
Methods to Create and Use Cross-Domain Analysis
Patterns

Alexander Fülleborn and Maritta Heisel

Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften

Bismarckstrasse 81, D-47048 Duisburg

Phone +49 (0203) 379 3465

Fax +49 (0203) 379 4490

Email: alexanderfuelleborn@hotmail.de

maritta.heisel@uni-duisburg-essen.de

Abstract

We present a set of methods to enable a cross-domain reuse of problem so-
lutions via analysis patterns. First, problem-context descriptions and problem-
context models as well as solution models are used to express the domain-
specific problems and their assigned solutions. After that, the two-step abstrac-
tion method is used to create cross-domain analysis patterns for the problem-
context models as well as for the solution models. The problem-context pat-
terns are used to search across domains for a solution pattern. If a solution
pattern is available, it can be instantiated in the solution-seeking domain.

1 Introduction

To some extent, analysis patterns are very different to those you can find for the
architectural, design or implementation phases of the software engineering process:
They reflect the real world with its numerous specific domains like business, technol-
ogy, nature and so forth. These domains have their own terms and even their own
languages, which are used to describe their proprietary problems and solutions for
these problems. But what about common inter-disciplinary problems and solutions?
There are already good examples for learning from other disciplines: technicians can
adapt constructive principles from biology, which is described by Bionics. Other ex-
amples are given by methods such as TRIZ (Theory of Inventive Problem Solving)
[TZZ00] that are used in construction.

Analysis models are expected to mirror the specific domains that have been men-
tioned before. Furthermore, there are problems and appropriate solutions that are
valid also for other domains. Hence, such analysis models can help to find cross-
domain solutions. Thinking in these terms, the analysis phase of software develop-



ment can be viewed as an extended workbench for the domain specialist. Reusable
analysis models (=analysis patterns) reflect the knowledge base of this extended
workbench. Certainly, also other authors like Fowler [Fow98] implicitly consider this
cross-domain aspect. But with our work, we describe a systematic process of creating
cross-domain analysis patterns. To some extent, this systematic abstraction process
can also be automated via tool support.

To illustrate the proposed methods we use a case study coming from business
domains. The principle is shown in Figure 1.

Figure 1: Cross-domain reuse of problem solutions

Domain A is the solution-seeking domain. Within the domain itself, no solution
exists for the requirement A1. In domain B, a solution exists for the requirement
B2 that is also suitable to fulfill the requirement A1. The challenge is to make this
solution available for A1 in spite of the different vocabulary.

The rest of the paper is organized as follows: In Section 2, we introduce our case
study, consisting of two requirements documents from different business domains.
The methods to analyze and model the domain-specific problems and to enable a
cross-domain reuse by an abstraction approach are described in Sections 3 to 8.
Section 9 discusses related work. Section 10 consists of conclusions of our findings.

2 Case Study Reuse of a sales department con-

cept by the accounting department

In the following, we present the case study we use to illustrate our approach.

2.1 Requirements for the year end close in Accounting

The Accounting department of a company has collected its requirements for a new
software system to automate the year end close processes. Figure 2 shows the corre-



sponding requirements document.

Figure 2: Requirements document created by the Accounting department

Based on this requirements document, a solution should be provided. We assume
that there is no specific solution available in the Accounting domain. So the search
space is extended to other business management areas. We assume that a suitable
solution exists in the business management area Sales and Distribution. The question
is how this solution can be found without the specific expertise of this area, because
the related documents are written in the special terminology of that area.

2.2 Requirements for the invoicing process in Sales and Dis-
tribution

According to the case study, a solution document from another business area must
fulfil the demands of the Accounting area. Using our experience and intuition, we
find an analogy within the business area Sales and Distribution. We construct a re-
quirements document and a related solution document of this business area, knowing
that parts of the latter can be reused as a solution of the requirements in Accounting.
The part of the solution that is regarded as reusable is the amount carried forward,
which is used within invoices if they contain at least two pages. The department for
Sales and Distribution created the requirements document shown in Figure 3.

Figure 3: Requirements document created by the Sales and Distribution department



3 Methods to describe and model domain-specific

problems and their solutions

Up to now, two requirements documents from different business areas exist. We as-
sume that at least parts of the solution for the second requirements document can
be reused for the first one. Conversely, this means that also the requirements must
be at least partly the same.

Unfortunately, we face the problem that the corresponding documents are hardly
comparable. On the one hand, they have a quite inconvenient format, as they are
in unstructured full text, on the other hand, they are written in their specific termi-
nology in a specific context. Hence, the expressions are not very well comparable.
Therefore, the challenge is to make the contents of the documents comparable in spite
of the above-mentioned situation and in spite of the fact that developers only work
on one specific project at a time and don’t want to look at documents of another
business area, which only potentially contain reusable solutions.

In practice, the usual procedure is that developers start to model a solution
derived directly from the requirements documents. In contrast to this procedure,
we propose that developers start their problem solving procedure by splitting the
requirements documents into manageable pieces, which reflect the different problems
and their specific contexts. We call such a specific problem description in its specific
context a problem-context description. We illustrate this concept by picking one
problem and its context out of each of the requirements documents.

3.1 Problem-Context Analysis

The first step of the problem-context analysis consists of identifying the different
problems and their specific contexts. This is done by going through the require-
ments document sentence by sentence. This approach is comparable with identifying
domain classes according to Rumbaugh et al. [RBP+91], which also supports the
analysis of the problem and its context. The result is an assignment table with one
column containing parts of the text, one column containing identified domain classes
and actors, and one column containing a problem and context pair.

First, we analyze the requirements document for the invoicing process. Among
others, we can identify the assignment of sentences and problem-context description,
given in Table 1.



Sentence in requirements docu-
ment

Classes,
Actors

Problem/Context

... ... ...
If more than 10 items exist a new
page is used. Nevertheless, each
page should consider all values of
the preceding pages.

Item,
Page

Problem: Values of preceding
pages must be considered while
the number of items per page is
restricted. Context : Invoice has
at least 2 pages.

... ... ...

Table 1: Assignment table of sentences and problem-context description (invoice in
Sales and Distribution)

In the following, we will call this problem-context description invoice problem.
We selected this problem because it is the candidate which is suitable for the cross-
domain reuse, as we will show later. We apply the same method to the requirements
document of the Accounting department for the year end close processes. One finding
is the problem-context description and its sources, given in Table 2.

Sentence in require-
ments document

Classes, Actors Problem/Context

... ... ...
All assets like e.g. cur-
rent and non-current
assets are recognized
during the fiscal year
change. The stock at
the end of the previ-
ous year is equal to the
stock of the new year.

Assets, current assets,
non-current assets, fis-
cal year, stock, previ-
ous year, new year

Problem: Previous year asset
values not considered in new
year. Context : Fiscal year
change in balancing.

.. ... ...

Table 2: Assignment table of sentences and problem-context description (year end
close in Accounting)

In the following, we will call this problem-context description year end close prob-
lem.

3.2 Problem-Context Modeling

After the analysis of the requirements and identifying the contained problems and
their contexts, we start to model them with UML class diagrams. Core of this
approach is the rule that the classes and their relationships form the context, and
that the problem is modeled as a short textual statement. This statement is linked
to the model element that causes the problem. We call this statement a problem



statement. Based on the problem-context description invoice problem, the problem-
context model can be created, see Figure 4.

Figure 4: Problem-context model for the invoice problem

The cause of the problem is the cardinality. If the invoice contains more than
one page, then the problem exists. Due to this observation, the problem statement
is assigned to this model element. We have modeled the actual situation, which is
considered to be not satisfactory, as it contains the problem Account values of previous
pages not considered. The aim is to find a solution, which doesn’t contain the problem
statement any more. The solution of the problem is the generally well-known Carry
Forward Account. So the model is modified in the way that we differentiate the class
Account between Single Account and Carry Forward Account. We obtain the class
model of the solution according to Figure 5.

Figure 5: Solution model for the invoice problem

Note that this model does not contain the problem statement any more. It has
been eliminated with this solution approach. The cardinality can be illustrated by
the following examples: The invoice contains at most 10 single accounts. Then only
one page and no carry forward account is needed. The invoice contains more than
10 but at most 20 single accounts. Then two pages and two carry forward accounts
are needed.



The problem-context model for the year end close problem is shown in Figure 6.

Figure 6: Problem-context model for the year end close problem

4 Creating analysis patterns: Method of subse-

quent abstraction

Until now we created problem-context and solution models in the specific domains.
But to be able to find a solution in another domain, we must generalize these mod-
els. This method is characterized by the following ideas: The domain-specific models
are abstracted in a two-step approach to make them comparable. The solution-
providing domain abstracts both the problem-context model and also the related
solution model.

In the first step, those model elements are eliminated that are not essential for the
problem or its solution. In the second step, the domain-specific terms are replaced by
general terms. We call the generic instantiable representation of the problem-context
model problem-context pattern, the related solution solution pattern. We can sum-
marize this approach with the roadmap shown in Figure 7.

The solution-seeking domain only abstracts its domain-specific problem-context
model, as there is no solution available yet. This approach enables the solution-
seeking domain to use the problem-context pattern as a search key for comparable
problem-context patterns and consequently also for the related solution patterns
in the solution-providing domain. After having found a suitable solution pattern,
the solution-seeking domain must instantiate this pattern. The abstraction is done
in two steps, reflecting the two operations which are applied to the models. The
first operation removes inessential model elements, the second operation changes the
domain-specific to cross-domain terms.



Figure 7: Abstraction roadmap: Principle of the two step abstraction

5 Patterns in the solution-providing domain Sales

and Distribution

We start with abstracting the problem-context model for the invoice problem. In the
first abstraction level, all those elements are removed from the model that are not
essential for the problem. The result of this process step is the first-level problem-
context pattern shown in Figure 8.

Figure 8: First-level problem-context pattern for the invoice problem

The class Invoice has been removed from the model, as well as the aggregation
relationship to the class Page, as they are not relevant for the problem itself. Only
the classes Page and Account are affected by the problem. Nevertheless, the aggre-
gation relationship between the class Invoice and the class Page is of importance,
because the problem statement takes also the cardinality into account (n > 1). This
fact is recognized by the class constraint (numberOfInstances ≥ 2) of the class



Page. With this modification, also the statement concerning the cardinality could be
eliminated. The cardinality of the class Account has also been modified by replacing
the maximum value ’10’ of the domain-specific model with ’*’. There must be at
least one instance of the class Account to fulfill the constraints given by the problem.

This first-level problem-context pattern is characterized by the fact that it still
contains domain-specific terms. As the aim is cross-domain reuse, a further abstrac-
tion step is performed that eliminates the domain-specific terms. The tags of the
model elements are generalized in this step. Its result is the second-level problem-
context pattern shown in Figure 9.

Figure 9: Second-level problem-context pattern for the invoice problem

All class names have been replaced by the general tag Class and were numbered
from top to bottom. The type of attributes has been replaced with Generic, as
it has no relevance for the problem here. The next piece of work is the first-level
solution pattern. After having performed the method of subsequent abstraction for
the domain-specific problem-context model, we also apply it to the domain-specific
solution model, as shown in Figure 10.

Figure 10: First-level solution pattern for the invoice problem

As in the problem-context model, the class Invoice is removed from the model,
and the constraint concerning the cardinality n > 1 of the relationship between this
class and the class Page is replaced by a class constraint numOfInstances ≥ 2.
Furthermore, the cardinality of the class Single Account is changed from the value
’10’ to ’*’ as also here it is only important that there’s at least one instance of the
class Single Account. The result of the second abstraction step is the second-level
solution pattern presented in Figure 11.



Figure 11: Second-level solution pattern for the invoice problem

The result of the pattern creation process is a pair of analysis patterns, consisting
of the problem-context pattern and the related solution pattern.

6 Cross-domain problem-context pattern in the

solution-seeking domain Accounting

In the next step, we apply the method of subsequent abstraction to the domain-
specific problem-context model year end close problem and get two problem-context
patterns, see Figures 12 and 13.

Figure 12: First-level problem-context pattern for the year end close problem

Figure 13: Second-level problem-context pattern for the year end close problem

While creating the first-level pattern we removed the attribute fiscal year from the
class Balance Sheet, as it is not relevant for the problem statement. Furthermore, the
classes Non-current Asset and Current Asset are only presented by their superclass



Asset, as the described problem does not call for such a level of detail. In the second
abstraction step, all the terms were generalized.

7 Methods of searching for analysis patterns

Up to this point, the solution-providing domain (Sales and Distribution) as well
as the solution-seeking domain (Accounting) created second-level problem-context
patterns. As already mentioned in Section 4, the problem-context pattern of the
solution-seeking domain is its search key to solutions in the other domain. There-
fore, the solution of Sales and Distribution is usable for the Accounting department
if both second-level problem-context patterns are congruent. Consequently, the next
step is a comparison between these two models.

The class structure of the two problem-context patterns is nearly the same. In
both patterns, the classes Class 1 and Class 2 exist, which have the same aggre-
gation relationship, as in both models Class 1 aggregates Class 2. The problem
statements of both problem-context patterns themselves make use of the expression
previous instances. Moreover, this expression is related to the class having assigned
the problem statement (Class 2 ). Also the statements not known and not considered
are similar enough, although there is some vagueness here that can result in different
interpretations.

To sum up, the two models are congruent, allowing a successful cross-domain
search. Here, we require that this cross-domain search is to some extent tolerant in
the way that it can match terms with similar semantics.

8 Instantiation of the second-level solution pat-

tern

After having found the second-level solution pattern, it must be instantiated in the
specific Accounting domain. First, exactly those model elements are replaced, which
can be immediately derived due to the congruent expressions known from the first-
level problem-context patterns. The result of this step is as shown in Figure 14.

In this resulting solution model, class Class 1 has been replaced by the class
Balance Sheet, and the class Class 2 is replaced by the class Asset. The more specific
classes Class 3 and Class 4 are just left unchanged for the time being. They are
not known from the first-level problem-context patterns, as their introduction is part
of the solution. The generic expressions of these classes can be replaced by terms
that are known in the specific domain. Alternatively, if no suitable term exists, it
has to be created by the domain. In this example, the first option can be applied.
Class 3 is replaced by the term Single Item, and Class 4 is replaced by the term
Balance Carry Forward Item. As the assets are always valued with currencies, the
attributes attribute1 and attribute2 can be replaced with a value, and their type



Figure 14: Solution model for the year end close problem (first approximation)

can be changed from Generic to Curr. The complete result of instantiating the
second-level problem-context pattern is shown in Figure 15.

Figure 15: Solution model for the year end close problem (complete)

Completing this step, the solution for the year end close process has been found
and completely described. Even though it is very much simplified, this solution is
indeed used in accounting practice.

9 Related Work

The focus of our work is to provide a set of methods to create, search and reuse cross-
domain analysis patterns. Part of the concept is that domain experts and developers
should not need to gain cross-domain experience themselves to benefit from expe-
rience of domains they are not familiar with. Different from our method approach,
many contributions such as those of Fowler [Fow98], Fernandez and Yuan [FY01] or
Sorgente, Fernandez and Petrie [SFP04] provide ”concrete” analysis patterns, which
reflect the wide experience from projects across different domains that the writers
themselves have gained or that they have collected. In fact, they represent catalogues
of analysis patterns.

Another objective of Fernandez and Yuan [FY00] is to improve analysis model-
ing. In contrast, our goal is not to develop high-quality analysis models but to re-use
conceptual problem solutions across expert domains in such a way that the real world
is not only modeled, but improved. Fernandez and Yuan use an approach of abstrac-



tion and analogy to achieve their objective which, at a first glance, seems to be quite
similar to our approach, because it also considers cross-domain aspects. But there
are some differences. First, their method relies on human comprehension of the given
requirement to create an abstract pattern. In contrast, we try to define abstraction
and matching of patterns in such a way that this process becomes amenable to tool
support and (at least partial) automation. Hence, our abstract patterns are more
generic. Second, we use so-called problem statements, i.e. we explicitly represent the
aspect of a model that is improved by the pattern under consideration. We compare
”before” and ”after” states.

Purao and Storey [PS97] have developed a method to synthesize class models from
natural language requirements descriptions. That synthesis is achieved by searching
a pattern base and appropriately instantiating and combining the patterns contained
in the pattern base. Their search technique is text-based and uses techniques from
artificial intelligence, such as natural language processing, automated reasoning, and
machine learning. In contrast, our approach is based on searching for structural
similarities between different class models, instead of analyzing textual descriptions.
Moreover, Purao and Storey’s methodology does not consider dynamic aspects, which
we intend to take into account in further work. However, their approach to synthesize
class models is potentially valuable for us and may be used to enhance our concept
in the future.

In a later paper [HPS99], Han, Purao and Storey go one step further and store
design fragments instead of patterns in their knowledge base. Design fragments are
larger entities than patterns, and they address specific sets of requirements. Design
fragments are obtained by clustering existing designs, where the clustering algorithm
makes use of semantic similarities between the different designs. Such semantic sim-
ilarities are very important also for the kind of reuse we have in mind, and they
provide a promising idea to be included in the matching algorithm we need to deter-
mine if two problems match.

Other contributions focus on domain analysis without discussing cross-domain
reusability of analysis patterns. Geyer-Schulz and Hahsler [GSH02] e.g. propose
an outline template for analysis patterns that strongly supports the whole analysis
process from the requirements analysis to the analysis model and further on to its
transformation into a flexible and reusable design and implementation.

The work of Guerrieri [Gue95] deals with the question what can be done to insti-
tutionalize software reuse, especially in the area of domain analysis. It is pointed out
that there is a need to standardize the representation of and to provide a mechanism
to disseminate domain knowledge.

Jackson [Jac01] describes methods to locate and decompose problems during the
requirements engineering phase. His concept of context diagrams helps to identify
where a problem is located. Based on these context diagrams, the problem can be



decomposed and visualized by using problem diagrams. Furthermore, Jackson de-
scribes typical patterns of subproblems by so-named problem frames. These concepts
can be compared with our work as far as the problem modeling is concerned. In our
methodology, the problem is also explicitly expressed and visualized. But in contrast
to Jackson, we don’t restrict these problems to software development problems.

Another advantage of our method approach concerns traceability. Hamza and
Fayad [HF04] point out that it is hard to satisfy both generality and traceability,
if analysis patterns are used as templates to develop a system. They say that once
analysis patterns have been instantiated, there is no link from the instance models
to the analysis patterns any more. In our concept, such links between the analysis
patterns and the instantiated models are crucial. Otherwise it would not be possible
to realize the core mechanism of the concept consisting of the two-step abstraction
and instantiation method.

10 Conclusions

In this paper, we have introduced a set of methods to systematically create and use
cross-domain analysis patterns. We propose to describe the domain-specific problem
in its appropriate context with a problem-context description and transform it into
a problem-context model. If a solution is available, then it will be represented as a
solution model. Applying the two-step abstraction method to both models leads to
a pair of related patterns, consisting of a second-level problem-context pattern and a
second-level solution pattern. Using a case study from the business world, we demon-
strated that this mechanism works for structural models.

In our future work, we will also try to apply these mechanisms to dynamic models.
Besides this, we are confronted with open issues concerning the problem statement
located in the problem-context pattern. As already indicated in Section 7, there is
some vagueness concerning the expressions used in problem statements. To avoid
this, some kind of consistency checks have to be performed to get a valid problem
statement. Furthermore, we will work on approaches to automate the pattern cre-
ation and retrieval process. Last but not least, we want to prove that the output of
our methods is compliant with existing analysis patterns.

Acknowledgements We would like to thank our shepherd, Ed Fernandez, for his
thorough and valuable feedback during this paper’s review process.



References

[Fow98] Martin Fowler. Analysis patterns. Addison-Wesley, 1998.

[FY00] Eduardo B. Fernandez and Xiaohong Yuan. Semantic analysis patterns.
In ER, volume 1920 of Lecture Notes in Computer Science, pages 183–195.
Springer, 2000.

[FY01] Eduardo B. Fernandez and Xiaohong Yuan. An analysis pattern for repair
of an entity. In 8th Conf. on Pattern Languages of Programs (PLoP2001),
Monticello, Illinois, USA, 2001.

[GSH02] Andreas Geyer-Schulz and Michael Hahsler. Software reuse with analysis
patterns. In Proceedings of the 8th AMCIS, pages 1156–1165. Association
for Information Systems, Dallas, TX, 2002.

[Gue95] Ernesto Guerreri. Enhancing the use of domain analysis. In Proceedings
of the Seventh Workshop on Institutionalizing Software Reuse, 1995.

[HF04] Haitham Hamza and Mohamed E. Fayad. Applying analysis patterns
through analogy: Problems and solutions. Journal of Object Technology,
3(4), 2004.

[HPS99] Tae-Dong Han, Sandeep Purao, and Veda C. Storey. A methodology for
building a repository of object-oriented design fragments. In Jacky Akoka,
Mokrane Bouzeghoub, Isabelle Comyn-Wattiau, and Elisabeth Mtais, ed-
itors, Conceptual Modeling - ER ’99, 18th International Conference on
Conceptual Modeling, Paris, France, November 1999, Proceedings, vol-
ume 1728 of Lecture Notes in Computer Science, pages 203–217. Springer,
1999.

[Jac01] Michael Jackson. Problem Frames. Analyzing and structuring software
development problems. Addison Wesley, 2001.

[PS97] Sandeep Purao and Veda C. Storey. Intelligent support for retrieval and
synthesis of patterns for object-oriented design. In David W. Embley and
Robert C. Goldstein, editors, Conceptual Modeling - ER ’97, 16th In-
ternational Conference on Conceptual Modeling, Los Angeles, California,
USA, November 3-5, 1997, Proceedings, volume 1331 of Lecture Notes in
Computer Science, pages 30–42. Springer, 1997.

[RBP+91] James E. Rumbaugh, Michael R. Blaha, William J. Premerlani, Frederick
Eddy, and William E. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[SFP04] Tami Sorgente, Eduardo B. Fernandez, and Maria M. Larrondo Petrie.
Analysis patterns for patient treatment. In 8th Conf. on Pattern Lan-
guages of Programs (PLoP2004), Monticello, Illinois, USA, 2004.



[TZZ00] John Terninko, Alla Zusman, and Boris Zlotin. Step-by-Step TRIZ Cre-
ating Innovative Solution Concepts. Verlag Moderne Industrie, 2000.


