
Pattern-based Evolution of Software Architectures

Isabelle Côté, Maritta Heisel, and Ina Wentzlaff

University Duisburg-Essen, Faculty of Engineering, Department of Computational and
Cognitive Sciences - CoCoS, Working Group Software Engineering, Germany

{isabelle.cote, maritta.heisel, ina.wentzlaff}@uni-duisburg-essen.de

Abstract. We propose a pattern-based software development method compris-
ing analysis (using problem frames) and design (using architectural and design
patterns), of which especially evolving systems benefit. Evolution operators guide
a pattern-based transformation procedure, including re-engineering tasks for ad-
justing a given software architecture to meet new system demands. Through ap-
plication of these operators, relations between analysis and design documents are
explored systematically for accomplishing desired software modifications. This
allows for reusing development documents to a large extent, even when the ap-
plication environment and the requirements change.

1 Motivation

Splitting the software life cycle into several, more or less independent development
phases is a need to create manageable engineering activities. Patterns introduce a fur-
ther enhancement, because they provide a concept for reusing software development
knowledge. Hence, a vast quantity of patterns specific to and applicable in the different
phases of the software life cycle can be found today.

It has been observed that the life-span of software often covers several years, in
some cases even decades. During this long lifetime, it is necessary to modify and update
existing software to accommodate it to new requirements or a changing environment,
where it is deployed in. Modifying existing software systems to adapt them to new
or changed requirements is called software evolution. Existing software development
processes, however, are not designed to incorporate new or changing requirements into
an existing system. They usually consider a system that has to be built from scratch.
This is a striking fact, as experts see the fraction of maintenance/evolution at 80% of
the overall effort for a software project [9]. For this reason, it is necessary to provide
systematic support for the evolution task. Ideally, this support can be embedded into
an existing development process. This puts new demands on the relation of software
development process and pattern usage. Re-engineering techniques and reuse, as well
as the traceability between the different development artifacts are crucial in this context.

Each phase of the software life cycle has different objectives. However, even if
the engineering activities of the respective software development steps are independent
of each other, the resulting artifacts are not. Sudden architectural change by innova-
tion is not desirable. Instead, architectural changes are usually motivated by the need
for adding new functionality or reorganizing existing functionality to cope with new

2

environmental circumstances. Therefore, we investigate the role of application environ-
ment and requirements change for architectural evolution. Our approach presented here
stresses the early development stages. We introduce evolution operators that guide a
systematic software architecture adjustment by establishing profitable pattern relations.

Patterns for software development have become widely accepted, especially dur-
ing the last decade. They are a means for understanding a given development prob-
lem (problem frames [7]), or structuring its solution (as architectural styles [1] or de-
sign patterns [5]). Relating these patterns for different phases of the software life cycle
[2, 10, 11, 14] in a methodical manner avoids to construct throw-away models. Thus,
artifacts of the respective steps that are build on patterns depend on each other, explic-
itly.

Guiding the transfer of artifacts of the analysis phase to artifacts of software de-
sign by a pattern-based transformation procedure takes advantage of this underlying,
pattern-based linkage between artifacts and its resulting traceability. Therefore, we ex-
tend an existing development process through suitable evolution operators. These oper-
ators guide the engineering process in evolving given artifacts. They also assist in the
reuse of related development artifacts in successive development phases and provide
help with selecting appropriate patterns. Because of its general nature, our pattern-based
development method is applicable to a variety of software development problems and
assists system evolution.

Section 2 describes our general development method. To illustrate our approach, we
present as an example the architectural evolution of a chat system that is introduced in
Section 3. Section 4 presents the evolution operators we have defined and attached to
the development method of Section 2. In Sections 5 and 6, two evolution scenarios are
given, describing the accomplishment of a pattern-based evolution of the original chat
software architecture. Finally, Section 7 concludes this work with a brief summary of
our contribution and future prospects.

2 A Pattern-Based Software Development Method

Our pattern-based software development procedure is based on Jackson’s problem frames
approach [7]. It consists of the following four steps:

1. Understand the problem situation
After investigating the problem domain and identifying its current shortcomings,
relevant domain knowledge is collected, and the system mission together with the
corresponding requirements are recorded, as shown in Table 1. Domain knowledge
(consisting of facts F and assumptions A) and requirements R (describing the chat
system in its environment) are collected for detailing the system mission (SM).
The given problem situation is structured by a context diagram, which represents
the desired system, shown in Figure 1. It represents the overall problem situation.
A context diagram covers the domain knowlege and the requirements of Table 1 by
corresponding domains (boxes) and their interactions (shared phenomena at labeled
interfaces). The machine domain (indicated by two vertical stripes) represents the
software we are going to build.

3

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical display.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical display.
... . . .

F1 Users communicate in a local network.
A1 Users follow the course of the chat on their private graphical display.

Table 1. Initial Set of Requirements and Domain Knowledge for a Chat Application

a

d

b
c

network
e

text
message

chat
application

display

user

a : {phraseTextMessage, sendTextMessage}
b : {showTextMessage}
c : {readDisplay}
d : {editTextmessage, MessageText}
e : {distributeTextMessage, pickUpTextMessages}

Fig. 1. Context Diagram for a Chat Application

2. Decompose overall problem into simple subproblems
The requirements guide a knowledge-based decomposition of the overall problem
that is represented by a context diagram into several simple problems. A simple
problem is represented by a problem diagram, which expresses what the subprob-
lem is about by referring to the involved domains and related shared phenomena.
These subproblem representations together with the given domain knowledge suf-
fice to derive a software specification describing the interface behavior of the ma-
chine. Figures 2 and 3 represent two simple subproblems for requirements R2 and
R3. 1

3. Fit subproblems to (variants of) problem frames
When using a pattern-based development method, the subproblems are classified by
instantiating suitable problem patterns, called problem frames (PF) [7]. These are
patterns categorizing software development problems into problem classes during
the analysis phase. Thus, each problem frame represents a problem category, which
can be linked to patterns of a corresponding solution class. Via analogies, they
can be related to patterns of software design, resulting in a smooth transition from
requirements engineering documents into design artifacts [11].

1 Figures 2 and 3 are explained in more detail in Section 3.

4

4. Instantiate corresponding architectural and design patterns
Finally, we make use of the problem/solution-pattern relationship discussed in the
previous Step 3 to derive a software design appropriate for the given problem situa-
tion documented in Steps 1 and 2. As an instance of a problem frame, each derived
subproblem assigns values to its related architectural styles or design patterns. As a
result, we obtain a more or less coarse-grained design (see Figures 4, 6, and 7) for
each subproblem. These subproblem solutions can be used as a starting point for
additional solution refinement, component deployment, or coding.
Therefore, using a specific pattern in the analysis phase results in a predetermined
choice of patterns in the design phase. If a subproblem fits to a problem frame (as
in Figures 2 and 3), related architectural or design patterns (see Figures 4, 6, and 7)
can offer a solution structure for it.

In the following, we use design patterns such as Forwarder-Receiver [1], which
are comparable to architectural styles for developing software architectures. However,
composing the overall (architectural) design out of several subproblem solutions [3]
is out of scope of this paper. We consider subproblems that contribute to a common
solution design in this paper.

3 Example: Developing a Chat System

The starting point of our initial software development project is the system mission in
Table 1. As described in Steps 1 and 2 of our development method, domain knowledge
and requirements are collected, and a context diagram is set up (see Figure 1). The
problem diagrams of Figures 2 and 3 represent two of the subproblems derived for the
chat application. They refer to the requirements R2 and R3.

network

user

text
message

chat
application

e

a

c

b

d

f

R2

a : US!{sendTextMessage}
b : CA!{distributeTextMessage}
c : TM!{MessageText}
d : ”message text”
e : ”transmit message”
f : ”user input”

Fig. 2. ”Message Forwarder” subproblem (instance of a variant of the commanded behaviour PF)

If a problem requirement such as R2 and R3 can be fitted to a problem frame, cor-
responding domains and shared phenomena for describing it in detail become identifi-
able. Then, the dashed oval contains the corresponding requirements. The dashed lines
demonstrate the relationships between these requirements and the different problem do-
mains, see for example Figure 2. An arrowhead pointing at a problem domain denotes a
requirements constraint, which stipulates the development of a machine controlling the

5

problem domain as stated in the requirements. Then, the frame diagram supports the
derivation of a specification, which is a technical description sufficient for developing
the desired software. For this, the interfaces at the machine domain are of particular
importance. They specify what services the desired software shall provide.

In addition to the interfaces of a context diagram, in problem diagrams an abbreva-
tion of the domain name (like US for user) is given. An exclamation mark at the labeled
interfaces indicates which domain controls a shared phenomenon or a set of shared phe-
nomena. An example for this is a: US!{sendTextMessage} in Figure 2. It means that
the user initiates commands for sending chat text messages.

chat
application R3

a d

network

display

b c
a : CA!{showTextMessage}
b : NW!{pickUpTextMessages}
c : ”obtaining message”
d : ”update display content”

Fig. 3. ”Message Receiver” subproblem (instance of information display PF)

As recommended by Step 3 of our pattern-based software development method,
both subproblems of Figures 2 and 3 are instances of problem frames [7]. In Figure 4,
we illustrate how to transform a pattern for software analysis to a pattern for software
design in order to accomplish Step 4.

First, we translate the subproblems into a class diagram known from Unified Mod-
eling Language (UML) [13] (see classes chat application and network of Figure 4). This
eases linking them to patterns of software design, which in general are represented in
UML notation. Thus, in our approach, problem frames and problem diagrams take the
role of UML use cases, which are a means for requirements elicitation and problem
decomposition. In contrast to use cases, problem frames and problem diagrams refer to
their respective requirements explicitly. Furthermore, they represent necessary objects
and their interactions in more detail, which facilitates for a more coherent development.
And in addition, they support our aim of an integrated pattern-based development pro-
cedure. Consequently, problem frames do not replace common development notations
such as UML, but they extend them in a profitable way.

The upper part of the class diagram shown in Figure 4 represents the Forwarder-
Receiver design pattern [1]. The two classes chat application and network are taken
from the subproblems in Figures 2 and 3. They are related to the Forwarder-Receiver
design pattern via analogy:

The software we are going to build, namely the chat application is related to the
class Peer in Figure 4. Both have in common that they constitute the core chat system
controlled by a user, who can call specific services, such as sendTextMessage. There-
fore, we relate them via an inheritance relation. The network domain in Figure 2 takes
the role of the class Forwarder in Figure 4, implementing its operations by distribute-
TextMessage. In the subproblem of Figure 3, network takes the role of a Receiver,
which again is expressed by an inheritance relation in Figure 4, where network imple-
ments the Receiver operations by pickUpTextMessages. In the following, the domain

6

receiveMsg

sendTextMessage

receive
unmarshal
receiveMsg

Peer

service

marshal
deliver
sendMsg

n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage
pickUpTextMessages

network

...

...

Fig. 4. Relating Problem Diagrams with Design Pattern Forwarder-Receiver

text message of Figure 2 and the domain display of Figure 3 are assumed to be part
of the chat application or peer. For sake of simplicity, we will not consider them any
further, because they have no architectural effects in our example.

Figure 4 shows an initial software design, which is constructed entirely with pat-
terns. Implementing this design results in a peer-to-peer chat system. For our example,
we first finish the development process at this point.

4 Considering Evolution through the Development Life Cycle

To support evolution, we define a corresponding evolution step for each step of the
method described in Section 2. The work of O’Cinneide and Nixon [8] may seem sim-
ilar to our approach. However, we do not perform refactoring to introduce design pat-
terns into a given system. In contrast, our system is already composed of design patterns.

Our evolution method consists of several steps each providing evolution operators
for the respective development phase. Changes to the original method introduced in
Section 2 are indicated in bold face. The evolution operators document what the change
is and how it should be carried out. This results in a corresponding set of operators
for each step of our development method, e.g the addition or deletion of a domain in
the context diagram in Step 1. In the following, we concentrate on illustrating those
operators which are applied to our example.

1. Understand the new problem situation

Evolution takes place when a change request is present. This request has differ-
ent effects, depending heavily on whether or not requirements or domain knowl-
edge are modified. In the following, we refer to new or changed requirements
as evolution requirements eR and new or additional domain knowledge as aD
(aD ≡ aF ∧ aA). The above-mentioned modifications of requirements and/or

7

domain knowledge make it necessary to gain an understanding of the new circum-
stances. This may result in a modification of the context diagram, using evolution
operators. The operators relevant for this phase are:

eAD – evolution operator add new domain:
A new domain has to be added to the context diagram.
The eR and/or the aD introduce a new relevant domain. Relevant means that
the domain is necessary to develop the specification for the machine. Usually,
this implies that the new domain is directly connected to the machine domain.
This domain has to be added to the context diagram. The new phenomena that
occur have to be treated with eAP (add new phenomenon) or eMP (modify
existing phenomenon) (described below).

eMD – evolution operator modify existing domain:
A domain contained in the context diagram has to be modified. Possible modi-
fications are for example splitting or merging of domains.
In contrast to eAD, the eR and aD do not necessitate a new domain in this
case. However, they make it necessary to modify a given domain in the context
diagram. This may occur when the eR and/or the aD are extended or changed,
resulting in a possible application of eAP.

eAP – evolution operator add new phenomenon:
A new phenomenon is added to an interface of the context diagram.
Whenever eAD is applied, it is also necessary to add new phenomena to the
newly created interfaces between the added domain and the domains connected
to it. It may also occur that a new phenomenon has to be added to an already
existing interface (perhaps as a consequence of applying eMD).

eMP – evolution operator modify existing phenomenon:
An existing phenomenon has to be modified in the context diagram, e.g. by
renaming.
The domains contained in the context diagram suffice to capture the new situ-
ation. The shared phenomena, however, have to be changed in order to handle
the modified behavior derived from eR and/or aD.

In some cases, it may also occur that neither domains nor shared phenomena are
newly introduced. Then, no changes to the context diagram are necessary in Step
1, but the new requirements/domain knowledge may require changes in later steps.
A reason for this is that at this stage, only the static aspects of the system and not
the dynamic aspects are taken into account. The resulting context diagram now
represents the new overall problem situation.

2. Decompose overall problem into simple subproblems, and adapt existing ones
It is necessary to investigate the existing subproblems, applying evolution opera-
tors as necessary. The eR are the driving force behind this investigation, as they
determine whether or not it is necessary to create a new subproblem or to adapt an
existing one. Examples of evolution operators for this step are:

eIR – evolution operator incorporate eR into a given subproblem:
New domains and associated shared phenomena may be added to an existing

8

problem diagram. This is possible if the eR references at most the same do-
mains as the given subproblem. Conflicting requirements may occur at this
point. However, resolving such conflicts will not be addressed here.

eCS – evolution operator create new subproblem:
Either the eR is assigned to a given subproblem, but the resulting subprob-
lem then gets too complex. Hence, it is necessary to split the subproblem into
smaller subproblems.
Or the eR cannot be assigned to a given subproblem, and a new subproblem
has to be created.

For the next steps, only newly introduced and adapted subproblems have to be taken
into further consideration, as only these will undergo changes. The subproblems
which have not been addressed in this step can be disregarded for now. They will
only become relevant again in later steps, when the solutions of the subproblems
are composed to the overall solution.

3. Fit subproblems to (variants of) problem frames and adjust problem frame in-
stances
The operators for this step include:

eFF – evolution operator fit to a problem frame:
Each newly introduced subproblem is fitted into a problem frame by instanti-
ating it according to the general procedure of Section 2.

eCF – evolution operator choose different problem frame:
For each adapted subproblem, it is checked whether its underlying problem
frame is still valid, or whether another problem frame is now more appropriate.
The corresponding problem frame is then instantiated accordingly.

4. Modify and instantiate corresponding architectural and design patterns

Comparable to evolution Step 2 driven by eR, this step is guided by aD. Evolution
operators applicable in this step are:

eAA – evolution operator adjust given architecture:
Adapted subproblems, which still fit into already instantiated problem frames,
can usually be incorporated into the given architecture without difficulties.

eCA – evolution operator choose different architectural style or design pattern:
New subproblems or subproblems that fit to different problem frames than be-
fore lead to a new investigation of the solution.
This investigation may result in a (re-)assignment of existing subproblems to
new architectural styles or patterns.
Furthermore, aD can cause a change in the problem/solution-pattern relation,
resulting in a reallocation of subproblem elements to corresponding parts of so-
lution patterns via new analogies. For instance, this fact distinguishes evolution
scenario I from evolution scenario II (see Sections 5 and 6).

In the subsequent sections, we illustrate the usage of these evolution operators by
two evolution scenarios for our chat application.

9

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical displays.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical displays.
eR5 Users want to chat via long distances. Therefore it is necessary to pass the data

from the local network to the wide access network (and vice-versa).
aF1 Users communicate in a local network, or via a wide area access network.
A1 Users follow the course of the chat on their private graphical display.

Table 2. Changed Requirements and Domain Knowledge for Evolution Scenario I

5 Evolution Scenario I

The starting point for this first software evolution scenario is a chat system as described
in Section 3 for local communication (cf. F1 in Table 1), for example via a bluetooth
device as an implementation of the network domain.

A limitation of such a chat application is that users are restricted to the range of
their bluetooth devices. This limitation has to be removed now. An extended fact aF1
about the application domain is introduced, see Table 2: Users communicate [...] via a
wide area access network.

However, there is also a constraint restricting the evolution procedure: The structure
of the original application should be maintained. This constraint stresses the maximal
possible reuse of artifacts of the existing system. Therefore, it will be necessary to
maintain the existing architecture in its original form as far as possible. We now follow
the procedure described in Section 4 for evolving the given chat system:

1. Understand the new problem situation
Analyzing the change of domain knowledge results in an additional requirement,
which is added to Table 2 as eR5.
It is not necessary to add a new domain into the context diagram. The set of existing
phenomena suffices, as well. Therefore, it is not necessary to make any changes to
the existing context diagram. It still looks as shown in Figure 1.

chat
application eR5

a d

networkb c

network

a : CA!{distributeTextMessage}
b : NW!{pickUpTextMessages}
c : ”obtaining message”
d : ”route message”

Fig. 5. ”Message Dispatcher” subproblem (instance of a variant of the transformation PF)

2. Decompose overall problem into simple subproblems and adapt existing ones
We apply the operator eCS (create new subproblem) of Section 4 and create a new
subproblem. The formerly used network is not able to provide a wide area access.

10

Taking the above constraint into consideration, as well, we obtain the following
new subproblem represented in Figure 5. We need to transfer the data from our
bluetooth network to another network, which will deal with passing the data to
or receiving the data from the wide area access network. The other subproblems
remain unchanged.

3. Fit subproblems to problem frames and adjust problem frame instances
As we have created a new subproblem, the evolution operator eFF (fit to a problem
frame) described in Section 4 has to be applied. Accordingly, the new subproblem
becomes an instance of a transformation problem frame variant.

4. Modify and instantiate corresponding architectural and design patterns
By having a closer look at the new problem diagram in Figure 5, we see that what
is performed by this subproblem can be characterized as a kind of dispatching.
Now the evolution operators eAA (adjust given architecture) and eCA (choose
different architectural style or design pattern) have to be considered. The oper-
ator eAA preserves the Forwarder-Receiver architecture for the subproblems in
Figures 2 and 3. These problem diagrams stay untouched, and so does their cor-
responding architecture. To the newly created subproblem, we apply the operator
eCA. As we know that we need a dispatcher, this leads us to the pattern of Client-
Dispatcher-Server [1], because a dispatcher is responsible for establishing a (wide
area) connection between two parties. Another alternative could be the design pat-
tern Proxy. However, we choose the first pattern, namely Client-Dispatcher-Server,
to illustrate the evolution in this scenario. To satisfy the accompanying evolution
constraint to reuse as many development artifacts as possible, we attach the Client-
Dispatcher-Server to the already applied Forwarder-Receiver pattern, resulting in
a hybrid design pattern. Here, we follow in general the pattern-oriented analysis
and design (POAD) approach [15]. As shown in Figure 6, the new solution pattern
for the added subproblem in Figure 5 can therefore simply be “plugged together”
on the conceptual level with the existing one in Figure 4.
The connection between the two solution patterns namely Forwarder-Receiver and
Client-Dispatcher-Server is realized through dependencies. We want to maintain
the original patterns as much as possible. The class Forwarder and Client share the
responsibility for sending some content or requests. Therefore, we can reuse For-
warder for implementing sendRequest of class Client. The same holds for the class
Receiver, which is responsible for realizing the Server operation receiveRequest.
The chat application and network class derived from our subproblem descriptions
are related to the combined solution patterns via generalization/specialization re-
lations. Where chat application takes the role of a peer that provides services such
as sendTextMessage, and network takes the role of forwarder and receiver for han-
dling the reception of messages by pickUpTextMessage and their delivery through
distributeTextMessage. In its role as a Dispatcher, chat application uses its reference
to network for controlling its message handeling, respectively.
Interesting is the role of the network, because it is part of all three subproblems. For
the subproblems in Figures 2 and 3, the network is responsible for providing the
Forwarder/Receiver functionality. For the subproblem in Figure 5, it implements
Dispatcher operations. For the Dispatcher the network connects the different chat

11

registerService

locationMap

locateServer

unregisterService

establishConnection

getChannel

Dispatcher

acceptConnection

runService

receiveRequest

Server

doTask

sendRequest

Client

receiveMsg

sendTextMessage

receive

unmarshal

receiveMsg

Peer

service

marshal

deliver

sendMsg
n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage

pickUpTextMessages

network

requests
services

result
returns

connection
requests

registers

<<use>>

<<use>>
connection

accepts link

etablishes

Fig. 6. Evolved Class Diagram of the Chat Application (Hybrid Style)

peers via long distances, whereas each peer is a Client as well as a Server commu-
nicating via a Forwarder-Receiver mechanism.

It is clearly visible that in this first evolution scenario the modification of aF1 and
the addition of eR5 resulted in the creation of a new subproblem. Because of this new
subproblem, it was necessary to make a new design decision. Considering the given
constraint, the decision leads us to an extention of the existing Forwarder-Receiver
architecture to a hybrid Forwarder-Receiver/Client-Dispatcher-Server style.

6 Evolution Scenario II

The second evolution scenario is based on the results of Section 5. With the current chat
application it is possible to communicate with other users via bluetooth or a network
providing wide area access. The devices used so far are general purpose computers.
Mobile devices such as portable phones or personal digital assistants (PDA) are not
supported yet. This describes the limitation that we remove in this second evolution
scenario: The usage of portable devices should be possible, as well. Once more the
evolution steps described in Section 4 are applied:

1. Understand the new problem situation
New domain knowledge is added, described by the additional fact aF2 in Table 3:
The devices used are general purpose computers as well as portable phones
and PDAs. This new fact describes hardware constraints referring to the machine
domain. No additional requirements are necessary. Therefore, the context diagram
remains unchanged, even though new domain knowledge has been introduced. The
reason is that aF2 influences internal characteristics of the machine, and not its
behavior. These characteristics, however, cannot be described by a context diagram.

12

SM A text-message-based communication platform shall be developed, which allows multi-
user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private graphical displays.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ graphical displays.
eR5 Users want to chat via long distances. Therefore it is necessary to pass the data from

the local network to the wide access network (and vice-versa).
aF1 Users communicate in a local network, or via a wide area access network.
aF2 The devices used are general purpose computers as well as portable phones and

personal digital assistants (PDAs).
A1 Users follow the course of the chat on their private graphical display.

Table 3. Changed Requirements and Domain Knowledge for Evolution Scenario II

2. Decompose overall problem into simple subproblems and adapt existing ones

The distribution of the overall problem situation into subproblems stays unchanged,
because the requirements do not change.

3. Fit subproblems to problem frames, and adjust problem frames instances

No changes have to be performed in this step, because no changes were performed
in the previous step.

4. Modify and instantiate corresponding architectural and design patterns

This step is the nontrivial one in this scenario, because here the effect of the newly
introduced domain knowledge becomes visible. Fact aF2 influences the decision
which pattern to select in the solution space. Mobile devices such as PDAs or mo-
bile phones do not possess the same resources as general purpose computers do.
The new fact thus imposes a constraint on the selection of design patterns and ar-
chitectural styles. Here, it leads to a re-design of the present architecture by means
of the evolution operator eCA.
The new domain knowledge enforces a reorganization of the given subproblems,
resulting in a different choice of architectural style or design pattern out of the
related solution class. For our example, the three subproblems are matched with
the Client-Dispatcher-Server pattern only (cf. Figure 7).
The former forwarder and receiver components are merged with the client and
server components. The chat application now consists of two parts namely, a server
and a client part. The functionalities formerly represented by the peer are now par-
tially realized by the server and client classes, respectively.

In the first evolution scenario, we had to deal with a constraint. This constraint is
still present in the second scenario, however, in a weakened form: all the subproblems
not involved in the data transmission/reception remain unchanged, and the development
documents related to them can be reused as is. In this second scenario, adding domain
knowledge in form of aF2 results in a complete restructuring of the architecture. The
reason is that the new domain knowledge leads to a different matching of subproblems
to architectural patterns, resulting in a new, more appropriate and simpler architecture.

13

registerService

locationMap

locateServer
unregisterService

establishConnection
getChannel

Dispatcher

acceptConnection
runService
receiveRequest

Server

doTask
sendRequest

Client

sendTextMessage

chat application

requests
services

result
returns

connection
requests

registers
accepts link

pickUpTextMessages
distributeTextMessage

network

etablishes
connection

Fig. 7. Resulting architectural design based on Client-Dispatcher-Server

7 Conclusion and Future Work

We have introduced a pattern-based development method, incorporating evolution in
each step, and driven by evolution operators. With this method, it is possible to per-
form software evolution systematically whenever new requirements or changes in the
application environment occur.

Through a chat application example, we have shown the usage of our method. We
illustrated how a system evolved from a straight peer-to-peer architecture via a hybrid
architecture to a client-dispatcher-server system. This evolution is achieved by applying
evolution operators. They allow for identifiying those development documents, which
have to undergo change. Thus, they provide guidance for performing the necessary
modifications in phases to come.

This approach enables us to perform a systematic rework on the affected develop-
ment documents by means of patterns. We have shown that it is possible to link the
artifacts of the analysis phase to the artifacts of the design phase. Therefore, changes in
the analysis help to perform an analogous procedure in the design phase.

Our method does not intend to replace existing methods or notations. It rather ex-
tends them by a goal-oriented, pattern-based approach resulting in coherent and precise
specifications. The method does not postulate a dogmatic approach, always resulting in
exactly one unique solution. We intend to constrain the possible solutions (design space)
to provide a small, most promissing set of patterns useful for solving the problem.

Also non-functional requirements can be treated with our approach: If these quality
aspects are specified in the problem frames (such as HCIFrames [14] or using Secu-
rity Problem Frames [6]), they will lead to solutions that address these non-functional
issues, see evolution scenario one in Section 5. Additionally, non-functional aspects

14

that are manifested in domain knowledge can be covered, see evolution scenario two in
Section 6.

In summary, the advantages of our approach are the following:

– Our method is pattern-to-pattern, integrating evolution. Hence, it has all assets that
come with the use of patterns, in particular, reuse of established analysis and design
knowledge.

– Our evolution operators provide guidance concerning pattern selection and trans-
formation. They help to adapt the development problem and to find new solutions
if necessary.

– Non-functional requirements can be treated, as well.

Currently, we are working on a formalization of the problem frames. For that pur-
pose, we are building a formal metamodel using the formal specification language
Object-Z [12]. The graphical representation of the formalization is given through UML
class diagrams [13]. The metamodel is equipped with integrity conditions to ensure the
validity of a frame with respect to the metamodel. It is planned to create an Eclipse [4]
plug-in for this metamodel. The plug-in will work as an editor to create valid frame
diagrams in the context of our metamodel. The metamodel will also serve as a basis for
investigating which of the evolution operators can be formalized and incorporated into
the metamodel. In a further step, the plug-in will be extended to allow for an automation
of the identified and formalized evolution operators presented here.

In the future, we also plan to analyze the effects of domain knowledge within the
evolution process in more depth. Additionally, we plan to examine the impact of the
change in the architectural structures to later documents of the software life cycle, es-
pecially considering the source code. Furthermore, we intend to put stronger emphasis
on distinguishing internal and external quality aspects and how they are successfully
covered by our method. It is also planed to have a detailed look at the decompositions
and compositions of the subproblems with respect to the architecture, which would also
contribute to investigate the scalability of problem frames. We further will investigate
which problem frames should be related to which architectural design patterns or archi-
tectural styles for completing our method.

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[2] C. Choppy, D. Hatebur, and M. Heisel. Architectural Patterns for Problem Frames. IEE
Proceedings - Software, 152(4):198–208, 2005.

[3] C. Choppy, D. Hatebur, and M. Heisel. Component composition through architectural
patterns for problem frames. In Proc. XIII Asia Pacific Software Engineering Conference,
pages 27–34. IEEE Computer Society, 2006.

[4] T. E. Foundation. Eclipse - an open development platform, 2007.
http://www.eclipse.org.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

15

[6] D. Hatebur, M. Heisel, and H. Schmidt. Security engineering using problem frames. In
Proc. of the Int. Conference on Emerging Trends in Information and Communication Secu-
rity (ETRICS), volume 3995/2006, pages 238–253. Springer Berlin / Heidelberg, 2006.

[7] M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[8] M. O’Cinneide and P. Nixon. Automated Software Evolution Towards Design Patterns,
2001. http://citeseer.ist.psu.edu/671812.html.

[9] S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall, 2001.
[10] L. Rapanotti, J. G. Hall, M. A. Jackson, and B. Nuseibeh. Architecture-driven Problem

Decomposition. In Proceedings of the 12th IEEE International Requirements Engineering
Conference (RE’04), Kyoto, Japan, 2004. IEEE.

[11] H. Schmidt and I. Wentzlaff. Preserving Software Quality Characteristics from Require-
ments Analysis to Architectural Design. In Proceedings of the 3rd European Workshop on
Software Architectures (EWSA’06), Nantes, France, 2006. Springer.

[12] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.
[13] UML Revision Task Force. OMG Unified Modeling Language: Superstructure, 2007.

http://www.omg.org.
[14] I. Wentzlaff and M. Specker. Pattern-based Development of User-Friendly Web Applica-

tions. In Workshop Proceedings of the 6th International Conference on Web Engineering
(ICWE), New York, NY, USA, 2006. ACM Press.

[15] S. M. Yacoub and H. H. Ammar. Pattern-oriented Analysis and Design: Composing Pat-
terns to Design Software Systems. Addison-Wesley, 2003.

