
Security Engineering using Problem Frames

Denis Hatebur1,2, Maritta Heisel2, and Holger Schmidt2

1 Institut für technische Systeme GmbH, Germany, d.hatebur@itesys.de
2 University Duisburg-Essen, Faculty of Engineering, Department of Computer Science,

Workgroup Software Engineering, Germany,{denis.hatebur, maritta.heisel,
holger.schmidt}@uni-duisburg-essen.de

Abstract. We present a method for security engineering, which is based on two
special kinds of problem frames that serve to structure, characterize, analyze, and
finally solve software development problems in the area of software and system
security. Both kinds of problem frames constitutepatternsfor representing secu-
rity problems, variants of which occur frequently in practice. We presentsecurity
problem frames, which are instantiated in the initial step of our method. They ex-
plicitly distinguish security problems from their solutions. To prepare the solution
of the security problems in the next step, we employconcretized security problem
framescapturing known approaches to achieve security. Finally, the last step of
our method results in a specification of the system to be implemented given by
concrete security mechanisms and instantiatedgeneric sequence diagrams. We
illustrate our approach by the example of a secure remote display system.

1 Introduction

Security engineering[1] is a discipline concerned with building secure systems to re-
main dependable in the face of malice, error and mischance. Tools, processes, and
methods are needed to analyze, design, implement, and test secure systems, and to
evolve existing systems as their environment evolves.Security engineersmust be cross-
disciplinary experts in cryptography, computer security, formal methods, and software
engineering, and they must have knowledge about applied psychology, the law, organi-
zational and audit methods.

Knowing that building security-critical systems is a highly sensitive process, it is
important to reuse the experience of commonly encountered challenges in this field.
This idea of usingpatternshas proved to be of value in software engineering, and it is
also a promising approach in security engineering.

Patterns are a means to reuse software development knowledge on different levels of
abstraction. They classify sets of software development problems or solutions that share
the same structure. Patterns are defined for different activities at different stages of the
software life cycle.Problem frames[10] are patterns that classify software development
problems. Architectural stylesare patterns that characterize software architectures [2].
Design patterns[5] are used for finer-grained software design3, while idiomsare low-
level patterns related to specific programming languages [4].

Using patterns, we can hope to construct software in a systematic way, making use
of a body of accumulated knowledge, instead of starting from scratch each time. The
problem frames defined by Jackson [10] cover a large number of software development

3 Design patterns for security have also been defined, see Section 8.



2

problems, because they are quite general in nature. Their support is of great value in
the area of software engineering for years. To support software development in more
specific areas such as security engineering, however, specialized problem frames are
needed. Jackson [10] states: “If you find the problem frame approach helpful you may
want to find more frames to add to your personal repertoire. There are several situations
that may suggest new problem frames.”

In this paper, we show how to use the problem frames approach in the area of
security engineering. We first introduce Jackson’s problem frames in Section 2. Then
we discuss a special security problem frame in Section 3 that captures authentication, a
software development problem occurring frequently in the area of security engineering.
Furthermore, we define a concretized security problem frame in Section 4, that captures
known approaches to achieve authentication. We present ageneric security protocol
represented by generic sequence diagrams as a basis for a more concrete specification
in Section 5.

We propose a method tailor-made for security engineering using security problem
frames, their concretized counterparts, and generic security protocols to proceed from
a security problem towards a solution. Initially, a security engineer must describe a
security problem by an instantiated security problem frame. Then, concretized security
problem frames must be employed to derive a specification given by concrete security
mechanisms and instantiated generic sequence diagrams. Section 6 gives an overview
of this method.

We illustrate our approach by developing a secure remote display system in Sec-
tion 7. Section 8 discusses related work, and we conclude in Section 9.

2 Problem Frames

Problem frames are a means to describe software development problems. They were
invented by Michael Jackson [10], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable problem class in terms of its
context and the characteristics of its domains, interfaces and requirement.” Problem
frames are described byframe diagrams, which basically consist of rectangles and links
between these (see Fig. 1). The task is to construct amachinethat improves the behavior
of the environment it is integrated in.

Plain rectangles denoteapplication domains(that already exist), a rectangle with a
single vertical stripe denotes adesigned domainphysically representing some informa-
tion, a rectangle with a double vertical stripe denotes the machine to be developed, and
requirementsare denoted with a dashed oval. The connecting lines represent interfaces
that consist ofshared phenomena. A dashed line represents a requirements reference,
and the arrow shows that it is aconstrainingreference.

Furthermore, Jackson distinguishescausaldomains that comply with some physi-
cal laws,lexical domains that are data representations, andbiddabledomains that are
usually people.Connection domainsconnect two other domains. They represent a com-
munication medium between these domains. Examples are devices that measure vital
factors of patients, or a keyboard that is used to type user input. Connection domains
have to be considered if connections are unreliable, introduce delays that are an essential
part of the problem, convert phenomena, or if they are mentioned in the requirements.



3

X
state

Security

B
subject

Authentic

subject
Fake

Authenti−

machine
cation

B

AS!Y1

AM!Y2

FS!Y3

Y4

Y1

Y3

SS!Y2

SS!Y2

SR

SR: Security staterepresents that ac-
cess is granted for theAuthentic sub-
ject and that access is denied for the
Fake subject

Fig. 1.Authentication frame diagram

In the frame diagram of Fig. 1, the “X” indicates that the corresponding domain is a
lexical domain. The notation “AS!Y1” means that the phenomenaY1are controlled by
the biddable domainAuthentic subject, which is indicated by “B”.

Problem frames greatly support developers in analyzing problems to be solved.
They show what domains have to be considered, and what knowledge must be described
and reasoned about when analyzing the problem in depth. Developers must elicit, ex-
amine, and describe the relevant properties of each domain. These descriptions form
thedomain knowledge, which can be explained essentially in the following way [10]:
“These descriptions areindicative– they indicate the objective truth about the domains,
what’s true regardless of the machine’s behaviour.”

Requirementsdescribe the environment, the way it should be, after the machine is
integrated.Assumptionsare conditions that are needed, so that the requirements are
accomplishable. Usually, they describe required user behavior. For example, we cannot
distinguish a fake user from an authentic user if both have the same credentials. Hence,
we must assume that only the authentic user knows the credentials. In contrast to the
requirements, thespecificationof the machine gives an answer to the question: “How
should the machine act, so that the system fulfills the requirements?” Specifications
are descriptions that are sufficient for building the machine. They are implementable
requirements. For the correctness of a specificationS, it must be demonstrated thatS,
the domain knowledgeD, and the assumptionsA imply the requirementsR (A ∧D ∧
S ⇒ R, whereA ∧D ∧ S must be non-contradictory).

Software development with problem frames proceeds as follows: first, the envi-
ronment in which the machine will operate is represented by acontext diagram(see
upper left-hand side of Fig. 4). Like a frame diagram, a context diagram consists of
domains and interfaces. However, a context diagram contains no requirements, and it
is not shown who is in control of the shared phenomena. Then, the problem is decom-
posed into subproblems. If ever possible, the decomposition is done in such a way that
the subproblems fit to given problem frames. To fit a subproblem to a problem frame,
one must instantiate its frame diagram, i.e., provide instances for its domains, phenom-
ena, interfaces and requirements. The instantiated frame diagram is called aproblem
diagram. Since the requirements refer to the environment in which the machine must
operate, the next step consists in deriving a specification for the machine (see [11] for
details). The specification is the starting point for the development of the machine.



4

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. Since all problems fitting to a problem frame share the
same characteristic properties, their solutions will have common characteristic prop-
erties, too. Therefore, it is worthwhile to look for solution structures that match the
problem structures defined by problem frames.

3 Security Problem Frames

To meet the special demands of software development problems occurring in the area
of security engineering, we developed three security problem frames considering the
security problems of authentication, confidentiality, and integrity. For reasons of space,
we only present the security problem frame for authentication in this paper. The security
problem frames for confidentiality and integrity are presented in [7].

Security problem frames considersecurity requirements. The goal is the construc-
tion of a machine that fulfills the security requirements. The security problem frames we
have developed strictly refer to theproblemsconcerning security. They do not anticipate
a solution. For example, we may require the confidential transmission of data without
being obliged to mention encryption, which is a means to achieve confidentiality.

Solvinga security problem is achieved by choosing generic security mechanisms
(e.g., encryption to keep data confidential), thereby transforming security requirements
into concretized security requirements(see Section 4 for details). The benefit of con-
sidering security requirements without reference to potential solutions is the clear sep-
aration of problems from their solutions, which leads to a better understanding of the
problems and supports the reusability of the security problem frames.

In contrast to Jacksons’ problem frames, security problem frames and also their
concretized counterparts contain patterns for the security requirements, they explicitly
involve and describe a potential attacker (threat model), they integrate assumptions, and
they also consider non-functional requirements (such as condidentiality).

Security Problem Frame for Authentication
Authentication of users and other systems is an important issue in many security-critical
systems. Authentication is the problem to verify a claimed identity that is necessary to
control access to data. Accessing data includes not only reading data, but also writing
data, executing programs, and creating new data.

The frame diagram in Fig. 1 depicts this security problem. The domainAuthentic
subjectin the frame diagram represents an authentic user or another authentic system.
In contrast, the domainFake subjectrepresents a fake user or another fake system. The
domainSecurity staterepresents the fact that access is granted to theAuthentic subject
domain and denied to theFake subjectdomain. TheSecurity statedomain is externally
visible, because the subject must be at least implicitly informed whether the access is
granted or denied. The security requirementSRis stated according to this description.

4 Concretized Security Problem Frames

Security requirements are often difficult to address. Our approach for dealing with se-
curity requirements is to transform them intoconcretized security requirements, which



5

take the functional aspects of a security problem into account (e.g., using a common
secret to distinguish an authentic subject from a fake subject). For this purpose, we
concretize the security problem frame introduced in Section 3, using generic security
mechanisms.

For transforming security requirements into concretized security requirements, it
is important to consider some basic properties of the involved domains, e.g., that the
domain representing an authentic subject differs from the domain representing a fake
subject. We call this kind of domain knowledgebasic domain knowledge(DBasic).

In transforming a security requirementSR into a concretized security require-
mentCSR, new concretized security problem frames evolve from the security prob-
lem frames. A detailed description of the transformation process can be found in [7],
Section 4.

We must explicitly describe any assumptions made (denoted byA). Especially the
strength of potential attackers must be characterized. The assumptions are necessary
to check if the implicationA ∧ DBasic ∧ CSR ⇒ SR is fulfilled. By proving this
implication, we demonstrate that the concretized security problem frame is sufficient
for the security problem frame under the assumptionsA.

The security problem frame and its concretized counterpart presented in this paper
and the frames considering confidentiality and integrity introduced in [7] are intended
to be the first in a more complete collection. To consider other security problems such as
availability or non-repudiation, it is necessary to integrate additional security problem
frames and concretized security problem frames into the collection. Once a (relatively)
complete collection is defined, it will be of considerable help for security engineers.
For a new security-critical system to be constructed, the catalogue can be inspected in
order to find the frames that apply for the given problem. Thus, such a catalogue helps to
avoid omissions and to cover all security aspects that are relevant for the given problem.

Concretized Security Problem Frame for Authentication

The concretized security problem frame for authentication is shown on the left-hand
side of Fig. 2. In the course of transforming the security requirement for authentication
into a concretized security requirement, we introduce a designed domainCredentials,
which makes it possible to distinguish between the domainsAuthentic subjectandFake
subject. TheCredentialsdomain must be known by the domainAuthentication machine.

We introduce an additional domainTrusted subjectthat distributes the credentials
to the machine and to the domainAuthentic subjectin the concretized security prob-
lem frame. That domain represents trusted subjects such as a system administrator for
password-based authentication or a trust center in a public key infrastructure. It ensures
that only the domainAuthentic subjectgets the credentials. Hence, we can state the as-
sumption that the credentials distributed to theAuthentic subjectare represented by the
phenomenonCredentialsAS, whereas a potential attacker represented by the domain
Fake subjectdoes not know these credentials. Therefore, we assume that it can only
submitCredentialsFSto the machine. Depending on who generates the credentials rep-
resented by the symbolic phenomenaCredentialsTS1andCredentialsTS2, the control
direction of the interfacese and f must be assigned during instantiation of this con-
cretized security problem frame. In a password-based system, we can decide to let an
authentic user (instance of the domainAuthentic subject) choose a password (instance



6

f

e
X

Credentials

B

Trusted
subject

B
subject

Authentic

d

b

a

b

d

c

g

h
X

Security
state

Fake

cation
Authenti−

machine
CSR

B

a

c

subject

CSR: Security staterepresents that access is
granted if and only ifCredentialsAScon-
forms toCredentials

a:C!Credentials
b: AS!CredentialsAS
c: AM!AccessGranted, AccessDenied
d: FS!CredentialsFS
e:CredentialsTS1
f: CredentialsTS2
g: SS!AccessGranted
h: SS!AccessDenied

Fig. 2.Concretized security problem frame for authentication and generic sequence diagrams for
public-key-based authentication

of the domainCredentials), or we can decide to let an administrator (instance of the
domainTrusted subject) choose a password. In the first case, the authentic user controls
the phenomenon and in the second case, the administrator controls the phenomenon.

For the authentication problem, we assumetrusted pathsfor the interfaces of the
domainTrusted subjectto prevent replay attacks. Trusted paths are confidentiality- and
integrity-preserving paths. To distinguish between trusted paths and other paths, trusted
paths are depicted as two parallel lines in the frame diagrams.

The security requirement is transformed into a concretized security requirement
CSRon the basis of the assumption that the domainFake subjecthas noCredentialsAS.
If and only if the phenomenonCredentialsASconforms to the domainCredentials, the
considered subject is anAuthentic subject.

5 Generic Sequence Diagrams

The generic security mechanisms introduced in the concretized security problem frame
only work if certaingeneric security protocolsare adhered to. Hence, the concretized
security problem frame must be equipped with at least one generic security protocol. We
represent such (existing) protocols by generic sequence diagrams. The generic security
protocols in this section and in [7], Section 5, are intended to be the first in a more



7

complete collection. Once a (relatively) complete collection is defined, it helps security
engineers to find suitable generic security protocols for the described security problems.

UML sequence diagrams [15] can be used to express interactions between the dif-
ferent domains occurring in problem diagrams. The shared phenomena are represented
by messages, while the involved domains are represented by processes or objects in the
sequence diagram. The security protocol and the sequence diagrams presented in this
section are calledgeneric, because they must be instantiated with the concrete domains
and concrete messages between the domains.

The messages in the generic sequence diagrams cannot fit exactly to the symbolic
phenomena of the concretized security problem frames of Section 4, because the generic
security protocol descriptions require a more detailed view on the communication. The
instances of a concretized security problem frame and a generic sequence diagram,
however, should use the same names for the shared phenomena and the messages in the
generic sequence diagram.

Generic Sequence Diagrams for Authentication
Different generic security protocols for authentication are possible, e.g., biometric pro-
tocols, passwords, or public key protocols.

The generic sequence diagrams on the right-hand side of Fig. 2 show authentication
sequences using a public-key-based protocol. For reasons of simplicity, we only present
one-sided authentication. The presented generic security protocol does not require a
trusted connection betweenAuthentic subjectandAuthentication machine, because re-
play attacks and man in the middle attacks respectively are excluded by using random
numbers. However, aTrusted subjectis necessary, and theAuthentic subjectmust be
able to create a digital signature. TheTrusted subjectmust be a trusted third party that
can sign the public key ofAuthentic subject. With this signature, theAuthentic subject
can be distuingished from fake subjects. For example, theTrusted subjectcould be in-
stantiated by aTrust center. TheTrusted subjectalso distributes its own public key to
those who want to verify the subjects known by theTrusted subject.

The generic sequence diagram on the upper right-hand side of Fig. 2 shows the dis-
tribution of the public key (PublicKeyTS) of theTrusted subject, the public key (Pub-
licKeyAS) of theAuthentic subject, and the signature (SignatureTS) of theTrusted sub-
ject.

After distributing and signing the keys, the following authentication sequence can
be performed (see lower right-hand side of Fig. 2). TheAuthentic subjectsends its
public key (PublicKeyAS) and the signature (SignatureTS) of theTrusted subjectto the
Authentication machine. The Authentication machineverifies the signature using the
the public key (PublicKeyTS) of theTrusted subject, which was already distributed (see
upper right-hand side of Fig. 2). In case of a valid signature, it sends a random number
(RandomNumber)to the Authentic subject, which uses its private key to calculate a
signatureRandomNumberSignatureASof the random number that is sent back to the
machine. The machine can verify the signature using the public key (PublicKeyAS) of
theAuthentic subjectthat was sent as the first message in the authentication sequence.
If the signature is valid, then access is granted (AccessGranted). Otherwise, access is
denied (not shown in Fig. 2).

If a fake subject sends its public key without a valid signature, access will be denied.
If it sends a public key of another subject with the corresponding signature, it will not be



8

Security problem
frame

diagram
Generic sequence

protocol

problem frame
Concretized security

concretizes

concretizes

SR and basic

instantiate
(step 1)

instantiate
(step 2)

Security problem
diagram

SR and assumptions
on biddable domains

Concretized security
problem diagram

CSR with generic
security mechanism

Concrete sequence
diagram

Specification

(step 3)
instantiate

domain knowledge

Generic security

validate using

security mechanisms

A Biddable

CSR with set of generic

(step 3)

Fig. 3.Overview of our security engineering method

able to calculate the signature of the random number without having the corresponding
private key.

The strength of such an authentication protocol depends on the size and quality
of the random number, the used keys, and algorithms for signing and verifying the
signature. RSA (Rivest, Shamir, Adleman, based on factorization of prime numbers),
DSA (Digital Signature Algorithm, based on discrete logarithm) or algorithms based on
elliptic curves can be used for signing and verifying (see [13], Chapter 10, page 678).

6 Method for Security Engineering using Problem Frames

In order to give concrete guidance to security engineers in using the concepts intro-
duced so far, we propose a method to proceed from a software development problem in
the area of software and system security towards a solution. The presented method con-
stitutes a tailor-made security engineering method using security problem frames, their
concretized counterparts, and generic security protocols. Figure 3 shows an overview
of that method, which consists of three steps. These are presented one by one in the
following. Instantiating security problem frames is the first step of our method, which
is presented in Section 6.1. It is followed in the second step by instantiating concretized
security problem frames introduced in Section 6.2, and it is completed in the third step
presented in Section 6.3 by instantiating generic sequence diagrams and validating
the specification with concrete security mechanisms. For the practical relevance of our
method it is important that we also support the development of documentation for the
Common Criteria certification process[8]. This issue is discussed in [7], Section 6.

6.1 Instantiation of Security Problem Frames (First Step)
According to our method, security engineers start their job by bounding security-critical
problems, using context diagrams which show the machines to be developed and their
environments. Then, the security-critical problems must be decomposed into subprob-
lems, and these must be fitted to given security problem frames. Successfully fitting a



9

security problem to a given security problem frame means that the security engineer
will then be guided by our method to a specification of an appropriate solution.

Instantiating the security problem frames results in security problem diagrams and
textual descriptions of the assumptions and domain knowledge. In the area of software
and system security, it is very important to analyze security problems using athreat
model(see [1], Chapter 10.2). Security engineers must assume a certain level of skill,
equipment, and determination that a potential attacker might have. The assumptions
concerning biddable domains (e.g., instances of the domainFake subject) are used to in-
tegrate threat models into this step. Threat models are important for scaling the strength
of a security mechanism with the strength of a potential attacker. One method to de-
scribe an attacker is proposed in theCommon Evaluation Methodology(see [9], Annex
B.8). It gives an approach to calculate the attack potential on the basis of a function of
expertise, resources, and motivation of the attacker.

Other biddable domains (e.g.,Authentic subject) must also be described in de-
tail. The corresponding assumptionsABiddable possibly constrain the generic security
mechanisms and the generic security protocols to be chosen in the subsequent steps
of our method. If we choose a password-based authentication mechanism, then the as-
sumptions made for theAuthentic subjectdomain can require us to use a password with,
e.g., a good memorability.

6.2 Instantiation of Concretized Security Problem Frames (Second Step)

Concretized security problem frames (as presented in Section 4) constitute the basis
for the second step of our method. Such a frame contains a concretized security re-
quirement, which defines a possible generic security mechanism, e.g., asymmetric or
symmetric encryption mechanisms. It does not describe the concrete security mecha-
nism, such as DES or AES.

Instantiating the concretized security problem frames is the second step of our
method. For instantiating the concretized security problem frames, the same procedure
as described in Section 6.1 is applied. In addition to providing instances for domains,
phenomena, and interfaces, a security engineer must choose a generic security mecha-
nism. The security engineer must decide if, e.g., a symmetric or an asymmetric mecha-
nism should be used, or which kind of authentication is appropriate for the given con-
text. The domain knowledge and especially the assumptions on the biddable domains,
ABiddable, gained in the first step of our method are preserved and can completely be
reused.

6.3 Instantiation of Generic Sequence Diagrams and Derivation of a
Specification with Concrete Security Mechanisms (Third Step)

Instantiating the generic security mechanism and the generic security protocol repre-
sented by generic sequence diagrams is the third step of our method. Here we use
the assumptions concerning the biddable domainsABiddable gained in the first step,
the domain knowledgeD (including the basic domain knowledgeDBasic described
in Section 4, which is used to transform security requirements into concretized secu-
rity requirements), the instances of the concretized security requirementsCSR, and
the generic security mechanisms selected in the second step to derive a specification



10

S. The specificationS of the machine to be developed must solve the initially given
security problem. It consists of a set of concrete sequence diagrams and concrete secu-
rity mechanisms. This specification must be validated by demonstrating the following
implication: ABiddable ∧ D ∧ S ⇒ CSR, whereABiddable ∧ D ∧ S must be non-
contradictory. The concrete security mechanisms must be chosen by a security engineer
according to the following principles:

1. The concrete mechanisms must take assumptions (especially the assumptions about
the biddable domainsABiddable) and domain knowledge into account.

2. Relative to the domain knowledge and the assumptions, the concrete mechanisms
must fulfill the concretized security requirement.

3. The concrete mechanisms must be available at the interface of the machine to be
developed.

The procedures of instantiating a generic security protocol and instantiating a generic
security mechanism must be performed in parallel. When instantiating the generic se-
quence diagrams, generic mechanisms like symmetric encryption must be replaced by
concrete mechanisms, such as DES or AES. For password-based authentication, e.g.,
the minimal length of a password must be specified. After that, the instantiated sequence
diagrams must be composed. To avoid composing incompatible solutions, we use the
concept of expressing dependencies between the different security problem frames. (As
it is beyond the scope of this paper, this issue will not be discussed further.)

7 Case Study

We illustrate our method by developing a secure remote display system, which allows
its users to view and control a computing desktop environment not only on the desktop
computer where it is running, but also from aPDA (Personal Digital Assistant) over a
Bluetooth connection. After successfully establishing a connection between the PDA
and the desktop computer, the desktop computer and the user must both be authen-
ticated. In addition, any data transferred between the PDA and the desktop computer
must be kept confidential and must not be modified. We now carry out the steps of our
method for this problem.

7.1 Instantiating Security Problem Frames (First Step)

Figure 4 shows on the upper left-hand side the environment in which our machine must
operate, expressed as a context diagram. The machine to be developed is calledDesktop,
PDA, bluetooth network. The context diagram also contains aMalicious userdomain
and aMalicious subjectdomain. They represent potential attackers, which must be de-
scribed in detail. We use the method proposed in the Common Evaluation Methodology
[9] for that description. The domainMalicious userrepresents an attacker who wants
to make the machine believe that the domainMalicious useris the domainAuthentic
user. The domainMalicious subjectrepresents another computer that tries to act as an
authentic desktop or to intercept and modify the communication.

The Common Evaluation Methodology defines the attack potential or the strength
of a potential attacker as a function of time, expertise, knowledge, and equipment. It



11

Factor Identification value Exploit value Sum

Elapsed time (< 1 day) 2 3 5
Expertise (Proficient) 2 2 4
Knowledge of TOE (Public) 2 2 4
Access to TOE (< 1 day) 2 4 6
Equipment (Standard) 1 2 3

Sum 9 13 22

Table 1. Example calculation of the attack potential according to the Common Evaluation
Methodology [9]

also identifies two numeric values for each of these factors. The first value is for iden-
tifying and the second one is for exploiting avulnerability. In our system (named as
TOE (Target of Evaluation)), we must consider the vulnerabilities of authentication,
confidentiality, and integrity. For reasons of simplicity and instead of calculating three
(possibly different) vulnerabilities, we only calculate one vulnerability and use the re-
sulting value for all vulnerabilities to be considered. We assume that a potential attacker
needs less than one day for exploiting a vulnerability, a proficient expertise of the at-
tacker, a public known TOE, less than one day access to the TOE, and standard attack
equipment. Using Table 3 in the Common Evaluation Methodology [9], we look up the
corresponding numeric values for the domainsMalicious userandMalicious subject,
as shown in Table 1. Thus, we derive from the sum 22 of the ten values that the attack
potential is rated as ”Moderate“.

After the context is described, the problem must be decomposed into subproblems,
instantiating the appropriate security problem frames. The machine to be developed
has to solve auser authentication subproblem, a desktop authentication subproblem,
a confidentiality subproblem for the user input, a confidentiality subproblem for the
screen content, anintegrity subproblem for the user input, and anintegrity subproblem
for the screen content.

For reasons of space, we concentrate on thedesktop authentication subproblem. The
diagrams for the other subproblems are given in [7].

The security problem diagram for desktop authentication is shown on the right-hand
side of Fig. 4. We instantiate the authentication frame (see Fig. 1) using the domain
instancesDesktop, Desktop auth machine, PDA security state, andMalicious Subject.
These domain instances are also used to instantiate the security requirementSR.

7.2 Instantiating Concretized Security Problem Frames (Second Step)

In this step, we must choose appropriate generic security mechanisms, and we must
instantiate the corresponding concretized security problem frames.

For the desktop authentication, we choose a public-key-based mechanism. There-
fore, we must instantiate the concretized security problem frame for authentication (see
left-hand side of Fig. 2). We reuse the domain instances introduced in the first step of
our method, and we must additionally introduce the domain instancesTrust Centerand
Public key of trust center. For the instantiation of theCSR, we assume that theMali-



12

AccessDenied
Authenticate,

AccessDenied, 
Authenticate,

TransmittedData

Desktop, PDA

user
Malicious

subject
Malicious

user

Authenticate, AccessGranted,
TransmittedData

bluetooth network

Authentic

Y1 = {Authenticate}
Y2 = {AccessGranted, AccessDenied}
Y3 = Y1
Y4 = Y2

machine
auth DAM!Y2

PSS!Y2

PSS!Y2

Y4

MS!Y3

Xstate
security

B

B

Malicious

Desktop

PDA

subject

Desktop

D!Y1 Y1

Y3

SR

SR: PDA security staterepresents that access is
granted for theDesktopand that access is de-
nied for theMalicious subject

Fig. 4. Context diagram of a secure remote display system and security problem diagram for
desktop authentication

f

X

B

B

e

g

h

b

a

d

c

machine
auth

X

Trust

Desktop

a

b

c

d

CSR

Public key

center

Desktop

PDA
security
state

Malicious
subject

B

center
of trust

CSR: PDA security staterepresents that access
is granted if and only ifPublicKeyDandSigna-
tureDconform toPublic key of trust center

a:PK!{PublicKeyTC}
b: D!{PublicKeyD, SignatureD}
c: DAM!{AccessGranted, AccessDenied}
d: MS!{PublicKeyMS, SignatureMS}
e:TC!{PublicKeyTC}
f: D!{PublicKeyD}, TC!{SignatureTC}
g: PSS!{AccessGranted}
h: PSS!{AccessDenied}

Fig. 5.Concretized security problem diagram for desktop authentication

cious subjectcannot sendSignatureD. Instead, it sends aSignatureMS. The phenomena
SignatureD, SignatureMS, andSignatureTCrepresent the usage of the private keys for
creating digital signatures. The usage of the public keys is represented by the domain
Public key of trust centerand the phenomenaPublicKeyD, PublicKeyMS, andPublic-
KeyTC. Figure 5 shows on the left-hand side the concretized security problem diagram
for desktop authentication.

7.3 Instantiating Generic Sequence Diagrams and Deriving a Specification with
Concrete Security Mechanisms (Third Step)

In the third step of our method, we must instantiate generic security protocols (see Sec-
tion 5) and the generic security mechanisms chosen in the second step of our method.
The concrete security mechanisms should be selected in such a way that theCSR is
fulfilled using the assumptions concerning the biddable domainsABiddable.

We calculated in the first step of our method (see Section 7.1) that the assumed
attack potential of theMalicious subjectis rated as ”Moderate“. The assumptions on



13

Fig. 6. Instantiated sequence diagrams for public-key-based desktop authentication

the biddable domainsABiddable are represented by this attack potential of the domain
Malicious subject, whereas the assumptions on the other biddable domainsTrust cen-
ter andDesktopare neglected for reasons of simplicity. In the second step, we chose a
public-key-based mechanism for the desktop authentication. For theDesktop auth ma-
chine, we conclude in this step that the public-key-based mechanism RSA (see [14],
Chapter 4.3 for details) with 768 bits is appropriate according to the assumptions con-
cerning the biddable domainsABiddable. Furthermore, we use the generic sequence
diagramsAuthenticationPublicKeyPreandAuthenticationPublicKeyon the right-hand
side of Fig. 2 as patterns. The domains in the generic sequence diagrams are instantiated
as described in Section 7.2. The instantiated sequence diagrams for public-key-based
desktop authentication are shown in Fig. 6.

It is improbable that theMalicious subjectcan guess or calculateSignatureDand
RandomNumberSignatureD. RSA is based on factorization of prime numbers. Until
now, nobody succeeded in factorizing a prime number with a length greater than 576 bit
(see [16] for details). Therefore, the 768 bit RSA used in our example is secure (not only
for attackers of moderate strength) until further notice. Thus, we have demonstrated that
the specificationS (defined by the instantiated sequence diagrams and the 768 bit RSA)
suffices to fulfill the concretized security requirementCSR: ABiddable ∧ D ∧ S ⇒
CSR.

Hence, our original problem will be solved if the derived specification is correctly
implemented.

8 Related Work
In the first step of our method, security requirements must be expressed, using a threat
model. Lin et al. [12] take a different approach to use the ideas underlying problem
frames in security. They define so-called anti-requirements and the correspondingabuse
frames. An anti-requirement expresses the intentions of a malicious user, and an abuse
frame represents a security threat. The purpose of anti-requirements and abuse frames



14

is to analyze security threats and derive security requirements. Hence, abuse frames and
security problem frames complement each other.

Seperating security problem frames and concretized security problem frames en-
hances the so-called security frames introduced in [6]. We now carefully distinguish
the problem description using security problem frames and the preparation of a solu-
tion using concretized security problem frames.

Security patterns [3] are applied later, in the phase of detailed design. The relation
between our concretized security problem frames, which still express problems, and
security patterns is much the same as the relation between problem frames and design
patterns: the frames describe problems, whereas the design/security patterns describe
solutions on a fairly detailed level of abstraction. Moreover, design and security patterns
are applicable only in an object-oriented setting, while problem frames and our security
problem frames are independent of a particular programming paradigm.

9 Conclusions and Future Work
In this paper, we have presented new kinds of problem frames tailored for represent-
ing security problems, called security problem frames and concretized security prob-
lem frames. They are patterns for software development problems occurring frequently
when security-critical software has to be developed.

Security problem frames consider security requirements in order to increase the po-
tential for reuse by carefully distinguishing security problems from their solutions. The
security requirements are stated as patterns to be instantiated. In transforming security
requirements into concretized security requirements, new concretized security prob-
lem frames evolve from the security problem frames. The concretized security problem
frames introduce generic security mechanisms, which only work if certain generic secu-
rity protocols are adhered to. Hence, we equip each of the concretized security problem
frames with such generic security protocols, described by generic sequence diagrams.
The instances of generic security protocols aresolutionsto the initially given security
problems.

Both kinds of security problem frames and the generic security protocols presented
in this paper are intended to be the first in a more complete collection. Once a (rela-
tively) complete collection is defined, it is of considerable help for security engineers.
For a new security-critical system to be constructed, the catalogue can be inspected in
order to find the frames and protocols that apply for the given problem. Thus, such a
catalogue helps to avoid omissions and to cover all security aspects that are relevant for
the given problem.

While the frames themselves “only” help to comprehend, locate and represent prob-
lems, our method supports security engineers tosolvethe problems fitted to security
problem frames step-by-step. The instantiation of the security problem frames is the
first step. Here, we gain important information about the problem environment. More-
over, a threat model is defined about the assumed capabilities on potential attackers.
The method proceeds in the second step with the instantiation of concretized security
problem frames. In this step, the principles of the envisaged solution are fixed. The
third step consists of selecting concrete security mechanisms and deriving a specifica-
tion of the security-critical system on the basis of instantiated generic security protocols
represented by sequence diagrams.



15

With the concept of security problem frames and the associated method based on
concretized security problem frames and generic sequence diagrams (in addition to
security patterns), security engineers can hope to cover large parts of the development
of security-critical systems with a pattern-based approach.

In the future, we intend to extend this work by formalizing assumptions, domain
knowledge, and requirements. Second, the compositionality of the security problem
frames will be considered in more detail, by performing interaction analyses. Third, we
intend to elaborate more on the later phases of software development. For example, we
want to investigate how to integrate component technology in the development process.

References

[1] R. Anderson.Security Engineering. Wiley, 2001.
[2] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice. Addison-Wesley,

1998.
[3] B. Blakley and C. Heath. Technical Guide: Secu-

rity Design Patterns. The Open Group, April 2004.
http://www.opengroup.org/publications/catalog/g031.htm .

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, 1995.

[6] D. Hatebur and M. Heisel. Problem frames and architectures for security problems. In B. A.
Gran, R. Winter, and G. Dahll, editors,Proceedings of the 24th International Conference
on Computer Safety, Reliability and Security (SAFECOMP), LNCS 3688, pages 390–404.
Springer-Verlag, 2005.

[7] D. Hatebur, M. Heisel, and H. Schmidt. Using problem frames for se-
curity engineering. Technical report, Universität Duisburg-Essen, 2006.
http://swe.uni-duisburg-essen.de/intern/seceng06.pdf .

[8] International Organization for Standardization (ISO) and International Electrotech-
nical Commission (IEC). Common criteria 2.3. ISO/IEC 15408, 2005.
http://www.commoncriteriaportal.org .

[9] International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC). Common evaluation methodology 2.3. ISO/IEC 18405, 2005.
http://www.commoncriteriaportal.org .

[10] M. Jackson.Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[11] M. Jackson and P. Zave. Deriving specifications from requirements: an example. InPro-
ceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15–24. ACM Press,
1995.

[12] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames for
analysing security requirements. InProceedings of 11th IEEE International Requirements
Engineering Conference (RE’03), pages 371–372, 2003. Poster Paper.

[13] C. P. Pfleeger.Security in Computing. Prentice Hall, third edition, 2003.
[14] G. Scḧafer. Security in Fixed and Wireless Networks. John Wiley & Sons, Ltd, Chichester,

2003.
[15] UML Revision Task Force.OMG Unified Modeling Language: Superstructure, August

2005.http://www.uml.org .
[16] E. W. Weisstein. RSA-576 factored. MathWorld Headline News, 2003.

http://mathworld.wolfram.com/news/2003-12-05/rsa/ .


