
Preserving Software Quality Characteristics from
Requirements Analysis to Architectural Design

Holger Schmidt and Ina Wentzlaff

University Duisburg-Essen, Faculty of Engineering, Department of Computer Science,
Workgroup Software Engineering, Germany

{holger.schmidt, ina.wentzlaff}@uni-duisburg-essen.de

Abstract. In this paper, we present a pattern-based software development method
that preserves usability and security quality characteristics using a role-driven
mapping of requirements analysis documents to architectural design artifacts. The
quality characteristics usability and security are captured using specialized prob-
lem frames, which are patterns that serve to structure, characterize, and analyze
a given software development problem. Each problem frame is equipped with a
set of appropriate architectural styles and design patterns reflecting usability and
security aspects. Instances of these architectural patterns constitute solutions of
the initially given software development problem. We illustrate our approach by
the example of a chat system.

1 Introduction

Besides the functional aspects of a software system, a software engineer must facequal-
ity characteristicssuch as security and usability. In general, all software systems have
quality requirements, even if they are often acquired insufficiently and less considered
compared to functional aspects during the software development life cycle. Causing
serious damage to the economy (e.g., a stock market system, market share, and sales
market of software product), endangering personal privacy or threatening people’s life
(e.g., a medical chip card system, traffic accidents, or airplane disasters) can be possible
consequences if software neglects usability needs or security demands. Many security-
critical software systems fail because their designers protected the wrong things, or
protect the right things but in the wrong way. Inadequate usability is a reason for user
activities causing undesired and dangerous software system effects. Thus, adequate se-
curity and usability engineering requires to have an explicit understanding of the secu-
rity and usability requirements and to provide effective techniques to accomplish them.

Knowing that building systems with security and usability demands is a highly sen-
sitive process, it is important to reuse the experience of commonly encountered chal-
lenges in these fields. This idea of usingpatternshas proved to be of value in software
engineering for years, and it is also a promising approach in security and usability en-
gineering. Patterns are a means to reuse software development knowledge on different
levels of abstraction. They classify sets of software development problems or solutions
that share the same structure or behavior. Patterns are defined for different activities
at different stages of the software development lifecycle.Problem frames[9] are pat-
terns that classify software developmentproblems. Architectural stylesare patterns that

2

characterize software architectures [2]. In Software Engineeringdesign patterns[6] are
commonly used for finer-grained software design and they are as well used for coarse-
grained architectural design.

Using patterns, we can hope to construct software in a systematic way, making use
of a body of accumulated knowledge, instead of starting from scratch each time. The
problem frames defined by Jackson [9] cover a large number of software development
problems, because they are quite general in nature. To support software development in
more specific areas such as security and usability engineering, however,HCI-oriented
problem frames (HCIFrames)[18] have been developed for usability engineering, while
security problem framesandconcretized security problem frames[8] have been devel-
oped for security engineering.

In this paper, we show how to use the problem frames approach in the area of se-
curity and usability engineering to develop architectures. We propose a pattern-based
method developed forpreservingsecurity and usability characteristics from require-
ments analysis to architectural design. Section 2 gives an overview of this method.
Initially, a software engineer must understand the context of a software development
problem and decompose the overall problem situation into smaller subproblems (Sec-
tions 2.1 and 2.2). For this purpose, we apply problem frames defined by Jackson
[9] and specialized problem frames for security and usability demands (Sect. 3). To
preserve the quality characteristics identified and collected using specialized problem
frames, we equip each problem frame with corresponding architectural patterns. Then,
entities, facets, and their interactions in the problem description represented within the
instantiated problem frames are mapped by a role-driven process to corresponding com-
ponents and classes of the solution description (Sect. 4).

Additionally, security and usability problem frames can be systematically trans-
formed into notations of the Unified Modeling Language (UML) [17]. This increases
their value in later software development phases. Thus, we obtain a software design
based on commonly known architectural patterns and achieve a seamless transition
from requirements analysis to software design, preserving quality characteristics. We
illustrate our approach by developing a chat system, and conclude our in Sect. 5.

2 A Pattern-Based Software Development Approach

We propose a pattern-based software development process consisting of four steps,
which will be described in detail in the following sections:

1. Understand the problem situation (Sect. 2.1)
2. Decompose overall problem into simple subproblems (Sect. 2.2)
3. Fit subproblems to problem frames (Sect. 3.1)

(a) Identify quality characteristics (Sect. 3.2)
(b) Classify subproblems according to quality demands (Sect. 3.3)

4. Instantiate corresponding architectural and design patterns (Sect. 4)

We illustrate our approach by the pattern-based development of a chat application,
starting from the requirements analysis and leading to the derivation of software design
artifacts.

3

The starting point for the analysis of our software development project (thesystem
mission) can be outlined in one simple sentence:

“A text-message-based communication platform shall be developed
which allows multi-user communication via private I/O-devices.”

Requirementsdescribe the application environment when our developed software
is in operation. They represent desired properties of the problem domain. In contrast,
domain knowledgedescribes given properties of the environment (facts) and important
environmental conditions (assumptions). Desired and given properties of the problem
domain are summarized by a context diagram. It describes the overall problem situation,
which we want to improve through our software product.

In Tab. 1 requirementsR1 - R10 and domain knowledge (consisting of some facts
F1 - F2 and assumptionsA1 - A2) are collected to elaborate our system mission.

R1 Users can phrase text-messages, which are shown on their private graphical displays.
R2 Users send their phrased text-messages to the chat, which are stored in the public

course of the chat in their correct temporal order.
R3 The course of the chat is shown to the users on their private graphical displays.
R4 Sending text-messages changes the presentation of the course of the chat on the user’s

graphical displays.
R5 Each text-message is related to its respective user, so that the originator of a message

can be identified.
R6 All users are stored in a list of participants, which is visible to every chat user.
R7 To each course of the chat a corresponding list of participants is shown.
R8 Various chat sessions considering different subjects of discussion are offered to the users.
R9 All available chat sessions are shown to the users.

R10 Users can switch among different chat sessions.

F1 Users can only understand the course of the chat, if the text-messages are presented
in their correct temporal order (First In - First Out (FIFO)).

F2 If more than two users participate in the chat, it is required to relate messages to their
originators in order to maintain a comprehensible chat communication.

A1 Users will follow the course of the chat on their private graphical display.
A2 Several users will participate in the chat.

Table 1.Requirements and domain knowledge for the chat application

2.1 Understand the Problem Situation

In the terminology of Jackson [9], the software development goal is to build amachine
that changes the environment in a specified way. Thus, an intensive investigation of
the given and desired properties of the problem environment is mandatory (cf. Tab. 1).
This requirements and domain analysis process is accompanied using acontext diagram
that represents the interactions between the machine (software to be developed) and its
application environment (see Fig. 1). It shows where in the environment the software
development problem is located.

4

display

chat
application

text−
message

course of
chat

ac

d

b
e

user

id

gi

participants

j

sessions

k

h

f

m

list of

e: {followCourseOfChat}

g: {Correspond2OneAnother}
h: {relateUser2ID, UserID}

k: {collectOfferedChatSessions}

 f: {IdentifiesTMOriginator}

 j: {AvailableSessions}

m: {enterUsersIntoListOfParticipants}

 i: {UserList, registerUserID}

 signUpChatSession, signOffChatSession}
b: {showTM, showTMMeta, showTMDefault,
 showUserID, showCourseOfChat,
 showTransformationInProcess,
 showListOfParticipants}

a: {phraseTextMessage, sendTextMessage, login,

c: {registerTM, recordUserID,
 CourseOfChatContent}
d: {editTextmessage,TMContent, TMMeta, TMDefault}

Fig. 1.Context diagram of the chat application

A context diagram consists ofdomains(rectangles) and sets ofshared phenomena
(labeled links between rectangles), which are derived from the requirements and do-
main knowledge (cf. Tab. 1). Domains correspond to entities or facets of the real world,
whereas themachine domain(rectangle with two vertical lines) represents the software
product which ought to be developed, in our case: thechat application itself. Hence,
there is exactly one machine domain contained in a context diagram (chat application
in the center of Fig. 1). Any arbitrary number of additional domains can be part of the
overall problem situation. They can be further classified. Data types, data structures,
database schemata, or other representations of information, that need to be built and
introduced by the software developer, are denoted bydesigned domains(rectangle with
only one vertical line), for instancetext-message. Given domains(simple rectangles)
are concepts of the real world, which already exist and do not need to be constructed.
They are relevant for the problem description and its solution, and need to be considered
in the context diagram, too, for instancedisplay.

Shared phenomena are operations, actions, events, or states which are common to
two domains. For instance, the machine domainchat application shares the phenomenon
AvailableSessions (which is derived from requirementR8) with the designed domain
sessions, cf. interfacej in Fig. 1. Context diagram, requirements, and domain knowl-
edge are created and collected iteratively to cover the overall problem situation and help
to understand the given and desired interactions of environment and machine. Require-
ments and domain knowledge that are found through software analysis are expressed
by domains and shared phenomena in the context diagram (cf. Tab. 1 and Fig. 1).

5

2.2 Decompose Overall Problem into Simple Subproblems

As the context diagram in Fig. 1 illustrates, it would become difficult to start a struc-
tured software development process based on such a complex problem situation. The
problem needs to be split into simple subproblems for which known solution methods
are available. This is achieved by decomposing the context diagram with the help of the
requirements by means ofknowledge-based projectioninto smaller subproblems. For
each subproblem, all other subproblems are assumed as already solved (separation of
concerns). The subproblems are derived from the context diagram using operators for
problem decomposition (e.g., by combining domains or omitting shared phenomena).
Those simple and independent subproblems are represented by instantiated problem
frames in the following.

3 Patterns for Software Development Problems

Problem frames [9] are patterns to structure and classify software development prob-
lems. Each problem frame is represented by a frame diagram, which relates a set of
requirements via several problem domains to the machine domain, using shared phe-
nomena. The outcome is a fixed and abstract problem structure.

A problem frame needs to be instantiated by concrete problem content, taken out
of the context diagram with the help of requirements. An instance of a problem frame
shows the relation of the respective requirements to the particular domains of the cor-
responding problem context, which are relevant to reflect the requirements.

Requirements describe desired properties of the environment after the machine is in
action. In contrast, shared phenomena at the interface of machine and environment are
used to formulate thespecifications, which are descriptions that are sufficient to develop
the machine.

Problem frames support the creation of adequate software specifications (e.g., rep-
resented using UML sequence diagrams) by elaborating the essential interactions of
environment and machine. The specification constitutes the basis for the development
of the machine. It is used for software design, coding, testing, and acceptance of the
final software product.

Sometimes it is necessary to compose and create new problem frames to be able to
detail and classify a certain software development problem more precisely. Therefore,
we merged and extended the basic problem frames introduced by Jackson where appli-
cable. Some selected frame instances of the chat application example are presented to
exemplify our pattern-based software development approach. In the following, we show
the abstract frame diagram elements (in italic style) together with the concrete problem
pattern instance (content of a domain and corresponding shared phenomena).

3.1 Fit Subproblems to Problem Frames

Figure 2 shows the instance of the problem frame ”commanded model display”. Its
frame diagram is a variant of the ”commanded display” frame developed by Jackson
[9] and an enhancement of the ”query” frame developed by Choppy and Heisel [3]. The

6

listOfPart.
& CoC

E2: {showCoC, showPL}
E3: {sendTM, signUpChatSession,
 signOutChatSession} /
 "user sends private text−message
 to a specific public chat"
Y4: "show public course of the chat and
 corresponding list of participants"
Y6: "content of course of chat and
 actual list of participants"
Y7: {CoCContent, UserList}

U!E3 E3

chat
application

LC!Y7 Y6

CA!E2 Y4

model

display

operatorcommanded
model
display
machine

user

display R3, R4,
R7, R10

X

C

B

Fig. 2. Instance of the problem frame ”commanded model display”

problem frame ”commanded model display” can be composed out of the basic problem
frames ”commanded behaviour” and ”model display”, too.

The problem frame”commanded model display”in Fig. 2 describes the following
problem situation: If theoperator(user) sends a command (phenomenonsignUpChat-
Session of interfaceE3) to the machine (chat application), it will be executed by the
machine and yields some according effects. Here, the state of themodel(list of partic-
ipants) is shown on adisplay(display) using the phenomenonshowPL of the interface
E2. In addition, the actual state of themodel(publiccourse of the chat) is shown, Fig. 2.

To extract this subproblem from the overall problem, we applied two decomposi-
tion operators. Wecombine domains, e.g.,list of participants (listOfPart.) andcourse of
the chat (CoC). Additionally, weomit shared phenomena, e.g.,registerUserID at the
interface Y7, because it is not relevant for this subproblem.

Compared to the context diagram in Fig. 1, this frame instance contains only those
domains and shared phenomena, which are relevant to fulfill a subset of all requirements
namelyR3, R4, R7, andR10 (see Tab. 1). The oval on the right-hand side of the frame
diagram contains the requirements which are mapped to according parts of the problem
context (dashed lines to the domains). The left-hand side of the frame diagram relates
the corresponding problem context to the machine. Thus, an instantiated problem frame
that is read from right to left indicates the translation of natural-language requirements
(in the oval) via the problem context (domains) into technical descriptions which are
sufficient to build the machine. Phenomena at the interface of environment and machine
can be used to derivespecifications. The arrowhead pointing to a domain constrains
the domain’s behavior or characteristics as stated in the requirements. For example, the
requirementsR3andR7 in our application example describe a restriction on the domain
display.

Each domain in a frame diagram is marked by a character such asX, C, or B to
distinguish the different domain types. The designed domaintext message is a lexical
domain(markedX) which has symbolic phenomena associated to it. Thedisplay is a
causal domain(markedC) which does not need to be built but can be controlled using
phenomena, too. Theuser is represented by abiddable domain(markedB). His or her
behavior cannot be predicted or controlled by the machine. Indeed, the user can make
inputs to the software, but cannot be forced by requirements to act in a predetermined
way. However, assumptions as part of the domain knowledge are used to make explicit
the expected user behavior (cf. Tab. 1).

7

Symbolic valuesare indicated byY, eventsare annotated withE, andC indicates
causal phenomena. The characters are numbered for indexing the shared phenomena.
The exclamation mark (!) specifies which domaincontrolsa shared phenomenon. How-
ever, this does not imply control flow. For example,LC!Y7 in Fig. 2 in fact expresses
that the merged domainlist of participants & course of the chat (abbreviatedLC) is re-
sponsible for administrating the symbolic phenomena in the setY7. However, thechat
application determines when to query the required information. All subproblems con-
tain exactly one machine domain (cf. Fig. 2, Fig. 3, Fig. 4, and Fig. 6). In contrast to
Jackson who gives different names to each machine domain, we prefer identical names
(here:chat application) to indicate that they constitute parts of a common machine.

3.2 Identify Quality Characteristics

The problem frames approach and more common software development notations such
as UML share the same deficiency: they do not offer adequate notations to record soft-
ware quality characteristic. Although it is commonly accepted that software quality is
mainly reflected by non-functional properties (soft goals) [12], only a few approaches
exist to elicitate and document them systematically [4]. Software quality characteristics
are difficult to grasp, and its hard to maintain them during the software life cycle appro-
priately. One reason can be that software quality actually is seen as a global attribute of
the overall software product, which cannot be related explicitly to local functionality of
parts of the software. The idea that software quality is related to the system as a whole
rather than to individual system features can be found likewise in requirements engi-
neering [15] and in architectural design [14]. In our approach, we identify and assign
quality characteristics to a local set of software functionality. To do so we use problem
frames to represent the local behavior and annotate relevant local quality characteris-
tics to them. We extend Jackson’s problem frames approach by explicitly annotating
software quality characteristics in frame diagrams.

3.3 Classify Subproblems According to Quality Demands

Based on our chat application example, we show how the basic behavior of a system
can be expressed using problem frames and how quality characteristics such as usability
and security can be considered by detailing the core software features with the help of
special usability and security problem frames.

Usability Engineering using Problem Frames Usability Engineering contributes to
the improvement of human-computer interaction (HCI). It takes psychological aspects
into consideration to support the design of software and user interfaces that are easy
to use. Although various usability techniques (guidelines, standards, and patterns) ex-
ist, they lack of systematical applicability, because often no technical description is
available. Some authors of HCI design patterns [16, 13] refuse a technical detailing of
patterns to keep them comprehensible for non-experts. In contrast, other authors [5]
transformed HCI design patterns into UML, but do not offer a process of how and
when to apply them exactly. There is an urgent need to integrate usability aspects into

8

commanded
workpiece
display
machine

workpiece
meta information

workpiece
default

E1: {editTM, relateUser2ID}
E2: {showTM, showTMMeta,
 showTMDefault, showUserID}

 "on his own text−message"
E3: {phraseTM, login} / "user works

Y2: {TMContent, TMMeta, TMDefault,
 UserID}
Y4: "changing content of private
 text−message"
Y5: "show individual text−message"
Y8: TMMetaInformation
Y9: TMDefaultValue

CA!E2

U!E3 E3

CA!E1
TM!Y2

Y5

Y4
display

operator

workpiece

text−m.
default

descript. of
text−m.

OM!Y8DT!Y9

chat
application

text−m.
& id

user

display R1, R5

B

C

X

X
X

Fig. 3. Instance of theHCIFrame ”commanded workpiece display”

the software development process. To bridge the gap between informal descriptions
of HCI design patterns and the wish to apply usability concerns systematically during
the software development process,the problem descriptionsof HCI design patterns are
used in requirements analysis using HCI-oriented problem frames (HCIFrames)[18].
HCIFrames allow to identify and express usability demands already in the early soft-
ware development phases. As we will show, usability problems which can be elicited
and documented in software analysis can be considered in software design more easily
and finally lead to a software product which realizes software quality requirements in a
traceable way.

Instantiating HCIFramesFigures 3 and 4 show selected subproblems that describe
different aspects of the given problem situation. They already consider usability re-
quirements. The problem frame ”commanded workpiece display” in Fig. 3 which is
a composite of the basic problem frames ”simple workpiece” and ”commanded be-
haviour” from Jackson is extended by HCI-related problem descriptions taken from the
HCI design patterns of Tidwell [16], namelyinput hints: ”place a sentence to explain
what is required” (workpiece meta information) and input prompt: ”prefills telling the
user what to do” (workpiece default). The two new domainsdefault text-message (indi-
cating that a initial text-message should have a default value like ”Hello World!”) and
description of text-message (requiring a label or explanation of what kind of input is
expected from the user, for instance ”type your chat message here:”) which are related
to theworkpiecetext-message. A workpieceis a lexical domain that can be altered.

In fact, a software development problem that fits into a problem frame contain-
ing aworkpiececan explicitly describe quality characteristics like in this example for
usability, if theworkpiecedomain is extended byworkpiece meta informationand a
workpiece defaultwhich support self-explanatory user interfaces.

The problem frame ”commanded transformation” in Fig. 4 consists of the basic
frames ”commanded behaviour” and ”transformation”. It is extended by the problem

9

course of
chat

E1: {registerTM, registerUserID}

E3: sendTM / "user sends private text−message to chat"
E2: showTransformationInProcess (Y2 to Y5)

Y1: {TMContent, UserID}
Y2: "content of private text−message"
Y5: "changing content of public course of the chat"

E3

chat
application

CA!E1

Y2

Y5

model

commanded
transformation
machine

TD!Y1

CA!E2

userU!E3

display

text−m.
& id

workpiece

operator

R2

transformation display

C

X

X

B

Fig. 4. Instance of theHCIFrame ”commanded transformation”

domaintransformation display, which reflects theproblem descriptionof the HCI de-
sign patternprogress: ”tell user whether or not an operation is still performed and how
long it will take” from van Welie [10]. The meaning of thisHCIFrame is that whenever
there is a transformation in progress (machine internal working process represented by
a transformation problem frame) this is indicated to the user. For instance, in the follow-
ing software design we decide to realize this transformation information by a progress
bar or an information like ”sending your text-message” or ”please wait...operation in
process” on atransformation display(display). In software analysis, we are only in-
terested in identifying this usability requirement, whereas in software design, we will
decide on its implementation. Figures 3 and 4 show that software quality aspects such
as usability can be expressed with the help ofHCIFrames. After we have introduced
problem frames to express security requirements, we show how the final instantiated
problem frames for our chat application example can be mapped to patterns of software
architecture and design, preserving all specified quality characteristics.

Security Engineering using Problem FramesTo meet the special demands of soft-
ware development problems occurring in the area of security engineering, we are devel-
oping a catalog of security problem frames considering different security problems [8],
[7]. Security problem frames considersecurity requirements. The goal is constructing a
machine that fulfills the security requirements. The security problem frames strictly re-
fer to theproblemsconcerning security. They do not anticipate a solution. For example,
we may require the confidential transmission of data without being obliged to mention
encryption, which is a means to achieve confidentiality.Solvinga security problem is
achieved by choosing generic security mechanisms (e.g., encryption to keep data confi-
dential). For this purpose we are developing a catalog of concretized security problem
frames [8], [7]. They considerconcretized security requirements, which take the func-
tional aspects of a security problem into account. For each of the developed security
problem frames there is at least one concretized counterpart providing a generic secu-
rity mechanism. The security problem frame and its concretized counterpart used in this
paper serve to treat the security requirement ofanonymityand the concretized security
requirement ofpseudonymity, respectively.

10

Y2

C1

E1

SR
chat

AU!C1

application

anon machine

anonymous subject

receiving subjects

data & identity
X

B

B

CA!E1

user

receiving

user

TMI!Y1 text
message

& Id

anonymous

TMI!Y1

C1 : {sendTextMessage, sendId}
Y1 : {TextMessage, Id}
E1 : {anonymizedMessage}
Y2 : {TextMessage, Id}

SR: Id of anonymous user should be un-
known toreceiving user

Fig. 5.GUI anonymity frame diagram

Instantiating Security Problem FramesWe now extend the requirements to be consid-
ered when developing the chat system by the security requirementanonymity of the
chat participants. Anonymity of users and other systems is an important issue in many
security-critical systems. Anonymity is the state of being not identifiable within a set of
subjects [11].

Anonymity can be considered from different views, e.g., anonymity on the level
of the graphical user interface (GUI), and anonymity on the level of the network. In
this paper, we focus on GUI anonymity. Figure 5 depicts the security problem dia-
gram for GUI anonymity. It is an instance of the underlying security problem frame for
anonymity, which is not depicted separately in this paper.

The problem diagram in Fig. 5 contains the machine domainchat application. The
lexical domaintext message & Id represents the sent text message including the real id
of the sender represented by the biddable domainanonymous user. The text message
is received by the other chat participants represented by the biddable domainreceiving
user. Both,anonymous user andreceiving user are specializations of the domainuser
(see Fig. 1). The security requirementSR states that the receiver of the text message
should not know sender’s real Id.

Resolve conflicting Quality CharacteristicsThe chat application’s functional require-
ments and quality characteristics are now identified and described. In order to be able
to derive a specification, we must ensure that the elicited requirements do not contain
any conflicts. When checking for conflicts it becomes apparent that the requirementR5
(cf. 1) “Each text-message is related to its respective user so that the originator of a mes-
sage can be identified.” is at odds with the requiredSR (cf. 5) “anonymity of the chat
participants”. A convincing compromise to resolve this conflict can be found by negoti-
ating both requirements. As a result, we decide to choose a generic security mechanism
that uses pseudonyms [11]. With this approach, the text messages can be related to their
originators (represented by pseudonyms), and at the same time the originators’ identity
is kept confidential.

Instantiating Concretized Security Problem FramesIn the course of transforming the
security requirement for GUI anonymity into a concretized security requirement, the
domaintext message & nick name (see Fig. 6) is introduced.

11

E1

Y4

TMN!Y2

CSR

TMI!Y1

C1

Y3

CA!Y2

AU!C1

text

CA!E1

nickname
message &

text

data & identity

anonymous subject

data & pseudonym

receiving subjects

chat
application

B

X

B

X

user
anonymous

user

receiving

message
& Id

TMI!Y1
C1 : {sendTextMessage, sendId}
Y1 : {TextMessage, Id}
E1 : {anonymizedTextMessage}
Y2 : {TextMessage, NickName}
Y3 : {TextMessage, Id}
Y4 : {TextMessage, NickName}

CSR: receiving user knows nickname but
does not knowId.

Fig. 6.Concretized GUI anonymity frame diagram

The domain partnickname represents a pseudonym. A pseudonym is a string which,
to be meaningful in a certain context, is

– unique as ID
– suitable to be used to authenticate the holder and his/her “items of interest” (e.g.,

messages and network packets)

The holder of a pseudonym must be linked to the pseudonym itself. Then, the links
must be kept confidential in order to achieve anonymity. In Fig. 6 the links are admin-
istrated by the machine domainchat application. Therefore, we may assume thatchat
application will keep the links confidential. The concretized security requirementCSR
in Fig. 6 constrains the domaintext message & nickname. The domain partnickname
should be known to thereceiving user, while the domain partId should be unknown to
them.

4 Role-Driven Mapping of Requirements Analysis Documents to
Architectural Design Artifacts

Whatever a pattern is used for (in software analysis or design, in security or usability
engineering), it generally assigns roles to entities or facets and their interaction in an
abstract fashion. Patterns need to be instantiated to specify who take a certain role and
to bring them into action for a concrete situation. We make use of this observation to
match patterns used in requirements analysis with patterns of software architecture and
design.

Starting with the problem frame instance in Fig. 2, we identify the different roles
taken by the respective domains and shared phenomena. Three roles can easily iden-
tified from the problem frame diagram, namelyoperator (user), display(display) and
model(list of participants & course of the chat). Now, we search for a corresponding
architectural style or design pattern reflecting these roles.

Figure 7 shows the architectural style ”Model-View-Controller” [2] in its upper
half. The classes of this architectural style can be regarded as descriptions of the roles
that objects of these classes can take. Accordingly, we map the rolesmodel, display,

12

display

myModel
myView
initialize(Model,View)
handleEvent
update

Controller

UserList
registerUserID

listOfPart.

creategetData
attach

call update

coreData
setOfObservers
attach(Observer)
detach(Observer)
notify

getData
service

myModel
myController
initialize(Modell)
makeController
activate
display
update

Model

View

manipulate
display

attach
call service

TMDisplay

Textmessage
TMMeta
TMDefault
editTM

CoCDisplaytext−message

chat application

phraseTM
sendTM
signUpChatSession

user
control

TiPDisplay
PLDisplay

CoCContent
registerTM
recordUserID

course of chat

update

Observer

Fig. 7. Instantiated architectural style ”Model-View-Controller” for the chat application

operatorof our problem frame to the classesModel, View, Controller of the architectural
style. This mapping is appropriate, because the domain roles of the problem frame and
the roles of the corresponding classes in the architectural style are comparable. Since the
problem frame in Fig. 2 is instantiated, we can reuse its concrete domains and shared
phenomena to instantiate the chosen architectural style, too. The lower half of Fig. 7
shows how the domains and shared phenomena are mapped to the respective classes of
”Model-View-Controller” via an inheritance relation, which can be used in the UML to
express assignment of roles. Thechat application becomes thecontroller, because the
machine operates according to the user commands. For the given problem situation in
Fig. 2, we found one possible design which satisfies its requirementsR3, R4, R7, and
R10 for the chat application example.

To illustrate how quality characteristics can be preserved from requirements engi-
neering to software design we consider theHCIFrame instance of ”commanded work-
piece display” in Fig. 3 in detail. Similar to the previous problem frame instance of
Fig. 2, it can be mapped to model-view-controller, because the role of aworkpieceis
comparable to the role of amodel, both relying on being processed by the machine. To
trace the quality characteristics stated in theHCIFrame instance of Fig. 3, it is necessary
to consider the classtext-message in Fig. 7 in more detail. Thedefault text-message and
thedescription of the text-message were translated from the interfacesY8 andY9 of the
usability requirements into the interfaceY2 containingTMDefault andTMMeta of the
specification in Fig. 3. The latter have become attributes of the classtext-message in
Fig. 7. The frame instance of ”commanded transformation” in Fig. 4 requires an addi-
tionalView in order to consider thetransformation (in process) displaydomaindisplay.
The usability requirement which demands atransformation displayis considered by

13

Model View Controller

network display user

use display services user input
Chat_application

send/receive messages

read data from model execute user control

use model services

Fig. 8.Global architecture of the chat application

sendTM(){

anonymize();

}

"TM & NickName".sendTM();

request()

RealSubject

request()

Proxy

request()

Subject
<<use>>

original

Client

sendTM()

TM & NickName

sendTM()

sendTM()
(sending/receiving) user

ChatProxy

sink filter

source

TM & Id

Fig. 9.Proxy design pattern/instance for GUI anonymity

the rolenameTiPDisplay at the classdisplay of Fig. 7. The role-driven mapping of the
HCIFrame instances in Fig. 3 and Fig. 4 shows that all specified quality characteristics
are preserved.

The architectural style ”Model-View-Controller” is instantiated to become the global
architecture of the chat application. This architecture is depicted in Fig. 8. The ”Model-
View-Controller” architecture consists of the three componentsModel, View, andCon-
troller, which themself have an architecture.

Analyzing the security requirements concerning the GUI anonymity in Sect. 3.3
shows that the machine to be developed must be able to act like aplaceholder. The
text messages including the Id of the user are received by the placeholder. Then, the
placeholder is responsible for exchanging the user’s Id by a pseudonym and sending
the text messages and the pseudonym to the receiving chat participants. Because the
behavior described above can be generally observed when applying the concretized

14

security problem frame for anonymity using pseudonyms, we link this frame to the
design patternProxy[6] in combination with the architectural stylePipe-and-Filter[1].

The ”Proxy” design pattern (in combination with its instance for GUI anonymity)
is depicted in Fig. 9. The ”Proxy” design pattern is a structural pattern that introduces
a placeholder (Proxy) in order to control access to the originatorSubject. Hence, we
can map the domains of the concretized security problem diagram shown in Fig. 6 to
the components of the ”Proxy” pattern. The domaintext message & Id is represented
by the classTM & Id, the domaintext message & nickname is represented by the class
TM & NickName, and the machine domainchat application is represented by the class
ChatProxy. The domainsAnonymous user andReceiving user are represented byClient.
ChatProxy receives the text messages including the chat participants’s Id. Then, the
ChatProxy anonymizes the received data and forwards the text message including a
nickname to the actual receiving chat participants.

When anonymizing received data, the ”Pipe-and-Filter” architectural style comes
into play. It sees a system as a series of filters (or transformations) on input data. Data
enter the system and then flow through the components one at a time until they reach
some final destination. Filters are connected by pipes that transfer data. We consider
the linear pipeline, in which each filter has precisely one input pipe (sourcein Fig. 9)
and one output pipe (sink in Fig. 9). Additionally, only one filter (filter in Fig. 9) is
needed to exchange anId by anickname. This functionality is reflected by the function
anonymize().

Both, the ”Proxy” and the ”Pipe-and-Filter” architectures describe the internal ar-
chitecture of the componentView in Fig. 8.

Role-driven mapping enables a smooth transition of patterns used to represent the
problem in software analysis to patterns used to represent a solution detailed by archi-
tectural software design. In particular, role-driven mapping serves to preserve quality
characteristics.

5 Conclusion

We have shown that functional requirements as well as quality characteristics such as
security and usability can be treated using our extension of Jackson’s problem frames
approach. We presented a software development method that preserves usability and
security quality characteristics using a role-driven mapping of requirements analysis
documents to architectural design artifacts.

With this approach, software engineers can hope to cover large parts of the early
phases in software development using patterns.

In the future, we intend to find new patterns to extend the catalogs ofHCIFrames,
security problem frames, and concretized security problem frames. Furthermore, we
intend to apply our approach to other quality characteristics such as performance and
scalability.

Additionally, we plan to elaborate more on the later phases of software develop-
ment. For example, we want to investigate how to integrate component technology in
the development process. Finally, we plan to provide tool support for our pattern-based
software development method.

15

6 Acknowledgements

The authors appreciate the in-depth comments given by the anonymous reviewers to
improve this work. We would like to thank our doctoral thesis supervisor Prof. Dr.
Maritta Heisel for her support.

References

[1] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice. Addison-Wesley,
1998.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[3] C. Choppy and M. Heisel. Une approacheà base de patrons pour la spécification et le
développement de systèmes d’information. Approches Formelles dans l’Assistance au
Développement de Logiciels - AFADL, 2004.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulus.Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishers, Boston, USA, 2000.

[5] Eelke Folmer and Martijn van Welie and J. Bosch. Bridging Patterns: An approach to bridge
gaps between SE and HCI.Information and Software Technology, 48(2):69–98, 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, 1995.

[7] D. Hatebur, M. Heisel, and H. Schmidt. Pattern- and Component-Driven
Security Engineering. Technical report, Universität Duisburg-Essen, 2006.
http://swe.uni-duisburg-essen.de/intern/seceng06.pdf .

[8] D. Hatebur, M. Heisel, and H. Schmidt. Security Engineering using Problem Frames. In
G. Müller, editor,Proceedings of the International Conference on Emerging Trends in In-
formation and Communication Security (ETRICS), LNCS 3995, pages 238–253. Springer-
Verlag, 2006.

[9] M. Jackson.Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[10] M. van Welie. Patterns in Interaction Design, 2003-2006.http://www.welie.com
Online catalogue for interaction design patterns.

[11] A. Pfitzmann and M. K̈ohntopp. Anonymity, unobservability, and pseudonymity - a pro-
posal for terminology. In H. Federrath, editor,Workshop on Design Issues in Anonymity
and Unobservability, LNCS 2001 / 2009, pages 1–9. Springer-Verlag, 2000.

[12] S. Robertson and J. Robertson.Mastering the Requirements Process. Addison-Wesley,
Boston, USA, 1999.

[13] T. Scḧummer.A Pattern Approach for End-User Centered Groupware Development. PhD
thesis, FernUniversität Hagen, 2005.

[14] M. Shaw and S. Garlan.Software Architecture. Perspectives on an Emerging Discipline.
Prentice Hall, Eaglewood Cliffs, New Jersey, USA, 1996.

[15] I. Sommerville.Software Engineering. Addison-Wesley, 2001.
[16] J. Tidwell. Designing Interfaces. O’Reilly Media, Sebastopol, USA, 2005.
[17] UML Revision Task Force.OMG Unified Modeling Language: Superstructure, August

2005.http://www.uml.org .
[18] I. Wentzlaff and M. Specker. Pattern-Based Development of User-Friendly Web Applica-

tions. InProceedings of the 2nd International Workshop on Model-Driven Web Engineering
(MDWE 2006), Palo Alto, USA, 2006. ACM.

