
Faculty of Engineering
Department of Computer Science

Software Engineering

Master Thesis

A Pattern- and Component-Based Process
for Embedded Systems Development

Dipl.-Inform. Denis Hatebur,
email: denis.hatebur@uni-duisburg-essen.de

Contents

1 Introduction 1

2 Basic Concepts 2
2.1 Agenda Concept . 2
2.2 Context Diagrams . 2
2.3 Problem Decomposition . 3
2.4 Problem Frames . 4
2.5 Sequence Diagrams . 8
2.6 Composite Structure Diagrams . 10
2.7 Architectures and Architectural Styles . 11
2.8 State Machines . 13

3 A Model Based Development Process for Embedded Systems 14
3.1 Step 1: Describe Problem . 15
3.2 Step 2: Consolidate Requirements . 15
3.3 Step 3: Decompose Problem . 16
3.4 Step 4: Derive Specifications . 17
3.5 Step 5: Express System Behavior . 18
3.6 Step 6: Design System Architecture . 19
3.7 Step 7: Derive Interface Behavior . 19
3.8 Step 8: Design Software Architecture . 20
3.9 Step 9: Specify Software Components . 23
3.10 Step 10: Implement Software Components and Test Environment 24
3.11 Step 11: Integrate Hardware and Software 25

4 Points for Improvement 26
4.1 Existing Machine Problem . 26
4.2 System Architecture Design Problem . 26
4.3 Subproblem Composition Problem . 28
4.4 Readability of Sequence Diagrams Problem 28
4.5 Interoperability with Other Methods Problem 29
4.6 Software Architecture Design Problem . 29
4.7 Interface Control Problem . 29
4.8 Notation Problem . 30
4.9 Interface Specification Problem . 30
4.10 IAL and HAL Specification Problem . 31

i

4.11 Jackson – Four Variable Model Integration Problem 31
4.12 Contradicting Requirements Problem . 32
4.13 Completeness of Specification Problem . 32

5 Refined and Adapted Development Process for Embedded Systems 33
5.1 Step 1: Describe Problem . 34
5.2 Step 2: Consolidate Requirements . 35
5.3 Step 3: Decompose Problem . 36
5.4 Step 4: Derive Machine Behavior Specifications for each Subproblem 38
5.5 Step 5: Design Global System Architecture 40
5.6 Step 6: Derive Specifications for all Components being Relevant for the Sub-

problem . 42
5.7 Step 7: Design Software Architecture for each Software Component and each

Subproblem . 44
5.8 Step 8: Specify Behavior of Software Architecture Components for each Sub-

problem . 51
5.9 Step 9: Specify Software Components of Software Architectures for each Sub-

problem . 54
5.10 Step 10: Develop Global Software Architectures 55
5.11 Step 11: Specify Composed Software Components 57
5.12 Step 12: Implement Software Components and Test Environment 58
5.13 Step 13: Integrate Software Components . 60
5.14 Step 14: Integrate Hardware and Software 60

6 Case Study: Traffic Light Control 62
6.1 Step 1: Describe Problem . 62

6.1.1 Context Diagram of System in Use 62
6.1.2 Context Diagram of System to be Built 62
6.1.3 Requirements . 62
6.1.4 Domain Knowledge . 63
6.1.5 Glossary . 64
6.1.6 Assumptions . 65
6.1.7 Validation . 65

6.2 Step 2: Consolidate Requirements . 65
6.3 Step 3: Decompose Problem . 67

6.3.1 Subproblem: SecondaryRoadPassing 67
6.3.2 Subproblem: MainRoadPassing . 68
6.3.3 Subproblem: EmergencyRequestSecondaryRoadPassing 69
6.3.4 Subproblem: BrokenLightSafeState 70
6.3.5 Validation . 70
6.3.6 Dependencies between Subproblems 70

6.4 Step 4: Derive Machine Behavior Specifications for each Subproblem 71
6.4.1 Subproblem: SecondaryRoadPassing 71
6.4.2 Subproblem: MainRoadPassing . 73

ii

6.4.3 Subproblem: EmergencyRequestSecondaryRoadPassing 75
6.4.4 Subproblem: BrokenLightSafeState 79
6.4.5 Initialization . 80
6.4.6 Domain Knowledge . 81
6.4.7 Validation . 82

6.5 Step 5: Design Global System Architecture 82
6.5.1 System Architecture . 82
6.5.2 Subcomponents . 82
6.5.3 External and Internal System Architecture Interfaces 83
6.5.4 Subproblem Relationships . 84
6.5.5 Validation . 84

6.6 Step 6: Derive Specifications for all Components being Relevant for the Sub-
problem . 84

6.7 Step 7: Design Software Architecture for each Software Component and each
Subproblem . 89
6.7.1 Subproblem: SecondaryRoadPassing 89
6.7.2 Subproblem: MainRoadPassing . 89
6.7.3 Subproblem: EmergencyRequestSecondaryRoadPassing 91
6.7.4 Subproblem: BrokenLightSafeState 92
6.7.5 Subcomponents . 93
6.7.6 Validation . 93

6.8 Step 8: Specify Behavior of Software Architecture Components for each Sub-
problem . 94
6.8.1 Component: TrafficLightApplication 94
6.8.2 Component: InductionLoopIAL . 94
6.8.3 Component: LightsInterfaceAbstraction 94
6.8.4 Validation . 95

6.9 Step 9: Specify Software Components of Software Architectures for each Sub-
problem . 95
6.9.1 Component: TrafficLightApplication 95
6.9.2 Component: TrafficLightBehavior 95
6.9.3 Component: TimeOutTimer . 98
6.9.4 Component: Clock . 98
6.9.5 Component: InductionLoopIAL . 101
6.9.6 Component: LightsInterfaceAbstraction 102
6.9.7 Validation . 102

6.10 Step 10: Develop Global Software Architectures 103
6.10.1 Validation . 103

6.11 Step 11: Specify Composed Software Components 105
6.11.1 Component: TrafficLightApplication 105
6.11.2 Component: TrafficLightBehavior 105
6.11.3 Component: TimeOutTimer . 105
6.11.4 Component: Clock . 105
6.11.5 Component: InductionLoopIAL . 105

iii

6.11.6 Component: LightsInterfaceAbstraction 107
6.11.7 Validation . 107

6.12 Step 12: Implement Software Components and Test Environment 107
6.12.1 Validation . 111

6.13 Step 13: Integrate Software Components . 112
6.13.1 Validation . 113

6.14 Step 14: Integrate Hardware and Software 113

7 Case Study: Automatic Teller Machine 114
7.1 Step 1: Describe Problem . 114
7.2 Step 2: Consolidate Requirements . 115
7.3 Step 3: Decompose Problem . 116
7.4 Step 4: Derive Machine Behavior Specifications for each Subproblem 119
7.5 Step 5: Design Global System Architecture 123
7.6 Step 6: Derive Specifications for all Components being Relevant for the Sub-

problem . 125
7.7 Step 7: Design Software Architecture for each Software Component and each

Subproblem . 127
7.8 Step 8: Specify Behavior of Software Architecture Components for each Sub-

problem . 129
7.9 Step 9: Specify Software Components of Software Architectures for each Sub-

problem . 129
7.10 Step 10: Develop Global Software Architectures 134
7.11 Step 11: Specify Composed Software Components 135
7.12 Step 12: Implement Software Components and Test Environment 136
7.13 Step 13: Integrate Software Components . 137
7.14 Step 14: Integrate Hardware and Software 137

8 Conclusion 138
8.1 Summary . 138
8.2 Future work . 141

Bibliography 142

iv

List of Figures

2.1 Context Diagram: Patient Monitoring System (cf. [Jac01]) 3
2.2 Workpieces Frame Diagram (cf. [Jac01]) . 5
2.3 Transformation Frame Diagram (cf. [Jac01]) 5
2.4 Required Behaviour Frame Diagram (cf. [Jac01]) 5
2.5 Commanded Behaviour Frame Diagram (cf. [Jac01]) 6
2.6 Information Display Frame Diagram (cf. [Jac01]) 6
2.7 Commanded Information Frame Diagram (cf. [Jac01]) 7
2.8 Sequence diagram example . 9
2.9 Notation for Architectures . 10
2.10 Layered Architecture . 12
2.11 Repository Architecture . 12
2.12 State Machine . 13

3.1 Extended Four Variable Model and Layered Architecture 21
3.2 Interface vs. System Behavior 1 . 22
3.3 Interface vs. System Behavior 2 . 23

4.1 Workpieces Frame Diagram with Dot-Notation 27

5.1 Required Behaviour Frame Diagram [Jac01] and Architectural Pattern 46
5.2 Commanded Behaviour Frame Diagram [Jac01] and Architectural Pattern . . 46
5.3 Detailed Architectural Pattern for User Interface 47
5.4 Information Display Frame Diagram [Jac01] and Architectural Pattern 48
5.5 Commanded Information Frame Diagram [Jac01] and Architectural Pattern . 48
5.6 Workpieces Frame Diagram [Jac01] and Architectural Pattern 49
5.7 Architectural Pattern for Remote Access to Data Storage 50
5.8 Transformation Frame Diagram [Jac01] and Architectural Pattern 50

6.1 Context Diagram for the Traffic Light Control 63
6.2 Glossary Extension for Traffic Light . 64
6.3 Problem Diagram for SecondaryRoadPassing 67
6.4 Problem Diagram for MainRoadPassing . 68
6.5 Problem Diagram for EmergencyRequestSecondaryRoadPassing 69
6.6 Problem Diagram for BrokenLightSafeState 70
6.7 Sequence Diagram for SecondaryRoadPassing 1 72
6.8 Sequence Diagram for MainRoadPassing 1 73
6.9 Sequence Diagram for MainRoadPassing 2 74

v

6.10 Sequence Diagram for EmergencyRequestSecondaryRoadPassing 1 75
6.11 Sequence Diagram for EmergencyRequestSecondaryRoadPassing 1 76
6.12 Sequence Diagram for EmergencyRequestSecondaryRoadPassing 3 77
6.13 Sequence Diagram for EmergencyRequestSecondaryRoadPassing 4 78
6.14 Sequence Diagram for EmergencyRequestSecondaryRoadPassing 5 78
6.15 Sequence Diagram for BrokenLightSafeState 1 79
6.16 Sequence Diagram for Initialization 1 . 80
6.17 Sequence Diagrams for the Lights Domain 81
6.18 System Architecture for Traffic Lights System 82
6.19 Interface classes for the traffic light system 83
6.20 Interface Behavior for Subproblem MainRoadPassing 1 85
6.21 Interface Behavior 1 of the Component LightsControl for all Subproblems . . 86
6.22 Interface Behavior 2 of the Component LightsControl for all Subproblems . . 87
6.23 Interface Behavior of the Component LightsControl for all Subproblems, Sam-

ple Trace . 87
6.24 Interface Behavior of the Component InductionLoopControl for all Subproblems 88
6.25 Software Architecture for SecondaryRoadPassing 89
6.26 Interface Classes for SecondaryRoadPassing 90
6.27 Software Architecture for MainRoadPassing 90
6.28 Interface Classes for MainRoadPassing . 90
6.29 Software Architecture for EmergencyRequestSecondaryRoadPassing 91
6.30 Interface Classes for EmergencyRequestSecondaryRoadPassing 91
6.31 Software Architecture for BrokenLightSafeState 92
6.32 Interface Classes for BrokenLightSafeState 92
6.33 Subcomponents of the Component TrafficLightApplication 93
6.34 Interface Classes in the Component TrafficLightApplication 93
6.35 Software Architecture for BrokenLightSafeState 94
6.36 Component Overview Description of TrafficLightBehavior 95
6.37 State Machine of TrafficLightBehavior, SecondaryRoadPassing 96
6.38 State Machine of TrafficLightBehavior, MainRoadPassing 97
6.39 State Machine of TrafficLightBehavior, EmergencyRequestSecondaryRoad-

Passing . 99
6.40 State Machine of TrafficLightBehavior, BrokenLightSafeState 100
6.41 Component Overview Description of TimeOutTimer 100
6.42 State Machine of TimeOutTimer . 100
6.43 Component Overview Description of Clock 101
6.44 Component Overview Description of InductionLoopIAL 101
6.45 State Machine of InductionLoopIAL, MainRoadPassing 101
6.46 Component Overview Description of LightsInterfaceAbstraction 102
6.47 State Machine of LightsInterfaceAbstraction, All Subproblems 102
6.48 Software architecture for traffic light control component 103
6.49 Interface classes for the traffic light control 104
6.50 Composed State Machine for the Component TrafficLightBehavior 106

vi

7.1 Context Diagram for ATM Problem . 114
7.2 Problem Diagram for Authenticate (Commanded Behavior Variant) 116
7.3 Problem Diagram for Request (Commanded Information Variant, Information

Display) . 116
7.4 Problem Diagram for Take Card (Required Behavior) 117
7.5 Problem Diagram for Update Account (Workpieces Variant) 117
7.6 Problem Diagram for Take Money (Required Behavior Variant) 117
7.7 Problem Diagram for Log (Workpieces) . 118
7.8 Problem Diagram for Display Log (Commanded Information Variant, Infor-

mation Display) . 118
7.9 Sequence Diagram for Authenticate . 119
7.10 Sequence Diagram for Request . 119
7.11 1st Sequence Diagram for Take Card . 120
7.12 2nd Sequence Diagram for Take Card . 120
7.13 Sequence Diagram for Update Account . 121
7.14 Sequence Diagram for Take Money . 121
7.15 Sequence Diagram for Log . 122
7.16 Sequence Diagram for Display Log . 122
7.17 ATM System Architecture . 123
7.18 Sequence Diagram of the Admin Keypad Behavior 125
7.19 Sequence Diagram of the Admin Display Behavior 125
7.20 Sequence Diagram of Customer Keypad Behavior 126
7.21 Sequence Diagram of the Display Behavior 126
7.22 Architecture for Authenticate . 127
7.23 Architecture for Request . 127
7.24 Architecture for Take Card . 127
7.25 Architecture for Update Account . 127
7.26 Architecture for Take Money . 128
7.27 Architecture for Display Log . 128
7.28 Architecture for Log . 128
7.29 Class Diagram for Request Application . 129
7.30 Class Diagram for Update Account Application 129
7.31 State Machine for Authenticate Application 130
7.32 State Machine for Request Application . 130
7.33 State Machine for Take Card Application 131
7.34 State Machine for Update Account Application 131
7.35 State Machine for Take Money Application 131
7.36 State Machine for Log Application . 131
7.37 State Machine for Display Log Application 132
7.38 Class Diagram for User Interface . 132
7.39 State Machine for Authenticate User Interface 132
7.40 State Machine for Request User Interface 133
7.41 State Machine for Log User Interface . 133
7.42 Composed Architecture . 134

vii

7.43 Merged State Machine for Take Money and Update Account Application . . . 135
7.44 Merged State Machine for Take Money, Update Account, and Log Application 135
7.45 State Machine for all Sequential and Alternative Problems 136
7.46 Merged State Machine for the User Interface 136

8.1 Mapping to the V-Model . 139

viii

List of Tables

3.1 Step 1 - Describe Problem . 15
3.2 Step 2 - Consolidate Requirements . 16
3.3 Step 3 - Decompose Problem . 16
3.4 Step 4 - Derive Specifications . 17
3.5 Step 5 - Express System Behavior . 18
3.6 Step 6 - Design System Architecture . 19
3.7 Step 7 - Derive Interface Behavior . 20
3.8 Step 8 - Design Software Architecture . 21
3.9 Step 9 - Specify Software Components . 23
3.10 Step 10 - Implement Software Components and Test Environment 24
3.11 Step 11 - Integrate Hardware and Software 25

5.1 Step 1 - Describe Problem . 34
5.2 Step 2 - Consolidate Requirements . 35
5.3 Step 3 - Decompose Problem . 36
5.4 Step 4 - Derive Machine Behavior Specifications for each Subproblem 38
5.5 Step 5 - Design Global System Architecture 41
5.6 Step 6 - Derive Specifications for all Components being Relevant for the Sub-

problem . 43
5.7 Step 7 - Design Software Architecture for each Component and each Subproblem 45
5.8 Step 8 - Specify Behavior of Software Architecture Components for each Sub-

problem . 52
5.9 Step 9 - Specify Software Components of Software Architectures for each

Subproblem . 54
5.10 Step 10 - Develop Global Software Architecture for each Component 56
5.11 Step 11 - Specify Composed Software Components 57
5.12 Step 12 - Implement Software Components and Test Environment 59
5.13 Step 13 - Integrate Software Components 60
5.14 Step 14 - Integrate Hardware and Software 61

8.1 Mapping: Points for Improvements - Steps of DPES 140

ix

1 Introduction

This thesis describes a pattern- and component-based process for embedded systems develop-
ment.

Embedded systems are computer-based systems being part of a product other than a computer
[Sim04]. They consist of hardware- and software-components. Embedded systems can be
found in almost every area of daily life. They are used in the application domains automotive,
aviation and space technology, medical technology, traffic guidance technology, industrial au-
tomation, telecommunications, business, entertainment, and household. According to Broy
and Pree [BP03], about 98 % of the CPUs produced worldwide are used in embedded sys-
tems. Since embedded systems are usually produced in large numbers, incorrectly functioning
systems might cause large damages.

Hence, it is crucial to develop embedded systems in such a way that the probability of errors is
minimized. This aim can be achieved by following a development process with clearly defined
and manageable steps. Such a process is defined in [HH05b].

Instead of starting the development from scratch each time, making use of a body of accu-
mulated knowledge improves the quality and reduces the time to market. The use of patterns
is a promising way of making use of accumulated knowledge. Patterns can be used in dif-
ferent phases of the software lifecycle. Problem frames are patterns for representing simple
software development problems, and architectural patterns are patterns for representing the
coarse-grained structure of a piece of software. Another approach to use accumulated knowl-
edge is the reuse of components, developed in other projects.

The use of patterns and components must be integrated into the development process. In this
thesis the development process defined in [HH05b] will be refined and adapted in such a way
that the problem can be decomposed, the decomposed subproblems can be used to develop an
appropriate system and software architecture using patterns. The software architectures for all
subproblems should be combined in a systematic way.

In Chapter 2, basic concepts used in this thesis, e.g., problem frames, sequence diagrams,
architectural styles, and composite structure diagrams are described. To integrate patterns and
components into the development process, the process used as a basis will be described in
Chapter 3. Chapter 4 identifies points for improvements within the development described
in Chapter 3. In Chapter 5, the refined and adapted development process is presented. This
process is then applied to two case studies: A Traffic Light Control is developed in Chapter
6 and an Automatic Teller Machine is developed in Chapter 7 using the improved process.
Chapter 8 concludes with a discussion of the process and directions for future research.

1

2 Basic Concepts

In this chapter, the basics of this thesis are briefly described.

2.1 Agenda Concept

The agenda concept [Hei98] can be used to describe processes. An agenda is a list of steps or
phases to be performed when carrying out some tasks in the context of systems and software
engineering. Each step results in a document that is expressed in a certain language. E.g.,
natural language, problem diagrams (cf. 2.4), UML (Unified Modeling Language [OMG05])
diagrams, or even formal languages can be used. Agendas contain informal descriptions of
the steps, which may depend on each other. Therefore they are a method to guide systems and
software development activities. Additionally, agendas support quality assurance, because the
steps may have validation conditions associated with them that help to detect errors as early as
possible in the process. These validation conditions state necessary semantic conditions that
the developed artifact must fulfill in order to serve its purpose properly.

2.2 Context Diagrams

The environment in which the machine will operate is represented by a context diagram
[Jac01]. It is used for structuring of problems by structuring the description of the environ-
ment.

A context diagram consists of domains and interfaces. Domains are represented by rectangles.
Plain rectangles denote application domains (that already exist), a rectangle with a single
vertical stripe denotes a designed domain physically representing some information, and a
rectangle with a double vertical stripe denotes the machine to be developed. The connecting
lines represent interfaces that consist of shared phenomena. A shared phenomenon of an
interface is controlled by one domain and it can be observed by the other domain. However,
a context diagram does not show who is in control of the shared phenomena. An example
of a context diagram is shown in Fig. 2.1. This context diagram shows a patient monitoring
system. The Monitor machine is the machine domain in this context. The domain Periods
& Ranges is a designed domain. All other domains (e.g., Medical staff, Nurses’ station) are
application domains. The interfaces in this context diagram are donated with a, b, c, d, e, and f.
Period, Range, PatientName, and Factor are shared phenomena associated with the interface a.

2

staff

Medical

Nurses’
station

Factors
database

Periods &

Ranges

Monitor

Analog

devices patients

ICU

a: Period, Range, PatientName, Factor

EnterPatientName, EnterFactor
b: EnterPeriod, EnterRange,

c: Notify
d: Factors

f: FactorEvidence

a

b

c

d

e

f

e: RegisterValue

machine

Figure 2.1: Context Diagram: Patient Monitoring System (cf. [Jac01])

The domain Analog devices is a connection domain. Connection domains connect two ore
more other domains. They represent a communication medium or device between these do-
mains. Connection domains have to be considered if connections are unreliable, introduce
delays that are an essential part of the problem, convert phenomena, or are mentioned in the
requirements. Other examples for connection domains are a network connection, a display
unit, or a keyboard that is used for user input.

2.3 Problem Decomposition

The decomposition of realistic problems into simpler subproblems is necessary for solving the
problems. It is also necessary for capturing, describing, and understanding realistic problems.

A Top-Down-Decomposition, a Use-Case-Decomposition or a “Knowledge-based” decompo-
sition can be performed to decompose a realistic problem [CHH05b].

Top-Down-Decomposition The Top-Down-Decomposition is the oldest and worst ap-
proach. Functions are arranged in a hierarchy of several levels. At each level function
are decomposed into a number of functions at the next level. This process is stopped
when a level is reached where all functions are regarded as elementary. This approach
takes no explicit account of the problem to be decomposed and it is unlikely to achieve
a good decomposition without being familiar with the problem.

Use-Case-Decomposition The Use-Case-Decomposition is well-known through object-
oriented analysis. It works well when it makes sense to think of the machine as a facility
offering discrete services that are used in clearly defined episodes. But it is not suitable
for continuing interaction between machine and problem domains, as often needed for
embedded systems.

“Knowledge-based” decomposition The “Knowledge-based” decomposition through
projection decomposes a problem into “parallel” (not hierarchical) subproblems. The

3

knowledge of problem classes and their solutions are used for the decomposition. The
subproblems are complete, independent problems with their own problem diagrams.
When a subproblem is analyzed, the other subproblems are considered as solved. This
decomposition leads to a separation of concerns.

2.4 Problem Frames

Problem frames are a means to describe software development problems using “knowledge-
based” problem decomposition. They were invented by Michael A. Jackson [Jac01], who
describes them as follows:

“A problem frame is a kind of pattern. It defines an intuitively identifiable problem
class in terms of its context and the characteristics of its domains, interfaces and
requirements.”

Problem frames are described by frame diagrams, which basically consist of rectangles and
links between them. The domains in the problem frames are denoted in the same way as
in the context diagrams. The links represent interfaces that consist of shared phenomena.
A phenomenon is controlled by one domain and can be observed by another domain. The
notation “U!E3” means that the user commands E3 are controlled by the User (cf. Fig. 2.2).

Requirements are denoted with a dashed oval. A dashed line represents a requirements refer-
ence. It connects all domains that are necessary to express the requirement with the dashed
oval. An arrow shows that it is a constraining reference.

Jackson distinguishes causal domains, lexical domains, and biddable domains. Causal do-
mains, which are indicated by “C”, comply with some laws. Lexical domains are data repre-
sentations. The “X” on the Workpieces domain (cf. Fig. 2.2) indicates that this domain is a
lexical domain. Biddable domains indicated by “B” are persons.

Jackson defines five basic problem frames (Workpieces, Transformation, Required Behavior,
Commanded Behavior, and Information Display).

The following problems fit to the Workpieces problem frame:

‘A tool is needed to allow a user to create and edit a certain class of computer
processable text or graphic objects, or similar structures, so that they can be sub-
sequently copied, printed, analyzed or used in other ways. The problem is to build
a machine that can act as this tool.’ [Jac01]

The lexical domain Workpieces is an inert domain. The objects in this domain can be copied,
printed, analyzed, and modified by the domain customer. The corresponding frame diagram is
shown in Fig. 2.2.

The following problems fit to the Transformation problem frame:

4

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Figure 2.2: Workpieces Frame Diagram (cf. [Jac01])

‘There are some computer-readable input files whose data must be transformed to
give certain required output files. The output data must be in a particular format,
and it must be derived from the input data according to certain rules. The prob-
lem is to build a machine that will produce the required outputs from the inputs.’
[Jac01]

The corresponding frame diagram is shown in Fig. 2.3.

IO
relation

IN!Y1

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3

Figure 2.3: Transformation Frame Diagram (cf. [Jac01])

The following problems fit to the Required Behavior problem frame:

‘There is some part of the physical world whose behaviour is to be controlled so
that it satisfies certain conditions. The problem is to build a machine that will
impose that control.’ [Jac01]

The corresponding frame diagram is shown in Fig. 2.4.

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Figure 2.4: Required Behaviour Frame Diagram (cf. [Jac01])

The following problems fit to the Commanded Behavior problem frame:

5

‘There is some part of the physical world whose behaviour is to be controlled
in accordance with commands issued by an operator. The problem is to build a
machine that will accept the operator’s commands and impose the control accord-
ingly.’ [Jac01]

The corresponding frame diagram is shown in Fig. 2.5. The phenomena E4 in this figure are
the operator commands.

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control

OP!E4

GD!C2
CM!C1

C

Figure 2.5: Commanded Behaviour Frame Diagram (cf. [Jac01])

The following problems fit to the Information Display problem frame:

‘There is some part of the physical world about whose states and behaviour infor-
mation is continually needed. The problem is to build a machine that will obtain
this information from the world and present it at the required place in the required
form.’ [Jac01]

The Information Display problem frame offers a structure for applications devoted to the dis-
play of real world physical data. The corresponding frame diagram is shown in Fig. 2.6. The
interface between the Information machine and the Real world contains only phenomena C1 that
are controlled by the real world. This means that the machine cannot influence the real world.
Its purpose is only to display things that happen in the real world.

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

Figure 2.6: Information Display Frame Diagram (cf. [Jac01])

The Commanded Information problem frame (Figure 2.7) is derived from the Simple IS frame
[Jac95]. In [Jac01], the Commanded Information frame is presented as a variant of the In-
formation Display frame, where an operator is added. The Commanded Information frame is
very similar to a Database Query frame [CH04], the only difference being that the domain to
be displayed does not need to be causal, but can also be a lexical domain (cf. [Jac01]).

6

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

Figure 2.7: Commanded Information Frame Diagram (cf. [Jac01])

To fit a subproblem to a problem frame, one must instantiate its frame diagram, i.e., provide
instances for its domains, phenomena, interfaces, and requirements. The instantiated frame
diagram is called a problem diagram.

Additionally, the properties and the behavior of all domains should be described. This domain
knowledge can be explained essentially in the following way [Jac01]:

“These descriptions are indicative – they indicate the objective truth about the
domains, what’s true regardless of the machine’s behaviour.”

Requirements describe the environment, the way it should be after the machine is integrated.
Assumptions are conditions that are needed, so that the requirements are accomplishable. Usu-
ally, they describe required user behavior or assumed properties of a domain. The assumptions
are the basis for the user manual.

In contrast to the requirements, the specification of the machine gives an answer to the ques-
tion: “How should the machine act, so that the system fulfills the requirements?” Specifica-
tions are descriptions that are sufficient for building the machine. They are implementable
requirements. The following properties can be used to identify non-implementable require-
ments:

1. Controlled by the environment, not observable by the machine: These shared phenom-
ena are connecting problem domains, but are not directly connected to the machine
domain. Shared phenomena of this category often belong to the assumptions or domain
knowledge.

2. Controlled by the environment, observable by the machine: These shared phenomena
have a relation or have been derived out of the requirements. Shared phenomena of
this class are represented by a link between machine and problem domain in a context
diagram.

3. Controlled by the machine, observable by the environment: These shared phenomena are
also represented by a link between machine and problem domain in a context diagram,
but with another control direction.

7

The category ”controlled by the machine, not observable by the environment” is not consid-
ered, since internal phenomena of the machine do not belong to the requirements.

For the correctness of a specification S in relation to the domain knowledge D , the require-
ments R, and the assumptions A, the following implication must be shown:

A ∧ D ∧ S ⇒ R, where A ∧ D ∧ S must be non-contradictory.

If the requirements are transformed into a formal notation, the implication can be proved
formally. Otherwise the implication can be used as to structure an informal explanation.

2.5 Sequence Diagrams

UML sequence diagrams [OMG05] can be used to express interactions between actors, ob-
jects, and processes. In a sequence diagram, the time progresses from the top to the bottom.
The interaction is expressed by messages between lifelines. Messages are represented by ar-
rows and annotated with names, while lifelines are represented by vertical dashed lines. A
sequence of messages represents a certain scenario, which is of concern for a security prob-
lem. Sequence diagrams are used to express sequences representing normal case scenarios
and additionally exceptional case scenarios. All sequence diagrams together express the be-
havior of the machine.

Sequence diagrams can also be used to express interactions between different domains of
problem diagrams. The shared phenomena are represented by messages, while the involved
domains are represented by processes or objects in the sequence diagram.

A sample sequence diagram for env and machine is shown in Fig. 2.8.

This sequence diagram starts with the state invariant init state. It ends with the state invariant
end state. For this state another valid notation is used. The state invariant is a constraint, which
is assumed to be evaluated during runtime. The constraint is evaluated immediately prior to
the execution of the next actions. If the constraint is true, the trace is a valid trace. If the
constraint is false, the trace is an invalid trace.

The messages FoundMsg and LostMsg are lost or found messages. They are used to express
messages that are lost or found during a transmission. A found message is therefore sent by a
component that is not in the specification.

In Fig. 2.8 timing constraints are annotated. The message Msg3 should be sent within the given
time LIMIT that is starting with the message Msg2.

In the sequence diagram, the combined fragments ALT to express alternatives and LOOP to
express repetitions. Other operators for combined fragments in sequence diagrams are:

alt alternatives; more than two alternatives are possible.

opt option

8

Figure 2.8: Sequence diagram example

9

loop repetition

break description of behavior expected after a break

par parallel independent execution of several operands

ignore to define messages to be ignored in the execution

consider to define messages to be considered in the execution

seq weak sequencing (default)

strict strict sequencing

neg to define forbidden behavior

critical critical region, non-interruptible behavior

assert assertion, to define a message sequence that must occur

2.6 Composite Structure Diagrams

Composite structure diagrams [OMG05] are a means to describe architectures. They contain
named rectangles, called parts. These parts are components of the software or of the hardware.
Each component may contain other (sub-)components. Atomic components can be described
by state machines and operations for accessing internal data.

Parts have ports, denoted by small rectangles. Ports may have interfaces associated to them.
Provided interfaces are denoted using the “lollipop” notation, and required interfaces using
the “socket” notation. Figure 2.9 shows how interfaces in problem diagrams are transformed
into interfaces in composite structure diagrams.

P1: {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)

P1_if

Figure 2.9: Notation for Architectures

The partial problem diagram shown on the left-hand side of Figure 2.9 states that the phenom-
ena phen1 and phen2 shared between the machine and a domain are controlled by the machine.
In the composite structure diagram (with associated interface class) shown in the middle of

10

Figure 2.9, this is expressed by a required interface P1 if of the component named Part, which
is the same as for the whole machine.

Shared phenomena controlled by a domain correspond to provided (instead of required) inter-
faces of the component and the machine, respectively. Because of this direct correspondence,
the socket and lollipop notation can be replaced by connectors between ports as shown on the
right-hand side of Figure 2.9.

2.7 Architectures and Architectural Styles

According to Bass, Clements, and Kazman [BCK98],

“the software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them.”

Architectures can be given for hardware and software. To express hardware architectures,
usually components with interfaces between the components are used. The component-based
structuring is provided by hardware description languages like VHDL or Verilog and also by
UML composite structure diagrams. In contrast, the architecture of software is multi-faceted:
there exists a structural view, a process-oriented view, a function-oriented view, an object-
oriented view with classes and relations, and a data flow view on a given software architecture.
In this thesis a structural view with interfaces is used for the following reasons:

• The process-oriented view can be added by defining components as active or passive.

• The function-oriented view can be extracted from the interfaces and its description.

• Composite structure diagrams can be mapped onto a class model.

• Within a part object-oriented classes and relations can be used to express complex data
type.

• The data flow is given by the parameters and return values of methods in the interface
classes.

Architectural styles are patterns for software architectures. A style is characterized by Bass,
Clements, and Kazman [BCK98] as

(i) a set of component types (e.g., data repository, process, procedure) that perform some
function at runtime,

(ii) a topological layout of these components indicating their runtime interrelationships,

11

(iii) a set of semantic constraints (for example, a data repository is not allowed to change the
values stored in it), and

(iv) a set of connectors (e.g., subroutine call, remote procedure call, data streams, sockets)
that mediate communication, coordination, or cooperation among components.

When choosing an architecture for a system, usually several architectural styles are possible,
which means that all of them could be used to implement the functional requirements. Which
architectural style is the most appropriate must then be decided using non-functional criteria
such as efficiency, scalability, or modifiability.

Some important architectural styles are the layered architecture, the repository architecture,
and the pipe and filter architecture.

Layered architecture The layered architecture allows a hierarchical organization of soft-
ware. “Lower” layers provide services for “higher” layers. A well-known example is
the ISO/OSI reference model for communication protocols. The layered architectural
pattern, shown in Fig. 2.10, consists of an application layer that processes the signals
corresponding to those in the physical environment. The Interface Abstraction Layer
(IAL) transforms the signals of the application into signals that can be understood by
the Hardware Abstraction Layer (HAL). This layer provides abstract interfaces to the
hardware components. The components in the layered architecture are either Com-
municating Processes (active components) or used with a Call-and-Return mechanism
(passive components). That design decision is taken in a later step of the development.

Repository architecture The repository architecture consists of a central data storage and
several client components that use the central data storage to exchange data. The repos-
itory architectural style is shown in Fig. 2.11.

Pipe and filter architecture The pipe and filter architecture consists of several sequential
components. Each component performs one step of the complete task (filter) and the
results are transferred to the next component using a pipe.

Application

Hardware Abstraction Layer

Interface Abstraction Layer

Figure 2.10: Layered Architecture

(Repository)
Storage

Data

Client

Client Client

Client

Figure 2.11: Repository Architecture

12

2.8 State Machines

State machines [OMG05] are a means to describe the behavior of a component. They contain
states and transitions. Each state machine must contain an initial state. The initial state is
indicated with a big dot and an arc pointing to the initial state. Each transition is triggered by
an input signal. The input signal is separated from the actions and output signals by a slash.
The actions and output signals are separated by commas. A transition can be guarded.

/ action1,

STATE_A

input_signal_1 ()

input_signal_2 () /

output_signal_2 ()

STATE_B

COMP_STATE

input_signal_1 () /

action1, output_signal_2 ()

 output_signal_1 ()

input_signal_2 (a)

[a==0] / action1, output_signal_2 ()

State Machine 1

Figure 2.12: State Machine

The state machine in Fig. 2.12 consists of three states: STATE A, STATE B and the composite
state COMP STATE indicated by a special symbol. A composite state contains a further state
machine. The initial state is STATE A. Input signals are input signal 1 and input signal 2. The
action in this diagram in called action1 and the output signals are called output signal 1 and
output signal 2. The signal input signal 2 has the parameter a. This parameter is used to guard
transitions depending on the value of a. Hence, action1 is executed and the signal output signal 2
is sent only if the expression [a==0] is true.

13

3 A Model Based Development
Process for Embedded Systems

In [HH05b], a development process for embedded systems is presented. It was developed over
time and gradually improved in an industrial context. It is based on development processes
used for developing security-critical systems according to the Common Criteria [CC99] and
the procedure required for developing safety-critical systems according to IEC 61508 [Int98].
The process emerged from projects dealing for example with smartcard operating systems and
applets for smartcards in the area of security-critical systems, and motor control and automatic
doors in the area of safety-critical systems.

In this chapter, the development process for embedded systems is presented, following the
agenda concept (cf. Section 2.1). To apply the agenda, the following steps have to be per-
formed:

1. Describe Problem

2. Consolidate Requirements

3. Decompose Problem

4. Derive Specifications

5. Express System Behavior

6. Design System Architecture

7. Derive Interface Behavior

8. Design Software Architecture

9. Specify Software Components

10. Implement Software Components and Test Environment

11. Integrate Hardware and Software

The following sections describe how to carry out and validate all the steps of the development
process. Each step is motivated and explained in detail. It contains the input being necessary
to perform the step, the generated output and validation activities. For each input entity and
output entity a notation is recommended.

14

3.1 Step 1: Describe Problem

Step 1 of the agenda is a creative process. Table 3.1 shows the input, the output, and the
validation activities for this step.

input: mission statement (SM) natural language

output:

requirements R
glossary
with definitions and designations
domain knowledge D
assumptions A
context diagram

natural language
natural language

natural language
natural language
Jackson

validation: in Step 2

Table 3.1: Step 1 - Describe Problem

In contrast to other work, it is distinguished between requirements and a system mission state-
ment (SM). This helps to classify the requirements in ”need to have” and ”nice to have”.
The system mission statement describes the purpose of the system in general terms. The re-
quirements (R), in contrast, describe in more detail how the environment will behave after the
developed system is integrated in it. The requirements are supposed to be a refinement of the
system mission. Domain knowledge (D) consists of facts that are true no matter how the em-
bedded system is built. Assumptions (A) usually are rules how users should behave, but which
cannot be enforced1. Assumptions can also be associated with causal domains (e.g., one could
assume that the display will not fail). A context diagram distinguishes between environment
and machine. It structures the environment into a machine and (usually several) problem do-
mains. The notation proposed by Jackson can be used. The requirements refer to the problem
domains. The domain knowledge and the assumptions describe the domains. A glossary is
important to clarify the domain-specific vocabulary which is used in the requirements, in the
assumptions, and in the domain knowledge. Requirements, context diagram, glossary, domain
knowledge, and assumptions are developed in parallel.

The informal way of description used here is helpful to communicate with customers.

3.2 Step 2: Consolidate Requirements

In this step, the consistency between the system mission and the requirements is checked.
Table 3.2 shows the input, the output, and the validation activities for this step.

To consolidate the requirements, it must be guaranteed that the domain knowledge, the as-
sumptions, and the requirements are not contradictory. They should suffice to accomplish
the system mission. In most cases, domain knowledge, assumptions and further requirements

1For more details, see [ZJ97, HS99].

15

input: all results of Step 1 natural language
Jackson

output:
set of consolidated requirements
distinguish between ”need to have”
and ”nice to have”

natural language

validation:

D ∧ A ∧ R are consistent
D ∧ A ∧ R′ =⇒ SM
to determine completeness of requirements
and to determine set of most important
requirements

Table 3.2: Step 2 - Consolidate Requirements

have to be added to perform the check successfully. If there are requirements that are not nec-
essary to show that the system mission is accomplished, then either these requirements are not
mission-critical, or the system mission is incomplete. Requirements not being mission-critical
can be analyzed to decide if the added value for the customer is higher than the estimated cost
to develop the feature in question.

3.3 Step 3: Decompose Problem

In this step, the problem is divided into subproblems, as described by Jackson [Jac01]. Ta-
ble 3.3 shows the input, the output, and the validation activities for this step.

input:

consolidated requirements R of Step 2
domain knowledge D of Step 1
assumption A of Step 1
context diagram of Step 1

natural language
natural language
natural language
Jackson

output:
set of problem diagrams
with associated set of requirements

Jackson
natural language

validation: consistent with context diagram of Step 1

Table 3.3: Step 3 - Decompose Problem

Each requirement must belong to the requirements of some subproblem. All mission-critical
requirements derived in step 2 are divided among these simple subproblems. Each requirement
must therefore belong to exactly one subproblem. Otherwise the requirement must be split into
two independent requirements. After a change of a requirement it is necessary to validate it
again by repeating Step 2.

The subproblems are represented as problem diagrams (see [Jac01]). Successfully fitting a
problem to a given problem frame (cf. 2.4) means, that the concrete problem indeed exhibits
the properties that are characteristic for the problem class defined by the problem frame. Since
all problems fitting in a problem frame share the same characteristic properties, their solutions

16

will have common characteristic properties, too. Therefore, it is worthwhile to look for solu-
tion structures that match the problem structures defined by problem frames.

If a problem does not fit into one of the problem frames, a new problem diagram can be devel-
oped. This should be kept as simple as possible. It can be assigned to simple requirements, i.e.,
the purpose of the machine is intuitively comprehensible. The problem diagram should show
simple interfaces, and it is easy to characterize the way the parts interact at each interface. The
domains should be clearly defined and only one problem domain should be constrained by the
requirements.

The following operations can be applied to derive the subproblems as projections of the overall
problem.

• Leave out domains (with corresponding interfaces)

• Combine several domains in one domain

• Divide one domain

• Reduce interface between domains

• Refine phenomena

• Combine (i.e., abstract) phenomena

3.4 Step 4: Derive Specifications

In this step, specifications of all the subsystems to be developed (called machines by Jackson)
are derived. Table 3.4 shows the input, the output, and the validation activities for this step.

input: requirements R from Step 3 natural language
domain knowledge D from Step 1 natural language
assumptions A from Step 1 natural language
problem diagram from Step 3 Jackson

output: specification S of machine to construct natural language
validation: D ∧ A ∧ S are consistent

D ∧ A ∧ S =⇒ R

Table 3.4: Step 4 - Derive Specifications

Specifications are implementable requirements. Requirements that are not implementable are
transformed into specifications using domain knowledge and assumptions. For an example,
see [JZ95]. The specification is a description of the machine that contains all necessary in-
formation for its construction. It must be shown that, when the machine fulfills S , then the
requirements are satisfied. For that proof, domain knowledge and assumptions can be used in
the validation condition D∧A∧S =⇒ R. D∧A∧S must be consistent, otherwise everything
can be deduced (cf. Section 2.4).

17

3.5 Step 5: Express System Behavior

Step 5 uses the problem diagrams from Step 3 and the specifications from Step 4. For each
subproblem, the desired behavior of the corresponding machine is specified using sequence
diagrams. Table 3.5 shows the input, the output, and the validation activities for this step.

input: specifications from Step 4 natural language
problem diagrams from Step 3 Jackson

output:
sequences of interactions
between machine and environment sequence diagrams

validation:

- all requirements must be captured
- in the charts exactly the phenomena of the

corresponding problem diagram are used
- direction of signals must be consistent

with control of shared phenomena
as specified in problem diagram

- signals must connect domains
as connected in problem diagram

Table 3.5: Step 5 - Express System Behavior

This behavior is expressed by using the UML notation for sequence diagrams. For each do-
main within such a problem diagram, a lifeline is drawn in the corresponding sequence dia-
gram. The machine to be built is also represented by a lifeline in the sequence diagrams. The
phenomena are represented by annotated, asynchronous signals between lifelines. This step is
equipped with various validation rules that can be used to check the consistency between the
problem diagrams and the sequence diagrams.

In general, the proceeding can be described as follows:

• Draw a lifeline for the machine to be built.

• Draw a lifeline for each domain (in the problem diagram) which is directly connected
to the machine.

• Add asynchronous messages between the domains and the machine according to the
specification.

• Add states.

• Make appropriate case distinctions according to (starting) states.

• Split the sequence diagrams at appropriate states, if necessary.

• Specify the initialization of the system.

• Refine events, make timing constraints precise.

18

• Add parameters to phenomena if appropriate.

Experience from many projects has shown that sequence diagrams can easily be discussed
with managers and customers that do not have technical knowledge.

The specifications developed in this step can be used as a basis for manual or even automatic
tests in Step 11.

3.6 Step 6: Design System Architecture

In this step, the system architecture is designed. Table 3.6 shows the input, the output, and the
validation activities for this step.

For all subproblems:

input:
sequence diagrams of all subproblems
from Step 5

sequence diagrams

output:

system architecture
all interfaces between the components
perhaps subcomponents (recursively)
technical description of hardware interfaces

UML 2.0 composite
structure diagrams
and interface classes

validation:
all interfaces must be captured
all subproblems must be captured
by one or more components

Table 3.6: Step 6 - Design System Architecture

The architecture of the embedded system is expressed as a composite structure diagram. This
diagram uses parts for the components whose ports are connected as described in [OMG05].
The connections are used to transmit the signals of the annotated interfaces between the com-
ponents. The interfaces with their signals are specified using interface classes. The architec-
ture can be specified recursively, i.e., components can have their own architecture, consisting
of subcomponents. The external interfaces of the components have to cover the interfaces of
all problem diagrams. The architecture must cover all specifications developed in Step 5. This
architecture is the starting point for the further development (hardware as well as software
development).

3.7 Step 7: Derive Interface Behavior

This step refines the sequence diagrams from Step 5 for all complex components of the system
architecture. Table 3.7 shows the input, the output, and the validation activities for this step.

For this sequence diagram, the signals specified in the interfaces of the architecture are used
to annotate the sequence diagrams. These sequence diagrams are a concrete basis for the test
implementation for all software components.

19

For all subproblems and for all components:

input:

architecture from Step 6

interfaces from Step 6
subcomponents (if defined) from Step 6

sequences of interactions from Step 5

UML 2.0 composite
structure diagrams
interface classes
UML 2.0 composite
structure diagrams
sequences diagrams

output:
interface behavior of all complex components
(test specification)

UML 2.0 sequence
diagrams

validation: consistent with input

Table 3.7: Step 7 - Derive Interface Behavior

In general, the proceeding can be described as follows:

• Draw a lifeline for all components of the architecture that are necessary to describe the
interface behavior of the subproblem and one lifeline for the environment.

• Describe the interface behavior of all components using the signals from the system
architecture (Step 6). The behavior must refine the behavior described in Step 5.

• Add missing sequence diagrams to describe the behavior for all relevant states.

• Describe the behavior of all components/parts at their interfaces.

• As for Step 5: Each diagram represents one concrete interaction sequence. Do not try
to make the diagrams too general. Draw further diagrams instead.

3.8 Step 8: Design Software Architecture

In this step, the software architecture for all components containing software is designed.
Table 3.8 shows the input, the output, and the validation activities for this step.

The architecture of embedded software should be a layered architecture (cf. 2.7).

To perform this step, the software can be divided into device-dependent and device-independent
parts according to the (extended) four variable model developed by David Parnas and extended
by Connie Heitmeyer [BH99].

The four variables in the model are the monitored variables, the controlled variables, the input
data, and the output data.

Monitored variables The monitored variables are measured quantities (i.e., physical val-
ues, monitored by sensors).

Controlled variables The controlled variables are affected quantities (i.e., physical values,
controlled by actuators).

20

input:

architecture from Step 6

interfaces from Step 6
phenomena in sequence diagrams from Step 5
perhaps reusable classes from other projects

UML 2.0 composite
structure diagrams
interface classes
sequence diagrams

output:
layered software architecture
interfaces between software components

UML 2.0 composite
structure diagrams
interface classes

validation:

phenomena of sequence diagrams
are interfaces of the application layer
hardware abstraction layer is included
direction of all signals consistent to each other and input

Table 3.8: Step 8 - Design Software Architecture

Input data The input data are resources from which the values of monitored variables must
be determined. These are submitted via a technical interface (electrical signals corre-
sponding to digital values).

Output data The output data are resources available to affect controlled variables. They are
submitted via a technical interface by the machine (electrical signals corresponding to
digital values).

The basic idea of the extended four variable model is, that the application layer software
should have the same interfaces as the system, i.e., monitored and controlled variables. Thus,
the application layer becomes device-independent, which is factored out in IALs and HALs.
(cf. 3.1)

S A
A’S’

: Actuators: Sensors

System Behavior (Step 5) System Behavior (Step 5)

Interface Behavior (Step 7)

Machine

: Application

: Sensor IAL

: Sensor HAL : Actuator HAL

: Actuator IAL

Figure 3.1: Extended Four Variable Model and Layered Architecture

The differences between the interface behavior and the system (machine) behavior are shown
in Figures 3.2 and 3.3. On the left-hand side of both figures, the interface behavior of the

21

software is shown (corresponds to S’) and on the right-hand side the behavior of the machine
at its external interface is shown.

sd if_TeaTimersd TeaTimer

decSec()
decSec()
decSec()
decSec()
decSec()

incMin()

incMin()
incMin()

: TeaTimer

adjust_time (3,10)

adjust_time (1,05)

: TeaTimer

incSec()

decMin()

: User : env

decMin()

loop (10)

Figure 3.2: Interface vs. System Behavior 1

In Fig 3.3 an analog-digital converter (ADC) is used to transform measured weight of vessel.
(5V =̂ value of 255)

The software architecture is expressed as a UML 2.0 composite structure diagram (cf. Section
2.6). To perform this step, already specified components of other projects can be reused.

The components in this layered architecture are either Communicating Processes (active com-
ponents) or used with a Call-and-Return mechanism (passive components). That design deci-
sion is taken in a later step of the development.

In general, the proceeding for all software components can be described as follows:

• Draw the component to build with all its external ports.
• Add a driver component for each external port and connect it with the already specified

interfaces. These driver components (which constitute the HAL) will abstract the access
to the hardware.

• Add an application component whose interfaces contain the phenomena from Step 5
(extended four variable model).

• Add interface abstraction components that convert the signals from the driver compo-
nents into signals that can be processed by the application component, if necessary.

• Refine the interface components by splitting them into subcomponents if appropriate.
• Refine the application component by splitting it into subcomponents if appropriate.

22

sdsd Fill if_Fill

: env: Control : Control: WaterContainer

FillState (11)
FillState (42)

FillState (43)

FillState (51)

FillState (52)
FillState (51)

BelowMax()

AboveMax()

AboveMin () FillState (10)
unit = kg

=10.2 ADC−Value
1kg=0.2V^
^

FillState (49)
FillState (11)
FillState (13)

Figure 3.3: Interface vs. System Behavior 2

3.9 Step 9: Specify Software Components

In this step, the software components are specified as classes, taking a white-box view. Ta-
ble 3.9 shows the input, the output, and the validation activities for this step.

input:
output of Step 8
behavior from Steps 5 and 7

output:

component description consisting of:
component overview description UML 2.0 class diagram

with ports and lollipops
data types UML class diagrams
for all operations:
pre- and postconditions

formulas or natural language

invariants formulas or natural language
state machine UML 2.0 state machine diagram

validation:
consistent with interface behavior
completeness of state machines
(implies error-cases for user-interaction)

Table 3.9: Step 9 - Specify Software Components

The specifications in this step have to be consistent with Step 7 with respect to the behavior
of data types and state machines. The state machines must be complete, i.e., there must be
a specified reaction to each possible input signal. The specifications must have the same
interfaces as in the component diagram designed in Step 8. In this step, we also have to decide

23

if the component is an active (e.g., behaves like hardware) or passive (e.g., calculation-routine)
component. The result of this step forms the basis for the implementation step.

In general, the proceeding for all components in the software architecture can be described as
follows:

• Draw an active or passive class with its interfaces as a component overview description.

• Add necessary data to this class.

• In case of complex data or complex operations on data types: add classes for data types.

• Specify pre- and postconditions for all operations.

• Add invariants if possible.

• Add state machines.

3.10 Step 10: Implement Software Components and
Test Environment

In this step, the test environment for all software components is implemented, using the test
specification from Step 7. In addition, time frames must be added, specifying when an event
is expected to occur. Table 3.10 shows the input, the output, and the validation activities for
this step.

input:
output of Step 7 and 5 for test environment
output of Step 9 for machine
output of Step 8 for machine

sequence diagrams
different UML
notations

output: software (machine and test software)
validation: run tests (perhaps in emulator) test results

Table 3.10: Step 10 - Implement Software Components and Test Environment

The system components are implemented using the results of Step 9, applying some simple
heuristics. The components have to be connected as specified in Step 8. For embedded sys-
tems, usually a static connection between components is established. The connectors in the
composite structure diagrams can be implemented e.g., as data streams, function calls, asyn-
chronous messages, or hardware access.

This development process allows developing statically linked software components with the
capability of reuse. To validate the results of this step, tests may be run in an emulation
environment.

In general, the proceeding for object-oriented programming languages can be described as
follows:

24

1. Create interface classes for all internal interfaces (also for subcomponents).

2. Create classes for all (sub-)components and implement them.

a) Implement actions as private methods according to the pre- and post-conditions.

b) Implement the state machine.

c) Implement the active classes with threads or timer libraries.

d) Check all classes if there is concurrent access to variables and resolve this problem
with synchronization statements.

3. Implement test cases for all components (except HAL) according to the sequence dia-
grams from Steps 5 and 7.

4. Create a method to initialize all objects according to the architecture from Step 8 and
run your application.

5. Run test cases.

3.11 Step 11: Integrate Hardware and Software

In this step, hardware and software components are integrated. Table 3.11 shows the input,
the output, and the validation activities for this step.

input: hardware and output of Step 10
output: system and test environment
validation: run test with hardware and software test results

Table 3.11: Step 11 - Integrate Hardware and Software

The test of the whole embedded system, consisting of hardware as well as software, is per-
formed. In general, the proceeding can be described as follows:

• Load software into target (microcontroller).

• Perform manual tests.

• Build test environment for automated test.

• Implement test cases for the whole machine according to the sequence diagrams from
Step 5.

• Run test cases.

The acceptance test should not be done by the developer. Therefore, the test environment can
be developed in parallel to the last steps. The test environment has to interact with the external
interfaces of the machine. Hence, the technical interfaces also consist of hardware.

25

4 Points for Improvement

In this chapter, points for improvement for the development process described in Chapter 3
are presented. The following points for improvement have been identified while applying the
development process on several machines to be developed.

4.1 Existing Machine Problem

Today, machines to be developed often replace or extend machines that are in use. They are
replaced or extended because the new machine brings additional benefit to the customer. This
benefit must be identified to develop the requirements for the machine. In Step 1, existing
machines that should be replaced are not considered. In this case the development process for
embedded systems gives little help for developing the requirements systematically.

Possible Solution for the Existing Machine Problem

To solve this problem, I suggest to draw two context diagrams in Step 1. One should be
used to show the actual context without the machine to be built. Another context diagram
should show the environment after the machine is integrated. Requirements can be found
systematically by comparing the system in use and the system at that time the machine is
integrated. For example, the domain knowledge and the assumptions of removed domains
give hints for requirements of the machine to be built.

4.2 System Architecture Design Problem

The development process gives little help for developing the system architecture. In the pro-
cess described in Chapter 3, the components inside the machine to be built must be identified
by experienced developers. An appropriate system architecture reduces costs to build the sys-
tem and it also minimizes the costs to extend the system with additional components.

Possible Solution for the System Architecture Design Problem

Usually, the developer knows when more than one new machine is necessary to solve the
problem by comparing the existing system with the system to be built. Systems with more

26

than one machine are necessary, when the machines are physically distributed (e.g., Client-
Server Systems) or when two machines solving different problems are connected with a given
connection domain.

This knowledge should be described in the context diagram in Step 1. But the context diagram
defined by [Jac01] allows only one machine domain. I suggest to allow more than one machine
domain in a context diagram. Otherwise for each machine a context diagram must be drawn,
which is very redundant.

Further knowledge which is necessary for developing the system architecture can be acquired,
when the problem is structured with problem frames. In the problem diagram, additional con-
nection domains can be included. Devices to access external domains are typical connection
domains that are helpful for the system architecture design. These connection domains belong
to the machine or to the environment. The dot-notation, introduced by Jackson in [Jac95], can
be used to express if a domain belongs to the machine or not. In the workpieces-frame, the
domain Workpieces is a part of the machine, which can be indicated with a big dot as shown in
Fig. 4.1.

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Figure 4.1: Workpieces Frame Diagram with Dot-Notation

According to Jackson, the big dot at the connecting line is only possible for lexical domains.
Since this development process is used to describe machines consisting of hardware and soft-
ware, also causal domains can belong to the machine (e.g., an analog-digital converter). If
the connection domain belongs to the machine, another problem diagram should be used to
describe the requirements for this domain. Usually a transformation is done by these domains,
and the transformation frame might be instantiated.

The machine domains can be used to identify components in our system architecture. For each
component in the system architecture several problem diagrams can be assigned. Hardware
components usually work in parallel. Therefore, only parallel problems can be distributed to
different components in the system architecture. If sequential or alternative problems should
be assigned to different hardware components, there must be one component coordinating the
sequential or alternative processing.

27

4.3 Subproblem Composition Problem

Within the process, the problem to be solved is decomposed into smaller problems and fitted to
a problem frame. Once a problem is successfully fitted to a problem frame, its most important
characteristics are known and it is possible to reuse software development knowledge. But
the development process gives only little help for the composition of the subproblems. The
composition of the subproblems is performed on the level of machine behavior description.
Therefore, the knowledge about appropriate software architectures for a problem can not be
reused.

Possible Solution for the Subproblem Composition Problem

To solve the problem, the dependencies (or synchronization information) between the sub-
problems should be described, so that this information can be used to combine the state ma-
chines as suggested in [CHH05b].

This paper only covers the software development. For the development of embedded systems
an additional step is necessary: When specifying the system architecture, for each component
the dependencies of the subproblems assigned to this component should be described. This
description must be consistent with the dependencies of all subproblems.

4.4 Readability of Sequence Diagrams Problem

Most developers try to describe the whole behavior in only few sequence diagrams. These
diagrams are very difficult to read and to explain. The reader has to extract all possible traces
without getting lost in all possibilities.

Possible Solution for the Readability of Sequence Diagrams
Problem

In the early steps only examples should be described. Loops, states, references and, co-regions
do not cause any problems, while other new constructs of UML 2.0 such as parallelism, and
continuation should be used with care. The operator alt and the statements ignore and consider
should be used very carefully or even better left out. Each diagram should represent one
concrete interaction sequence. One should not try to make the diagrams too general. It is
better to draw further diagrams.

28

4.5 Interoperability with Other Methods Problem

In the development process, no decision point is included for the question if another method is
more appropriate for the problem. The development process is tailored for Embedded System
development. Usually, the behavior of Embedded Systems depends on their internal states and
states machines are used to described the components. Machines dealing with complex and
dynamic data can not be described adequately using extended state machines.

Possible Solution for the Interoperability with Other Methods
Problem

If the architecture consists of only one software component or there are no causal domains in
the environment, we should continue with the FUSION method [DCJ94], because we do not
have an embedded system to be developed.

If one component of the architecture contains complex or dynamic data types or operations,
this component should be developed with the FUSION method, which is more suitable for
these problems.

4.6 Software Architecture Design Problem

The development process gives little help for developing the software architecture. An ap-
propriate software architecture is important to develop reliable, maintainable, and portable
software. The architecture has to be adequate for the given problem.

Possible Solution for the Software Architecture Design Problem

Architectural patterns can be provided for each problem frame as suggested in [CHH05a].
Fitting a problem to an appropriate problem frame should not only help to understand it, but
also to solve the problem. The proposed software architectural patterns correspond to the
different problem frames and are designed to be a starting point for the construction of the
software solving the given problem. These architectural patterns exactly reflect the properties
of the problems fitting to a given frame, and that they can be combined in a modular way to
solve multi-frame problems. Additional alternative architectures to cope with specific system
characteristics (e.g. distribution) are proposed.

4.7 Interface Control Problem

For hardware components, from the control of the phenomena can be deduced, which compo-
nent provides an interface and which component requires an interface (cf. Section 2.6). For

29

software components this is not always true: A simple database component is in control of the
requested information, but the requested information is a return value of an operation in the
provided interface.

Possible Solution for the Interface Control Problem

One solution would be an abstract description with a provided interface for the query and a
requested interface for the answer of the query as suggested implicitly in the development
process described in Chapter 3. But this might lead to inefficient solutions. Another solution
could be to allow the specification of operations with return values in the interfaces.

4.8 Notation Problem

In Step 4 (Derive Specification) and Step 5 (Describe System Behavior), the same aspects are
expressed with different notations.

Possible Solution for the Notation Problem

Both steps can be merged. The sequence diagrams of Step 5 can be annotated with informal
explanatory text in natural languge, which was the result of Step 4. By merging the steps the
process will be more independent from the used notations.

4.9 Interface Specification Problem

In many cases, it is very difficult to describe the whole behavior at the interface of a machine.
The specification of the control of a LCD-Display for example must include the control of
each segment or dot of the display. It is not possible to describe the behavior of the machine
at this level of detail. The same problem exists for the description of the software interface.
For this reason, it is difficult to test the machine directly at the software interface.

The solution suggested in the embedded systems development process was to use an abstract
notation, but there was no step where this abstract notation was put in concrete terms.

Possible Solution for the Interface Specification Problem

Instead of specifying the specification directly, the requirements and the corresponding domain
knowledge can be described. For the LCD-Display a requirement may be that a certain number
should be visible on the display. The necessary domain knowledge includes information about
which segments or dots must be switched on and off to display this number. Then, a developer

30

can easily derive the specification by replacing the signal for showing the number with signals
switching the segments or dots on or off.

This specification can be checked using the implication D ∧ S ⇒ R, where D ∧ S must be
non-contradictory.

The domain knowledge can be used to develop test interfaces and the requirements can be
used to develop the test cases.

4.10 IAL and HAL Specification Problem

In Step 5, the system behavior is described, and this description is also used to specify the
behavior of the application component. In Step 7, the interface of the software is described.
The description in Step 5 and Step 7 only implicitly specify the IAL and HAL behavior. An
explicit description of the IAL and HAL behavior is necessary for a test of these components.

Possible Solution for the IAL and HAL Specification Problem

In a further step, the IAL and the HAL can be described using sequence diagrams. The se-
quence diagrams describe the transformation rules from the application layer to the hardware
control. The domain knowledge used to describe the specification using requirements can be
reused for the specification of the IAL and HAL.

4.11 Jackson – Four Variable Model Integration
Problem

In Step 4 of the development process, the specifications of the machines are derived. These
specifications are the basics for the following steps of the development process. It describes the
external interface of the machine and therefore also the interface of the application component
of the software (cf. Chapter 3, Step 8). If the machine is only one part of the system, the
machine specifications do not correspond to the monitored or controlled variables. In this
case, the application component becomes more complex than necessary, and the extended
four variable model will not be applied.

Possible Solutions for the Jackson – Four Variable Model
Integration Problem

Two possibilities exist to solve the problem: Either the system architecture must also include
the existing components that transform the monitored variables into the input data of the com-
ponents to be built, or the specification for these cases is expressed as suggested in Section

31

4.9. I suggest not to include existing components in the system architecture which will be
developed. In this case, the system architecture only consists of components which will be
bought and must be selected. In this case, the specifications should be expressed using the
requirements and the domain knowledge.

4.12 Contradicting Requirements Problem

In the development process, defined in [CHH05b], contradicting requirements would be found
in a very late step of the development process. In case of contradicting requirements the system
can not be designed as required. One requirement must be removed, changed, or priorized.
Changes of the requirements must be detected and discussed with the customer as early as
possible.

Possible Solution for the Contradicting Requirements Problem

Contradictions between requirements usually occur in the application component. Therefore,
the IAL and HAL need not to be considered. To check if contradicting requirements exist, the
sequence diagrams can be transformed into a state machine. If a state machine which is con-
sistent to all sequence diagrams can be constructed, no contradicting requirements exist. This
step can be performed, when the behavior of the machine is specified, because its behavior is
the same for the application component.

4.13 Completeness of Specification Problem

For many safe systems, it is necessary to check the completeness of the specification. This can
only be done at the level of state machines and not at the level of sequence diagrams. Within
the process, the state machines are developed in Step 9 and an incomplete specification would
be detected not until the design phase is performed. When the design of the machine should not
be started before the specification is checked to be complete, this check has to be performed
before.

Possible Solution for the Completeness of Specification Problem

It is not possible to check if a requirement is missing or important domain knowledge is not
considered. But the methods and notations provided in the first steps of the development pro-
cess help to understand the problem in detail. Completeness also includes that in all states of
the machine all phenomena or signals that can occur are handled. This aspect of completeness
can be checked by constructing the state machine in the same way as for the contradicting
requirements problem.

32

5 Refined and Adapted Development
Process for Embedded Systems

In this chapter, a pattern- and component-based development process for embedded systems
is presented. It is emerged from the development process illustrated in Chapter 3, and it con-
siders the points for improvement identified in Chapter 4. It includes the problem frames
[Jac01] and the corresponding architectural patterns proposed in [CHH05a]. The relation-
ships between the subproblems are expressed explicitly, and the fact these relationships are
exploited when generating a global software architecture for the overall problem, as proposed
in [CHH05b]. The development process also treats the design of the system architecture and
the completeness and the consistency of the specification.

The process consists of the following fourteen steps explained one by one using the agenda
concept (cf. Section 2.1):

1. Describe Problem

2. Consolidate Requirements

3. Decompose Problem

4. Derive Machine Behavior Specifications for each Subproblem

5. Design Global System Architecture

6. Derive Specifications for all Components being relevant for the Subproblem

7. Design Software Architecture for each Software Component and each Subproblem

8. Specify Behavior of Software Architecture Components for each Subproblem

9. Specify Software Components of Software Architectures for each Subproblem

10. Develop Global Software Architectures

11. Specify Composed Software Components

12. Implement Software Components and Test Environment

13. Integrate Software Components

14. Integrate Hardware and Software

33

In the following sections is described how to carry out and validate all the steps of the devel-
opment process. Each step is motivated and explained in detail. It contains the input being
necessary to perform the step, the generated output and validation activities. For each input
entity and output entity a notation is recommended.

5.1 Step 1: Describe Problem

Step 1 of the agenda is a creative process. Table 5.1 shows the input, the output, and the
validation activities for this step.

input: system mission statement SM , natural language
informal description of the task

output: context diagram of system in use Jackson
context diagram of system to be built Jackson
requirements R natural language
domain knowledge D natural language
glossary with definitions and designations natural language
assumptions A natural language

validation: domains and phenomena in the context diagram
and in A, R or D must be consistent

validation continued in Step 2

Table 5.1: Step 1 - Describe Problem

An informal description of the task and a system mission statement is used as an input for this
step.

All domains that are relevant to the problem at hand and the phenomena that are shared by
different domains must be identified. When there is already a machine in the system that
should be replaced, the system (consisting of the machine and the environment) should be
expressed with a context diagram. An additional context diagram should be created, which
shows the system when the machine to build is integrated into the environment. In contrast
to the context diagrams defined by Jackson [Jac01], more than one domain can be a machine
domain. This should be only done if the machines are physically distributed or if there are
two machines solving different problems being connected with a given connection domain. If
there is more than one machine domain, the following steps of this development process must
be applied for all machines.

The requirements R (optative statements) have to be expressed, as well as domain knowledge
D and the assumptions A about the environment in which the machine (the system to be
developed) has to operate (indicative statements). These can be expressed in natural language,
in semi-formal, or in formal notations. In a glossary with definitions and designations the
vocabulary is described.

All items of the output can be developed in parallel. When e.g., a new requirement is identified,

34

it is possible that an additional phenomenon must be added to the context diagram or the
domain knowledge must be described more in detail. Additionally, the context diagram should
be consistent with the phenomena and domains in the statements.

All domains and phenomena mentioned in A, R, and D , must be contained in the context
diagram. All domains of the context diagram (except the machine domains) must be related to
some elements of A, R, or D . If two context diagrams are developed, the domain knowledge
and the assumptions for a domain included in both must be the same.

The step described in this section is derived from Step 1 of the process defined in [CHH05b]
and Step 1 of the process described in Chapter 3. In this process two context diagrams should
be created if there is a machine to be replaced. In the context diagram of this development
process, more than one machine domain is allowed. The differences in “system in use” and
“system to be developed” help to acquire requirements. Embedded systems often solve a
problem together with other machines. To allow more than one machine domain helps to
reduce the effort for describing the context, and it gives a better overview about the whole
system. This covers the point of improvement described in Section 4.1.

5.2 Step 2: Consolidate Requirements

In Step 2, the consistency between the system mission and the requirements is checked. Ta-
ble 5.2 shows the input, the output, and the validation activities for this step.

input: all results of Step 1 natural language

output:
set of consolidated requirements R′

distinguish between ”need to have”
and ”nice to have”

natural language

validation:

D ∧ A ∧ R are non-contradictory
D ∧ A ∧ R′ =⇒ SM
to determine completeness of requirements
and
to determine set of most important requirements

Table 5.2: Step 2 - Consolidate Requirements

The inputs for this step are all results of Step 1.

In this step, we distinguish between requirements being “need to have” or being “nice to have”.
“Need to have” requirements are necessary to fulfill the system mission. “Nice to have” can
be analyzed to decide if the added value for the customer is higher than the estimated cost to
develop the feature in question. The result is a set of consolidated requirements.

To validate this step it must be ensured, that the statements contained in the requirements
R, the domain knowledge D , and the assumptions A are non-contradictory. They should
suffice to accomplish the system mission. In most cases, domain knowledge, assumptions and
further requirements have to be added in Step 1 to successfully perform the check. If there are

35

requirements that are not needed to show that the system mission is accomplished, then either
these requirements are not mission-critical, or the system mission is incomplete.

This step is the same as Step 2 of the process described in Chapter 3. In the process defined
in [CHH05b] such a step does not exists. Performing such a validation helps to reduce the
development risks by prioritizing the requirements.

5.3 Step 3: Decompose Problem

In Step 3, the problem is divided into subproblems, as described by Jackson [Jac01] and in
[CHH05b]. Table 5.3 shows the input, the output, and the validation activities for this step.

input: consolidated requirements R′ of Step 2 natural language
domain knowledge D of Step 1 natural language
assumption A of Step 1 natural language
context diagram of Step 1 natural language

output: set of problem diagrams Jackson with dot-notation
with associated set of requirements natural language
expression of the subproblem process algebra-like notations,
relationships grammars, high-level sequence

charts, or sequence charts
using combined fragments

validation: consistent with context diagram of Step 1
all requirements of Step 2 must be captured

Table 5.3: Step 3 - Decompose Problem

The inputs for this step are consolidated requirements R′, domain knowledge D , assumption
A, and the context diagram of the machine to be built.

A set of problem diagrams is developed in this step, and all mission-critical requirements R′

are assigned among these simple subproblems.

There are different possibilities to decompose a complex problem into subproblems. Jackson
[Jac01] proposes a parallel decomposition using projection, but a decomposition by use-cases
(for an example, see [CH04]) or a top-down decomposition are also possible. The following
relationships between subproblems can be identified and help to compose the solution:

• Parallel subproblems are largely independent of each other, and the composed machine
will have to treat the problems in parallel.

• Sequential subproblems have to be treated one after another.

• Alternative problems are exclusive. Only one of them will have to be treated at a given
time.

36

To express subproblem relationships, different means of expression are appropriate, for exam-
ple process algebra-like notations, grammars, high-level sequence charts, or sequence charts
using combined fragments (the latter two introduced in UML 2.0).

However, composing the solution of the overall problem from the solutions of the subproblems
does not mean to develop an independent program for each subproblem and then compose
these programs. Instead, the solutions to the subproblems will contain common components
that have to be identified and then merged accordingly (cf. Steps 10 and 11). This is the
challenge of the composition problem.

The subproblems are represented as problem diagrams (see [Jac01]). Successfully fitting a
problem to a given problem frame (cf. 2.4) means that the concrete problem indeed exhibits
the properties that are characteristic for the problem class defined by the problem frame. Since
all problems fitting in a problem frame share the same characteristic properties, their solu-
tions will have common characteristic properties, too. Therefore, it is worthwhile to look
for solution structures that match the problem structures defined by problem frames. To fit a
subproblem into a problem frame, the following operations can be applied:

• Leave out domains (with corresponding interfaces)

• Combine several domains in one domain

• Divide one domain

• Reduce interface between domains

• Refine phenomena

• Combine (i.e., abstract) phenomena.

If a problem does not fit into one of the problem frames, a new problem diagram can be
developed. This diagram should be kept as simple as possible. It can be assigned to simple
requirements, i.e., the purpose of the machine is intuitively comprehensible. The problem
diagram should show simple interfaces, and it is easy to characterize the way the parts interact
at each interface. The domains should be clearly defined, and only one problem domain should
be constrained by the requirements. Otherwise, the subproblem is not simple but needs further
decomposition.

In the problem diagrams, the domains belonging to the machine should be identified by a big
dot at the interfaces of the machine.

To validate this step, it must be checked, that the problem diagrams are consistent with the
context diagram of Step 1, i.e. only the operations described above are applied. All require-
ments R′ of Step 2 have to be captured. All domains and all phenomena of the context diagram
must be captured.

This step is derived from Step 3 of the process defined in [CHH05b] and Step 1 of the process
described in Chapter 3. In contrast to these development processes, it is expressed in the
problem diagrams, which domains belong to the machine to build. This information can be

37

used to develop the system architecture (Step 5), as explained in Section 4.2. The description
of the dependencies in [CHH05b] is integrated in the process described in Chapter 3. This
information can be used to combine the software architectures in Step 10 and components in
Step 11 (cf. Section 4.3).

5.4 Step 4: Derive Machine Behavior Specifications
for each Subproblem

In this step, the machine behavior specifications for each subproblem are derived. Table 5.4
shows the input, the output, and the validation activities for this step.

For all subproblems:
input: requirements R′ from Step 2 natural language

domain knowledge D from Step 1 natural language
assumptions A from Step 1 natural language
problem diagram from Step 3 Jackson

output: specification S of machine to construct natural language
sequences of interactions expressing S sequence diagrams
between machine and environment
with annotated state invariants
for the domains in the environment

validation: D ∧ A ∧ S are non-contradictory
D ∧ A ∧ S =⇒ R′

all requirements must be captured
in the sequence diagrams exactly the phenomena

of the problem diagrams are used
direction of signals must be consistent

with control of shared phenomena
signals must connect domains

as connected in problem diagram
the relationships of Step 3 must be

consistent with the state invariants

Table 5.4: Step 4 - Derive Machine Behavior Specifications for each Subproblem

The inputs for this step are the problem diagrams, the requirements R′, the domain knowledge
D , and the assumptions A.

Specifications are derived and additionally expressed as a set of UML sequence diagrams
assigned to each problem diagram.

Whereas requirements describe how the environment should behave once the machine is in-
tegrated in it, the specification describes the machine and forms the basis for its construction.
Specifications are implementable requirements, and they are derived from the requirements

38

using the domain knowledge and the assumptions. For the specification, natural language and
UML sequence diagrams can be used.

To create the sequence diagrams for each domain which is directly connected to the machine
in a problem diagram, a lifeline is drawn in the corresponding sequence diagram. Domains
can be merged in the sequence diagram to simplify the description. The machine to be built
is also represented by a lifeline in the sequence diagrams. The phenomena are represented
by annotated, asynchronous signals between lifelines. For states in the environment of the
machine, it should be assumed that an asynchronous signal occurs when the state in the en-
vironment changes. To express the coherence between the sequences state invariants for the
domains in the environment should be included. Appropriate case distinctions according to
these state invariants should be introduced. For the case distinctions new diagrams should be
created instead of using the alt operator. The sequence diagrams can be split at appropriate
states, if necessary. It is important to specify the initialization of the machine. For this dia-
gram a found signal (cf. Section 2.5) or a signal from a gate can be used to specify a power on
signal. In this step, the events can be refined by adding parameters to phenomena. For most
embedded systems precise timing constraints are necessary.

The sequence diagrams should express typical cases with example values. Loops, states, refer-
ences, and co-regions do not cause any problems, while the other new constructs of UML 2.0
such as parallelism, continuation and considered signals should be used with care. Each dia-
gram represents one concrete interaction sequence. One should not try to make the diagrams
too general. It is better to draw further diagrams.

It is difficult to express the specification directly if the machine has a low-level interface to
other domains. A display e.g., is controlled by commands that change the color of a dot, or an
incremental encoder generates pulses representing a speed. Using the pulses or the commands,
the behavior of the machine can not be expressed adequately. In this case, the requirements and
the domain knowledge can be expressed as separate sequence diagrams instead of expressing
the specification as more complex sequence diagrams.

To check the consistency of the specification and to design a complete specification of the
machine, one can continue with the application component for the subproblems of Step 9
and the merged application component of Step 11. This can be done, because the (extended)
four variable model is applied, and therefore the machine specification derived in this step is
already the specification of the application component. Within Step 9, the state machines have
to consider all signals in all states, and we can derive a complete specification. When the state
machines for subproblems can be merged in Step 11, we can be quite sure that there are no
contradicting requirements.

It must be shown that, when the machine fulfills the specifications, then the requirements are
satisfied. For that proof, domain knowledge and assumptions can be used in the validation
condition D ∧ A ∧ S =⇒ R. D ∧ A ∧ S must be consistent, otherwise everything can
be deduced. Additionally, it should be checked that all requirements are captured, and in
the sequence diagrams exactly the phenomena of the problem diagram are used. Also the
direction of signals must be consistent with the control of the shared phenomena, When a
shared phenomena is controlled by one domain, this domain sends the signal or it defines the

39

return value. The signals must connect the domains as connected in the problem diagram.
Each phenomenon at the interfaces of the machine must be used in at least one sequence
diagram. The annotated state invariants must allow to combine the sequence diagrams in the
same way as the relationships in Step 3 describe.

This step is derived from Step 4 of the process defined in [CHH05b] and Steps 4 and 5 of the
process described in Chapter 3. As proposed in Section 4.8, both steps are merged. In contrast
to this process, typical cases with example values are described, as suggested in Section 4.4. If
appropriate, the specification is expressed using the requirements and the domain knowledge.
Using this representation, the problems discussed in Sections 4.9 and 4.11 are treated. In
contrast to the process in [CHH05b], assumptions are considered. Additionally, the problem
of contradicting requirements and the completeness of the specification described in Sections
4.12 and 4.13 is considered in this step.

Experience from many projects has shown that sequence diagrams can easily be discussed with
managers and customers that do not have technical knowledge. The specifications developed
in this step can be used as a basis for manual or even automatic tests in Step 11. If requirements
and domain knowledge are used to specify the requirements, the requirements will be the test
cases, and the domain knowledge describes how to build the test interfaces.

5.5 Step 5: Design Global System Architecture

In Step 5, the system architecture is designed. Table 5.5 shows the input, the output, and the
validation activities for this step.

The context diagram, the problem diagrams, the sequences of interactions between machine
and environment of all subproblems, and the expression of the subproblem relationships are
required for this step.

To design the architecture, the problem diagrams are associated with components. Parallel
problems can be easily distributed to different components. Sequential and alternative prob-
lems must be associated to the same component or a new component must be introduced that
decides which of the machines should be activated. Connection domains being part of a ma-
chine will become separate components. The architecture can be specified recursively, i.e.,
components can have their own architecture, consisting of sub-components.

The system architecture of the embedded system is expressed as a composite structure dia-
gram. This diagram uses parts for the components. When the components are identified, the
ports of the components must be connected with interfaces as described in Section 2.6. The
connections are used to transmit the signals of the annotated interfaces between the compo-
nents. The operations in the interfaces can be derived from the phenomena of the problem
diagrams as described in Section 2.6. The parameters of the operations for the external inter-
faces can be extracted from the sequence diagrams. The interfaces between the components
that are directly derived from domains must be designed according to the desired functionality
of the connected components.

40

For all subproblems:
input: context diagram from Step 1 Jackson

problem diagrams from Step 3 Jackson
sequences of interactions sequence diagrams

between machine and environment of
all subproblems from Step 4

expression of the subproblem e.g. grammars
relationships

output: system architecture composite structure diagrams
perhaps subcomponents (recursively) composite structure diagrams
external interfaces interface classes
interfaces between the components interface classes
technical description of hardware natural language, figures

interfaces
expression of the subproblem process algebra-like notations,
relationships for all components grammars, high-level sequence

charts, or sequence charts
using combined fragments

validation: all machine interfaces of the problem
diagram must be captured

the signals in the sequence diagrams
must be consistent with the external
interfaces

for each complex component at least one
problem diagram must be associated

each problem diagram must be associated
to one component

all domains in the problem diagrams
being part of the machine must be
associated to a component

each machine domain in the context
diagram must be a separate system
or a component

Table 5.5: Step 5 - Design Global System Architecture

41

Additional to the interface description using interface classes, the technical realization of the
interfaces must be described. Natural language or figures from the application domain can be
used for these technical descriptions.

For each component the dependencies between the associated subproblems must be derived
from the expression of the subproblem relationships for the whole machine. The developed
architecture is the starting point for the further development (hardware- as well as software
development).

To validate this step, several activities have to be performed: The external interfaces of the
components have to cover the interfaces of all problem diagrams. The architecture must cover
all specifications developed in Step 4. Each machine domain in the context diagram must be
a separate system or a component. All domains in the problem diagrams being part of the
machine must be associated to a component. The description of the relationships between the
subproblems for the machine and the components must be consistent.

If only one component exists in the system and no or few causal domains exist, one should
continue with the FUSION method [DCJ94].

This step is not defined in the process in [CHH05b], since this process covers no hardware
components. This step extends Step 6 described in Chapter 3 by the description of the sub-
problem relationships as mentioned in Section 4.3. Using the connection domain and the
notation for domains being part of the machine introduced in Step 3 of this agenda, the system
specification can be developed systematically (cf. Section 4.2).

5.6 Step 6: Derive Specifications for all Components
being Relevant for the Subproblem

In this step, the specification of all components of the system architecture is derived. Table 5.6
shows the input, the output, and the validation activities for this step.

To derive the specification of all components, the system architecture with its interfaces from
Step 5 and the sequences diagrams from Step 4 are necessary.

The specifications of all components are expressed as sequence diagrams.

The signals specified in the interfaces of the architecture are used to annotate the sequence
diagrams. These sequence diagrams are a concrete basis for the test implementation for all
components. The sequence diagrams describe the behavior of all components and the interac-
tion between them.

In general, the proceeding can be described as follows:

• Draw a lifeline for all components of the architecture that are necessary to describe
the interface behavior of the subproblem and one lifeline for the environment. If the
behavior between two components can not be described directly, the components can be
merged in the sequence diagram and this behavior can be described separately.

42

For all subproblems and for all components:
input: architecture from Step 5 composite structure

diagrams
interfaces from Step 5 interface classes
subcomponents (if defined) from Step 5 composite structure

diagrams
sequences of interactions from Step 4 sequence diagrams

output: interface behavior of all complex components (test
specification)

sequence diagrams

validation: sequence diagrams together must describe
the same behavior as in Step 4

all signals in the interface classes of Step 5 must
be captured in at least one sequence diagram

direction of signals must be consistent
with the required or provided interfaces of Step 5

signals must connect components
as connected in the software architecture of Step 5

it must be possible to map the new state invariants
to the state invariants in Step 4

Table 5.6: Step 6 - Derive Specifications for all Components being Relevant for the Subprob-
lem

43

• Describe the interface behavior of all components using the signals from the system
architecture (Step 5). The behavior must refine the behavior described in Step 4.

• Add state invariants where they are relevant to describe the behavior.

• Add missing sequence diagrams to describe the behavior for all relevant states for all
components.

• Add timing constraints if necessary.

• To describe complex interactions between two components, references to detailed se-
quence diagrams can be used.

• As for Step 5: Each diagram represents one concrete interaction sequence. One should
not try to make the diagrams too general. It is better to draw further diagrams.

The sequence diagrams together must describe the same behavior as in Step 4. The signals
at the external interfaces of this step must be the same, have the same direction and the same
order. All signals in the interface classes specified in Step 5 must be captured in at least one
sequence diagram, and the direction of signals must be consistent with the required or provided
interfaces. That means if a component provides an interface, the signals of this interface must
be sent to this component in the sequence diagram. This implies also that the signals must
connect components as connected in the system architecture. It must be possible to map the
new state invariants to the state invariants in Step 4.

If a component needs complex or dynamic data types or operations, this component should be
developed with the FUSION method [DCJ94].

This step is not defined in the process in [CHH05b], since this process covers no hardware
components. The validation condition of Step 7 of the process described in Chapter 3 is de-
tailed to give concrete guidance for this important activity. The problem identified in Sections
4.5 and 4.4 are taken into account for this step.

5.7 Step 7: Design Software Architecture for each
Software Component and each Subproblem

In this step the software architecture for all complex components and all subproblems are
derived. Table 5.7 shows the input, the output, and the validation activities for this step.

The system architecture from Step 5 and associated problem diagrams from Step 3 are nec-
essary to design the software architecture. To define the interfaces in the architecture, the
signals of the machine behavior sequence diagrams from Step 4 and the interfaces from Step
5 are required. If reusable components from other projects are used, their interfaces must be
integrated into the software architecture.

44

For all subproblems and for all components:
input: system architecture from Step 5 composite structure diagram

associated problem diagrams from Step 3 Jackson
interfaces from Step 5 interfaces classes
perhaps reusable components from other
projects (Step 11)

active or passive classes with
interface classes

signals of the machine behavior specifica-
tions from Step 4

sequence diagrams

output: layered software architecture composite structure diagrams
interfaces between software components interface classes

validation: if no instantiation: consistent with prob-
lem diagram
phenomena of sequence diagrams are in-
terfaces of the application layer
direction of all signals consistent to each
other and input

Table 5.7: Step 7 - Design Software Architecture for each Component and each Subproblem

The output of this step is a layered architecture. These architectural patterns are not the only
possible way to structure the machine domain solving the problem that fits to a given prob-
lem frame. However, the layered architecture has proven useful in practice (see for example
[CD01, HH05b, Tan92]) and allows for combining solutions to different subproblems of com-
plex problems in a systematic way. It is also flexible enough to be combined with other
architectural styles (cf. Section 2.7).

The lowest layer is the hardware abstraction layer (HAL). This layer covers all interfaces to
the external components in the system architecture and provides access to these components
independently of the used controller or processor. For porting the software to another hardware
platform, only this part of the software needs to be replaced.

The hardware abstraction layer is used by the interface abstraction layer (IAL). This layer
provides an abstraction of the (low-level) values yielded by the sensors and actuators. For
example, a frequency of wheel pulses could be transformed into a speed value. Thus, in the
interface abstraction layer, values for the monitored and controlled variables (see [DLP95])
of the system are computed. It is possible that these variables have to be computed from the
values of several hardware interfaces. For safety-critical software components, the interface
abstraction layer will usually make use of redundant arrangements of sensors and actuators.

The highest layer of the architecture is the Application layer. This layer only has to deal
with variables from the problem diagram. Therefore, the system requirements can be directly
mapped to the software requirements of the application layer, as described by Bharadwaj and
Heitmeyer [BH99].

In the following sections, for the six most important problem frames (cf. 2.4) the correspond-
ing architectural patterns proposed in [HH05a] are presented. If a subproblem fits to a known

45

problem frame, then a simple instantiation of the patterns will suffice. This architectural pat-
tern is one possible solution and can be used as a starting point for the further development.

The architectural pattern shown on the right-hand side of Figure 5.1 represents an adequate
structure for the Control machine in the Required Behavior problem frame showed on left-
hand side of Figure 5.1. For special kinds of embedded systems, that architecture could be
refined. However, a refinement of the architecture would also correspond to a refinement of
the corresponding problem frame. The architectural pattern shown here has the same degree
of generality as the problem frame.

Control
CD!C2

CM!C1

domain
Controlled

C

C3

machine behaviour
Required

Controlled Controlled
Domain (C2) Domain (C1)

C2’

C2’’

C1’

C1’’

Application

Sensor IAL

Sensor HAL

Actuator IAL

Actuator HAL

Control Machine

Figure 5.1: Required Behaviour Frame Diagram [Jac01] and Architectural Pattern

For problems fitting to the Commanded Behavior problem frame (see left-hand side of Fig.
5.2), another architectural pattern can be instantiated.

behaviour
Commanded

Operator

machine

E4

C3

B

domain
Controlled

Control

OP!E4

GD!C2
CM!C1

C

Application

Actuator IALSensor IAL

Sensor HAL

User
Interface

Controlled ControlledOperator (E4)

Control Machine

Domain (C2) Domain (C1)

C1’

C1’’

C2’

C2’’E4’

Actuator HAL

Figure 5.2: Commanded Behaviour Frame Diagram [Jac01] and Architectural Pattern

As can be seen from the frame diagram, the distinguishing feature of the Commanded Be-
haviour frame as compared to the Required Behavior frame is the presence of an operator.
That distinction is reflected in the corresponding architectural pattern shown on the right-hand
side of Figure 5.2. The operator commands and the corresponding feedback are handled by

46

a dedicated component User Interface. The user interface follows the MVC design pattern
[GHJV95]. In contrast to the solution discussed in [RHJN04], the interface to the Application
of this component should be the interface to the model, i.e., the User Interface comprises the
View and Controller parts of the MVC pattern. With this variation, it can be used in architectural
patterns associated with different problem frames.

Device

Operator

Application

User Interface

InputUser
Display
HAL HAL

View and Control
according to MVC−pattern

Figure 5.3: Detailed Architectural Pattern for User Interface

Since each architectural pattern corresponding to a problem frame containing an operator do-
main will contain a user interface component, we give the structure of such a component in
more detail (Figure 5.3). For reasons of practicality, the user interface component contains not
only a sub-component that serves to read user input via some device. In most cases, a sub-
component will also be needed that provides some kind of feedback to the user via a display.
The physical input arriving at the port at the bottom of the component is transformed into the
more abstract phenomena E4 by the sub-component View and Control.

The Information Display problem frame offers a structure for applications devoted to the
display of real world physical data. The corresponding frame diagram is shown on the left-
hand side of Figure 5.4. The interface between the Information machine and the Real world
contains only phenomena C1 that are controlled by the real world. This means that the machine
cannot influence the real world. Its purpose is only to display things that happen in the real
world. Accordingly, the architectural pattern given on the right-hand side of Figure 5.4 does
not contain any components for handling actuators, but only components for handling sensors.
There is no operator, but a display is needed. Hence, the architectural pattern contains a display
interface.

The Commanded Information frame is presented as a variant of the Information Display
frame where an operator is added. The architectural pattern proposed for Answering machines
that solve a Commanded Information problem is shown on the right-hand side of Figure 5.5.
To take the presence of an operator into account, the Display Interface component of the archi-
tectural pattern for the Information Display frame is replaced by a User Interface component.

Moreover, to cover database applications in addition to the operator-controlled display of
physical data, the architectural pattern we propose contains a Data Storage component. Of
course, this component can be left out if it is not needed to solve the problem. In that case,

47

~

RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information Sensor IAL

Sensor HAL

Application

Display
Interface

Display (E2) Real world (C1)

Information Machine

E2’’ C1’’

C1’

Figure 5.4: Information Display Frame Diagram [Jac01] and Architectural Pattern

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering User

Interface

Sensor IAL

Sensor HAL

Display Application

Data
Storage

Input Application

Real world (C1)Display (E3) / Enquiry operator (E5)

Answering machine

C1’

C1’’E3’’, E5’’

Figure 5.5: Commanded Information Frame Diagram [Jac01] and Architectural Pattern

48

there would only be one (or even no) application component. Alternatively, for pure database
applications, the sensor-handling components of the architectural pattern will not be needed.

For problems fitting to the Workpieces problem frame, the architectural pattern shown on the
right-hand side of Fig. 5.6 can be instantiated. This figure contains a user interface component,

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Application

Interface
User

Storage
Data

User (E3)

Editor

Workpieces (E1, Y2)

E3’’ E1, Y2

Figure 5.6: Workpieces Frame Diagram [Jac01] and Architectural Pattern

because the problem frame diagram contains a user. The data storage component of the archi-
tectural pattern corresponds to the Workpieces domain of the frame diagram. The Application
component is responsible for manipulating the data storage according to the user commands.
The Workpieces problem frame is very similar to a Database Update frame [CH04].

Note that there is only one interface with the environment – namely the interface with the
user – because the lexical Workpieces domain is part of the machine. This holds true also
for the input and output domains of the architectural pattern for transformation problems (see
below). Because our user interface component (see Figure 5.3) contains not only input but
also output facilities, no change in the architectural pattern is necessary if the problem frame
is extended with a feedback for changes on workpieces. Such an extension is necessary for
realistic problems and user-friendly applications.

Non-functional requirements might state that distributed access to the workpieces must be
provided. Such requirements cannot be expressed in problem diagrams. Nevertheless, they
may have an influence on the architectural pattern. For this case, we propose a repository
architectural pattern (see left-hand side of Figure 5.7). The repository architectural pattern
can be mapped to the layered architectural pattern as shown on the right-hand side of Figure
5.7 (for one client). Here, remote access to the data storage is possible via a network.

If a problem fits to the Transformation problem frame, the architectural patterns shown in
Fig. 5.8 can be instantiated.

Again, this architectural pattern exactly reflects the domains of the frame diagram. Inputs and
outputs are stored in data storage components, and the application component is responsible
for transforming inputs into outputs. In this architectural pattern, there are two data storages.
They represent persistent data of perhaps different structure. One is for the inputs (e.g., source
code), the other for outputs (e.g., an executable file).

49

(Repository)
Storage

Data

Client

Client Client

Client

Interface
User Data

Storage
Network
Interface

Network
Interface

Client Repository

User (E3) Workpieces (E1, Y2)

ClientApplication RepositoryApplication

E1, Y2E3’’

Figure 5.7: Architectural Pattern for Remote Access to Data Storage

IO
relation

IN!Y1

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3

Application

Storage
DataData

Storage

Inputs Outputs

 Y1 Y2

Figure 5.8: Transformation Frame Diagram [Jac01] and Architectural Pattern

If a subproblem is unrelated to any problem frame, then a corresponding architecture has to
be developed from scratch. The following proceeding can be applied to develop a layered
architecture:

• The interfaces of the architectural patterns correspond exactly to the interfaces of the
machine domains as defined in the different frame diagrams. Hence, the architecture
refines exactly the machine to build; it neither adds nor leaves out any shared phenomena
as compared to the problem description.

• If the machine has interfaces with causal domains, the corresponding architectural pat-
tern contains components for handling sensors and actuators. This reflects the way in
which software can communicate with and influence the physical world.

• If the frame diagram contains a biddable domain (i.e., an operator or user), then the
corresponding architectural pattern contains a user interface component.

• If the machine has interfaces with lexical domains, these domains are reflected as parts
of the corresponding architectural pattern. This must be the case, because lexical do-
mains can only exist inside the machine.

• Components for data storage should only by included if the data is stored persistently.
Otherwise they can be assumed to be part of some other component.

50

When the architecture is designed, the interface classes must be specified. The interfaces to
the hardware are the same as in the system architectures between the components.

Since we use descriptions from the software technology to describe the hardware interfaces,
the interfaces between IAL and HAL are the same in most cases. Only if a detailed technical
description of the external interfaces is provided, the interface between IAL and HAL is the
same as the external interface. Thereby, the HAL contains no application specific function-
ality. It only provides easy-to-use software interfaces to access the hardware (e.g. registers,
interrupts, direct memory access).

The interfaces to the application component can be derived from sequence diagrams that de-
scribe the machine behavior.

If the interface of the application layer is the same as the interface of the HAL, the IAL can be
removed from the architecture. If a component is too complex, the component should be split
into subcomponents.

For each interface it must be decided, which component provides the interface and which
component uses the interface. Usually, the component being in control of a phenomenon uses
the corresponding interface. If an interface contains operations with return values, then the
component providing these interfaces is in control of a phenomenon.

If the architectural diagrams are instantiations of the given patterns, no validation of the archi-
tecture is necessary. Otherwise, it must be checked that all domains of the problem diagram
of Step 3 are captured in the architecture and that the external interface of the architecture
coincides with the machine interface of the problem diagram.

All interfaces must be covered. The signals or operations in the external interface classes of
the software architecture must be the same as the signals in the sequence diagrams of Step 6.
The interface of the application components must contain the signals used in the sequence
diagrams of Step 4. Additionally, the directions of all signals are consistent to each other and
to the input.

In the process described in Chapter 3, the architecture for all subproblems is developed to-
gether in Step 8. To support a structured development of the software architecture, for each
subproblem one architecture is developed as suggested in Step 4.6 and described in [CHH05b],
Steps 5 and 6. These steps are combined here, because the interfaces between the components
are an elementary part of architectures. Also the problem in Section 4.7 is covered in this
process.

5.8 Step 8: Specify Behavior of Software Architecture
Components for each Subproblem

In this step, the specifications of all components of the software architecture are derived.
Table 5.8 shows the input, the output, and the validation activities for this step.

To derive the specifications of all software components, the software architectures with its

51

For all subproblems and for all software components:
input: software architectures from Step 7 composite structure

diagrams
interfaces from Step 7 interface classes
system behavior from Step 4 sequence diagrams
interface behavior of all complex sequence diagrams

components from Step 8
output: interface behavior of all sequence diagrams

components (test specification)
validation: all sequence diagrams together must describe

the same behavior as in Step 6
all signals in the interfaces classes of Step 7 must be

captured in at least one sequence diagram
direction of signals must be consistent

with the required or provided interfaces of Step 7
signals must connect components

as connected in the software architecture of Step 7
it must be possible to map the new state invariants

to the state invariants in Step 6

Table 5.8: Step 8 - Specify Behavior of Software Architecture Components for each Subprob-
lem

52

interfaces from Step 7, the sequences diagrams from Step 4 for the application components,
and the components interface behavior from Step 8 are necessary.

Outputs of this step are specifications of all software components, expressed as sequence dia-
grams. A specification expressed somewhere else should be referenced and does not have to
be translated into sequence diagrams.

The signals specified in the interfaces of the software architectures are used to annotate the
sequence diagrams. The sequence diagrams developed in this step are a concrete basis for the
test implementation for all software components. In this step, each component is described
separately. In general, the proceeding can be described as follows:

• Draw a lifeline for the software component that should be specified. Either a lifeline for
the environment should be introduced or the messages from the environment should be
drawn to the left and right border of the sequence diagram.

• Describe the interface behavior of the component using the signals from the software
architecture.

• The specification of the application components should be the same as in Step 4.

• The specification for the interfaces abstraction layer can be derived from the domain
knowledge expressed as sequence diagrams.

• The specification for the hardware abstraction layer should show the mapping from the
software to the interfaces of the machine. Since this specification is usually described
in the data book of the target system, only a reference must be given.

• If possible refer, to other sequence diagrams and do not draw diagrams for the same
aspect several times.

• Add state invariants where they are relevant to describe the behavior.

• Add missing sequence diagrams to describe the behavior for all relevant states.

• Add timing constrains if necessary.

The sequence diagrams together must describe the same behavior as in Step 8. The signals
at the external interfaces of this step must be the same, have the same direction, and have
the same order as in Step 8. All signals in the interface classes, specified in Step 7 must be
captured in at least one sequence diagram. The direction of signals must be consistent with the
required or provided interfaces (cf. Step 6). It must be possible to map the new state invariants
to the state invariants in Step 6.

As stated in Section 4.10, this step is missing in the process described in Chapter 3. This
step is derived from Step 7 in [CHH05b] and is extended with more detailed guidance how to
perform this step.

53

5.9 Step 9: Specify Software Components of Software
Architectures for each Subproblem

In this step, the specifications of all components of software architecture are derived. Table 5.9
shows the input, the output, and the validation activities for this step.

For all subproblems and for all software components:
input: interface behavior from Step 8 sequence diagrams
output: component overview description class diagram

with ports and lollipops reference to interface classes
data types and operations class diagrams

defined using pre- and postconditions formulas or natural language
state machine state machine diagram
invariants formulas or natural language

validation: consistent with interface behavior from Step 8
completeness of state machines

(implies error-cases for user-interaction)
interface classes must be the same as in Step 7

Table 5.9: Step 9 - Specify Software Components of Software Architectures for each Subprob-
lem

The sequence diagrams from Step 8 (describing the interface behavior of the software compo-
nents) are necessary to design the software component for each subproblem.

Outputs of this step are specifications of all software components. In contrast to Step 8 the
behavior must be described completely for each subproblem. It is not enough to express
typical interactions as sequence diagrams.

Instead, a component overview description should be developed and expressed using a class
diagram. With this class diagram is expressed if the component is an active or a passive
component. An active class behaves like hardware, it may contain timers, it work in parallel
to its environment, and it may contain other passive or active classes (see composite structure
diagram). A passive class cannot contain timers, its functionality is executed in the time
context of an active class, and it can only contain other passive classes. The ports of this class
are associated with interface classes. An interface can be provided or required. The reference
to the interfaces can expressed using the lollipop-notation (cf. Section 2.6).

To each class several data types can be assigned. Simple data types can be used directly. More
complex data type should be defined with class diagrams. All operations of these classes must
be specified using pre- and postconditions.

For each class a state machine should be designed. This state machine can make use of the
data types specified in this step. It uses the signals in the provided interfaces as trigger for the
transitions and the signals in the required interfaces as outputs.

If possible, invariants about states and the data should be added.

54

Usually the overview description of a component is the same for all subproblems and therefore
only one overview description should be drawn. If also the behavior of one component is the
same for several subproblems, only one state machine should be created.

In general, the proceeding for all components in the software architecture can be described as
follows:

• Draw an active (e.g., behaves like hardware, includes a clock) or passive (e.g., calculation-
routine) class with its interfaces as a component overview description.

• Add necessary data to this class.

• In case of complex data or complex operations on data types: add classes for data types.

• Specify pre- and postconditions for all operations.

• Design a state machines that implements the behavior of all sequence diagrams specified
in Step 8.

• Complete the state machines, i.e. there must be a specified reaction to each possible
input signal.

• Add invariants if possible.

Each architectural component must be covered, and each state machine is complete, i.e., each
possible input signal (as specified in Step 7) is taken into account. Each state machine must
behave as described in its corresponding sequence diagrams. Moreover, all referenced inter-
face classes must be the same as the interface classes of the subproblem architecture of the
respective component (Step 7).

This step contains the same activities as in Step 9 of the process described in Chapter 3, but
here they are performed only for one subproblem. It is derived from Step 8 in [CHH05b]. The
advantage of introducing this step is that the solution for subproblems can be reused and that
this step simplifies the composition of the subproblems within the next step.

5.10 Step 10: Develop Global Software Architectures

In this step, the composed software architectures for all complex components are developed.
Table 5.10 shows the input, the output, and the validation activities for this step.

To develop the global architecture for one hardware component, all software architectures
for this hardware component and their interfaces are necessary. The relationships between
subproblems help to perform this step systematically.

Within this step, the architectures and interfaces of all subproblems for one component are
composed and expressed as composite structure diagrams.

55

For all components:
input: layered software architectures from Step 5 composite structure

diagrams
interfaces between software components from Step 5 interface classes
relationships between subproblems specified in Step 5 e.g. grammars

output: layered software architecture composite structure
diagrams

interfaces between software components interface classes
validation: architecture must contain all components and interfaces

of all subproblem architectures from Step 5
external interfaces must be consistent with the

interfaces of the context diagram developed in Step 1

Table 5.10: Step 10 - Develop Global Software Architecture for each Component

The crucial point of this step is to decide if two components contained in different subproblem
architectures should occur only once in the global architecture, i.e., they should be merged. To
decide this question, we make use of the information gathered when decomposing the overall
problem into subproblems. We distinguish the following cases, where all cases but the first
one concern application components:

1. The components are hardware (HAL) or interface abstraction layers (IAL), establishing
the connection to some hardware device.
Such components should be merged if and only if they are associated to the same hard-
ware device.

2. Two application components belong to subproblems being related sequentially or by
alternative.
Such components should be merged into one application component.

3. Two application components belong to parallel subproblems and share some output phe-
nomena.
Such components should be merged, because the output must be generated in a way
satisfying both subproblems.

4. Two application components belong to parallel subproblems and share some input phe-
nomena.
If the components do not share any output phenomena, both alternatives (merging the
components or keeping them separate) are possible. If the components are not merged,
then the common input must be duplicated.

5. Two application components belong to parallel subproblems and do not share any inter-
face phenomena.
Such components should be kept separately.

56

The global architecture must contain all components and interfaces of all subproblem archi-
tectures. Its external interfaces must be the same as in the system architecture developed in
Step 5.

This step has the same output as Step 8 of the process described in Chapter 3. But the proce-
dure is taken from Step 9 in [CHH05b], with the difference that this architecture is embedded
in the system architecture and not in the context diagram. This step helps to solve the sub-
problem composition problem, described in Section 4.3. It improves the reuse of architectures
for subproblems.

5.11 Step 11: Specify Composed Software
Components

In this step, the components of the software architecture for the subproblems are composed.
Table 5.9 shows the input, the output, and the validation activities for this step.

For all software components:
input: component overview description class diagram

with ports and lollipops from Step 9 reference to interface classes
data types with operations from Step 9 class diagrams

defined using pre- and postconditions formulas or natural language
state machine from Step 9 state machine diagram
invariants from Step 9 formulas or natural language
relationships between subproblems e.g. grammars

specified in Step 5
output: component overview description class diagram

with ports and lollipops reference to interface classes
data types with operations class diagrams

defined using pre- and postconditions formulas or natural language
state machine state machine diagram
invariants formulas or natural language

validation: consistent with interface behavior from Step 8
completeness of state machines

(implies error-cases for user-interaction)
interface classes must be the same as in Step 7

Table 5.11: Step 11 - Specify Composed Software Components

The complete output of Step 9 and the relationships between subproblems specified in Step 5
are necessary to perform this step.

The output of this step is the same as for Step 9 with the difference that all items refer to the
composed component and not only to a component for one subproblem.

57

The component overview description, expressed as a class diagram with ports and lollipops,
can be merged with the same procedure as described in Step 10. For data types the developer
has to decide if the same data is described in two components of different subproblems of if
different data is described. If different data is described, both class diagrams for the data will
be in the merged component. If the same data is described, a mapping must be created to
transform the operations and attributes to a common representation. The merged operations
must have the weakest precondition and the strongest postcondition. It refines both operations
of the subproblem components. The state machine diagrams can be merged according to the
case distinction we made in Step 10:

• Case 1. Often the state machines will already be equal, because they describe the same
device. If not, the state machines must be merged manually. In many cases, we only
need to add the additional signals to the appropriate states.

• Case 2. The composition can be achieved by using composite states. The connecting
arcs between the sub-automata depend on the problem.

• Case 3. Here, the merge depends on the problem to be solved. Often there will be
a priority between the different subproblems that has to be taken into account when
defining the common state machines. As a heuristic, we can note that priorities between
subproblems will be necessary when the two subproblems constrain the same domain.

• Case 4. The merge has to be performed manually.

The invariants of all subproblems must also hold for the composed component. Possibly,
additional invariants can be found in this step.

To validate this step, it should be assured that each composed state machine is complete and
covers all input events that can be sent by the components with an interface to the composed
state machine.

This step has the same output as Step 9 of the process described in Chapter 3. To solve
the composition problem described in Section 4.3, the procedure in this step is completely
different: The software components are developed from software components of the subprob-
lems and not directly from the sequence diagrams. This approach was taken from Step 10 in
[CHH05b]. Additionally, the operations and private data types are merged in this step. This
merge was suggested to be Step 11 in [CHH05b]. The merge of Steps 10 and 11 was done to
be symmetric with Step 9. Within this step, inconsistencies in the different specifications can
be detected, as introduced in 4.12.

5.12 Step 12: Implement Software Components and
Test Environment

In this step, the software components and the corresponding test cases are implemented. Ta-
ble 5.12 shows the input, the output, and the validation activities for this step.

58

input: output of Step 11 different notations
software component behavior from Step 8 sequence diagrams
expression of the subproblem e.g. grammars
relationships from Step 5

output: implemented software components programming language
test software for software component programming language

or test language
validation: run tests test results

Table 5.12: Step 12 - Implement Software Components and Test Environment

To implement the software components, the output of Step 11 is necessary. The test environ-
ment can be created with the software component behavior from Step 8 and the expression of
the subproblem relationships from Step 5.

The system components are implemented using some simple heuristics. For embedded sys-
tems, usually a static connection between components is established. The connectors in the
composite structure diagrams can be implemented e.g. as data streams, function calls, asyn-
chronous messages, or hardware access.

This development process allows developing statically linked software components with the
capability of reuse.

In general, the proceeding for object oriented programming languages can be described as
follows:

1. Create interface classes for all internal interfaces (also for subcomponents).

2. Create classes for all (sub-)components and implement them.

a) Implement actions as private methods according to the pre- and post-conditions.

b) Implement the state machine.

c) Implement the active classes with threads or timer libraries.

d) Check all classes if there is a concurrent access to variables and resolve this prob-
lem with synchronization statement.

3. Implement test cases for all components (except HAL) according to the sequence di-
agrams from Steps 5 and 7. Time frames must be added, specifying when a signal is
expected to occur.

4. An independent person should develop and implement further test cases.

5. Run test cases.

The validation of this step is performed by running the test cases.

59

This step is derived from Step 10 of the process described in Chapter 3 and Step 11 in
[CHH05b]. Since in this process a specification of the software components is explicitly
developed, this specification can be used to check the implemented software components. The
integration of these software components is performed in the next step.

5.13 Step 13: Integrate Software Components

In this step, the software components are integrated and the test cases are implemented. Ta-
ble 5.13 shows the input, the output, and the validation activities for this step.

input: software architecture from Step 10 composite structure diagram
software behavior from Step 6 sequence diagrams
expression of the subproblem e.g. grammars
relationships from Step 5

output: implemented software programming language
test software for software programming language

or test language
validation: run tests test results

Table 5.13: Step 13 - Integrate Software Components

To integrate the software components, the output of Step 11 is necessary. The test environ-
ment can be created with the software component behavior description from Step 6 and the
expression of the subproblem relationships from Step 5.

Within this step, the components have to be connected as specified in Step 8. For an object
oriented implementation, a method to initialize all objects according to the architecture from
Step 8 must be created. Test interfaces have to be implemented, and the test cases have to be
implemented as specified in Step 6. The expression of the subproblem relationships should be
used to create concrete test scenarios. An independent person should develop and implement
further test cases.

To validate the results of this step, tests may be run in an emulation environment.

This step is derived from Step 10 of the process described in Chapter 3 and Step 11 in
[CHH05b]. Within this step only, the integration of the software components is performed.

5.14 Step 14: Integrate Hardware and Software

In this step, all components are integrated and the acceptance test cases are performed. Ta-
ble 5.14 shows the input, the output, and the validation activities for this step.

The system is built according to the system architecture from Step 5. The test cases for the
acceptance test are derived from system specification from Step 4 and the expression of the

60

input: system architecture from Step 5 composite structure diagram
system specification from Step 4 sequence diagrams
expression of the subproblem e.g. grammars
relationships from Step 3

output: integrate system machine
acceptance test cases test system and/or

test plans
validation: run tests test results

Table 5.14: Step 14 - Integrate Hardware and Software

subproblem relationships from Step 3.

Within this step, the hardware and software components have to be integrated. The test of the
whole embedded system, consisting of hardware as well as software, is performed. In general,
the proceeding can be described as follows:

• Connect the components as specified in Step 5.

• Load software into targets (microcontroller).

• Perform manual tests.

• Build test environment for automated test. The specification of the test interfaces can be
derived from the domain knowledge used to derive the specification in step 4.

• Implement test cases for the whole machine according to the sequence diagrams from
Step 4.

• Connect test cases as specified in the expression of the subproblem relationships.

The acceptance test should not be done by the developer. Therefore, the test environment can
be developed in parallel to the last Steps. The test environment has to interact with the external
interfaces of the machine. Hence, the technical interfaces also consist of hardware.

To validate the results of this step, the tests have to be executed.

This step is derived from Step 11 of the process described in Chapter 3 and Step 11 in
[CHH05b]. Within this step, only the integration of hardware and software is performed.

61

6 Case Study: Traffic Light Control

In this chapter, the development process is applied to a Traffic Light Control case study. The
case study is taken from [HH05b], extended with additional safety requirements and adopted
on the development process presented in Chapter 5.

The system mission of Traffic Light Control can be stated as follows:

SM1: The traffic lights should prevent accidents on the crossing.

SM2: The traffic lights should help the fire brigade to pass the crossing with priority.

SM3: The traffic lights should arrange for a fair and adapted flow of traffic between the main
and the secondary road (and maximize the flow of traffic).

6.1 Step 1: Describe Problem

6.1.1 Context Diagram of System in Use

Since no machine domain to be replaced exists for the crossing, a context diagram of the
system in use is not created. All relevant existing domains are included in the context diagram
of the system to be built.

6.1.2 Context Diagram of System to be Built

Figure 6.1 shows the context diagram for the traffic light control.

6.1.3 Requirements

The traffic light control has to fulfill the following requirements:

R1: When there is a car waiting on the secondary road, the traffic lights should stop the flow
of traffic on the main road for a period of time and allow the traffic flow on the secondary
road.

R2: As long as the emergency button is activated, the flow of traffic on the main road should
be stopped and the flow of traffic on the secondary road should be allowed.

62

control

lights

crossing
waiting area waiting area

of secondary roadof main road

fire brigade

on lanes

vehicle_waiting

see_red
see_green
see_yellow

enter,

enter,
leave

enter,
leave

leave

on, off
broken

road users traffic light

emergency_request

Figure 6.1: Context Diagram for the Traffic Light Control

R3: Vehicles on the main road should be allowed to pass the crossing for a longer period of
time than from the secondary road (if not emergency-case1).

R4: While vehicles on one road are allowed to pass, the others should be stopped.

R5: The lights should switch in the following order: red - red/yellow - green - yellow - red.
Other combinations (except “all off” and yellow blinking2) are not allowed.

R6: In case of a broken light bulb the traffic lights should blink in yellow for the secondary
road, after all red lights have been switched on for a period of time.

R7: After switching to red, the traffic flow of both roads should be stopped for a period of
time *3.

6.1.4 Domain Knowledge

The following domain knowledge can be stated:

D1: Traffic rule: stop if red.

D2: Traffic rule: cross if green.

D3: Traffic rule: leave critical section as fast as possible. *

D4: Fair means (for this crossing) that vehicles on the main road are allowed to pass the
crossing for more than twice the time vehicles of the secondary road are allowed.*

1Added later to eliminate contradictions
2Added later to eliminate contradictions
3A star (*) denotes: added later

63

D5: Traffic rule: if yellow: stop if possible.

D6: Vehicles can not stop immediately without entering the critical section.

D7: A broken light bulb can be detected by measurement of the electric current (no current
= no light).

D8: There is a bridge for pedestrians.

D9: Induction loops are used for observing the secondary road request.

6.1.5 Glossary

To define some vocabulary of the traffic light context, references to Fig. 6.2 are used in the
following glossary:

A

A

B

B

F

C

E

Figure 6.2: Glossary Extension for Traffic Light

• lane / waiting area of main road: A

• lane / waiting area of secondary road: B

• traffic lights: device containing colored light bulbs to signal “stop” or “go”

• fire brigade: F

• crossing: critical section: C

64

• secondary road request: sensor detecting if a vehicle is in the waiting area of the sec-
ondary road

• fire brigade emergency request: button that will be pressed in case of emergency and
will be released when all cars of the fire brigade passed the crossing: E

• accident: 2 vehicles at the same time at the same place

• read users on lanes = vehicles on one road = flow of traffic

• vehicles on the main road pass the waiting area of main road

6.1.6 Assumptions

A1: All vehicles follow the traffic rules.

A2: Pedestrians use the bridge.

A3: In case of emergency the button is pressed and released after crossing. *

A4: The sensors do not miss any vehicle waiting on the secondary road. *

6.1.7 Validation

The crossing is referenced in D4 and D6. The waiting area of main road is referenced in R3. The
waiting area of secondary road is referenced in R1,D9, and A4. The road users on lanes is ref-
erenced in R1,R2,R3,R4,R7,D1,D2,D3,D5,D6,A1. The fire brigade with its emergency
button is referenced in R2,R3,A3. The lights are referenced in R5,R6,D7.

The traffic light control is not referenced in any requirement, domain knowledge, or assumption
because the environment, not the machine is describe in this step.

Additionally, pedestrians are referenced in D8 and A2. A domain pedestrian is not included in
the context diagram since there are no shared phenomena with the machine or other domains
being relevant for the problem.

In all requirements, domain knowledge and assumptions only elements of the context diagram
are referenced.

6.2 Step 2: Consolidate Requirements

To consolidate the requirements, for each system mission statements it is investigated, which
requirements are necessary for this system mission.

65

SM1: avoid accidents

Accidents will not occur if at most one road gets the “go” signal and cars have time to leave the
crossing when the signal is changed to “stop”, provided drivers obey to the rules. Necessary
are:

• R4 (at most one road may pass)

• R5 (yellow before red, red/yellow before green)

• R7 (both roads get “stop” signal for some time)

Sufficient are: (R4 ∧ D1 ∧ A1) ∧ (D6 ∧ R5 ∧ R7 ∧ D3 ∧ D5 ∧ A1) =⇒ SM 1.

That means that only one road may pass, the vehicles have to stop if red and they follow rules.
Because vehicles cannot stop immediately, a correct order of signaling and a period with red
for all is necessary together with the rules to leave the critical section as fast as possible and
stop on yellow if possible. If the vehicles follow the rules SM 1, is fulfilled.

SM2: priority for fire brigade

This system mission statement is achieved by the emergency button. The requirement R2
(emergency button yields “go” signal for secondary road) is necessary.

Sufficient are: R2 ∧ D1 ∧ D2 ∧ A3 ∧ A1 =⇒ SM 2.

That means that the emergency button stops the traffic on the main road, the vehicles have to
stop if red and drive if green, and the button is pressed on emergency. If the vehicles follow
the rules, SM 1 is fulfilled.

SM3: fair traffic flow

Requests from the secondary road must be taken into account, but the main road should be
allowed to pass twice as long as the secondary road. Necessary are R1 and R3.

Sufficient are: R1 ∧ R3 ∧ D4 =⇒ SM 3.

The requirements that the secondary road request leads to “go” and a longer period for main
road should be achieved, together with the definition of fairness in D4 is sufficient to fulfill
SM 3.

Determine Set of Most Important Requirements

The validation results of this step can be summarized in a set (R′) of mission critical require-
ments:

66

R′ = {R1,R2,R3,R4,R5,R7}
R \ R′ = {R6}

R6 is required for safety, and the system mission has to be extended by a corresponding system
mission SM 4 ⇐⇒ R6. Hence, all requirements are necessary and will be implemented (R′ =
R).

6.3 Step 3: Decompose Problem

The traffic light control consists of the subproblems MainRoadPassing, SecondaryRoadPass-
ing, EmergencyRequestSecondaryRoadPassing, and BrokenLightSafeState. The following fig-
ures provide the problem frame instances for these subproblems.

6.3.1 Subproblem: SecondaryRoadPassing

Fig. 6.3 shows the subproblem diagram for the secondary road passing phase of the traffic
light.4 The problem diagram presented here only covers the secondary road passing phase.
It is an instantiation of the required behavior problem frame. All requirements assigned to
this subproblem are relevant for the secondary road passing phase and the main road passing
phase.

lights

control

crossing

sec_green,

sec_red}

sec_yellow,

l!{sec_yellow_red,

lights

light settings

TLC
secondary
phase

tlc!{on,off}

lc!{12V, 0V}

ruol!{enter,leave}

road users on

lanes
vehicles on crossing

R3, R4, R5, R7

vehicles on crossing

Figure 6.3: Problem Diagram for SecondaryRoadPassing

The following projection operators have been applied:

4The subproblems prevent accidents and fair and adapted flow of traffic in [HH05b] are decomposed differently
since a sequential decomposition is possible.

67

• The domains waiting area of main road, waiting area of secondary road, fire brigade, and the
corresponding interfaces are left out.

• The domain lights is divided into light and light control.

• The interface between machine and lights domain is reduced (dropping the phenomenon
broken).

• The interface between road users on lanes and lights domain is refined and reduced. It
only contains the phenomena relevant for the secondary road passing phase.

6.3.2 Subproblem: MainRoadPassing

Fig. 6.4 shows the subproblem diagram for the main road passing phase of the traffic light. It
is an instantiation of the commanded behavior problem frame. The domain road users on lanes
is the biddable domain in the problem frame.

R1, R3, R4, R5, R7

lc!{12V, 0V}

ruol!{enter,leave}

road users on

lanes vehicles on crossing

lights

control

light settings

lights

l!{main_yellow_red,
main_green,
main_yellow,

main_red}

waiting area of

secondary road

induction loop

control

waosr!{srr}

ilc!{vehicle_waiting}

tlc!{on,off}

phase
main
TLC

vehicle_waiting

Figure 6.4: Problem Diagram for MainRoadPassing

The following projection operators have been applied:

• The domains crossing, waiting area of main road, and fire brigade, and the corresponding
interfaces are left out.

• The interface between machine and lights domain is reduced (dropping the phenomenon
broken).

• The interface between road users on lanes and lights domain is refined and reduced. It
only contains the phenomena relevant for the main road passing phase.

68

6.3.3 Subproblem: EmergencyRequestSecondaryRoadPassing

Fig. 6.55 shows the subproblem diagram for the emergency phase of the traffic light 6. It is
an instantiation of the commanded behavior problem frame. The domain fire brigade is the
biddable domain in the problem frame.

lights

control

crossing

lights

light settings

TLC

tlc!{on,off}

lc!{12V, 0V}

ruol!{enter,leave}

road users on

lanes

sec_red}
sec_yellow,
sec_green,
sec_yellow_red,

fire brigade

R2

l!{main_yellow, main_red,

vehicles on crossing

emergency_request

fire brigade

fb!{emergency_request_start,

emergency_request_end}

vehicles on crossing

Figure 6.5: Problem Diagram for EmergencyRequestSecondaryRoadPassing

The following projection operators have been applied:

• The domains waiting area of main road, road users on lanes and the corresponding inter-
faces are left out.

• The interface between machine and lights domain is reduced (dropping the phenomenon
broken).

• The interface between road users on lanes and lights domain is refined and reduced. It
only contains the phenomena relevant for the emergency phase.

5Some phenomena between lights and road users on lanes have been added later
6Same as the subproblem help fire brigade in [HH05b]

69

6.3.4 Subproblem: BrokenLightSafeState

Fig. 6.67 shows the subproblem diagram for the broken light phase of the traffic light8. It is an
instantiation of the required behavior problem frame.

lights R6
lights
control

TLC
fault tolerance

light settings

tlc!{on,off}
lc!{broken_light}

l!{current}

vehicles on lanes

road users on
lanes

l!{sec_red,
main_red,
sec_yellow, all_off}

tlc!{0V,12V}

Figure 6.6: Problem Diagram for BrokenLightSafeState

The following projection operators have been applied:

• The domains crossing, waiting area of secondary road, fire brigade, and the corresponding
interfaces are left out.

• The interface between road users on lanes and lights domain is refined and reduced. It
only contains the phenomena relevant for the emergency phase.

6.3.5 Validation

The problem diagrams are consistent with the context diagram because the problem diagrams
were derived from the context diagram by applying the introduced operators. All phenomena
and all domains of the context diagram are covered.

6.3.6 Dependencies between Subproblems

The dependencies between the subproblems can be summarized using a context-free grammar
describing the possible sequences. In the following grammar, “||” denotes parallel problems
and “|” denotes an alternative.
< start > ::= (< main passing >||< fire >||< broken light >)
< main passing > ::= (MainRoadPassing < sec passing >)
< sec passing > ::= (SecondaryRoadPassing < main passing >)
< fire > ::= EmergencyRequestSecondaryRoadPassing < main passing >
< broken light > ::= BrokenLightSafeState

7Some phenomena between lights and road users on lanes added later
8Same as the subproblem safe state if light bulb is broken in [HH05b]

70

The subproblems EmergencyRequestSecondaryRoadPassing acts in parallel to the subprob-
lems MainRoadPassing and SecondaryRoadPassing in the sense of reacting to phenomena
controlled by the environment. Once activated, the subproblem EmergencyRequestSecondary-
RoadPassing has priority. That implies, only the machine for EmergencyRequestSecondary-
RoadPassing is allowed to control the lights until it gives the control to the machine for Main-
RoadPassing.

The subproblem BrokenLightSafeState acts in parallel to the subproblems EmergencyRequest-
SecondaryRoadPassing, MainRoadPassing, and SecondaryRoadPassing in the same sense.
Once activated, only the machine for BrokenLightSafeState is allowed to control the lights.

6.4 Step 4: Derive Machine Behavior Specifications
for each Subproblem

For each problem diagram, the specification is expressed by sequence diagrams that are given
in the following figures. Since it is difficult to express the specification directly, the require-
ments and the domain knowledge are expressed separately.

6.4.1 Subproblem: SecondaryRoadPassing

Fig. 6.7 shows the first sequence diagram for the subproblem SecondaryRoadPassing. The
domains crossing and road users on lanes are merged. The domains TLC secondary phase, lights
control, and lights are also merged. In this step the requirement is refined by adding timing
constrains, e.g., the state SECONDARY PASSING should take 10 seconds.

71

Figure 6.7: Sequence Diagram for SecondaryRoadPassing 1

72

6.4.2 Subproblem: MainRoadPassing

Fig. 6.8 shows the first sequence diagram for the subproblem MainRoadPassing. The sequence
diagrams start with a signal instead of a state invariant. This signal is only included to have
a time reference for the next signals. For this subproblem the same domains as for the other
subproblems are merged. Additionally, the domain induction loop control is part of the machine
and therefore merged with it.

Figure 6.8: Sequence Diagram for MainRoadPassing 1

Fig. 6.9 shows the second sequence diagram for the subproblem MainRoadPassing. The se-
quences express that the state MAIN PASSING takes at least 20 seconds, and therefore the
requirement R3 and D4 are considered.

73

Figure 6.9: Sequence Diagram for MainRoadPassing 2

74

6.4.3 Subproblem: EmergencyRequestSecondaryRoadPassing

The Figures 6.10, 6.11, 6.12, 6.13, and 6.14 show the sequence diagrams for the subproblem
SecondaryRoadPassing. The star (*) indicates that the diagram can be applied for all states,
whose name begins with the given string. For this subproblem the same domains as for the
other subproblems are merged. The signal sec yellow red() in Fig. 6.12 is only included to
annotate the timing invariant.

Figure 6.10: Sequence Diagram for EmergencyRequestSecondaryRoadPassing 1

75

Figure 6.11: Sequence Diagram for EmergencyRequestSecondaryRoadPassing 1

76

Figure 6.12: Sequence Diagram for EmergencyRequestSecondaryRoadPassing 3

77

Figure 6.13: Sequence Diagram for EmergencyRequestSecondaryRoadPassing 4

Figure 6.14: Sequence Diagram for EmergencyRequestSecondaryRoadPassing 5

78

6.4.4 Subproblem: BrokenLightSafeState

Fig. 6.15 shows the sequence diagram for the subproblem BrokenLightSafeState. The phe-
nomenon broken light can occur in every state. It is detected by a very high or very low current
for one light bulb. Although the domain lights control is part of the machine, it is included in
this diagram because the phenomenon broken light is more abstract and a controlled variable. A
diagram using the more technical phenomenon current is hard to understand. Including the do-
main lights control enforce to include also the abstract phenomenon on/off . This phenomenon
and also the phenomenon broken light are refined in Step 8 because the domain lights control
must be described there.

The safe state is realized by periodically switching on and off the yellow light of the secondary
road. It is not specified how to repair the traffic lights, i.e., how to leave the safe state.

Figure 6.15: Sequence Diagram for BrokenLightSafeState 1

79

6.4.5 Initialization

Additionally, the initialization must be specified as shown in Fig. 6.16.

Figure 6.16: Sequence Diagram for Initialization 1

80

6.4.6 Domain Knowledge

The domain knowledge is expressed using the sequence diagrams in Fig. 6.17. Using this
domain knowledge, the machine domain and the domain lights control can be separated from
the domain lights.

Figure 6.17: Sequence Diagrams for the Lights Domain

81

6.4.7 Validation

To validate this step, it was assured that all requirements are captured. They are assigned to the
subproblems as described in Step 3 and therefore also assigned to the corresponding sequence
diagrams. In the sequence diagrams, exactly the phenomena of the problem diagrams are
used, and the direction of signals is consistent with the control of the shared phenomena.
The signals connect domains as connected in the problem diagram. The relationships of Step
3 are consistent with the state invariants. The specification can be easily derived from the
requirements and the domain knowledge expressed as sequence diagrams.

6.5 Step 5: Design Global System Architecture

In this section the system architecture with its interfaces is developed and the subproblems are
associated to the components.

6.5.1 System Architecture

The system architecture shown in Figure 6.18 consists of a software component TrafficLightsCon-
trol, which decides on the signaling shown by the physical traffic lights, and two hardware
components LightsControl (which connects the software to the physical lights) and Induction-
LoopControl (which connects the software to the induction loop).

: InductionLoop

 Control

emergency
request button at

lights

 Control

: LightsControl

:TrafficLights

srr_if

road
on secondary
to detect cars
induction loop

bl_if

fire brigade

er_if

lights_on_off

bl

lights_on_off_if

srr

Figure 6.18: System Architecture for Traffic Lights System

6.5.2 Subcomponents

No subcomponents are necessary for this problem.

82

6.5.3 External and Internal System Architecture Interfaces

The interfaces between the components are described by interface classes that contain the
signals that can be exchanged via the interfaces. In the example, we have to refine the abstract
signal main yellow , main red etc. used in Step 5 to concrete signals needed to control the
physical traffic light elements. For example, the abstract signal main red is refined to the
sequence of signals main red(24), main yellow(0), and main green(0). This means that each light
bulb is controlled separately, and switching on a light bulb means a volt value of 24V, whereas
switching off a light bulb corresponds to a volt value of 0V.

The signals used by the software component traffic light control are more abstract, they have a
Boolean parameter for each light that indicates if it must be switched on or off. Figure 6.19
shows the interface classes lights on off and lights on off if that contain the signals described
above.

〈〈interface〉〉
lights on off

main red (voltage: integer)
sec red (voltage: integer)

main yellow (voltage: integer)
sec yellow (voltage: integer)
main green (voltage: integer)
sec green (voltage: integer)

〈〈interface〉〉
srr

vehicle waiting ()

〈〈interface〉〉
bl

current (light: eLight,
current of light: integer)

〈〈interface〉〉
lights on off if

m red (on: boolean)
s red (on: boolean)

m yellow (on: boolean)
s yellow (on: boolean)
m green (on: boolean)
s green (on: boolean)

〈〈interface〉〉
srr if

srr ()

〈〈interface〉〉
bl if

broken light ()

〈〈enumeration〉〉
eLight

m red1, m red2, m yellow1, m yellow2, m green1, m green2,
s red1, s red2, s yellow1, s yellow2, s green1, s green2

Figure 6.19: Interface classes for the traffic light system

The signal of this interface bl describes the measurement of the electric current for each light.
If the electric current is not in the range from 300 mA to 1000 mA, the signal broken light() of
the interface bl is sent to the TrafficLightControl as a short 5 V signal.

83

6.5.4 Subproblem Relationships

All subproblems should be implemented in the component TrafficLightsControl. The component
TrafficLightsControl is therefore the same as in Step 3. The other components perform simple
transformations.

6.5.5 Validation

The external interfaces of the components cover the interfaces of all problem diagrams. Ad-
ditionally, the architecture cover all specifications developed in Step 4. The machine domain
in the context diagram and the domains in the problem diagrams being part of the machine
are separate components. The description of the relationships between the subproblems for
machine and the components are equal and therefore consistent.

6.6 Step 6: Derive Specifications for all Components
being Relevant for the Subproblem

In this step, the interface behavior of all complex components is specified.

This specification can be expressed using the sequence diagram of Step 6 and split the machine
domain into the components specified in Step 5. An example is shown in Fig. 6.20. It is
derived from Fig. 6.8.

In this step, it is also allowed to merge domains and express the behavior between these com-
ponents separately. Since the diagrams become very complex in this case and only little ad-
ditional information is given, the specification of Step 4 can be used and the behavior of the
components LightsControl and InductionLoopControl can be specified. Fig. 6.21 shows the speci-
fication of the component LightsControl. The component converts the digital signals (on/off) into
an analog voltage to control the lights. In Fig. 6.22 is shown how a broken light is detected:
When a light bulb is supplied with 12 V, a functioning lights bulb uses a current between
300 mA and 1000 mA. If another current can be measured for one light bulb, the BrokenLight
signal is generated. Fig. 6.23 shows one possible sequence of interactions when a broken light
is detected.

Fig. 6.24 shows the sequence diagram for the component InductionLoopControl. The secondary
road request (ssr()) is transformed into the signal vehicle waiting. Since the abstract signal srr
is used, an additional technical description is necessary.

84

Figure 6.20: Interface Behavior for Subproblem MainRoadPassing 1

85

Figure 6.21: Interface Behavior 1 of the Component LightsControl for all Subproblems

86

Figure 6.22: Interface Behavior 2 of the Component LightsControl for all Subproblems

Figure 6.23: Interface Behavior of the Component LightsControl for all Subproblems, Sample
Trace

87

Figure 6.24: Interface Behavior of the Component InductionLoopControl for all Subproblems

88

6.7 Step 7: Design Software Architecture for each
Software Component and each Subproblem

In this step, the architectural patterns of Step 7 in Chapter 5 are instantiated, and the internal
interfaces are specified.

6.7.1 Subproblem: SecondaryRoadPassing

Fig. 6.25 shows the software architecture for the subproblem SecondaryRoadPassing. It is
an instantiation of the required behavior architectural pattern. In this architecture, there is no
sensor included. For this reason, the components Sensor IAL and Sensor HAL are removed from
the software architecture.

lights

: LightsDriver

: TrafficLightApplication

: LightsInterface

Abstraction

:TrafficLightControl

lights_on_off_if

lights_on_off_if’

lights_state_if

Figure 6.25: Software Architecture for SecondaryRoadPassing

Fig. 6.26 shows the interfaces of the software architecture for the subproblem SecondaryRoad-
Passing.

6.7.2 Subproblem: MainRoadPassing

Fig. 6.27 shows the software architecture for the subproblem MainRoadPassing.

Fig. 6.28 shows the interfaces of the software architecture for the subproblem MainRoadPass-
ing.

89

〈〈interface〉〉
lights state

sec red ()
sec yellow red ()

sec yellow ()
sec green ()

〈〈interface〉〉
lights on off if

s red (on: boolean)
s yellow (on: boolean)
s green (on: boolean)

〈〈interface〉〉
lights on off if’

see lights on off if

Figure 6.26: Interface Classes for SecondaryRoadPassing

: InductionLoop

 Driver

lights

: LightsDriver

: TrafficLightApplication

: LightsInterface

Abstraction

: InductionLoop

IAL

:TrafficLightControl

induction loop
to detect cars
on secondary

road

lights_on_off_if

lights_on_off_if’

lights_state_if

srr_if

srr_if’

srr

Figure 6.27: Software Architecture for MainRoadPassing

〈〈interface〉〉
lights state

main red ()
main yellow red ()

main yellow ()
main green ()

〈〈interface〉〉
srr

vehicle waiting ()

〈〈interface〉〉
lights on off if

m red (on: boolean)
m yellow (on: boolean)
m green (on: boolean)

〈〈interface〉〉
srr if

srr ()

〈〈interface〉〉
lights on off if’

see lights on off if

〈〈interface〉〉
srr if’

see srr if

Figure 6.28: Interface Classes for MainRoadPassing

90

6.7.3 Subproblem: EmergencyRequestSecondaryRoadPassing

Fig. 6.29 shows the software architecture for the subproblem EmergencyRequestSecondary-
RoadPassing. The interfaces abstraction layer is removed for the emergency request because
the interface of the application component is the same as for the component EmergencyRe-
questDriver.

lights emergency
request button at

: LightsDriver

 Driver

: TrafficLightApplication

: LightsInterface

Abstraction

 Request
: Emergency

:TrafficLightControl

fire brigade

lights_on_off_if

er_if

er_if’

lights_on_off_if’

lights_state_if

Figure 6.29: Software Architecture for EmergencyRequestSecondaryRoadPassing

Fig. 6.30 shows the interfaces of the software architecture for the subproblem EmergencyRe-
questSecondaryRoadPassing.

〈〈interface〉〉
lights state

main red ()
main yellow red ()

main yellow ()
sec red ()

sec yellow red ()
sec yellow ()
sec green ()

〈〈interface〉〉
lights on off if

m red (on: boolean)
m yellow (on: boolean)
m green (on: boolean)

〈〈interface〉〉
er if

emergency request start ()
emergency request end ()

〈〈interface〉〉
lights on off if’

see lights on off if

〈〈interface〉〉
er if’

see er if

Figure 6.30: Interface Classes for EmergencyRequestSecondaryRoadPassing

91

6.7.4 Subproblem: BrokenLightSafeState

Fig. 6.31 shows the software architecture for the subproblem BrokenLightSafeState. The in-
terfaces abstraction layer is removed for the broken light since the interface of the application
component is the same as for the component BrokenLightDriver.

lights

: LightsDriver : BrokenLight
 Driver

: TrafficLightApplication

: LightsInterface

Abstraction

:TrafficLightControl

bl_if

lights_on_off_if

bl_if’

lights_on_off_if’

lights_state_if

Figure 6.31: Software Architecture for BrokenLightSafeState

Fig. 6.32 shows the interfaces of the software architecture for the subproblem BrokenLight-
SafeState.

〈〈interface〉〉
lights state

main red ()
sec red ()

sec yellow ()
main green ()

all off ()

〈〈interface〉〉
lights on off if

s red (on: boolean)
s yellow (on: boolean)
s green (on: boolean)
m red (on: boolean)

m yellow (on: boolean)
m green (on: boolean)

〈〈interface〉〉
bl if

broken light ()

〈〈interface〉〉
lights on off if’

see lights on off if

〈〈interface〉〉
bl if’

see bl if

Figure 6.32: Interface Classes for BrokenLightSafeState

92

6.7.5 Subcomponents

The component TrafficLightApplication has to be refined into a clock that generates cyclic signals,
a TimeOutTimer component that generates timeouts and a component TrafficLightBehavior. The
separation is the same for all subproblems and shown in Fig. 6.33.

: TrafficLightBehavior

: TimeOutTimer: Clock

:TrafficLightApplication

srr er_if
lights_state_if

bl_if

timeoutset_timeout

ms_clock

Figure 6.33: Subcomponents of the Component TrafficLightApplication

Fig. 6.34 shows the interfaces in the component TrafficLightApplication.

〈〈interface〉〉
set timeout

SetTimeout(seconds: integer)

〈〈interface〉〉
timeout

Timeout ()

〈〈interface〉〉
ms clock

MsClock ()

Figure 6.34: Interface Classes in the Component TrafficLightApplication

6.7.6 Validation

Since all architectural diagrams (except of the refinement of the component TrafficLightAppli-
cation) are instantiations of the given patterns, no validation of the architecture is necessary.
Additionally, it is evaluated that all interfaces are covered. The operations in the external inter-
face classes of the software architecture are the same as the signals in the sequence diagrams
of Step 6. The interface of the application components contain the signals used in the sequence
diagrams of Step 4. The directions of all signals are consistent to each other and to the system
architecture.

93

6.8 Step 8: Specify Behavior of Software Architecture
Components for each Subproblem

In this step, the interface behavior of all components is specified using sequence diagrams.
The HAL is the software interface to the hardware. The behavior is described in the data book
and therefore not specified here. Therefore, the components TrafficLightApplication, Induction-
LoopIAL, and LightsInterfaceAbstraction have to be specified.

6.8.1 Component: TrafficLightApplication

The component TrafficLightApplication is included in all subproblems. The specification for all
subproblems is the same as the specification of Step 4.

6.8.2 Component: InductionLoopIAL

The component InductionLoopIAL is only included in the subproblem MainRoadPassing. The
specification shown in Fig. 6.35 is derived from the domain knowledge shown in Fig. 6.24.

Figure 6.35: Software Architecture for BrokenLightSafeState

The component InductionLoopIAL transforms the signal vehicle waiting() into the signal srr() for
the application component.

6.8.3 Component: LightsInterfaceAbstraction

The component TrafficLightApplication is included in all subproblems. The specification for this
component can be derived from Fig. 6.17 in the same way as for the component InductionLoop-
IAL.

94

6.8.4 Validation

The sequence diagrams together describe the same behavior as in Step 6. All signals in the
interface classes of Step 7 are captured in at least one sequence diagram and the direction of
the signals is consistent with the required or provided interfaces of Step 7. The signals connect
the components as connected in the software architecture. In the interfaces abstraction layer
no state invariants are relevant. The sequence diagrams and therefore also the state invariants
in this step are the same as in Step 6.

6.9 Step 9: Specify Software Components of Software
Architectures for each Subproblem

In this step, for all components a component overview description is developed. The used data
types with their operations are specified. Additionally, the state machine and invariants are
developed.

6.9.1 Component: TrafficLightApplication

The component TrafficLightApplication is split into the subcomponents TrafficLightApplication, Clock,
and TimeOutTimer. These components are specified separately in Sections 6.9.2, 6.9.4, and
6.9.3. It is an active component since a clock is included.

6.9.2 Component: TrafficLightBehavior

The data and the interfaces of the components TrafficLightBehavior are specified in Fig. 6.36. It
is a passive component since it reacts immediately to input signals. The component requires
and provides the same interfaces as specified in Step 7. This component must store if a vehicle
is waiting or not.

another_vehicle_waiting: boolean

bl_if er_if

TrafficLightBehavior

srr lights_state_if

set_timeout timeout

Figure 6.36: Component Overview Description of TrafficLightBehavior

95

Subproblem: SecondaryRoadPassing

The state machine of the component TrafficLightBehavior and the subproblem SecondaryRoad-
Passing is shown in Fig. 6.37. It is derived from the sequence diagram in Fig. 6.7.

ALL_WAIT_S

SEC_PASSING_

WILL_START

SEC_PASSING

WILL_END
SEC_PASSING_

SEC_PHASE

TimeOut () / sec_yellow_red(), SetTimeOut(1)

TimeOut () / sec_green(), SetTimeOut(10)

another_vehicle_waiting:= false
TimeOut () / sec_yellow(), SetTimeOut(1),

/SetTimeOut (3)

srr ()

srr ()

srr ()

TimeOut () / sec_red()

srr ()

Figure 6.37: State Machine of TrafficLightBehavior, SecondaryRoadPassing

Subproblem: MainRoadPassing

The state machine of the component TrafficLightBehavior and the subproblem MainRoadPassing
is shown in Fig. 6.38. It summarizes the sequence diagrams in Figures 6.8 and 6.9.

96

MAIN_PASSING_
WILL_START

MAIN_PASSING srr() / another_vehicle_waiting:= true

LONG_ENOUGH

TimeOut ()

[ELSE]

MAIN_PASSING_
WILL_END

MAIN_PASSING_

srr() / another_vehicle_waiting:= true

srr() / another_vehicle_waiting:= true
ALL_WAIT_M

MAIN_PHASE

TimeOut () /

main_red()

[another_vehicle_waiting] / main_yellow(), SetTimeOut(1)

srr() / main_yellow(),

SetTimeOut(1)

/ SetTimeOut (3)

TimeOut () / main_yellow_red(), SetTimeOut(1)

TimeOut () / main_green(), SetTimeOut(20)

Figure 6.38: State Machine of TrafficLightBehavior, MainRoadPassing

97

Subproblem: EmergencyRequestSecondaryRoadPassing

The state machine of the component TrafficLightBehavior and the subproblem EmergencyRe-
questSecondaryRoadPassing is shown in Fig. 6.39. It summarizes the sequence diagrams in
Figures 6.10, 6.11, 6.12, 6.13, and 6.14.

Subproblem: BrokenLightSafeState

The state machine of the component TrafficLightBehavior and the subproblem BrokenLight-
SafeState is shown in Fig. 6.40. It is derived from the sequence diagram in Fig. 6.15.

6.9.3 Component: TimeOutTimer

In all subproblems, timing requirements have to be fulfilled. Therefore, a component TimeOut-
Timer is necessary for all subproblems. The class diagram in Fig. 6.41 shows the same required
and provided interfaces as Fig. 6.33. Additionally, it includes the data type and operators for
the remaining time. The state machine in Fig. 6.42 is using this data. The component is a
passive component since it reacts immediately to the input signals of the clock.

The operations can be specified using the following pre- and postconditions:

IsZero() pre true
post Result = true ⇔ remaining time = 0

SetTime(x) pre true
post remaining time = x

DecTime() pre remaining time 6= 0
post remaining time = remaining time@pre −1

For the state machine and the data of the component the following invariant must always be
true:

In state stopped ⇒ remaining time = 0

6.9.4 Component: Clock

The component Clock shown in Fig. 6.43 is an active component since it has to work in parallel
to all other components to generate cyclic signals. Usually it is a standard component, included
in the operating system. Hence, it is not specified here.

98

MAIN_PASSING,

MAIN_PASSING_WILL_END,

MAIN_PASSING_LONG_ENOUGH

MAIN_PASSING_WILL_START,

ALL_WAIT_M,
ALL_WAIT_S

SEC_PASSING_
WILL_START

SEC_PASSING,
SEC_PASSING_
WILL_END

FIRE_ALL_WAIT

FIRE_
MAIN_PASSING_
WILL_END

FIRE_
SEC_PASSING_
WILL_START

FIRE_

FIRE_

SEC_PASSING_

SEC_PASSING_
WILL_END

FIRE_PHASE

TimeOut ()

emergency_request_end () /

emergency_request_end () /

emergency_request_end () /

emergency_request_end () /

/ sec_green()

TimeOut () /sec_green()

TimeOut () / sec_yellow_red(), SetTimeOut(1)

sec_yellow(), SetTimeOut(1)

TimeOut () / main_red(), SetTimeOut(3)

main_red(), SetTimeOut(1)

 / main_yellow(), SetTimeOut(1)

SetTimeOut(3), sec_red()
TimeOut () /

sec_yellow(), SetTimeOut(1)

sec_yellow(), SetTimeOut(1)

Figure 6.39: State Machine of TrafficLightBehavior, EmergencyRequestSecondaryRoadPass-
ing

99

BROKEN_PHASE

BROKEN_

ALL_WAIT

BROKEN_

BLINK_ON

BROKEN_

BLINK_OFF
TimeOut () / all_off (),

 SetTimeOut(1)

TimeOut() / all_off(), SetTimeOut(1)

TimeOut() / sec_yellow(), SetTimeOut(1)

/ SetTimeOut(3), main_red(), sec_red()

Figure 6.40: State Machine of TrafficLightBehavior, BrokenLightSafeState

−remainingTime: Long

set_timeout

− SetTime (Time: Long)

− IsZero (): Boolean

− DecTime ()

TimeOutTimerms_clock

timeout

Figure 6.41: Component Overview Description of TimeOutTimer

TimeOutTimer

RunningStopped

 / SetTime (seconds * 1000)

MsClock ()
[ELSE]

MsClock () / DecTime()

 / SetTime (seconds * 1000)
SetTimeOut (seconds)

SetTimeOut (seconds)

/ SetTime(0)

[IsZero()] / TimeOut ()

Figure 6.42: State Machine of TimeOutTimer

100

Clock
ms_clock

Figure 6.43: Component Overview Description of Clock

6.9.5 Component: InductionLoopIAL

The data and the interfaces of the components InductionLoopIAL are specified in Fig. 6.44. It
is a passive component since it directly hands over the input signals. The component requires
and provides the same interfaces as specified in Step 7. This component is only included in
the subproblems MainRoadPassing.

InductionLoopIAL

srr

srr_if’

Figure 6.44: Component Overview Description of InductionLoopIAL

Subproblem: MainRoadPassing

The state machine of the component InductionLoopIAL and the subproblem MainRoadPassing is
shown in Fig. 6.45.

InductionLoopIAL

wait_for_l_change

srr (),
vehicle_waiting () /

Figure 6.45: State Machine of InductionLoopIAL, MainRoadPassing

101

6.9.6 Component: LightsInterfaceAbstraction

The class diagram in Fig. 6.46 shows the same required and provided interfaces as Fig. 6.33.
Since the state machine for this state contains only one state, the behavior is the same for all
subproblems and only one state machine is developed. This component is a passive component
since it reacts immediately to the input signals. The state machine is shown in Fig. 6.47.

LightsInterfaceAbstraction

lights_state_if

lights_on_off_if

Figure 6.46: Component Overview Description of LightsInterfaceAbstraction

wait_for_l_change

LightsInterfaceAbstraction

wait_for_l_change

main_yellow ()/

main_green ()/

main_red ()/
m_red (true),
m_yellow (false),
m_green (false)

sec_red ()/
s_red (true),
s_yellow (false),
s_green (false)

m_red (false),
m_yellow (true),
m_green (false)

sec_yellow ()/
s_red (false),

s_yellow (true),
s_green (false)

m_red (false),

m_green (true)
m_yellow (false),

sec_green ()/

s_yellow (false),
s_green (true)

s_red (false),

main_yellow_red ()/ all_off ()/

sec_yellow_red ()/
s_red (true),
s_yellow (true),
s_green (false)

m_red (true),
m_yellow (true),
m_green (false)

s_red (false),
m_red (false),

m_yellow (false),
s_yellow (false),
m_green (false),
s_green (false)

Figure 6.47: State Machine of LightsInterfaceAbstraction, All Subproblems

6.9.7 Validation

Each architectural component is covered, and in all state machines each possible input signal
(as specified in Step 7) is taken into account.

The state machine behaves as described in the sequence diagrams of Step 8. All states are cov-
ered. Additional states ending with PASSING WILL START are introduced. All state machines
of the software architecture together are consistent with the sequence diagrams of Step 6.
There is no direct user interaction. Hence, no error cases for user interaction must be consid-
ered. In all states, all signals that can occur are covered.

102

Moreover, all referenced interface classes are the same as the interface classes of the subprob-
lem architecture of the respective component (Step 7).

6.10 Step 10: Develop Global Software Architectures

The composed architecture is shown in Figure 6.48. The subproblems SecondaryRoadPassing
and MainRoadPassing are related sequentially (cf. case 2 in Step 10 of Chapter 5). Hence, the
application components have to be merged. Since the subproblems EmergencyRequestSec-
ondaryRoadPassing and BrokenLightSafeState are related parallel to the other subproblems
and share the same output phenomena (cf. 3), they must also be merged. The component
LightInterfaceAbstraction has already been merged in Step 9. All components that are HALs (cf.
case 1) are merged with the components of the same name in the other subproblem architec-
tures.

: InductionLoop

 Driver

lights emergency
request button at

:TrafficLightsControl

: LightsDriver : BrokenLight
 Driver

 Driver
 Request
: Emergency

: TrafficLightApplication

: LightsInterface

Abstraction

: InductionLoop

IAL

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if

srr_if’

srr

Figure 6.48: Software architecture for traffic light control component

The interface classes are merged as shown in Fig. 6.49.

6.10.1 Validation

The global architecture contains all components and interfaces of all subproblem architectures.
Its external interfaces are the same as in the system architecture developed in Step 5.

103

〈〈interface〉〉
lights state

main red ()
main yellow red ()

main yellow ()
main green ()

sec red ()
sec yellow red ()

sec yellow ()
sec green ()
main red ()

all off ()

〈〈interface〉〉
srr

vehicle waiting ()

〈〈interface〉〉
lights on off if

s red (on: boolean)
s yellow (on: boolean)
s green (on: boolean)
m red (on: boolean)

m yellow (on: boolean)
m green (on: boolean)

〈〈interface〉〉
srr if

srr ()

〈〈interface〉〉
er if

emergency request start ()
emergency request end ()

〈〈interface〉〉
bl if

broken light ()

〈〈interface〉〉
lights on off if’

see lights on off if

〈〈interface〉〉
srr if’

see srr if

〈〈interface〉〉
er if’

see er if

〈〈interface〉〉
bl if’

see bl if

Figure 6.49: Interface classes for the traffic light control

104

6.11 Step 11: Specify Composed Software
Components

In this step, the components of the software architecture for the subproblems are composed.

6.11.1 Component: TrafficLightApplication

The components inside the component TrafficLightApplication are specified separately in the
Sections 6.11.2, 6.11.4, and 6.11.3.

6.11.2 Component: TrafficLightBehavior

The data and the interfaces of the component TrafficLightBehavior are already specified in Fig. 6.36.
The behavior of the class is described with state machines. The state machines for the sub-
problems are developed in Step 9 and shown in Figures 6.37, 6.38, 6.39, and 6.40.

Since the subproblems MainRoadPassing and SecondaryRoadPassing are related sequentially,
one state machine will be activated as soon as the other state machine terminates. The state
machines for the subproblems EmergencyRequestSecondaryRoadPassing and BrokenLight-
SafeState are parallel and activated with the signals broken light() or emergency request start().
Once activated, they take control over the output signals. Fig. 6.50 shows the composed state
machine, consisting of the state machines shown in Figures 6.37, 6.38, 6.39, and 6.40. Addi-
tionally, the initialization sequence is considered.

6.11.3 Component: TimeOutTimer

This component is already a composed component, specified in Fig. 6.41 and in Fig. 6.42 of
Section 6.9.3.

6.11.4 Component: Clock

This component is part of the operating system. Its overview specification can be found in
Fig. 6.43 of Section 6.9.4.

6.11.5 Component: InductionLoopIAL

The component InductionLoopIAL needs no composition since it is only included in one of the
subproblem architectures. It is specified in Fig. 6.44 and in Fig. 6.45.

105

SEC_PHASEMAIN_PHASE

BROKEN_PHASE

TrafficLightBehavior

/another_

FIRE_PHASE

emergeny_request_start()

emergeny_request_start()

broken_light ()

broken_light () broken_light ()

vehicle_
waiting:= false,

 main_red (),
 sec_red ()

Figure 6.50: Composed State Machine for the Component TrafficLightBehavior

106

6.11.6 Component: LightsInterfaceAbstraction

This component is already the composed component, specified in Fig. 6.46 and in Fig. 6.47.

6.11.7 Validation

Each composed state machine is complete and covers all input events that can be sent by the
components with an interface to the composed state machine.

6.12 Step 12: Implement Software Components and
Test Environment

In this section, a sample implementation of the components using Java is presented. It makes
use of the interface classes of Java to create reusable components.

First, the interface classes are implemented. The interface class lights state if, shown in Fig. 6.49,
is implemented as follows:

package tlc;
public interface lights_state_if {

public void main_red();
public void sec_red();
public void main_yellow();
public void sec_yellow();
public void main_red_yellow();
public void sec_red_yellow();
public void main_green();
public void sec_green();
public void all_off();

}

All other interfaces can be implemented using this scheme. To implement the components,
the component overview description is implemented. The component overview description of
the component TimeOutTimer (cf. Fig. 6.41) can be implemented as follows:

package tlc;
public class TimeOutTimer implements ms_clock, set_timeout {

private timeout to;
private long remaining_time = 0;

public TimeOutTimer(timeout timeout_par) {
to = timeout_par;

}

107

public void SetTimeOut(int seconds) {}
public void MsClock() {}

private void SetTime(long time) {}
private boolean IsZero() {}
private void DecTime() {}

}

The interface classes of the provided interfaces (ms clock and set timeout) must be imple-
mented by this class. All operations specified in these interfaces (SetTimeOut(int seconds) and
MsClock()) must be operations of this class.

Since it is not known which component provides the required interfaces of this component, the
required interfaces (here only timeout) become parameters of the constructor (TimeOutTimer).
References to the components providing the required interfaces must be stored in private vari-
ables (private timeout to).

The data (private long remaining time = 0) and the operations on this data (e.g.,
private void SetTime(long time) or private void DecTime()) are declared
as specified.

Next, the operations are implemented according to the pre- and postconditions. The precondi-
tions are checked with assertions9 and the postconditions are implemented as follows:

IsZero()
pre true

post Result = true ⇔
remaining time = 0

SetTime(x)
pre x ≥ 0

post remaining time = x

DecTime()
pre remaining time 6= 0

post remaining time =
remaining time@pre −1

public class TimeOutTimer implements
ms_clock, set_timeout {

...
private long remaining_time = 0;
...
private boolean IsZero() {

return (remaining_time == 0);
}

private void SetTime(long time) {
assert time>=0 : "PRE: SetTime";
remaining_time = time;

}

private void DecTime() {
assert remaining_time!=0:

"PRE: DecTime";
remaining_time-- ;

}
}

9Only since Java 1.5

108

The state machines are implemented inside the public operations specified in the interface
classes of the provided interfaces. Additionally, there must be a private attribute for the state
(private int state) and this attribute must be initialized in the constructor (state
= STOPPED)10. The following code fragment implements the state machine specified in
Fig. 6.42.

public class TimeOutTimer implements ms_clock, set_timeout {
static final int STOPPED = 0;
static final int RUNNING = 1;
private int state;

...

public TimeOutTimer(timeout timeout_par) {
...
SetTime(0); state = STOPPED;

}

public void SetTimeOut(int seconds) {
switch (state) {

case STOPPED:
SetTime(seconds*1000); state = RUNNING; break;

case RUNNING:
SetTime(seconds*1000); break;

default:
}

}

public void MsClock() {
switch (state) {

case STOPPED: // do nothing
break;

case RUNNING:
DecTime();
if (IsZero()) {

state = STOPPED;
to.Timeout(); // external interface

} // else: do nothing
break;

default:
}

}
}

Active classes can be implemented using threads as shown in the following code fragment for
the component Clock, specified in Fig. 6.43.

10Here constants are used; in Java 1.5 enumeration type exists

109

import java.lang.*;
public class Clock extends Thread{

private ms_clock clk;
public Clock(ms_clock call) {

clk = call;
this.start();

}
public void run () {

while (true) {
clk.MsClock();
try {

Thread.sleep(1);
} catch (Exception e) {

System.out.println(e);
}

}
}

}

To run the test, cases test drivers have to be implemented. These test drivers implement re-
quired interfaces of the component that should be tested and stores which operations have
been called. Additionally, an operation for the test cases is implemented that checks which
operations have been called. The test driver for the interface lights state if can be implemented
as follows:

class C_lia implements lights_state_if {
int color = 0;
public final static int M_R = 1;
public final static int S_R = 2;
public final static int M_RY = 3;
...
public final static int ALL_OFF = 9;

public void main_red(){ color = M_R; }
public void sec_red(){color = S_R; }
public void main_yellow(){color = M_Y; }
...
public void all_off(){color = ALL_OFF;}

public boolean checkColor(int colorNr) {
boolean ret = (colorNr == color);
color = 0;
return ret;

}
}

The test cases can be implemented using the junit framework, as shown in the following code
fragment. First, the component is initialized. Then the signals are sent to the component and
output signals are checked using the test drivers according to the sequence diagrams.

110

package tlc;
import junit.framework.TestCase;
public class TrafficLightBehaviorTest extends TestCase {

...
TrafficLightBehavior tlb; C_lia lia; C_tot tot;

public void testInit() {
tlb = new TrafficLightBehavior();
lia = new C_lia();
tot = new C_tot();

tlb.connect(tot, lia);
// sends a signal directly to the provided interfaces

assertTrue("sec_red not set", lia.checkColor(lia.S_R));
// checks result using the testdriver

assertTrue("timoout wrong", tot.checkSetTimeOut(3));
// checks result using the testdriver

tlb.Timeout();
// sends a signal directly to the provided interfaces

assertTrue("main_red_yellow not set", lia.checkColor(lia.M_RY));
// checks result using the testdriver

assertTrue("timeout wrong", tot.checkSetTimeOut(1));
// checks result using the testdriver

tlb.Timeout();
// sends a signal directly to the provided interfaces

assertTrue("main_green not set", lia.checkColor(lia.M_G));
// checks result using the testdriver

}
...

}

6.12.1 Validation

This step is validated by running the test cases. The output of the test could be as follows:

Testsuite: tlc.TrafficLightBehaviorTest
Tests run: 33, Failures: 1, Errors: 0, Time elapsed: 0,217 sec
Testcase: testInit(tlc.TrafficLightBehaviorTest): FAILED
sec_red not set
junit.framework.AssertionFailedError: sec_red not set

at tlc.TrafficLightBehaviorTest.testInit(
TrafficLightBehaviorTest.java:103)

at sun.reflect.NativeMethodAccessorImpl.invoke0(
Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(
NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(
DelegatingMethodAccessorImpl.java:25)

Test tlc.TrafficLightBehaviorTest FAILED

Or for a passed test:

111

Testsuite: tlc.TrafficLightBehaviorTest
Tests run: 33, Failures: 0, Errors: 0, Time elapsed: 0,213 sec

6.13 Step 13: Integrate Software Components

The software components must be instantiated and connected as specified in Fig. 6.48. The
following code fragment shows how to initialized and connect the components. The com-
ponents can be connected using the constructor (e.g. LightsDriver) or they provide an
additional interface (e.g., connect).

package tlc;
public class MainInit {

BrokenLightDriver bld;
EmergencyRequestDriver erd;
InductionLoopDriver ild;

LightsInterfaceAbstraction lia;
LightsDriver ld;
InductionLoopIAL ili;

TrafficLightBehavior tlb;
TimeOutTimer tot;
Clock c;

public MainInit() {
ld = new LightsDriver(); // Actuators
lia = new LightsInterfaceAbstraction (ld);
tlb = new TrafficLightBehavior(); // Application
tot = new TimeOutTimer(tlb);
c = new Clock(tot);

tlb.connect(tot, lia); // Start Application

ili = new InductionLoopIAL(tlb);
bld = new BrokenLightDriver(tlb); // Sensors
erd = new EmergencyRequestDriver(tlb);
ild = new InductionLoopDriver(ili);

}

public static void main(String[] args) {
MainInit m = new MainInit();

}

}

112

6.13.1 Validation

The complete software can be validated by running the test cases for the whole software as
specified in Step 6.

6.14 Step 14: Integrate Hardware and Software

This step heavily depends on the used hardware and therefore is not performed.

113

7 Case Study: Automatic Teller
Machine

In this chapter, the development process is applied on an Automatic Teller Machine (ATM)
case study. The case study is taken from [CHH05b], extended with further diagrams and
adopted on the development process presented in Chapter 5.

The mission of an ATM is to provide customers with money, provided that they are entitled to
withdraw the desired amount. The Account-database , the Money supply, the Money Case, and
the Card Reader already exist.

7.1 Step 1: Describe Problem

For this example no context diagram of the system in use is created since there is no machine
in the system that should be replaced. Figure 7.1 shows the structure of the ATM problem
context, where several domains and the corresponding shared phenomena are identified.

The ATM has to fulfill the following requirements:

R1 To use the ATM a valid pin and a bank card is required.

R2 The withdrawal should be refused when the request is bigger than the balance.

R3 The card should be retracted if the customer does not take the ejected card.

Card
reader

Account
data

Admin

take_banknotes_from supply
put_banknote_to_case

retract_banknotes_from_case
open_case, close_case

banknotes_removed

*

Money supply /

ATMaccount_balance
withdraw_money

Customer

insert_card, remove_card

ask_pin, granted_OK
refuse_withdrawal
enter_request
enter_pin

take_banknotes

insert_money

*request_log
display_log

card_inside

retract_card, eject_card
no_card_inside

case

Figure 7.1: Context Diagram for ATM Problem

114

R4 The account is updated when the customer takes the money.

R5 After the withdrawal was granted and the card ejected, the money should be taken from
the supply, put to the money case, and the case should be opened. After the customer
took the money, the money case should close, otherwise the money should be retracted.

R6 All input phenomena should be logged.

R7 The logged input phenomena can be queried by the administrator.

The following domain knowledge can be stated:

D1 The Money case sends banknotes removed when the Customer takes the banknotes.

D2 When the phenomena take banknotes from supply and put banknote to case occur, money
will be in the Money supply.

D3 Only after open case and before close case occurs, the customer can take the banknotes.

D4 The Account data provides the actual balance and the balance can be updated.

D5 The Card reader can retract and eject the card. It monitors if a card ins inside or not.

The following statements can be assumed about the customer and the administrator:

A1 Before the Money supply is empty, the Administrator inserts money.

A2 The Administrator regularly checks the logs.

A3 The Customer enters the PIN, the request, and inserts the card to withdraw money.

Since the vocabulary for the ATM context is commonly known, no glossary is created.

All domains and phenomena mentioned in A1 – A3, D1 – D5, and R1 – R7 are in the context
diagram. All domains and phenomena of the context diagram relate to some elements of
A1 – A3, R1 – R7, and D1 – D5. Therefore, the domains and the phenomena in the context
diagram and in A, R or D are consistent.

7.2 Step 2: Consolidate Requirements

To provide customers with money, the requirement R5 must be fulfilled and the domain knowl-
edge D1 and D2 must be true. To check that the customers are entitled to withdraw the desired
amount, the requirements R1 – R4 must be fulfilled, the domain knowledge D3 – D5 must
be true, and the assumption A3 must be assumed to be true. The requirements R6 and R7 are
not necessary to fulfill the system mission, but they should be implemented to detect system
errors.

115

7.3 Step 3: Decompose Problem

The ATM consists of the subproblems Authenticate, Request, Update Account, Take Money,
Take Card, Log, and Display Log. The following figures provide the problem frame instances
for these subproblems.

Figure 7.2 shows the problem diagram for Authenticate. It is an instantiation of the com-
manded behavior frame with an additional feedback phenomenon AM!E6. Requirement R1
can be assigned to this problem diagram. The domains Customer keypad and Display are
introduced as connection domains belonging to the machine.

Authen−
tication
machine

Customer

Card

reader

C!E5

C3

E4,E5,E6

Authentication

C!E4

AM!C2

CR!C1

D!E6

AM!E6a

CK!E4a

Customer

keypad

Display

C1: {card inside}
C2: { retract card}
C3: { card control}
E4: { enter pin}

E4a: { number, enter}
E5: { insert card}
E6: { ask pin}

E6a: { display text}

Figure 7.2: Problem Diagram for Authenticate (Commanded Behavior Variant)

The problem diagram for Request (shown in Figure 7.3) describes requirement R2. It is a
variant of the commanded information frame. This variant is called information display and
described in [CH04]. Here also the domains Customer keypad and Display are introduced as
connection domains belonging to the machine.

Request

machine
Display

Account
data

AD!C7 C8

Y10 Request

money

E11

Customer
C!E11

keypad

Customer

CK!E11a D!E9

RM!E9a

C7: {account balance}
C8: {account data}
E9: {granted OK,

refuse withdrawal}
E9a: {display text}
Y10: {withdrawal possible}
E11: {enter request}

E11a: {number, enter}

Figure 7.3: Problem Diagram for Request (Commanded Information Variant, Information Dis-
play)

Figure 7.4 shows the problem diagram for Take Card. It is an instantiation of the required
behavior frame. The Customer is additionally included to show all relevant actions in the
environment. Requirement R3 can be assigned to this problem diagram.

Figure 7.5 shows the problem diagram for Update Account, which is a variant of the Work-
pieces frame. The requirement R4 is described with this problem frame.

116

Customer

Card
reader

Take
card
machine

CR!C12
TCM!C13 C14

C!E15

E15

Take
card C12: {card inside}

C13: {eject card, retract card}
C14: {eject, retract}
E15: {take card}

Figure 7.4: Problem Diagram for Take Card (Required Behavior)

Update
account

account
Update

machine

Customer

C!E18

data
Account

MC!C19

Y17

E18

UAM!Y16

Money case

Y16: {update account}
Y17: {account data}
E18: {take banknotes}
C19: {banknotes removed}

Figure 7.5: Problem Diagram for Update Account (Workpieces Variant)

The problem diagram for Take Money (Figure 7.6) is a variant of the Required Behavior prob-
lem frame (Figure 2.4), where we added the Customer and his/her connection with the Money
Case. The requirement R5 is described with this problem frame.

Customer

Take
money
machine

MCC!C19
TMM!C20 C21

E18

C!E18 Take
money

Money supply /
case

E18: {take banknotes}
C19: {banknotes removed}
C20: {take banknotes from supply, put banknote to case, open case, close case, re-

tract banknotes from case}
C21: {control money supply, control money case}

Figure 7.6: Problem Diagram for Take Money (Required Behavior Variant)

The problem diagram for Log (cf. requirement R6) is shown in Figure 7.7. The workpieces
problem frame is instantiated. The domains Card reader, Money case, and Customer in the
problem diagram represent the User in the problem frame.

The problem diagram for Display Log (shown in Figure 7.8) describes requirement R7. It
is a variant of the commanded information frame. This variant is called information display
and described in [CH04]. The domains Data storage is a lexical domains being part of the

117

(Logs)

machine
Log

Data storage Y23
LM!Y23

Customer

Money case
Card reader,

C!E5,E15,E18
C!E4,E11

CRMC!C1,C12, C19 Log input
phenomena

C22

E4,E11

C22: {card reader money case input phenomena}
Y23: {log data}

C1, C12 . . . as given in the other figures

Figure 7.7: Problem Diagram for Log (Workpieces)

machine. The domains Admin display and Admin keypad are connection domains being part of
the machine.

Admin Display

logdisplay

Display

machine
log

Data
storage
(Log) Y25DS!Y24

C26

Admin
E27A!E27Admin

keypad

AK!E28 AD!C26

DLM!C26a
Y24: {log data}
Y25: {logged input phenomena}
C26: {log}

C26a: {display log}
E27: {request log}
E28: {button pressed}

Figure 7.8: Problem Diagram for Display Log (Commanded Information Variant, Information
Display)

The dependencies between the subproblems can be summarized using a context-free grammar
describing the possible sequences. In the following grammar, “||” denotes parallel problems
and “|” denotes an alternative.

< start >::= (< idle >|| Log || DisplayLog)
< idle >::= (Authenticate < authenticated >| Authenticate < idle >)
< authenticated >::= (Request < granted >| Request < refused >)
< granted >::= (TakeCard < granted no card >| TakeCard < idle >)
< refused >::= TakeCardRefused < idle >
< granted no card >::= (UpdateAccount || TakeMoney) < idle >

The last line means that once the card is removed and withdrawal is granted, both UpdateAc-

118

count and TakeMoney will take place in parallel, and then the idle state is reached.

7.4 Step 4: Derive Machine Behavior Specifications
for each Subproblem

For each problem diagram, the specification is expressed by sequence diagrams that are given
in the following figures.

The sequence diagram for the subproblem Authenticate is shown in Figure 7.9. This diagram
expresses that the card is retracted after three unsuccessful attempts. The Customer is authen-
ticated if the valid PIN is entered. The Authentication machine in this diagram contains the
Customer keypad and the Display.

The sequence diagram for the subproblem Request is shown in Figure 7.10. When an authen-
ticated customer enters a request, his/her balance is checked and the access for the customer
is granted or refused. The Request machine in this sequence diagram includes the Customer
keypad.

Figure 7.9: Sequence Diagram for Authenti-
cate

Figure 7.10: Sequence Diagram for Request

119

The sequence diagrams for the subproblem Take Card are shown in Figures 7.11 and 7.12.
The sequence is different depending on the state of the customer. If the access is granted, the
ejected card might be retracted after a certain time period, or the customer takes the card and
he/she can continue with the withdrawal process.

If the access is refused, the ejected card is retracted or the customer takes it. In both cases the
access is not granted, as shown in Fig. 7.12.

Figure 7.11: 1st Sequence Diagram for Take
Card

Figure 7.12: 2nd Sequence Diagram for Take
Card

The sequence diagram for the subproblem Update Account is shown in Figure 7.13. The se-
quence diagram expresses that the account data are updated when the banknotes are removed.

The sequence diagram expresses the specification S5 for the subproblem Take Money which
is shown in Figure 7.14. It also contains the domain Customer to illustrate the interrelation
between the requirement, the domain knowledge and the specification:

R5 ... After the customer took the money, the Money Case should close, otherwise the money
should be retracted.

D1 The Money Case sends banknotes removed after the Customer took the banknotes.

S5 ... After the signal banknotes removed occurs, the Money Case should close, otherwise
the money should be retracted.

Therefore the implication D1 ∧ S5 ⇒ R5 is fulfilled. This sequence occurs in parallel to the
sequence shown in Fig. 7.13. This is possible because both diagrams start with the same state
invariant granted no card and only in Fig. 7.13 the state of the customer after this sequence is
constraint.

120

Figure 7.13: Sequence Diagram for Update
Account

Figure 7.14: Sequence Diagram for Take
Money

The sequence diagram for the subproblem Log is shown in Figure 7.15. It shows that all input
signals are logged in a data storage. This sequence is not constraint by a state invariant and is
parallel to all other sequence diagrams.

The sequence diagram for the subproblem Display Log is shown in Figure 7.16. It shows that
the stored logs can be queried by the administrator. This sequence also is not constraint by a
state invariant and is parallel to all other sequence diagrams.

121

Figure 7.15: Sequence Diagram for Log

Figure 7.16: Sequence Diagram for Display
Log

122

7.5 Step 5: Design Global System Architecture

From the context diagram and the problem diagrams the architecture in Fig. 7.17 can be de-
veloped.

ATM
Control

Display
Admin

Keypad

Admin
Admin

lights
Customer
Keypad

Display

Money supply

Card reader

Money case

Admin

data
Account

Customer

messages

admin_buttons admin_messages

data_if

buttons

cr_in_if

cr_out_if

mc_in_if

mc_out_if

ms_if

display_if

ck_if

ak_if

admin_display_if

Figure 7.17: ATM System Architecture

All machines in the subproblems have to be implemented in the component ATM Control. The
components Admin Keypad, Admin Display, Customer Keypad, and Display perform a simply trans-
formation. Since the problems are very simple, these corresponding subproblems are not
shown here.

From the sequences of interactions between machine and environment of all subproblems from
Step 4 the following interface classes can be derived:

〈〈interface〉〉
admin buttons

request log()

〈〈interface〉〉
ak if

button pressed()

123

〈〈interface〉〉
admin messages

log()

〈〈interface〉〉
admin display if

display log()

〈〈interface〉〉
messages

granted OK ()
refuse withdrawal ()

ask pin ()

〈〈interface〉〉
display if

display text(string)

〈〈interface〉〉
buttons

enter pin (pin)
enter request (amount)

〈〈interface〉〉
ck if

number (char)
enter()

〈〈interface〉〉
cr in if

card inside ()
no card inside ()

〈〈interface〉〉
cr out if

retract card()
eject card()

〈〈interface〉〉
mc in if

banknotes removed ()

〈〈interface〉〉
mc out if

put banknote to case()
open case()
close case()

retract banknotes from case()

〈〈interface〉〉
data if

select balance (): account balance
update account (amount)

〈〈interface〉〉
ms if

take banknotes from supply ()

All subproblems should be implemented in the component ATM control. The following gram-
mar for the component ATM control is therefore the same as in Step 3:

< start >::= (< idle >|| Log || DisplayLog)
< idle >::= (Authenticate < authenticated >| Authenticate < idle >)
< authenticated >::= (Request < granted >| Request < refused >)
< granted >::= (TakeCard < granted no card >| TakeCard < idle >)
< refused >::= TakeCardRefused < idle >
< granted no card >::= (UpdateAccount || TakeMoney) < idle >

In the interface description all interfaces are captured. The signals in the sequence diagrams
are consistent with the external interfaces in the subproblems. All subproblems are associated
to the component ATM control.

124

7.6 Step 6: Derive Specifications for all Components
being Relevant for the Subproblem

Instead of specifying the component ATM Control itself, the components Admin Keypad, Admin
Display, Customer Keypad, and Display are described in Figures 7.18, 7.19, 7.20, and 7.21.

Figure 7.18: Sequence Diagram of the Admin
Keypad Behavior

Figure 7.19: Sequence Diagram of the Admin
Display Behavior

The specification of the software component can be derived directly from the specifications in
Step 4 and these diagrams.

125

Figure 7.20: Sequence Diagram of Customer
Keypad Behavior

Figure 7.21: Sequence Diagram of the Display
Behavior

126

7.7 Step 7: Design Software Architecture for each
Software Component and each Subproblem

For each problem diagram, an architectural pattern from Chapter 5, Step 7 is instantiated.

The architecture for the subproblem Authenticate is shown in Fig. 7.22. It consists of an
Authentication Application, a Card In IAL, a Card Out IAL, the corresponding HAL components,
and a User Interface.

Card In IAL

Card In HALCard Out HAL

Card Out IAL

User
Interface

 from Customer (E5)
Card Reader (C2) Card Reader (C1)

E4’’ E6’’

C2’

C2’’

C1’

C1’’

Authentication Application

Customer (E4a, E6a)

Figure 7.22: Architecture for Authenticate

Data
Storage
(Account
Data)

User
Interface

Request Application

E9’’, E11’’ C7

Customer (E9a, E11a)

Figure 7.23: Architecture for Request

The architecture for the subproblem Request is shown in Fig. 7.23. It consists of a Request
Application, a User Interface and a Data Storage.

The architecture for the subproblem Take Card (see Fig. 7.24) consists of the hardware ab-
straction layer and the interface abstraction layer for the Card, and a Take Card Application. The

Card In IAL

Card In HALCard Out HAL

Card Out IAL

Card Reader (C13) Card Reader (C12)
 from Customer (E15)

Take Card Application

C13’

C13’’ C12’’

C12’

Figure 7.24: Architecture for Take Card

Data
Storage
(Account
Data)

Update Account Application

Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

C19’

C19’’Y16

Figure 7.25: Architecture for Update Account

architecture for the subproblems Update Account is shown in Fig. 7.25. The architecture for
the subproblems Take Money is shown in Fig. 7.26. The architecture for the subproblem Log
consists of a Log Application and all components that handle input phenomena. It is shown in
Fig.7.28. The architecture for the subproblem Display Log consists of a Display Log Application,
a User Interface for the administrator, and a Data Storage containing the logs. (see Fig. 7.27).

As abstract phenomena are used for the case study, the IAL and the HAL are trivial, and most
interface signals can be obtained simply by renaming the external signals.

127

Money Se.HAL

Money Se.IAL Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C19) Case (C20)
Sensor from

Customer (E18)

Money Supply/

Take Money Application

C19’ C20’

C19’’ C20’’

Figure 7.26: Architecture for Take Money

DataUser
Storage
(Logs)

Interface
(Admin)

Display Log Application

C26’’ E27’’ Y24

Admin keypad (E28)
Admin display (C26a)/

Figure 7.27: Architecture for Display Log

Data
Storage
(Logs)

Card In IAL

Card In HAL

User
Interface

Money Se.HAL

Money Se.IAL

Card Reader
Case (C19)

Money Supply/
(C1, C12)

Log Application

Customer (E4, E6, E11)

E4’’, E6’’, E11’’Y23

C1’, C12’ C19’

C19’’C1’’, C12’’

Figure 7.28: Architecture for Log

The following table maps the interface classes in the architectures to the interface classes in
the system architecture.

C1 – C1’ – C1” – C12 – C12’ – C12” – cr in if
C2 – C2’ – C2” – C13 – C13’ – C13” – cr out if
E4a – E11a – ck if
E4” – E11” – buttons
E6a – display if
E6” – E9” – messages
C7 – Y16 – data if
C19 – C19’ – C19” – ms if
C20 – C20’ – C20” – mc out if
C26” – admin messages
C26a – admin display if
E27” – admin buttons
E28 – ak if

The following interface classes show the correspondence for one type of interface classes.

〈〈interface〉〉 C13
retract card()
eject card()

〈〈interface〉〉 C13’
retract card’()
eject card’()

〈〈interface〉〉 C13”
retract card”()
eject card”()

128

7.8 Step 8: Specify Behavior of Software Architecture
Components for each Subproblem

The specification of the application components can be derived from the specification in
Step 4. Because of the trivial HAL and IAL, the sequence diagrams for the Take Money Appli-
cation can be constructed just by replacing e.g. eject card() with eject card”().

The specification of the component User Interface is the same as described in Figures 7.20 and
7.21.

The specification of the component User Interface (Admin) is the same as described in Figures
7.18 and 7.19.

Because of the trivial HAL and IAL, the other components do simple transformation like
eject card”() into eject card’().

7.9 Step 9: Specify Software Components of Software
Architectures for each Subproblem

For each component, the required and the provided interfaces are specified. Additionally, the
local data of the components is defined using class diagrams. These class diagrams support the
reuse of the specified components. As examples the class diagram for the Request Application
and the Update Account Application are provided in the Figures 7.29 and 7.30.

Request_Application

account_balance: Integer;
amount: Integer

E9’’ E11’’ C7

Figure 7.29: Class Diagram for Request Application

amount: Integer

Update_Account_Application

C19’’Y16

Figure 7.30: Class Diagram for Update Account Application

Each sequence diagram constructed in Step 8 can be transformed into a state machine that is
associated to one class diagram. These state machines cover all signals that can occur in their
environment.

129

The state machine for the Authenticate Application terminates if the valid pin is entered. It exits
with failed after 3 unsuccessful attempts (cf. Fig. 7.31) as specified in Fig. 7.9.

���
���
���

���
���
���

���
���
���

���
���
���

Authentication Application

idle

card_inside’’() / ask_pin’’()

wait for pin 1

wait for pin 2

wait for pin 3

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(invalid) / ask_pin’’()

enter_pin’’(valid)

enter_pin’’(valid)

enter_pin’’(valid)

Figure 7.31: State Machine for Authenticate Application

The state machine for the Request Application is shown in Fig. 7.32. It is consistent with the
sequence diagrams in the Figures 7.10 and 7.12.

��
��
��

��
��
��

��
��
��

��
��
��

Request Application

authenticated

[ELSE] / refused_withdrawal’’()
refused

enter_request’’(amount) /
account_balance:=select_account()

[amount <= account_balance]
/ granted_OK’’()

Figure 7.32: State Machine for Request Application

The state machine shown in Fig. 7.33 requires a timer as specified in Section 6.9.3.

The sequence diagram of Fig. 7.13 can be transformed into the state machine shown in Fig. 7.34.

The state machine for taking the money is shown in Fig. 7.35. It ejects the requested amount
of money and retracts this money if it was not taken within a certain time limit.

Additionally there is a state machine that logs all input phenomena. This state machine con-
sists of one state. In the transition, for each input signal (enter pin, enter request, no card inside,
card inside, and banknotes removed) the signal log with an appropriate parameter (e.g. enter pin)
is sent (cf. 7.36).

130

���
���
���

���
���
���

���
���
���

���
���
���

Take Card Application

granted /
refused

/ eject_card’’(), start_timer(LIMIT)

no_card_inside’’()

c_retracted
timeout()

Figure 7.33: State Machine for Take Card Application

��
��
��

��
��
��

��
��
��

��
��
��

granted_
no_card

update_account(− amount)
banknotes_removed’’() /

Update Account Application

Figure 7.34: State Machine for Update Account Application

��
��
��

��
��
��

��
��
��

��
��
��

granted_
no_card

Take Money Application

 open_case’’(), start_timer(LIMIT)
 put_banknotes_to_case’’()
/take_banknotes_from_supply’’(),

retract_banknotes_from_case’’()
timeout’’() /

banknotes_removed’’() /
close_case’’()

Figure 7.35: State Machine for Take Money Application

��
��
��

��
��
��

Log Application

wait_for_i_change log(enter_request, amount)
enter_request’’(amount) /

log(no_card_inside)log(card_inside)

removed’’() /

card_inside’’ () / no_card_inside’’() /

enter_pin’’(valid_or_invalid)
log(enter_pin, valid_or_invalid)

banknotes_

log (banknotes_
removed)

Figure 7.36: State Machine for Log Application

131

The logged data can be requested by the Admin. This functionality is implemented in the state
machine for Display Log Application (cf. 7.37).

��
��
��

��
��
��

request_log’’() /

request
wait for

log_data:=select_log(),
display_log’’(log_data)

Display Log Application

Figure 7.37: State Machine for Display Log Application

Also the other components must be specified with class diagrams and state machines. As an
example a class diagram and the state machines for the User Interface components are presented
in Figures 7.38, 7.39, 7.40, and 7.41.

amount: Integer
pin: Integer;

User_Interface

E9’’E11’’

E11a E9a

Figure 7.38: Class Diagram for User Interface

��
��
��

��
��
��

no_input input_pin

User Interface (Authentication)

number (num) /
pin := pin * 10,
pin := pin + num

enter () /
enter_pin (pin)

ask_pin (), pin := 0
ask_pin’’() /

Figure 7.39: State Machine for Authenticate User Interface

132

��
��
��

��
��
��

input_amount

no_input

User Interface (Request)

refuse_withdrawal()
refuse_withdrawal’’() /

granted_ok’’() /
granted_ok()

number (num) /
amount := amount * 10,
amount := amount + num

enter () /
enter_request’’(amount)

amount := 0
enter () /

Figure 7.40: State Machine for Request User Interface

��
��
��

��
��
��

input_amount

no_input input_pin

User Interface (Log)

number (num) /

ask_pin (), pin := 0
ask_pin’’() /

number (num) /
amount := amount * 10,
amount := amount + num

pin := pin * 10,
pin := pin + numenter () /

enter_request’’(amount)

enter () /
enter_pin (pin),

amount := 0

Figure 7.41: State Machine for Log User Interface

133

7.10 Step 10: Develop Global Software Architectures

The composed architecture for the ATM is shown in Figure 7.42. It shows that the patterns
yield appropriate architectures for subproblems fitting to problem frames. It ist also shown
that these architectures can be combined in a modular way to obtain an architecture of the
overall system according to the rules of Step 10. The following merges have been done:

The problem Take Money and the problem Update Account are parallel and share some input
phenomena (cf. case 4 in Step 10 of Chapter 5). We decided to merge the corresponding
application components. The problem Log is related parallel to all other subproblems, sharing
input phenomena (cf. case 4). We decided to merge the Log Application component with Au-
thenticate Application, Request Application, Update Account Application and the merged application
for Take Money/Update Account. The problems Authenticate, Request, Update Account and the
merged problem Take Money/Update Account are related sequentially or by alternative (cf.
case 2). Therefore the corresponding applications are also merged. We call the resulting com-
ponent Main Application. The problem Display Log is parallel and does not share any interface
phenomena (cf. case 5). Hence, the component Display Log Application is not merged. All
components that are IALs or HALs (cf. case 1) are merged with the components of the same
name in the other subproblem architectures.

Data
Storage
(Account
Data) Money Se.HAL

Money Se.IAL

Case (C19)
Sensor from

Customer (E18)

Money Supply/

Money Ac.IAL

Money Ac.HAL

Money Supply/

Actuator
Case (C20)

Card In IAL

Card In HAL

Card Reader

(E5, E15)

(C1, C12)
 from Customer

User
Interface
(Admin)

Admin (E27)
Admin Display (C26)/

Display Log Application

Data
Storage
(Logs)

Main Application

User
Interface

Customer (E4, E6, E9, E11)

Y24 Y23

Card Out HAL

Card Reader
(C2, C13)

C2’’ C13’’E4’’,E6’’ E9’’,E11’’C26’’ E27’’ C19’’C1’’ C12’’ C20’’

C20’C19’C2’ C13’ C1’ C12’

Card Out IA

C7 Y16

Figure 7.42: Composed Architecture

134

7.11 Step 11: Specify Composed Software
Components

To create the complete state machines we start with the application components.

The application component state machines for Take Money and Update Account are merged by
adding the output signal update account(-amount) to the transition in the state machine Take
Money activated by banknotes removed() (cf. Fig. 7.43).

��
��
��

��
��
��

��
��
��

��
��
��

Take Money / Update Account

granted_
no_card

/take_banknotes_from_supply’’(),
 put_banknotes_to_case’’()
 open_case’’(), start_timer(LIMIT)

retract_banknotes_from_case’’()
timeout’’() /

close_case’’(),
banknotes_removed’’() /

update_account(− amount)

Figure 7.43: Merged State Machine for Take Money and Update Account Application

Then the state machines for Authentication Application, Request Application, and Take Money/Update
Account has to be merged with the state machine for the Log Application using the same tech-
nique. This merge is presented exemplarily for the state machine Take Money Update Account.
Figure 7.44 shows the result of the merge.

��
��
��

��
��
��

��
��
��

��
��
��

granted_
no_card

/take_banknotes_from_supply’’(),
 put_banknotes_to_case’’()
 open_case’’(), start_timer(LIMIT)

retract_banknotes_from_case’’()
timeout’’() /

close_case’’(),
update_account(− amount),
log(banknotes_removed)

banknotes_removed’’() /

Take Money / Update Account / Log Application

Figure 7.44: Merged State Machine for Take Money, Update Account, and Log Application

After merging the necessary state machines for the parallel subproblems in the application
component, the state machines for the sequential and the alternative subproblems can be com-
bined using composite states (see Fig. 7.45). The resulting state machine exactly reflects the
grammar describing the dependencies of the subproblems.

135

��
��
��

��
��
��

Authentication /
Log Application

Request / Log
Application

Take Card / Log
Application

Take Card / Log
Application

Update Account /
Log Application

Take Money /

c_retracted

refused c_retracted

failed

Main Application

Figure 7.45: State Machine for all Sequential and Alternative Problems

Then the state machines for the IALs, the HALs and the User Interfaces must be merged. The
merged state machine for the User Interface is shown in Figure 7.46.

��
��
��

��
��
��

User Interface (merged)

input_amount

no_input input_pin

number (num) /

ask_pin (), pin := 0
ask_pin’’() /

refuse_withdrawal()
refuse_withdrawal’’() /

granted_ok’’() /
granted_ok()

number (num) /
amount := amount * 10,
amount := amount + num

pin := pin * 10,
pin := pin + numenter () /

enter_request’’(amount)

enter () /
enter_pin (pin),

amount := 0

Figure 7.46: Merged State Machine for the User Interface

7.12 Step 12: Implement Software Components and
Test Environment

This step can be performed using the same heuristics as described in Section 6.12.

136

7.13 Step 13: Integrate Software Components

This step can be performed using the same heuristics as described in Section 6.13.

7.14 Step 14: Integrate Hardware and Software

This step heavily depends on the used hardware and therefore it is not performed.

137

8 Conclusion

8.1 Summary

The Development Process for Embedded Systems (DPES) developed in this thesis by refining
and adapting the process defined in [HH05b], has the following important characteristics:

The process is model-based. Modeling is used for problems, specifications, architecture and
component behavior. Consistency checks between the several views of the machine are pos-
sible (independently from the used tool), because UML provides a standardized XML-based
file format that can be parsed easily.

The process covers not only software but the whole system, consisting of software and hard-
ware. Within the process, the hardware-software-partitioning problem is addressed. System
and software are specified using the same notation. Therefore, the specification can be refined
on the system level (Step 5). This is necessary if more behavioral information is required
before the hardware-software-partitioning can be performed. Since hardware and software is
covered by the process, machines with redundant hardware can be specified and the influences
to the software developed can be described.

The process is tailored to embedded systems. The application domains of many embedded
systems can be covered by the four-variable-model proposed by Parnas [DLP95]. Apart from
the hardware abstraction layer, the four-variable-model is the most important design criterion
for the layered architecture proposed in the development process.

The DPES supports the reuse of components already in the specification phase (see Step 7).
Reuse can further be supported by using design patterns.

In large parts, the process makes use of UML 2.0. UML 2.0 combines the advantages of
the widely known UML and the Specification and Definition Language (SDL) that is used
for telecommunication protocols. In contrast to UML 1.4, the layered architecture can be
expressed adequately with UML 2.0. In contrast to SDL, UML 2.0 allows a much more
flexible structure of components that allows better reuse of components.

The DPES can be mapped onto the V-Model [BD93], as shown in Fig. 8.1.The development
of test cases is an elementary part of the process. The development of test cases is structured,
problem-based and requirement-based. The test specifications are expressed as sequence dia-
grams (see Steps 4, 6 and 8), and test cases can be derived (or generated) from these diagrams
just by replacing points of time with time frames expressing when desired events are expected.
Therefore, the sequence diagrams are the link between the tests and the specifications.

The item Component design in the V-Model is mapped to the software component architecture

138

Step 5, 6

design

Architectural,

Step 4

specification

System

Step 1, 2, 3

definition

Requirement

Step 12

test

Module

Step 12

Implementation

Step 13

integr. and test

Component

Step 14

integr. and test

System

system

Complete

Step 7, 8, 9, 10, 11

design

Component
Module

specification

specification

Step 6

specification

Component

System

Requirements

Step 1

Step 4

Step 8

Figure 8.1: Mapping to the V-Model

(Step 7 for subproblems and Step 10 composed) and to the specification of its components
(Step 8 for subproblem sequences, Step 9 for subproblem state machines and Step 11 for
composed state machines).

The DPES can also be applied on software development projects, where no hardware has to
be developed. In this case Step 5, 6, and 13 can be omitted.

For each step of the development process, validation conditions have been defined. These
conditions can be checked using reviews and inspections. However, for many of the validation
conditions, formal proof or demonstration is also possible.

The process is defined in such a way that tool support can be added in a modular way, based
on existing tools.

By applying the process described in [HH05b], some problem occurs and points for improve-
ments of the development process have been identified. E.g., the process did not cover the
case, when a machine exists, that has to be replaced. The process gave little help for design-
ing the system and software architecture, the sequence diagrams were too difficult for some
problems, and an incomplete specification was detected in a very late step. These problems
are handled by the process presented in Chapter 5. Table 8.1 shows the steps that have been
modified to solve the described problems.

Finally, the process has been developed in an industrial context, and it was successfully ap-
plied in practice in several projects for developing security- and safety-critical systems. The
improved process has been checked, by applying it on two case studies.

139

Step / 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Problem
Existing Machine ×
System Architecture
Design

× ×

Subproblem Composi-
tion

× × × ×

Readability of Se-
quence Diagrams

× ×

Interoperability with
other Methods

× ×

Software Architecture
Design

×

Interface Control ×
Notation ×
Interface Specification ×
IAL and HAL Specifi-
cation

×

Jackson – Four Variable
Model Integration

×

Contradicting Require-
ments

× × ×

Contradicting Require-
ments

× × ×

Completeness of Speci-
fication

× × ×

Table 8.1: Mapping: Points for Improvements - Steps of DPES

140

8.2 Future work

The improved process should be applied in an industrial context to develop complex real-life
applications.

This DPES can be applied without special tools. But especially the validation conditions can
be checked automatically. The standardized XMI file format defined by the OMG [UML]
can be used to check the consistency between several models created during the development
process.

To develop subcomponents the Steps 4 and 5 or the corresponding steps for the software com-
ponents must be applied recursively. The input and output of these steps should be modified
to allow a better subcomponent development.

In Steps 12 and 13 heuristics for other programming languages should be added. For all
languages rules should be developed that help to integrate composed components.

It should be checked how and where the behavioral and structural patterns defined e.g., in
[KJ04] can be integrated in the developed process.

The process can be enhanced by using formal methods. Then, it should be possible to export
the (UML-)models to formal verification tools such as Atelier B, FDR, SPIN or SVM. Within
these tools safety or security properties can be checked. For hardware-software-codesign,
export from and to VHDL is very usefull.

The UML-diagrams used in the process are contained in the draft version of SysML [Sys05].
Additional elements of SysML could be used to describe same aspect more precisely.

This process contains the problem frames developed by Jackson and the corresponding archi-
tectural patterns. Additional problem frames and corresponding architectural patterns, espe-
cially for security or safety problems, should be added. Once developed, they help to reuse
challenges from other projects. Additionally, a base of reuseable components can be devel-
oped, that can be integrated in the architectures and reduce the development effort.

141

Bibliography

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 1998.

[BD93] A.-P. Bröhl and W. Dröschel. Das V-Modell. Oldenbourg, 1993.

[BH99] R. Bharadwaj and C. Heitmeyer. Hardware/software co-design and co-validation
using the scr method. In Proceedings IEEE International High-Level Design
Validation and Test Workshop (HLDV 99), 1999.

[BP03] Manfred Broy and Wolfgang Pree. Ein Wegweiser für Forschung und Lehre
im Software-Engineering eingebetteter Systeme. Informatik Spektrum, 18:3–7,
Februar 2003.

[CC99] Common criteria for information technology security evaluation, 1999. aligns to
ISO/IEC 14508:1999, see http://www.commoncriteria.org.

[CD01] J. Cheesman and J. Daniels. UML Components – A Simple Process for Specifying
Component-Based Software. Addison-Wesley, 2001.

[CH04] Christine Choppy and Maritta Heisel. Une approache à base de “patrons” pour
la spécification et le développement de systèmes d’information. In Proceedings
Approches Formelles dans l’Assistance au Développement de Logiciels -
AFADL’2004, pages 61–76, 2004.

[CHH05a] Christine Choppy, Denis Hatebur, and Maritta Heisel. Architectural patterns for
problem frames. IEE Proceedings – Software, Special Issue on Relating Software
Requirements and Architectures, 152(4):198–208, 2005.

[CHH05b] Christine Choppy, Denis Hatebur, and Maritta Heisel. Composing archi-
tectures based on architectural patterns for problem frames. Technical re-
port, Université Paris XIII and Universität Duisburg-Essen, December 2005.
http://swe.uni-duisburg-essen.de/intern/comparch05.pdf.

[DCJ94] Stephanie Bodoff Chris Dollin Helena Gilchrist Fiona Hayes Derek Coleman,
Patrick Arnold and Paul Jeremaes. Object-Oriented Development, The Fusion
Method. Prentice-Hall, 1994.

[DLP95] J. Madey D. L. Parnas. Functional documents for computer systems. In Science
of Computer programming, volume 25, pages 41–61, 1995.

142

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, 1995.

[Hei98] M. Heisel. Agendas – a concept to guide software development activites. In R. N.
Horspool, editor, Proc. Systems Implementation 2000, pages 19–32. Chapman &
Hall London, 1998.

[HH05a] Denis Hatebur and Maritta Heisel. Problem frames and architectures for secu-
rity problems. In Bjørn Axel Gran, Rune Winter, and Gustav Dahll, editors,
Proceedings of the 24th International Conference on Computer Safety, Reliability
and Security (SAFECOMP), LNCS 3688, pages 390–404. Springer-Verlag, 2005.

[HH05b] Maritta Heisel and Denis Hatebur. A model-based development process for em-
bedded systems. In T. Klein, B. Rumpe, and B. Schätz, editors, Proc. Workshop on
Model-Based Development of Embedded Systems, number TUBS-SSE-2005-01.
Technical University of Braunschweig, 2005. Available at http://www.sse.cs.tu-
bs.de/publications/MBEES-Tagungsband.pdf.

[HS99] M. Heisel and J. Souquières. A method for requirements elicitation and formal
specification. In J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E. Métais, ed-
itors, Proceedings 18th International Conference on Conceptual Modeling, ER’99,
LNCS 1728, pages 309–324. Springer-Verlag, 1999.

[Int98] International Electrotechnical Commission. Functional safety of electri-
cal/electronic/programmable electronic safty-relevan systems - part 1: General
requrements, 1998.

[Jac95] M. Jackson. Software Requirements & Specifications: a Lexicon of Practice,
Principles and Prejudices. Addison-Wesley, 1995.

[Jac01] M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[JZ95] M. Jackson and P. Zave. Deriving specifications from requirements: an example.
In Proceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15–
24. ACM Press, 1995.

[KJ04] Michael Kirchner and Prashant Jain. Pattern-Oriented Software Architecture -
patterns of resource management, volume Volume 3. John Wiley & Sons Ltd,
2004. 07TWQ5120.

[OMG05] Object Management Group OMG. Uml superstructure specification, v2.0, 2005.
availble under http://www.omg.org/docs/formal/05-07-04.pdf.

[RHJN04] L. Rapanotti, J. G. Hall, M. Jackson, and B. Nuseibeh. Architecture driven prob-
lem decomposition. In Proceedings of 12th IEEE International Requirements
Engineering Conference (RE’04), Kyoto, Japan, 6-10 September 2004.

143

[Sim04] David E. Simon. An Embedded Software Primer. Addison-Wesley, 2004.

[Sys05] SysML Parners. Systems Modeling Language (SysML) Specification, 2005. see
http://www.sysml.org.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

[UML] UML Revision Task Force. OMG UML Specification.
http://www.uml.org.

[ZJ97] P. Zave and M. Jackson. Four dark corners for requirements engineering. ACM
Transactions on Software Engineering and Methodology, 6(1):1–30, January
1997. Also availble under http://www.research.att.com/˜pamela/ori.html#fre.

144

