
A Pattern System for Security Requirements Engineering

Denis Hatebur1,2 Maritta Heisel1 Holger Schmidt1

1 University Duisburg-Essen, Faculty of Engineering, Department of Computer Science, Workgroup Software Engineering, Germany,
email: {maritta.heisel, denis.hatebur, holger.schmidt}@uni-duisburg-essen.de

2 ITESYS Institut für technische Systeme GmbH, Germany, email: d.hatebur@itesys.de

Abstract

We present a pattern system for security requirements en-
gineering, consisting of security problem frames and con-
cretized security problem frames. These are special kinds
of problem frames that serve to structure, characterize, ana-
lyze, and finally solve software development problems in the
area of software and system security. We equip each frame
with formal preconditions and postconditions. The analysis
of these conditions results in a pattern system that explic-
itly shows the dependencies between the different frames.
Moreover, we indicate related frames, which are commonly
used together with the considered frame. Hence, our ap-
proach helps security engineers to avoid omissions and to
cover all security requirements that are relevant for a given
problem.

1 Introduction

When building secure systems, it is instrumental to take
security concerns into account right from the beginning of
the development process. As for functional requirements, a
detailed analysis of the security requirements of an envis-
aged system should be performed. Those security require-
ments have to be taken into account in all subsequent phases
of the system and software development lifecycle. Hence,
security engineering should become an integral part of the
software engineering process when developing security-
critical software systems.

In this paper, we show how such an integration can be
achieved for the requirements analysis phase. The basic
idea is to define patterns for structuring, characterizing and
analyzing problems that occur frequently in security engi-
neering. Similar patterns for functional requirements have
been proposed by Michael Jackson [6]. They are called
problem frames. Accordingly, we name our patterns secu-
rity problem frames. They serve to analyze security-related
requirements.

Typical security problems concern, for example, confi-
dential data transmission, authentication, or the distribution
of secrets. For several such problem classes, we define ded-

icated security problem frames, which contain a structuring
of the environment where the problem arises (including pos-
sible attackers), and a schematic expression of the security
requirement that can be addressed with the given frame.

To use security problem frames, the variable parts of the
patterns are instantiated. Moreover, for each security prob-
lem frame, we define several concretized security problem
frames that take into account generic mechanisms to solve
the given problem, for example, to use credentials for au-
thentication. The concretized security problem frames, in
turn, are associated with generic security protocols, which
capture proven approaches to implement security mecha-
nisms [4]. Thus, security problem frames not only support
security engineers in analyzing and structuring security re-
quirements but also lead the way for realizing them.

We equip each (concretized) security problem frame
with preconditions characterizing the conditions under
which it is applicable, and postconditions describing the se-
curity requirement to be addressed. When applying a (con-
cretized) security problem frame, one must check the cor-
responding preconditions. If they cannot be assumed to be
fulfilled, this means that additional security problems must
be solved.

We present a pattern system based on security problem
frames and their concretized counterparts. This pattern sys-
tem helps security engineers to systematically identify and
analyze all the subproblems that must be solved in order to
solve a complex security problem. It helps to structure the
development process and to avoid confusion and omissions.

We construct the pattern system by analyzing the pre-
and postconditions of the different frames, and explicitly
identifying dependencies between them. To make one
frame applicable, another frame should be applied. Thus,
subproblems, that are necessary to be considered when
solving a given problem, are generated along the depen-
dency relations. The process of generating new subprob-
lems terminates when all preconditions of all applied secu-
rity problem frames can be proved or assumed to hold.

The contribution of our paper is a formally grounded pat-
tern system for security requirements engineering, which
is based on security problem frames and their concretized
counterparts. Security engineers can use this pattern system
to recognize, structure, characterize, and analyze software

1



development problems in the area of software and system
security. A thorough problem and requirements analysis is
crucial for developing adequate solutions to security prob-
lems.

In the following, we first present Jackson’s problem
frames in Sect. 2. In Sect. 3, we introduce security prob-
lem frames and in Sect. 4, we present concretized security
problem frames. We construct and describe the pattern sys-
tem in Sect. 5. We illustrate the usage of the pattern system
by a secure remote display system in Sect. 6. Section 7 dis-
cusses related work, and we conclude in Sect. 8.

2 Problem Frames

Problem frames are a means to describe software devel-
opment problems. They were invented by Michael Jack-
son [6], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable
problem class in terms of its context and the characteris-
tics of its domains, interfaces and requirement.” Problem
frames are described by frame diagrams, which basically
consist of rectangles and links between these (see frame di-
agram in Fig. 1). The task is to construct a machine that
improves the behavior of the environment it is integrated in.

Plain rectangles denote application domains (that al-
ready exist), a rectangle with a single vertical stripe de-
notes a designed domain physically representing some in-
formation, a rectangle with a double vertical stripe denotes
the machine to be developed, and requirements are denoted
with a dashed oval. The connecting lines represent inter-
faces that consist of shared phenomena. Shared phenom-
ena may be events, operation calls, messages, and the like.
They are observable by at least two domains, but controlled
by only one domain. For example, if a user types a pass-
word to log into an IT-system, this is a phenomenon shared
by the user and the system, which is controlled by the user.
A dashed line represents a requirements reference, and the
arrow shows that it is a constraining reference. Further-
more, Jackson distinguishes causal domains that comply
with some physical laws, lexical domains that are data rep-
resentations, and biddable domains that are usually people.

In the frame diagram depicted in Fig. 1, the “X” indicates
that the corresponding domain is a lexical domain, and the
“B” indicates a biddable domain. The notation “SD!Y1”
means that the phenomenon of interface Y1 is controlled by
the lexical domain Sent data.

Problem frames greatly support developers in analyzing
problems to be solved. They show what domains have to be
considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Devel-
opers must elicit, examine, and describe the relevant prop-
erties of each domain. These descriptions form the domain
knowledge.

The domain knowledge consists of assumptions and
facts. Assumptions are conditions that are needed, so that

SPF: Confidential Data Transmission
Frame diagram

X
data

Transmitted

Y1

Y4

Y3

Y2

SR

SD!Y1
machine
Sender

X

Sent
data

B

Malicious
subject

X

Received
data

B

Receiver
machine RM!E2

SM!E1

TD!Y2

Y1 := {ContentOfSentData}
Y2 := {ContentOfTransmittedData}
Y3 := {ContentOfReceivedData}
Y4 := {PropertiesOfMaliciousSubject}
E1 := {SetTransmittedData}
E2 := {SetReceivedData}

Security requirement (SR)
Malicious subject should not be able to derive Sent data
and Received data using Transmitted data.
Declarations
y1 : Y 1; e2 : E2; sd : SentData; rd : ReceivedData
td : TransmittedData; ms : MaliciousSubject
Preconditions
{(ms, sd), (ms, rd)} ∩ known = ∅
{y1, e2} ⊆ confIf
Postconditions
{(ms, sd), (ms, rd)} ∩ known = ∅
{(ms, sd , td), (ms, rd , td)} ⊆ conf
Related
SPF: Integrity-preserving Data Transmission
SPF: Confidential Data Transmission

Figure 1. Security problem frame for confi-
dential data transmission

the requirements are accomplishable. Usually, they de-
scribe required user behavior. For example, it must be as-
sumed that a user ensures not to be observed by a malicious
user when entering user input. Facts describe fixed proper-
ties of the problem environment regardless of how the ma-
chine is built.

Requirements describe the environment, the way it
should be, after the machine is integrated. In contrast to
the requirements, the specification of the machine gives an
answer to the question: “How should the machine act, so
that the system fulfills the requirements?” Specifications
are descriptions that are sufficient for building the machine.
They are implementable requirements. For the correctness
of a specification S , it must be demonstrated that S , the



facts F , and the assumptions A imply the requirements R:
A∧F∧S ⇒ R, where A∧F∧S must be non-contradictory.

Software development with problem frames proceeds as
follows: first, the environment in which the machine will
operate is represented by a context diagram (see Fig. 8).
Like a frame diagram, a context diagram consists of do-
mains and interfaces. However, a context diagram contains
no requirements, and it is not shown who is in control of
the shared phenomena. Then, the problem is decomposed
into subproblems. If ever possible, the decomposition is
done in such a way that the subproblems fit to given prob-
lem frames. To fit a subproblem to a problem frame, one
must instantiate its frame diagram, i.e., instantiate for its
domains, phenomena, interfaces, and requirements. The in-
stantiated frame diagram is called a problem diagram. Since
the requirements refer to the environment in which the ma-
chine must operate, the next step consists in deriving a spec-
ification for the machine (see [7]). The specification is the
starting point for the development of the machine.

3 Security Problem Frames

To meet the special demands of software development
problems occurring in the area of security engineering, we
introduced security problem frames [4]. Security problem
frames are special kinds of problem frames, which con-
sider security requirements. The security problem frames
we have developed strictly refer to the problems concerning
security. They do not anticipate a solution. For example,
we may require the confidential transmission of data with-
out being obliged to mention encryption, which is a means
to achieve confidentiality.

Solving a security problem is achieved by choosing
generic security mechanisms (e.g., encryption to keep data
confidential), thereby transforming security requirements
into concretized security requirements (see Sect. 4 for de-
tails). The benefit of considering security requirements
without reference to potential solutions is the clear separa-
tion of problems from their solutions, which leads to a better
understanding of the problems and enhances the re-usability
of the problem descriptions, since they are completely inde-
pendent of solution technologies.

3.1 Describing Security Problem Frames

Each (concretized) security problem frame is described
according to the following template (see Fig. 1):

• Name The name specifies what kind of security prob-
lem is addressed by the frame. It is also specified if
it is a security problem frame (SPF) or a concretized
security problem frame (CSPF).

• Frame diagram This diagram shows the relevant do-
mains and their interfaces, as well as the (concretized)
security requirement.

• Security requirement or concretized security re-
quirement Here, the security requirement or con-
cretized security requirement to be achieved is stated
informally.

• Declarations In this section, entities that are neces-
sary for stating the preconditions and postconditions
are declared. The entities are implicitly universally
quantified. We use the domains and interfaces of the
corresponding frame diagram as data types.

• Preconditions Conditions are given that must be met
by the environment for the frame to be applicable.

• Postconditions These conditions are a formal rep-
resentation of the (concretized) security requirement,
i.e., they describe what (concretized) security require-
ment will be achieved by the machine to be built.

• Related Different patterns will often be used in combi-
nation. Those frames that are commonly used in com-
bination with the described frame are mentioned here.

We have formalized problem frames as well as (con-
cretized) security problem frames using the object-oriented
formal specification language Object-Z. The formalization
is not described in this paper. The pre- and postconditions
are expressed on the basis of this formalization as logical
formulas, and they form the basis for the pattern system de-
scribed in Sect. 5.

In this section, we present three security problem frames
that capture frequently occurring security problems. We
have defined further security problem frames, e.g., for
establishing integrity-preserving data transmissions [5],
which are not presented in this paper.

We discuss the security problem frame for confidential
data transmission using the template presented in this sec-
tion. For reasons of space, we present the rest of the (con-
cretized) security problem frames without their template-
based illustration. Instead, we describe the frames using the
corresponding frame diagrams.

3.2 Security Problem Frame for Confiden-
tial Data Transmission

Many security-critical systems are required to keep data
confidential during its transmission. Confidential data trans-
mission means restricting access to transmitted data to those
who are privileged to access it.

Figure 1 shows the security problem frame for confiden-
tial data transmission. The domain Sent data denotes the
data that is sent by a sender, represented by the machine do-
main Sender machine. Analogously, the domain Received
data denotes the data that is received by the domain Re-
ceiver machine. During its transmission, the data is repre-
sented by the domain Transmitted data.

Informally speaking, the sender machine generates the
transmitted data from the sent data, and the receiver ma-
chine generates the received data from the transmitted data.



Thus, the operation SetTransmittedData of interface E1 is
controlled by the Sender machine domain, and it represents
an operation that generates the transmitted data. The oper-
ation SetReceivedData of interface E2 represents a similar
operation on the domain Received data, but it is controlled
by the Receiver machine domain. The symbolic phenom-
ena of the interfaces Y1, Y2, and Y3 represent some sent,
transmitted, or received data values. The symbolic phe-
nomenon of the interface Y1 is controlled by the domain
Sent data. The symbolic phenomenon of the interface Y2
between the domain Transmitted data and the domains Re-
ceiver machine and Malicious subject is controlled by the
domain Transmitted data. The symbolic phenomenon of the
interface Y4 is controlled by the Malicious subject domain,
and it reflects relevant properties of the Malicious subject
domain, e.g., details about its equipment and strength.

The precondition {(ms, sd), (ms, rd)} ∩ known = ∅
of the security problem frame for confidential data transmis-
sion expresses that a malicious subject ms does not know
sent data sd and received data rd beforehand.

The precondition {y1, e2} ⊆ confIf expresses that con-
fidential paths y1 and e2 between the machine domain
Sender machine and the domain Sent data and between the
domains Receiver machine and Received data are neces-
sary. It describes that data transferred using the interfaces
y1 and e2 is kept confidential.

In fact, the precondition {(ms, sd), (ms, rd)}
∩ known = ∅ is also a postcondition, because a ma-
licious subject ms should not know sent data sd and
received data rd after the transmission. The postcondition
{(ms, sd , td), (ms, rd , td)} ⊆ conf expresses that a
malicious subject ms should not be able to derive the sent
data sd as well as the received data rd using the transmitted
data td .

The list of related frames contains the frame for
integrity-preserving data transmission [5], because in many
cases both security requirements are of interest when con-
sidering data transmissions. In addition, the list contains
the frame itself, because often the feedback to a confiden-
tial data transmission should be kept confidential.

3.3 Security Problem Frame for Authen-
tication

Authentication of users and other systems is an impor-
tant issue for many security-critical systems. Authentica-
tion is the problem to verify a claimed identity.

Figure 2 shows the frame diagram of the security prob-
lem frame for authentication. The domain Authentic subject
represents an authentic user or an authentic system. In con-
trast, the domain Fake subject represents a fake user or a
fake system. The domain Authentication state represents
that the Authentic subject domain should be authenticated
and the Fake subject domain should be not authenticated.
The Authentication state domain is externally visible, be-
cause the subjects are at least implicitly informed of their
authentication status. The security requirement SR is stated

subject
Fake

B

Authenti−

machine
cation

E3, Y3

E1

Y2

B
subject

Authentic

X

Authenti−
cation
state

SR
AM!E2

FS!E3

AST!Y1

AS!E1

Figure 2. Frame diagram of the security prob-
lem frame for authentication

according to this description.
The event AuthenticateAS of interface E1 is controlled

by the Authentic subject domain, and it represents some au-
thentication command. The event AuthenticateFS of inter-
face E3 represents a similar command, but it is controlled by
the Fake subject domain. The operation SetAuthentication-
Status of interface E2 is controlled by the Authentication
machine domain, and it is an operation on the authentica-
tion state. The symbolic phenomenon ContentOfAuthenti-
cationState of interface Y1 is controlled by the Authentica-
tion state domain, and allows the environment to examine
the current authentication status. The symbolic phenomena
Authenticated and NotAuthenticated of Y2 represent the cur-
rent authentication status, and the symbolic phenomenon
PropertiesOfFakeSubject of Y3 reflects relevant properties
of the Fake subject domain, as in the security problem frame
for confidential data transmission (Sect. 3.2).

The precondition of the security problem frame for au-
thentication shown in Fig. 2 is as 6= fs , meaning that an
authentic subject as must not be a fake subject fs at the
same time.

The requirement that an authentic subject as is authen-
tic for an authentication machine am , whereas a fake sub-
ject fs is not authentic for an authentication machine am
is then expressed using the postconditions (am, as) ∈
authenticated and (am, fs) 6∈ authenticated .

The list of related frames contains the frame itself, be-
cause the security engineer should take authentication in the
opposite direction into account.

3.4 Security Problem Frame for Dis-
tributing Secrets

In order to apply certain security mechanisms such as
encryption, the distribution of secrets is necessary. It is the
problem to communicate matching secrets to those subjects
who are privileged to receive them.

Figure 3 shows the frame diagram of the security prob-
lem frame for distributing secrets. It is similar to the frame
diagram depicted in Fig. 1. However, this frame focuses on
matching of the secrets and requires a trusted path. To ex-
press this security requirement, the domain Secret2 is con-
strained, and the control directions of the interfaces Y1 and



Distribute
machine

X

Transmitted

Y1

Y4

Y3

Y2

X

X

B

Malicious

SR

Secret

Secret

subject

data

B

Receiver
machine E2

1

2

Y1

DM!E1

TD!Y2

Figure 3. Frame diagram of the security prob-
lem frame for distributing secrets

E2 are undefined. The domains Secret1 and Secret2 repre-
sent secrets. The domain Secret1 is known to the machine
domain Distribute machine, whereas the domain Secret2
is known to the domain Receiver machine. During trans-
mission, the domain Secret1 is represented by the domain
Transmitted data, which can be observed by the domain
Malicious subject.

The operation SetTransmittedData of interface E1 is
controlled by the Distribute machine domain, and it repre-
sents an operation that generates the transmitted data. The
operation SetSecret2 of interface E2 represents a similar op-
eration on the domain Secret2. The symbolic phenomenon
ContentOfSecret1 of the interface Y1 and the symbolic phe-
nomenon ContentOfSecret2 of the requirement reference Y3
represent some sent and received secret data values. The
symbolic phenomenon ContentOfTransmittedData of the
interface Y2 represents some transmitted data values. The
symbolic phenomenon PropertiesOfMaliciousSubject of Y4
reflects relevant properties of the Malicious subject domain.
The frame diagram does not define which domains choose
the secrets. As a consequence, the control directions of the
interfaces Y1 and E2 are not defined. If the machine domain
Distribute machine chooses the secrets, then it also controls
the interface Y1, and the interface E2 is controlled by the
domain Secret2. The security requirements constrains the
domain Secret1. In the case of negotiated secrets, both se-
crets are constrained by the security requirement, the ma-
chine domain Distribute machine controls the interface Y1,
and the domain Receiver machine controls the interface E2.

The first precondition is {(ms, s1), (ms, s2)}
∩ known = ∅, and it expresses that the secrets s1
and s2 are not known to a malicious subject ms .

The second precondition is {y1, e2} ⊆ trustedIf , and it
expresses that trusted paths y1 and e2 between the machine
domain Distribute machine and the domain Secret1 as well
as between the Receiver machine domain and the domain
Secret2 are necessary. A trusted path is a confidential and
an integrity-preserving path. An integrity-preserving path
transfers data, which is unchanged or a change is detected
(see [5] for details).

The first two postconditions are {(dm, s1), (rm, s2)}
⊆ known and {(ms, s1), (ms, s2)}∩known = ∅, and they

express that the secrets s1 and s2 are known to the distribute
machine dm and the receiver machine rm , respectively, but
that none of the secrets are known to a malicious subject
ms . The third postcondition is (s1, s2) ∈ match , and it ex-
presses that the secrets s1 and s2 match, in the sense of e.g.,
matching passwords or matching private key and public key
of a key pair.

4 Concretized Security Problem Frames

In this section, we present concretized security prob-
lem frames for dynamic authentication, confidential data
transmission using symmetric encryption, and distribution
of secrets based on negotiation and trusted paths. These
concretized security problem frames are derived from the
security problem frames presented in Sect. 3 by consider-
ing generic security mechanisms (such as confidential data
transmission using symmetric encryption), thereby trans-
forming the security requirements into concretized security
requirements. More information about concretized secu-
rity problem frames and the transformation process can be
found in [4].

In general, the pre- and postconditions of the security
problem frames are preserved, and therefore contained in
the pre- and postconditions of the concretized security prob-
lem frames.

4.1 Concretized Security Problem Frame
for Confidential Data Transmission
using Symmetric Encryption

One of the concretized security problem frame for con-
fidential data transmission considers symmetric encryption.
Its frame diagram is shown in Fig. 4. In transforming the se-
curity requirement for confidential data transmission into a
concretized security requirement CSR, the domains Secret1
and Secret2 are introduced for the encryption mechanism.

Compared to the interfaces of the security problem frame
for confidential data transmission discussed in Sect. 3.2, we
preserved all interfaces, and we added the interfaces Y5
and Y6. The symbolic phenomena ContentOfSecret1 and
ContentOfSecret2 of the interfaces Y5 and Y6 are controlled
by the domain Secret1 and the domain Secret2, respectively.
These symbolic phenomena represent the values of the se-
crets.

The first two preconditions are preserved from the secu-
rity problem frame for confidential data transmission shown
in Fig. 1. The precondition {(sm, s1), (rm, s2)} ⊆ known
states that the domain Secret1 represented by s1 must be
known by the sender machine sm and the domain Secret2
represented by s2 must be known by the receiver machine
rm . Moreover, the precondition {(ms, s1), (ms, s2)} ∩
known = ∅ specifies that the malicious subject ms does
not know these secrets. The precondition (s1, s2) ∈ match
describes that the two secrets match. In the case of symmet-
ric encryption, the relation match is the equality relation.



B

Malicious
subject

X
data

Transmitted

X
Secret 1

X

Sent
data

X
Secret 2

X

Received
data

machine
Sender

B

Receiver
machine

SD!Y1
Y1

CSR

Y5

Y2
SM!E1

S2!Y6

Y4

Y6

RM!E2

S1!Y5

Y3

TD!Y2

Figure 4. Frame diagram of the concretized
security problem frame for confidential data
transmission using symmetric encryption

Moreover, trusted paths y5 and y6 between the domains
Sender machine and Secret1 are necessary, as well as be-
tween the domains Receiver machine and Secret2. This is
expressed using the predicate {y5, y6} ⊆ trustedIf .

The postcondition is the same as the postcondition of the
security problem frame for confidential data transmission
presented in Sect. 3.2.

4.2 Concretized Security Problem Frame
for Dynamic Authentication

One of the concretized security problem frames for au-
thentication considers dynamic mechanisms. Its frame di-
agram is shown in Fig. 5. In transforming the security
requirement for authentication into a concretized security
requirement CSR, two designed domains Credential1 and
Credential2 are introduced, which make it possible to dis-
tinguish between the domains Authentic subject and Fake
subject.

Compared to the interfaces of the security problem frame
for authentication discussed in Sect. 3.3, we preserved all
interfaces except for the interfaces E1 and E3. The phe-
nomenon AuthenticateAS (aAS ) of interface E1 is an au-
thentication operation, where the parameter aAS represents
some authentication data of the authentic subject. The phe-
nomenon AuthenticateFS (aFS ) of interface E3 is also an
authentication operation, where the parameter aFS repre-
sents some authentication data of the fake subject. We
added the interfaces Y4 and Y5. The symbolic phenomenon
ContentOfCredential1 of interface Y4 is controlled by the
domain Credential1, whereas the symbolic phenomenon
ContentOfCredential2 of interface Y5 is controlled by the
domain Authentic subject.

The first precondition is preserved from the security
problem frame for authentication discussed in Sect. 3.3.
The second precondition {(am, c1), (as, c2)} ⊆ known
expresses that the domain Credential1 represented by c1

X

Authenti−
cation
state

subject
B

Fake

X
Credential

X

B
subject

Authentic E1

Credential
Y5

cation
Authenti−

machine
CSR

Y4C1!Y4

AS!Y5

1

2

AS!E1

AST!Y1

FS!E3

AM!E2

E3, Y3

Y2

Figure 5. Frame diagram of the concretized
security problem frame for dynamic authenti-
cation

must be known by the authentication machine am and the
domain Credential2 represented by c2 must be known by
the authentic subject as . The third precondition expresses
that c1 is not known by the fake subject fs domain. The
fourth precondition states that c1 and c2 match.

The postcondition is stated similarly to the postcondi-
tions of the security problem frame for authentication pre-
sented in Sect. 3.3, with the difference that the predicates
(c1, aAS ) ∈ match and (c1, aFS ) 6∈ match require that
the authentication data aAS match the c1, while the fake
authentication data aFS does not match c1 before the au-
thentication is established.

4.3 Concretized Security Problem Frames
for Distributing Secrets

In this section, we introduce two concretized security
problem frames for distributing secrets, one using negotia-
tion and another one using trusted paths. The frame diagram
of the former frame is shown in Fig. 6.

Compared to the interfaces of the security problem
frame for distributing secrets discussed in Sect. 3.4, we
preserved all interfaces except for the interfaces E1 and
Y2. The phenomenon of interface E1 is renamed to
SetNegotiationDataDM , and the phenomenon of interface
Y2 is renamed to NegotiationDataDM . We added the in-
terface Y5. It contains a symbolic phenomenon named
NegotiationDataRM . We added the interface E3. It contains
an operation named SetNegotiationDataRM . The symbolic
phenomena of the interfaces Y2 and Y5 represent the dif-
ferent negotiation data of the receiver machine and the dis-
tribute machine. The operation of the interface E1

determines the phenomena visible via the interface Y2.
The operation of the interface E3 determines the phenom-
ena visible via the interface Y5. Additionally, we renamed
the domain Transmitted data to Negotiation Data.

The first two preconditions are preserved from the secu-
rity problem frame for distributing secrets shown in Fig. 3.



Distribute
machine

X

Y1

Y4

X

X

B

Malicious

Secret

Secret

subject

data

B

Receiver
machine

1

2

DM!Y1

RM!E2

Y2, Y5
CSR

Negotiation

Y3

ND!Y2

ND!Y5

RM!E3

DM!E1

Figure 6. Frame diagram of the concretized
security problem frame for distributing se-
crets using negotiation

Asymmetric mechanisms ensure that the secrets cannot be
derived by a malicious subject using the negotiation data.
Nevertheless, authentication of the receiver is required to
prevent a man in the middle attack. Therefore, the other
preconditions (dm, rm) ∈ authenticated and (dm,ms) 6∈
authenticated require to take an authentication subproblem
between distribute machine dm and receiver machine rm
into consideration.

The concretized security problem frame for distributing
secrets using trusted paths abstains from such an authentica-
tion subproblem. Instead, it requires a trusted path. Thus, its
preconditions contain the predicate y2 ∈ trustedIf , which
describes a trusted path y2 between the machine domain
Distribute machine and the domain Receiver machine.

The postconditions of both frames are the same as the
postconditions of the security problem frame for distribut-
ing secrets presented in Sect. 3.4.

5 A Pattern System for Security Engineering

In this section, we explicitly represent the dependencies
and relations of the frames in detail, yielding a pattern sys-
tem, which is shown in Fig. 7.

The pattern system is constructed by analyzing the pre-
conditions and postconditions of the different security prob-
lem frames and their concretized counterparts. We check
the preconditions of a concretized security problem frame
and then, we syntactically match them with the postcon-
ditions of at least one security problem frame. For exam-
ple, the preconditions of both concretized security problem
frames for distributing secrets presented in Sect. 4.3 contain
formulas that describe trusted paths. Therefore, confidential
and integrity-preserving paths are necessary. The postcon-
ditions of the security problem frame for confidential data
transmission presented in Sect. 3.2 contain a formula that
describes a confidential path. For this reason, the frames
for distributing secrets depend on the frame for confidential
data transmission. Hence, we draw a line from the outer
box containing the CSPF Distributing Secrets (negotiation)
and CSPF Distributing Secrets (trusted path) with an ar-

CSPF Confidential Data
Transmission (symmetric)

CSPF Confidential Data
Transmission (asymmetric)

SPF Confidential Data Transmission

SPF Authentication

CSPF Distributing Secrets (trusted path)

CSPF Distributing Secrets (negotiation)

CSPF Authentication (static)

CSPF Authentication (dynamic)

1

2

3

Data Transmission (symmetric)
CSPF Integrity−preserving

CSPF Integrity−preserving
Data Transmission (asymmetric)

SPF Distributing Secrets

SPF Integrity−preserving

data transmission

IsConcretizedBy

IsConcretizedBy

IsConcretizedBy

IsConcretizedBy

Figure 7. Pattern system of (concretized) se-
curity problem frames

row pointing at the box SPF Confidential Data Transmis-
sion. All dependencies in Fig. 7 are established following
this principle.

Besides the frames introduced in Sections 3 and 4, Fig. 7
shows the concretized security problem frames for static au-
thentication, confidential data transmission using asymmet-
ric encryption, and the security problem frame for integrity-
preserving data transmission including its concretized coun-
terparts. The (concretized) security problem frames de-
picted in Fig. 7 form a self-contained pattern system: for
any precondition of a frame covered by the pattern system,
there exists at least one frame contained in the pattern sys-
tem that provides a matching postcondition. Therefore, the
(concretized) security problem frames contained in the pat-
tern system can be used to completely analyze a given secu-
rity problem, whose initial security requirement is covered
by one of the frames.

Our security requirements engineering process proceeds
as follows: when developing a secure system, a security
engineer starts with the elicitation of an initial set of secu-
rity requirements using, e.g., the CREE method [2]. Then,
each elicited security requirement must be compared to the
informal descriptions of the security requirements of the se-
curity problem frames. After appropriate security problem
frames are identified for each given security requirement,
these frames must be instantiated. When instantiating a se-
curity problem frame, the domains, phenomena, interfaces,
pre- and postconditions, and the security requirement must
be assigned concrete values.

A security engineer proceeds with checking the “Re-
lated” sections of the used frames, which mention those
frames that are commonly used in combination with the de-
scribed frame. This helps to find missing security require-
ments right at the beginning of the security requirements
engineering process.

The process continues with choosing appropriate con-
cretized security problem frames. After the concretized



counterparts have been chosen, the newly introduced do-
mains, phenomena, interfaces, pre- and postconditions, and
the concretized security requirement must be instantiated.

Afterwards, the preconditions of the instantiated con-
cretized security problem frames and the pattern system
must be inspected. To guarantee that the preconditions hold,
two alternatives are possible: either, they are assumed to
hold, or they have to be established by using another secu-
rity problem frame whose postconditions match the precon-
ditions to be established. Such a frame can be determined
using the pattern system shown in Fig. 7 by following the
arrow(s) pointing from the instantiated concretized security
problem frame under consideration to the security problem
frames that can be used to address dependent subproblems.

What assumptions are reasonable depends on the threats
the system should be protected against. Moreover, some as-
sumptions cannot be avoided, because otherwise, a certain
(concretized) security requirement cannot be achieved. For
example, we must assume that an administrator can distin-
guish a fake user from an authentic user when creating a
user account and providing user name and password.

After the preconditions of the instantiated concretized
security problem frames are inspected, often additional
security problems must be considered. As a conse-
quence, one must instantiate appropriate security problem
frames. Again, a security engineer proceeds with choos-
ing and instantiating appropriate concretized security prob-
lem frames. Again, the preconditions of the instantiated
concretized security problem frames and the pattern system
must be inspected, and identified dependencies must be re-
solved by assuming that the preconditions are fulfilled or
by considering additional security problems. As a conse-
quence of the latter case, one must instantiate appropriate
security problem frames. The process of generating new
subproblems terminates when all preconditions of all ap-
plied concretized security problem frames can be proved or
assumed to hold. Therefore, the security requirements en-
gineering process will result in a complete set of security
problems (and solution approaches), some of which may
not have been known initially.

The explicit knowledge of the dependencies between the
security problem frames and their concretized counterparts
increases the value of our approach. The guidance provided
by the dependency relations of the pattern system helps to
structure the security requirements process, to avoid con-
fusion, and to analyze security problems and their solution
approaches in depth.

6 Case Study

We illustrate the usage of our pattern system by a secure
remote display system, which allows its users to view and
control a computing desktop environment not only on the
PC (Personal Computer) where it is running, but also from a
PDA (Personal Digital Assistant) over a Bluetooth connec-
tion. After successfully establishing a connection between

rPDAserver

user
Malicious Authentic

user

Malicious
PC

BluetoothData rPDAclient

CopyOfScreenContent
UserInput

Figure 8. Context diagram of a secure remote
display system

the PDA and the PC, any data transferred between the PDA
and the PC must be kept confidential.

Figure 8 shows the environment in which our ma-
chine must operate, expressed as a context diagram. The
machines to be developed are called rPDAserver and
rPDAclient. The context diagram also contains an Authen-
tic user domain, a Malicious user domain, and a Malicious
PC domain. The first domain represents the authentic PDA
user, while the latter two domains represent attackers who
want to spy the Bluetooth data transmission in order to ob-
tain the user input or the screen content, respectively.

After the context is described, the problem must be de-
composed into subproblems, fitting to appropriate security
problem frames. The machines to be developed have to
solve a confidentiality subproblem for the user input and a
confidentiality subproblem for the screen content. For rea-
sons of space, we concentrate on the confidentiality sub-
problem for the screen content, and we only depict one in-
stantiated frame diagram (see Fig. 9). Instead of showing
the other instantiated frames, we present the instantiated
pre- and postconditions. In combination with the pattern
system, they guide us through the security requirements en-
gineering process.

To instantiate the security problem frame for confiden-
tial data transmission (see Sect. 3.2), some domains are fac-
tored out of the machine domain rPDAserver. The domain
Screen content is an instance of the domain Sent data, Blue-
tooth data is an instance of the domain Transmitted data,
and Copy of screen content is an instance of the domain Re-
ceived data.

After having chosen an appropriate security problem
frame, we proceed by selecting a security mechanism suit-
able to tackle the problem. This corresponds to choosing
one of the concretized security problem frames associated
with the selected security problem frame. Because of the
probably high data exchange between the PDA and the PC,
we decide to choose a symmetric encryption mechanism for
the screen content confidentiality subproblem. The decryp-
tion of the screen content is intentionally left out, because
only encryption is needed to ensure confidentiality. Decryp-
tion is often used to ensure integrity.

Figure 9 shows the problem diagram for confidential



B

Y1

CSR

Y5

Y2

Y4

Y6

Y3

SPC!Y5
X

X
Secret

X

B

Malicious

X

X

PC

Bluetooth
data

content
Screen

PC
server
rPDA

rPDA
client

SPDA!Y6

RS!E1

SC!Y1

content
screen
Copy of

Secret
PDA

RC!E2

BD!Y2

Figure 9. Problem diagram for confidential
screen content transmission using symmet-
ric encryption

screen content transmission using symmetric encryption.
We only have to instantiate the new domain Secret1 by
SecretPC and the new domain Secret2 by SecretPDA. We
assume confidential paths ({y1, e2} ⊆ confIf ) between the
machine domain rPDAserver and the domains Screen con-
tent and Copy of screen content, because we do not suspect
a malicious subject being inside the machine itself, such as
a trojan horse. For the same reason, we assume that the do-
mains Screen content and Copy of screen content are not
known to the Malicious PC domain, and we assume trusted
paths ({y5, y6} ⊆ trustedIf ) between the machine domain
rPDAserver and the domain SecretPC as well as between
the domains rPDAclient and SecretPDA.

In addition, we must consider three preconditions con-
cerning the relations known and match. These preconditions
are not assumed to be fulfilled. For this reason, we must
consider them as subproblems that have to be analyzed by
applying further security problem frames. Following the
arrow annotated “1” in Fig. 7, we decide to choose the se-
curity problem frame for distributing secrets presented in
Sect. 3.4, because this frame provides postconditions suffi-
cient to fulfill these preconditions.

From here on, we only discuss preconditions that cannot
be assumed to be fulfilled.

Considering the instantiated security problem frame for
distributing secrets, we conclude that there does not ex-
ist a trusted path between the domains rPDAserver and
rPDAclient, because it is possible that a malicious subject
eavesdrops on the (public) Bluetooth traffic. Therefore, we
choose the concretized security problem frame for distribut-
ing secrets using negotiation presented in Sect. 4.3, because
this frame abstains from using such a trusted path.

Its preconditions contain the relation authenticated ;
therefore, this frame requires us to take an authentication
subproblem into consideration. We cannot assume these
preconditions to be fulfilled. Thus, we have identified one
more subproblem. Following the arrow annotated “2” in

Fig. 7, we decide to choose the security problem frame for
authentication presented in Sect. 3.3, because this frame
provides postconditions sufficient to fulfill the given pre-
conditions.

To concretize that problem, we decide to choose a dy-
namic authentication mechanism, because a mechanism us-
ing digital signatures is appropriate for the authentication
between machines. Therefore, we must instantiate the con-
cretized security problem frame for dynamic authentication
presented in Sect. 4.2.

Its preconditions contain the relations known and
match . Unfortunately, we cannot assume these precondi-
tions to be fulfilled.

We have to solve a subproblem considering the distri-
bution of secrets, thus following the arrow annotated “3” in
Fig. 7. We must consider the security problem frame for dis-
tributing secrets presented in Sect. 3.4, because this frame
provides postconditions sufficient to fulfill these precondi-
tions.

Because we have to provide digital signatures, the dis-
tribute machine is instantiated by a trust center, which rep-
resents a certification authority in a public key infrastruc-
ture. The trust center is responsible for the distribution of
the digital signatures. We may assume a trusted path be-
tween the trust center and the PC. Hence, we choose the
concretized security problem frame for distributing secrets
using trusted paths presented in Sect. 4.3.

Now, no more preconditions are left to be established.
Hence, we have identified and analyzed in detail all sub-
problems that are necessary to solve the confidentiality sub-
problem for the screen content. Following the dependen-
cies of our pattern system helped us to systematically and
completely set up all the necessary subproblems. A more
detailed presentation of the case study can be found in [5].

The next step in solving the problem would be to derive
specifications of all the machines contained in the different
subproblems. All in all, our original problem will be solved
when the derived specifications are correctly implemented.
In [4], we show the next steps of the development process,
e.g. how the specification is represented using UML se-
quence diagrams.

7 Related Work

To elicitate security requirements, the threats to be con-
sidered must be analyzed. Lin et al. [8] use the ideas under-
lying problem frames to define so-called anti-requirements
and the corresponding abuse frames. An anti-requirement
expresses the intentions of a malicious user, and an abuse
frame represents a security threat. The purpose of anti-
requirements and abuse frames is to analyze security threats
and derive security requirements. Hence, abuse frames and
security problem frames complement each other.

Gürses et al. [2] present the CREE method for multilat-
eral security requirements elicitation. Their method con-
centrates on confidentiality requirements and employs use
cases to treat functional requirements. The CREE method



is useful to be applied in a phase of the security require-
ments engineering process that precedes the application of
our approach.

Haley et al. [3] present a framework for security require-
ments engineering. It defines the notion of security require-
ments, considers security requirements in an application
context, and helps answering the question whether the sys-
tem can satisfy the security requirements. Their definitions
and ideas overlap our approach, but they do not use patterns
and they do not give concrete guidance to identify and elicit
all requirements.

Popp et al. [9] apply extended use cases in the field of
security-critical system development. Use cases extended
by security information are used to develop the specification
of security-critical systems, whereas our procedure focuses
on identifying and analyzing requirements beforehand.

Security patterns [1] are applied later, in the phase of de-
tailed design. The relation between our concretized security
problem frames, which still express problems, and security
patterns is much the same as the relation between problem
frames and design patterns: the frames describe problems,
whereas the design/security patterns describe solutions on a
fairly detailed level of abstraction.

8 Conclusions and Future Work

In this paper, we have presented a pattern system that
supports security requirements engineering. It is based on
security problem frames and their concretized counterparts.
These special kinds of problem frames serve to structure,
characterize, analyze, and finally solve software develop-
ment problems in the area of software and system security.

Since realistic security problems must usually be decom-
posed into several subproblems, our pattern system is of
considerable help for security engineers. Important classes
of security problems are characterized and represented by
security problem frames. A security engineer can inspect
the security problem frame catalog and identify all the
frames relevant for the given problem. Then, each subprob-
lem is further elaborated by selecting a concretized secu-
rity problem frame associated with the previously chosen
security problem frame. In the next step, the associated
preconditions must be inspected. They can either be as-
sumed as true, or they can lead to one or more subproblems
to be solved. These subproblems can be identified easily,
following the dependency relations of our pattern system.
That process terminates, when all preconditions that are left
can be assumed to hold. Moreover, we indicate related
frames, which are commonly used together with the con-
sidered frame.

Thus, our pattern system leads the security engineer to
a complete description of all the subproblems that must be
solved in order to solve a complex security problem. Our
pattern system integrates well with software requirements
engineering using Jackson’s problem frames.

In the future, we intend to find new patterns to extend the
catalog of security problem frames and concretized security

problem frames. Additionally, we plan to elaborate more on
the later phases of software development. For example, we
want to investigate how to integrate component technology
in the development process. Finally, we plan to provide tool
support for our security engineering method.

Acknowledgment We thank Bozhan Ivanov for his con-
structive comments on this work.

References

[1] B. Blakley and C. Heath. Technical Guide: Se-
curity Design Patterns. The Open Group, April
2004. http://www.opengroup.org/publi-
cations/catalog/g031.htm.

[2] S. F. Gürses, J. H. Jahnke, C. Obry, A. Onabajo, T. Santen,
and M. Price. Eliciting confidentiality requirements in prac-
tice. In CASCON ’05: Proceedings of the 2005 conference of
the Centre for Advanced Studies on Collaborative research,
pages 101–116. IBM Press, 2005.

[3] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh. A
framework for security requirements engineering. In SESS
’06: Proceedings of the 2006 international workshop on Soft-
ware engineering for secure systems, pages 35–42, New York,
NY, USA, 2006. ACM Press.

[4] D. Hatebur, M. Heisel, and H. Schmidt. Security Engineer-
ing using Problem Frames. In Müller, G., editor, Proceedings
of the International Conference on Emerging Trends in Infor-
mation and Communication Security (ETRICS), LNCS 3995,
pages 238–253. Springer-Verlag, 2006.

[5] D. Hatebur, M. Heisel, and H. Schmidt. Using
Problem Frames for Security Engineering. Tech-
nical report, Universität Duisburg-Essen, 2006.
http://swe.uni-duisburg-essen.de/intern/
seceng06.pdf.

[6] M. Jackson. Problem Frames. Analyzing and structuring soft-
ware development problems. Addison-Wesley, 2001.

[7] M. Jackson and P. Zave. Deriving Specifications from Re-
quirements: an Example. In Proceedings 17th Int. Conf.
on Software Engineering, Seattle, USA, pages 15–24. ACM
Press, 1995.

[8] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Mof-
fett. Introducing Abuse Frames for Analysing Security Re-
quirements. In Proceedings of 11th IEEE International Re-
quirements Engineering Conference (RE’03), pages 371–372,
2003. Poster Paper.

[9] G. Popp, J. Jürjens, G. Wimmel, and R. Breu. Security-
Critical System Development with Extended Use Cases. In
APSEC, pages 478–487, 2003.


