shows the structure of the ATM problem con-
text, where several domains and the corresponding shared
phenomena are identified inStep 2of the development pro-
cess.

The ATM is an example of a multi-frame problem. It
consists of the subproblemsAuthenticate, Request, Update
Account, Take Money, Take Card, Log, andDisplay Log.

Fig. 3 shows the problem diagram forUpdate Account,
which is a variant of theWorkpiecesframe.

The dependencies between the subproblems can be sum-
marized using a context-free grammar describing the possi-
ble sequences. In the following grammar, “||” denotes par-
allel problems and “|” denotes an alternative.

<start> ::= (<idle> || Log || DisplayLog)
<idle> ::= (Authenticate <authenticated> | <idle>)
<authenticated> ::= (Request <granted> | <refused>)
<granted> ::= (TakeCard <granted_no_card> | <idle>)
<refused> ::= TakeCard <idle>
<granted_no_card> ::= (UpdateAccount || TakeMoney) <idle>

6

account
Update

machine

Customer

C!E18

Money Case

data
Account

MC!C19

Y17

E18

UAM!Y16

R4

Y16: {update account}
Y17: {account data}
E18: {take banknotes}
C19: {banknotes removed}

R4: The account is updated when the customer takes the
money.

Figure 3. Problem Diagram for Update Ac-
count (Workpieces variant)

The last line means that, once the card is removed and
withdrawal is granted,UpdateAccountandTakeMoneywill
take place in parallel, and then the idle state is reached.

For each subproblem the specification expressed by se-
quence diagrams is derived inStep 4. Then an architec-
tural pattern (as at the bottom of Fig.1) is instantiated as
described inStep 5, and the interfaces between the compo-
nents are described (Step 6). The following tasks are to con-
struct the sequence diagrams for the components (Step 7),
as well as the state machines for the components and to pro-
vide class diagrams for their data (Step 8). These class dia-
grams support the reuse of the specified components. Each
sequence diagram constructed in Step 7 can be transformed
into a state machine that is associated to one class diagram.
These state machines cover all signals that can occur in
their environment. The global architecture is constructed
in Step 9. Since our patterns yield appropriate architectures
for subproblems fitting to problem frames, these architec-
tures can be combined in a modular way to obtain an archi-
tecture of the overall system according to the rules of Step
9.

After merging the state machines for the parallel sub-
problems inStep 10in the application component, the state
machines for the sequential and the alternative subproblems
can be combined using composite states (see Fig. 4). The
resulting state machine exactly reflects the grammar de-
scribing the dependencies of the subproblems.

Then the state machines for the IALs, the HALs and the
User Interfaces must be merged. With these steps, we have
established the starting point for the implementation phase,
which is now mostly a routine task.

7 Conclusions

In this paper we presented a (partial) development pro-
cess from requirements elicitation to detailed design. This
process is based on patterns provided by problem frames
and architectural styles. The expression of the relationships
between the subproblems is used to guide the composition
of the designed components. The contributions of our ap-
proach are the following:

• Our process gives concrete guidance of how to use

problem frames and architectural patterns, in connec-
tion with a model-based approach to software develop-
ment, using various UML notations.

• We provide a systematic way of exploiting information
on how a problem was decomposed into subproblems
for constructing the overall solution to a problem from
the solutions of its subproblems. For top-down de-
composition, this may be simple; for use-case or paral-
lel problem decomposition, however, it is not obvious
how to obtain the overall solution from the solutions of
the subproblems.

• The process results in detailed descriptions of the soft-
ware components to be implemented and tested. The
state machines (and data descriptions) are an appro-
priate basis for implementation, whereas the sequence
diagrams provide scenarios against which the imple-
mented software can be tested.

• Because of the extensive validation contained in our
process, inconsistencies are found before starting the
implementation.

• Because of the systematic problem decomposition and
solution composition, our process can be used for
large, realistic systems.

Although the work presented here is independent of any
formal specification language, if desired, it would be possi-
ble to accompany the architectural descriptions with a for-
mal specification development along the ideas of [7, 8, 9],
and also to take into account properties as in [1] (cf. Section
4).

In the future, we intend to extend this work in several di-
rections. First, we want to treat complex data structures in
more detail. Second, since our approach aims at a guided

��
��
��

��
��
��

Authentication /
Log Application

Request / Log
Application

Take Card / Log
Application

Take Card / Log
Application

Update Account /
Log Application

Take Money /

c_retracted

refused c_retracted

failed

Main Application

Figure 4. State Machine for all Sequential and
Alternative Problems

7

and integrated use of several techniques and several pat-
terns, we would like to explore how to integrate the use
of design patterns in this development. Third, we intend
to elaborate more on the later phases of software develop-
ment. For example, we want to investigate how to generate
code from the outputs of our process. Finally, we aim at
tool support for our process, preferably integrating existing
UML tools. Our long-term goal is to apply our process in
industrial applications.

References

[1] L. Barroca, J. L. Fiadeiro, M. Jackson, R. C. Laney,
and B. Nuseibeh. Problem frames: A case for co-
ordination. In Rocco De Nicola, Gian Luigi Ferrari,
and Greg Meredith, editors,Coordination Models and
Languages, 6th International Conference, COORDI-
NATION 2004, Pisa, Italy, February 24-27, 2004, Pro-
ceedings, pages 5–19, 2004.

[2] L. Bass, P. Clements, and R. Kazman.Software Archi-
tecture in Practice. Addison-Wesley, 1998.

[3] R. Bharadwaj and C. Heitmeyer. Hardware/Software
Co-Design and Co-Validation using the SCR Method.
In Proceedings IEEE International High-Level Design
Validation and Test Workshop (HLDV 99), 1999.

[4] J. Cheesman and J. Daniels.UML Components – A
Simple Process for Specifying Component-Based Soft-
ware. Addison-Wesley, 2001.

[5] C. Choppy, D. Hatebur, and M. Heisel. Architec-
tural patterns for problem frames.IEE Proceedings –
Software, Special issue on Relating Software Require-
ments and Architecture, 152(4):198–208, 2005.

[6] C. Choppy, D. Hatebur, and M. Heisel. Composing ar-
chitectures based on architectural patterns for problem
frames. Technical report, Université Paris XIII and
Universiẗat Duisburg-Essen, 2005. see: http://swe.uni-
duisburg-essen.de/intern/comparch05.pdf.

[7] C. Choppy and M. Heisel. Use of patterns in formal
development: Systematic transition from problems to
architectural designs. In M. Wirsing, R. Hennicker,
and D. Pattinson, editors,Recent Trends in Algebraic
Development Techniques, 16th WADT, Selected Pa-
pers, LNCS 2755, pages 205–220. Springer Verlag,
2003.

[8] C. Choppy and M. Heisel. Une approacheà base de
”patrons” pour la sṕecification et le d́eveloppement de
syst̀emes d’information. InProceedings Approches
Formelles dans l’Assistance au Développement de
Logiciels - AFADL’2004, pages 61–76, 2004.

[9] C. Choppy and G. Reggio. Using CASL to Spec-
ify the Requirements and the Design: A Problem
Specific Approach. In D. Bert, C. Choppy, and
P. D. Mosses, editors,Recent Trends in Algebraic
Development Techniques, 14th WADT, Selected Pa-
pers, LNCS 1827, pages 104–123. Springer Ver-
lag, 2000. see: ftp://ftp.disi.unige.it/person/ReggioG/
ChoppyReggio99a.ps.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns – Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, 1995.

[11] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh,
and L. Rapanotti. Relating Software Requirements
and Architectures using Problem Frames. InProceed-
ings of IEEE International Requirements Engineering
Conference (RE’02), Essen, Germany, 9-13 Septem-
ber 2002.

[12] M. Heisel and D. Hatebur. A model-based develop-
ment process for embedded systems. In T. Klein,
B. Rumpe, and B. Schätz, editors,Proc. Workshop
on Model-Based Development of Embedded Systems,
number TUBS-SSE-2005-01. Technical University of
Braunschweig, 2005. see: http://www.sse.cs.tu-
bs.de/publications/MBEES-Tagungsband.pdf.

[13] M. Jackson.Problem Frames. Analyzing and structur-
ing software development problems. Addison-Wesley,
2001.

[14] M. Jackson and P. Zave. Deriving specifications from
requirements: an example. InProceedings 17th Int.
Conf. on Software Engineering, Seattle, USA, pages
15–24. ACM Press, 1995.

[15] L. Lavazza and V. Bianco. A UML-Based Approach
for Representing Problem Frames. In K.Cox, J. Hall,
and L. Rapanotti, editors,Proc. 1st International
Workshop on Advances and Applications of Problem
Frames (IWAAPF). IEE Press, 2004.

[16] N. Mansurov. Automatic synthesis of sdl from msc.
Technical report, klocwork, Inc., 2003.

[17] D. L. Parnas and J. Madey. Functional documents for
computer systems. InScience of Computer program-
ming, volume 25, pages 41–61, 1995.

[18] L. Rapanotti, J. G. Hall, M. Jackson, and B. Nu-
seibeh. Architecture Driven Problem Decomposition.
In Proceedings of 12th IEEE International Require-
ments Engineering Conference (RE’04), Kyoto, Japan,
6-10 September 2004.

[19] M. Shaw and D. Garlan.Software Architecture. Per-
spectives on an Emerging Discipline. Prentice-Hall,
1996.

[20] A. Tanenbaum.Modern Operating Systems. Prentice
Hall, 1992. TAN a 92:1 2.Ex.

[21] UML Revision Task Force.OMG UML Specification.
see: http://www.uml.org.

[22] P. Zave and M. Jackson. Four dark corners for re-
quirements engineering.ACM Transactions on Soft-
ware Engineering and Methodology, 6(1):1–30, Jan-
uary 1997.

8

