
January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

PATTERN-BASED EXPLORATION OF DESIGN ALTERNATIVES
FOR THE EVOLUTION OF SOFTWARE ARCHITECTURES∗

ISABELLE CÔTÉ MARITTA HEISEL INA WENTZLAFF

Working Group Software Engineering
Department of Computational and Cognitive Sciences

University of Duisburg-Essen, Oststr. 99
47057 Duisburg, Germany

email: {isabelle.cote,maritta.heisel,ina.wentzlaff}@uni-duisburg-essen.de

We propose a pattern-based software development method comprising analysis (using
problem frames) and design (using architectural and design patterns), from which espe-
cially evolving systems benefit. Evolution operators guide a pattern-based transformation
procedure, including re-engineering tasks for adjusting a given software architecture to
meet new system demands. Through application of these operators, relations between
analysis and design documents are explored systematically for accomplishing desired soft-
ware modifications. This allows for reusing development documents to a large extent,
even when the application environment and the requirements change.

Keywords: problem frames; architectural styles; evolution method.

1. Motivation

Splitting the software life cycle into several, more or less independent development
phases is a need to create manageable engineering activities. Patterns introduce a
further enhancement, because they provide a concept for reusing software develop-
ment knowledge. Hence, a vast quantity of patterns specific to and applicable in
the different phases of the software life cycle can be found today.

It has been observed that the life-span of software often covers several years,
in some cases even decades. During this long lifetime, it is necessary to modify
and update existing software to accommodate it to new requirements or a changing
environment, in which it is deployed. Modifying existing software systems to adapt
them to new or changed requirements is called software evolution. Most existing
software development processes, however, are not designed to incorporate new or
changing requirements into an existing system. They usually consider a system that
has to be built from scratch. This is a striking fact, as experts see the fraction of
maintenance/evolution at 80% of the overall effort for a software project 10. For this
reason, it is necessary to provide systematic support for the evolution task. Ideally,

∗Electronic version of an article published as International Journal of Cooperative Information
Systems, Volume 16, Issue 3&4, 2007, Pages 341-365, Article DOI 10.1142/s0218843007001688
c©World Scientific Publishing Company, http://www.worldscinet.com/ijcis

1

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

2 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

this support can be embedded into an existing development process. This puts new
demands on the relation of software development process and pattern usage. Re-
engineering techniques and reuse, as well as the traceability between the different
development artifacts are crucial in this context.

Each phase of the software life cycle has different objectives. However, even if
the engineering activities of the respective software development steps are inde-
pendent of each other, the resulting artifacts are not. Sudden architectural change
by innovation is not desirable. Instead, architectural changes are usually motivated
by the need for adding new functionality or reorganizing existing functionality to
cope with new environmental circumstances. Therefore, we investigate the role of
the application environment and requirements change for architectural evolution.
Our approach presented here focuses on the early development stages. We intro-
duce evolution operators that guide a systematic software architecture adjustment
by establishing profitable pattern relations.

Patterns for software development have become widely accepted, especially dur-
ing the last decade. They are a means for understanding a given development prob-
lem (problem frames 9), or structuring its solution (as architectural styles 2 or design
patterns 7). Relating these patterns for different phases of the software life cycle
3,4,11,12,14 in a methodical manner avoids the construction of throw-away models.
Thus, artifacts of the respective steps that are built on patterns explicitly depend
on each other.

Guiding the transfer of artifacts of the analysis phase to artifacts of software
design by a pattern-based transformation procedure takes advantage of this un-
derlying, pattern-based linkage between artifacts and their development’s resulting
traceability. Therefore, we extend an existing development process through suitable
evolution operators. These operators guide the engineering process in evolving given
artifacts. They also assist in the reuse of related development artifacts in successive
development phases and provide help with selecting appropriate patterns. Because
of its general nature, our pattern-based development method is applicable to a va-
riety of software development problems, and assists system evolution at the same
time.

Section 2 describes our general development method. To illustrate our approach,
we present as an example the architectural evolution of a chat system that is intro-
duced in Section 3. Section 4 presents the evolution operators we have defined and
attached to the development method of Section 2. In Sections 5 and 6, two evolu-
tion scenarios are given, describing the pattern-based evolution of the original chat
software architecture. These two solutions are not the only possible ones. In fact,
several other alternatives do exist. Those alternatives, as well as their advantages
and drawbacks, are discussed in Section 7. Finally, Section 8 concludes this work
with a brief summary of our contribution and future prospects.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 3

2. A Pattern-Based Software Development Method

Our pattern-based software development procedure is based on Jackson’s problem
frames approach 9. However, we limit ourselves to provide only the instances of the
problem frames (or the variants thereof) and not the problem frames themselves.
The method consists of the following four steps:

(1) Understand the problem situation

After investigating the problem domain and identifying its current short-
comings, relevant domain knowledge is collected, and the system mission to-
gether with the corresponding requirements are recorded, as shown in Table 1.
Domain knowledge (consisting of facts F and assumptions A) and requirements
R (describing the system to be developed in its environment) are collected for
detailing the system mission (SM).

The given problem situation is structured by a context diagram, which rep-
resents the desired system, shown in Figure 1. It represents the overall problem
situation. A context diagram covers the domain knowledge and the requirements
of Table 1 by corresponding domains (boxes) and their interactions (shared phe-
nomena at labeled interfaces). The machine domain (indicated by two vertical
stripes) represents the software we are going to build.

SM A text-message-based communication platform shall be developed, which al-
lows multi-user communication via private I/O-devices.

R1 Users can phrase text messages, which are shown on their private display.
R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ display.
... . . .

F1 Users communicate in a local network.
A1 Users follow the course of the chat on their private display.

Table 1. Initial Set of Requirements and Domain Knowledge for a Chat Application

(2) Decompose overall problem into simple subproblems

The requirements guide a knowledge-based decomposition of the overall
problem that is represented by a context diagram into several simple sub-
problems. A simple subproblem is represented by a problem diagram, which
expresses what the subproblem is about by referring to the involved domains
and related shared phenomena. These subproblem representations together with
the given domain knowledge suffice to derive a software specification describing
the interface behavior of the machine. Figures 2 and 3 represent two simple
subproblems for requirements R2 and R3. a

aFigures 2 and 3 are explained in more detail in Section 3.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

4 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

a

d

b
c

network
e

text
message

chat
application

display

user

a : {phraseTextMessage, sendTextMessage}
b : {showTextMessage}
c : {readDisplay}
d : {editTextmessage, MessageText}
e : {distributeTextMessage, pickUpTextMessages}

Fig. 1. Context Diagram for a Chat Application

(3) Fit subproblems to (variants of) problem frames

When using a pattern-based development method, the subproblems are clas-
sified by instantiating suitable problem patterns, called problem frames (PF) 9.
These are patterns categorizing software development problems into problem
classes during the analysis phase. Thus, each problem frame represents a prob-
lem category, which can be linked to patterns of a corresponding solution class.
Via analogies, they can be related to patterns of software design 3,4,11, resulting
in a smooth transition from requirements engineering documents into design ar-
tifacts 12.

(4) Instantiate corresponding architectural and design patterns

Finally, we make use of the problem/solution-pattern relationship 3 discussed
in the previous Step (3) to derive a software design appropriate for the given
problem situation documented in Steps (1) and (2). As an instance of a problem
frame, each derived subproblem assigns values to its related architectural styles
or design patterns. As a result, we obtain a more or less coarse-grained design
(see Figures 4, 6, and 7) for each subproblem. These subproblem solutions
can be used as a starting point for additional solution refinement, component
deployment, or coding.

Therefore, using a specific pattern in the analysis phase results in a pre-
determined choice of patterns in the design phase. If a subproblem fits to a
problem frame (as in Figures 2 and 3), related architectural or design patterns
(see Figures 4, 6, and 7) can offer a solution structure for it.

In the following, we use design patterns such as Forwarder-Receiver 2, which are
comparable to architectural styles for developing software architectures.

3. Example: Developing a Chat System

The starting point of our initial software development project is the system mission
in Table 1. As described in Steps (1) and (2) of our development method, domain

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 5

knowledge and requirements are collected, and a context diagram is set up (see Fig-
ure 1). The problem diagrams of Figures 2 and 3 represent two of the subproblems
derived for the chat application. They refer to the requirements R2 and R3.

network

user

text
message

chat
application

e

a

c

b

d

f

R2

a : US!{sendTextMessage}
b : CA!{distributeTextMessage}
c : TM!{MessageText}
d : “message text”

e : “transmit message”

f : “user input”

Fig. 2. “Message Forwarder” subproblem (instance of a variant of the commanded behaviour PF)

If a problem requirement such as R2 and R3 can be fitted to a problem frame,
corresponding domains and shared phenomena for describing it in detail become
identifiable. The dashed oval contains the requirements corresponding to the sub-
problems. The dashed lines indicate the relationships between these requirements
and the different problem domains. An arrowhead pointing at a problem domain
denotes a requirements constraint, which stipulates the development of a machine
controlling the problem domain as stated in the requirements. The instantiated
frame diagram supports the derivation of a specification, which is a technical de-
scription sufficient for developing the desired software. Here, the interfaces at the
machine domain are of particular importance. They specify what services the de-
sired software shall provide.

In addition to the interfaces of a context diagram, in problem diagrams an
abbreviation of the domain name (like US for user) is given. An exclamation mark
at the labeled interfaces indicates which domain controls a shared phenomenon or a
set of shared phenomena. An example for this is a: US!{sendTextMessage} in Figure 2.
It means that the user initiates commands for sending chat text messages.

chat
application R3

a d

network

display

b c a : CA!{showTextMessage}
b : NW!{pickUpTextMessages}
c : “obtaining message”

d : “update display content”

Fig. 3. “Message Receiver” subproblem (instance of information display PF)

As recommended by Step (3) of our pattern-based software development method,
both subproblems of Figures 2 and 3 are instances of problem frames 9.

In our approach, problem frames and problem diagrams take the role of use
cases known from Unified Modeling Language (UML) 13, which are a means for

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

6 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

requirements elicitation and problem decomposition. In contrast to use cases, prob-
lem frames and problem diagrams refer to their respective requirements explicitly.
Furthermore, they represent necessary objects and their interactions in more detail,
which enables a more coherent development. And in addition, they support our
aim of an integrated pattern-based development procedure. Consequently, prob-
lem frames do not replace common development notations such as UML, but they
extend them in a profitable way.

First, we translate the subproblems into class diagrams (see classes chat appli-

cation and network in Figure 4). This eases linking them to patterns of the software
design, which in general are represented in UML notation. The resulting linkage is
shown in Figure 4.

receiveMsg

sendTextMessage

receive
unmarshal
receiveMsg

Peer

service

marshal
deliver
sendMsg

n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage
pickUpTextMessages

network

...

...

Fig. 4. Initial architecture based on the Design Pattern Forwarder-Receiver

The upper part of the class diagram shown in Figure 4 represents the Forwarder-
Receiver design pattern 2. The two classes chat application and network are taken
from the subproblems in Figures 2 and 3. They are related to the Forwarder-Receiver
design pattern via analogy: The software we are going to build, namely the chat

application is related to class Peer in Figure 4. The chat application takes the role of
a Peer that provides services such as sendTextMessage, and network takes the role of
Forwarder and Receiver for handling the reception of messages by pickUpTextMessage

and their delivery through distributeTextMessage. In the following, the domain text

message of Figure 2 and the domain display of Figure 3 are assumed to be part of the
chat application or Peer. For the sake of simplicity, we will not consider them any
further, because they have no architectural effects in our example. Figure 4 shows
an initial software design, which is constructed entirely with patterns. Implementing
this design results in a peer-to-peer chat system. For our example, we terminate the
development process at this point.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 7

4. Considering Evolution through the Development Life Cycle

To support evolution, we define a corresponding evolution step for each step of
the method described in Section 2. The work of Ó Cinnéide and Nixon 5 may
seem similar to our approach. However, we do not perform refactoring to introduce
design patterns into a given system. Instead, our system is already composed of
design patterns. Our evolution method consists of several steps, each providing
evolution operators for the respective development phase. The evolution operators
illustrate what the change is and how it should be carried out. They follow a common
structure. This structure is a composition of different basic ingredients.

Basic operations on artifact elements

add delete modify

Basic operations on patterns

choose

Table 2. Basic operations

The first ingredient are basic operations, e.g. an addition, or a modification of
artifacts to the already existing documentation. Table 2 shows an overview of the
basic operations.

The second ingredient are basic artifact elements and patterns. They denote
exactly the element which is currently treated, e.g. a phenomenon, or domain, etc.
Table 3 shows the relevant basic artifact elements.

Basic artifact elements and patterns

requirement phenomenon
subproblem architecture

domain knowledge domain

problem frame
architectural style

design pattern

Table 3. Basic artifact elements and patterns

We can now build an evolution operator by combining the different ingredients.
For example, taking the ingredient add from the basic operations, and domain from
the basic artifact elements results in the evolution operator addDOMAIN. This
tells us what has to be done. Furthermore, every operator is equipped with a short
description to illustrate how and under which circumstance it can be applied (for
an example see the description of addDOMAIN below). We have selected the
basic operations and artifacts in a way that no invalid combinations can occur.
Using one evolution operator may imply the usage of another evolution operator
in a subsequent step. These evolution operator dependencies, however, will not be
detailed any further as this topic is beyond the focus of this work.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

8 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

In the following, we concentrate on illustrating those operators which are applied
in our example. Changes to the original method introduced in Section 2 are indicated
in bold face. The evolution operators are marked in bold face, as well.

(1) Understand the new problem situation

Evolution takes place when a change request is present. This request has
different effects, depending heavily on whether or not requirements or do-
main knowledge are modified. Modifications of requirements and/or domain
knowledge by evolution operators such as addREQUIREMENT or modify-
DOMAINKNOWLEDGE make it necessary to gain an understanding of the
new circumstances. This may result in a modification of the context diagram,
using evolution operators.

In the following, we refer to new or changed requirements as evolution re-
quirements eR and new or additional domain knowledge as aD. In general,
domain knowledge D consists of facts F and assumptions A (D ≡ F ∧A).

The evolution operators relevant for this phase are:

addDOMAIN
A new domain has to be added to the context diagram.
The eR and/or the aD introduce a new relevant domain. Relevant means
that the domain is necessary to develop the specification for the ma-
chine. Usually, this implies that the new domain is directly connected
to the machine domain. This domain has to be added to the con-
text diagram. The new phenomena that occur have to be treated with
addPHENOMENON or modifyPHENOMENON.

modifyDOMAIN
A domain contained in the context diagram has to be modified. Possible
modifications are for example splitting or merging of domains.
In contrast to addDOMAIN, the eR and aD do not necessitate a new
domain in this case. However, they make it necessary to modify a given
domain in the context diagram. This may occur when the eR and/or
the aD are extended or changed, resulting in a possible application of
addPHENOMENON.

addPHENOMENON
A new phenomenon is added to an interface of the context diagram.
Whenever addDOMAIN is applied, it is also necessary to add new phe-
nomena to the newly created interfaces between the added domain and
the domains connected to it. It may also occur that a new phenomenon
has to be added to an already existing interface (perhaps as a consequence
of applying modifyDOMAIN).

modifyPHENOMENON
An existing phenomenon has to be modified in the context diagram, e.g.
by renaming.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 9

The domains contained in the context diagram suffice to capture the new
situation. The shared phenomena, however, have to be changed in order
to handle the modified behavior derived from eR and/or aD.

In some cases, it may also occur that neither domains nor shared phenomena
are newly introduced. Then, no changes to the context diagram are necessary
in Step (1), but the new requirements/domain knowledge may require changes
in later steps.

A reason for this is that at this stage, only the static aspects of the system
and not the dynamic aspects are taken into account. The resulting context
diagram now represents the new overall problem situation.

(2) Decompose overall problem into simple subproblems, possibly modifying ex-
isting ones

It is necessary to investigate the existing subproblems, applying evolution
operators as necessary. The eR are the driving force behind this investigation,
as they determine whether or not it is necessary to create a new subproblem or
to adapt an existing one. Examples of evolution operators for this step are:

modifySUBPROBLEM
New domains and associated shared phenomena may be added to an exist-
ing problem diagram. This is possible if the eR references at most the same
domains as the given subproblem. Conflicting requirements may occur at
this point. However, resolving such conflicts will not be addressed here.

addSUBPROBLEM
Either the eR is assigned to a given subproblem, but the resulting subprob-
lem then gets too complex. Hence, it is necessary to split the subproblem
into smaller subproblems.
Or the eR cannot be assigned to a given subproblem, and a new subprob-
lem has to be created.

For the next steps, only newly introduced and modified subproblems have to
be taken into further consideration, as only these will undergo changes. The
subproblems which have not been addressed in this step can be disregarded for
now. They will only become relevant again in later steps, when the solutions of
the subproblems are composed to the overall solution.

(3) Fit subproblems to (variants of) problem frames and adjust problem frame
instances

The following evolution operator can be applied in this step:

choosePROBLEMFRAME
Each newly introduced subproblem is fitted into a problem frame by in-
stantiating it according to the general procedure of Section 2. In addition,
for each modified subproblem, it is checked whether its underlying problem
frame is still valid, or whether another problem frame is now more appro-

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

10 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

priate. The corresponding problem frame is then instantiated accordingly.

(4) Modify and instantiate corresponding architectural and design patterns

Comparable to evolution Step (2) driven by eR, this step is guided by aD.
Evolution operators applicable in this step are:

modifyARCHITECTURE
Adapted subproblems, which still fit into already instantiated problem
frames, can usually be incorporated into the given architecture without
difficulties.

chooseARCHITECTURALSTYLE/DESIGNPATTERN
New subproblems or subproblems that fit to different problem frames than
before lead to a new investigation of the solution.
This investigation may result in a (re-)assignment of existing subproblems
to new architectural styles or patterns.
Furthermore, aD can cause a change in the problem/solution-pattern rela-
tion, resulting in a reallocation of subproblem elements to corresponding
parts of solution patterns via new analogies. This fact distinguishes evolu-
tion scenario I in Section 5 from evolution scenario II in Section 6).

In the subsequent sections, we illustrate the usage of these evolution oper-
ators by two evolution scenarios for our chat application.

5. Evolution Scenario I

The starting point for this first software evolution scenario is a chat system as
described in Section 3 for local communication (cf. F1 in Table 1), for example via
a Bluetooth device as an implementation of the network domain.

A limitation of such a chat application is that users are restricted to the range of
their Bluetooth devices. This limitation has to be relaxed now. By evolution opera-
tor modifyDOMAINKNOWLEDGE we obtain an extended fact aF1 about the
application, see Table 4: Users communicate [...] via a wide area access network.

However, there is also a constraint restricting the evolution procedure: The struc-
ture of the original application should be maintained. This constraint stresses the
maximal possible reuse of artifacts of the existing system. Therefore, it will be nec-
essary to maintain the existing architecture in its original form as far as possible.
We now follow the procedure described in Section 4 for evolving the given chat
system:

(1) Understand the new problem situation

Analyzing the change of domain knowledge results in the application of evo-
lution operator addREQUIREMENT, which adds the evolution requirement
eR5 to Table 4.

It is not necessary to add a new domain into the context diagram. The set
of existing phenomena suffices, as well. Therefore, it is not necessary to make
any changes to the existing context diagram. It still looks as shown in Figure 1.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 11

R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ display.
... . . .

eR5 Users want to chat via long distances. Therefore it is necessary to
pass the data from the local network to the wide access network
(and vice versa).

aF1 Users communicate in a local network, or via a wide area access net-
work.

Table 4. Changed Requirements and Domain Knowledge for Evolution Scenario I

chat
application eR5

a d

networkb c

network

a : CA!{distributeTextMessage}
b : NW!{pickUpTextMessages}
c : “obtaining message”

d : “route message”

Fig. 5. “Message Dispatcher” subproblem (instance of a variant of the transformation PF)

(2) Decompose overall problem into simple subproblems and adapt existing ones

Due to eR5 we apply the operator addSUBPROBLEM of Section 4 and
create a new subproblem. The formerly used network is not able to provide
a wide area access. Taking the above constraint into consideration, as well,
we obtain the following new subproblem represented in Figure 5. We need to
transfer the data from our Bluetooth network to another network, which will
deal with passing the data to or receiving the data from the wide area access
network. The other subproblems remain unchanged.

(3) Fit subproblems to problem frames and adjust problem frame instances

As we have created a new subproblem, the evolution operator
choosePROBLEMFRAME described in Section 4 has to be applied. The
new subproblem becomes an instance of a transformation problem frame variant
accordingly.

(4) Modify and instantiate corresponding architectural and design patterns

By having a closer look at the new problem diagram in Figure 5, we see that
what is performed by this subproblem can be characterized as a kind of dis-
patching. Now the evolution operator chooseARCHITECTURALSTYLE-
/DESIGNPATTERN has to be considered. While investigating Forwarder-
Receiver architecture for the subproblems given in Figures 2 and 3 we see that
these problem diagrams stay untouched, and so does their corresponding ar-
chitecture. To the newly created subproblem, we apply the operator choose-
ARCHITECTURALSTYLE/DESIGNPATTERN. As we know that we

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

12 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

need a dispatcher, this leads us to the pattern of Client-Dispatcher-Server 2,
because a dispatcher is responsible for establishing a (wide area) connection be-
tween two parties. Another alternative could be the design pattern Proxy (see
Section 7.3). However, we choose the first pattern, namely Client-Dispatcher-
Server, to illustrate the evolution in this scenario. To satisfy the accompanying
evolution constraint to reuse as many development artifacts as possible, we at-
tach the Client-Dispatcher-Server to the already applied Forwarder-Receiver
pattern, resulting in a hybrid design pattern. Here, we follow in general the
pattern-oriented analysis and design (POAD) approach 15. As shown in Fig-
ure 6, the new solution pattern for the added subproblem in Figure 5 can
therefore simply be “plugged together” on the conceptual level with the ex-
isting one in Figure 4. By modifyARCHITECTURE new associations are
created between the existing components of the architecture for incorporating
the Client-Dispatcher-Server pattern.

registerService

locationMap

locateServer

unregisterService

establishConnection

getChannel

Dispatcher

acceptConnection

runService

receiveRequest

Server

doTask

sendRequest

Client

receiveMsg

sendTextMessage

receive

unmarshal

receiveMsg

Peer

service

marshal

deliver

sendMsg
n

sendMsg

chat application

Forwarder

Receiver

distributeTextMessage

pickUpTextMessages

network

requests
services

result
returns

connection
requests

registers

<<use>>

<<use>>
connection

accepts link

etablishes

Fig. 6. Evolved Class Diagram of the Chat Application (Hybrid Style)

The connection between the two solution patterns namely Forwarder-
Receiver and Client-Dispatcher-Server is realized through dependencies. We
want to maintain the original patterns as much as possible. The class Forwarder

and Client share the responsibility for sending some content or requests. There-
fore, we can reuse Forwarder for implementing sendRequest of class Client. The
same holds for the class Receiver, which is responsible for realizing the Server

operation receiveRequest.
The chat application and network class derived from our subproblem de-

scriptions are related to the combined solution patterns via generaliza-
tion/specialization relations. Their roles remain as discussed in Section 3, Fig-

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 13

ure 4. In its role as a Dispatcher, the chat application uses its reference to network
for controlling its message handling.

Interesting is the role of the network, because it is part of all three subprob-
lems. For the subproblems in Figures 2 and 3, the network is responsible for
providing the Forwarder/Receiver functionality. For the subproblem in Figure 5,
it implements Dispatcher operations. For the Dispatcher the network connects
the different chat peers via long distances, whereas each Peer is a Client as well
as a Server communicating via a Forwarder-Receiver mechanism.

It is clearly visible that in this first evolution scenario the modification of aF1 and
the addition of eR5 resulted in the creation of a new subproblem. Because of this new
subproblem, it was necessary to make a new design decision. Considering the given
constraint, the decision leads us to an extention of the existing Forwarder-Receiver
architecture to a hybrid Forwarder-Receiver/Client-Dispatcher-Server style. Alter-
natives to this decision are discussed in Section 7.3.

6. Evolution Scenario II

The second evolution scenario is based on the results of Section 5. With the current
chat application it is possible to communicate with other users via Bluetooth or
a network providing wide area access. The devices used so far are general purpose
computers. Mobile devices such as portable phones or personal digital assistants
(PDA) are not supported yet. This describes the limitation that we remove in this
second evolution scenario: The usage of portable devices should be possible, as well.
Once more the evolution steps described in Section 4 are applied:

R2 Users send their phrased text messages to participate in the chat.
R3 Sending text messages changes the chat represented on the users’ display.
... . . .

eR5 Users want to chat via long distances. Therefore it is necessary to pass the
data from the local network to the wide access network (and vice versa).

aF1 Users communicate in a local network, or via a wide area access network.
aF2 The devices used are general purpose computers as well as

portable phones and personal digital assistants (PDAs).

Table 5. Changed Requirements and Domain Knowledge for Evolution Scenario II

(1) Understand the new problem situation

New domain knowledge is added due to evolution operator addDOMAIN-
KNOWLEDGE resulting the additional fact aF2 in Table 5. This new fact
describes hardware constraints referring to the machine domain. No additional
requirements are necessary.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

14 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

Therefore, the context diagram remains unchanged, even though new do-
main knowledge has been introduced. The reason is that aF2 influences internal
characteristics of the machine, and not its behavior. These characteristics, how-
ever, cannot be described by a context diagram.

(2) Decompose overall problem into simple subproblems and adapt existing ones

The distribution of the overall problem situation into subproblems stays
unchanged, because the requirements do not change.

(3) Fit subproblems to problem frames, and adjust problem frames instances

No changes have to be performed in this step, because no changes were
performed in the previous step.

(4) Modify and instantiate corresponding architectural and design patterns

This step is the nontrivial one in this scenario, because here the effect of the
newly introduced domain knowledge becomes visible. Fact aF2 influences the de-
cision which pattern to select in the solution space. Mobile devices such as PDAs
or mobile phones do not possess the same resources as general purpose comput-
ers do. The new fact thus imposes a constraint on the selection of design patterns
and architectural styles. Here, it leads to a re-design of the present architecture
by means of the evolution operator chooseARCHITECTURALSTYLE-
/DESIGNPATTERN.

registerService

locationMap

locateServer
unregisterService

establishConnection
getChannel

Dispatcher

acceptConnection
runService
receiveRequest

Server

doTask
sendRequest

Client

sendTextMessage

chat application

requests
services

result
returns

connection
requests

registers
accepts link

pickUpTextMessages
distributeTextMessage

network

etablishes
connection

Fig. 7. Evolved architectural design based on Client-Dispatcher-Server

The new domain knowledge enforces a reorganization of the given subprob-
lems, resulting in a different choice of architectural style or design pattern out of

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 15

the related solution class. For our example, the three subproblems are matched
with the Client-Dispatcher-Server pattern only (cf. Figure 7).

The former Forwarder and Receiver components are merged with the client
and server components. The chat application now consists of two parts namely,
a Server and a Client part. The functionality formerly represented by the Peer

are now partially realized by the Server and Client classes, respectively.

In the first evolution scenario, we had to deal with a constraint. This constraint
is still present in the second scenario, however, in a weakened form: all the sub-
problems not involved in the data transmission/reception remain unchanged, and
the development documents related to them can be reused as is. In this second
scenario, adding domain knowledge in form of aF2 results in a complete restruc-
turing of the architecture. The reason is that the new domain knowledge leads to
a different matching of subproblems to architectural patterns, resulting in a new,
more appropriate and simpler architecture.

7. Generating and Choosing Design Alternatives

The architectural solutions presented in Sections 5 and 6 are not the only existing
ones. Several different design alternatives exist that all form valid solutions for our
subproblems considered in Figures 2, 3, and 5. In this section we discuss some of
these alternatives that we generated based on commonly known patterns in the
context of software evolution.

7.1. The original architectural design

As mentioned in the last paragraph of Section 2, we consider a set of subproblems
that contribute to a common architectural solution. To discuss design alternatives
we need to take into account how the different subproblems are related. We make use
of a context-free grammar like notationb to represent the subproblem relationships.
By means of this grammar we identify collaborations of functions that should be
maintained and that decide on the deployment of components for structuring the
architecture. The grammar makes use of:

• terminal symbols: names of (relevant) subproblems
• non-terminal symbols: given in brackets, such as <example>
• sequential subproblem relationships: by concatenation of symbols
• alternative subproblem relationships: represented by |
• parallel subproblem relationships: represented by ||

In addition parentheses can be introduced to emphasize ordering relations.

bNote, that the presented grammar does not illustrate the complete grammar covering all sub-
problems. It only provides an excerpt for the subproblems discussed here.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

16 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

The following grammar represents the subproblem relationships relevant for our
initial peer-to-peer system (cf. Section 3). The architecture in Figure 4 is based
exclusively upon the Forwarder-Receiver pattern. It illustrates a solution for the two
subproblems named “Message Forwarder” (cf. Figure 2) and “Message Receiver”
(cf. Figure 3). The grammar below shows that the two subproblems act in parallel
on a common peer application. Thus, the peer application can forward and receive
messages in parallel.

<peer> ::= (MessageForwarder<peer> || MessageReceiver<peer>)

For the evolution task we show how the subproblem relationships represented
through the grammar are affected by the evolution operators and how the mod-
ifications to the grammar result in changes in the architecture.

Forwarder

Receiver

BT

BT

<<use>>

Registry

Peer Application

Peer

Fig. 8. Composite Structure Diagram of a Peer Application

In Figure 8 we summarize the peer-to-peer architecture of Figure 4 in a com-
posite structure diagram known from UML 13. By the example of the component
Registry, which is part of the original Forwarder-Receiver pattern, but for the sake
of simplicity was not mentioned so far, we show how the given architecture evolves.
Registry is used by Forwarder. The Registry contains the addresses of all participating
peers. In this initial development scenario the peers communicate among each other
locally via Bluetooth devices. Thus, the range of peers is restricted and the num-
ber of participants is limited, because of this environmental constraint (capacity
of Bluetooth device). The architectural solution presented in Figures 4 and 8 is a
rich or fat Peer Application, whose major responsibilityc is implemented by the For-

warder component, namely: locating and handling a list of all participants (Registry),
and managing message broadcast (via the operation deliver) to other peers using
interface BT.

7.2. Design Alternatives for Evolution Scenario I

The application of the evolution operators given in Section 4 affect the two sub-
problems and their relationships represented by the previously given grammar (cf.
Section 7.1) and thus bias their corresponding architecture.

ccollaboration of different functionality for accomplishing a common task

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 17

Evolution scenario I in Section 5 incorporates a new requirement eR5 (cf. Ta-
ble 4) that demands for a wide-area network access. This evolution requirement
cannot be covered by the original network as the communication range of a Blue-
tooth (BT) device is restricted. Here, we assume that a wireless local area network
(W-LAN) is used to overcome this limitation.

Network

W−LAN Bluetooth

Fig. 9. Multiple roles of the network domain

The solution presented in Section 5 for the evolution scenario I introduces a
new subproblem (applying evolution operator addSUBPROBLEM, followed by
evolution operator choosePROBLEMFRAME) named “Message Dispatcher”
(see Figure 5) to handle the general network access. This subproblem can be further
decomposed into a subproblem that converts Bluetooth signals to W-LAN signals
and vice versa where Bluetooth and W-LAN are a specialization of the network
domain (cf. Figure 9). An additional constraint is to maintain the original (peer-to-
peer) architecture of the chat application. The evolution operators applied so far
affect the subproblem relationships as follows:

<peer> ::= (MessageForwarder<peer> || MessageReceiver<peer>) ||
(MessageForwarder<wide> || MessageReceiver<peer>)

<wide> ::= (MessageDispatcherBT/W−LAN <peer> ||
MessageDispatcherW−LAN/BT <peer>)

We can see that the initial grammar in Section 7.1 and this new one have the
first line in common. This tells us that the local communication via Bluetooth re-
mains untouched. Additionally, sequential and parallel subproblem relationships are
used to extend the original grammar. The complete network access is directed via
W-LAN (second line). This is reflected by a changed external interface W-LAN
of Peer Application in Figures 10 and 11 in contrast to Figure 8. As mentioned be-
fore, a new subproblem “Message Dispatcher” is introduced via evolution operators
addSUBPROBLEM and choosePROBLEMFRAME. As this new subprob-
lem and the existing subproblem “Message Forwarder” are related sequentially, we
introduce a new non-terminal symbol, namely <wide> to handle this relationship.
The purpose of this third line of the grammar is to deal with the transmission of
data between local and wide-area network for establishing communication between
the different peers. The modified grammar results in the application of the evo-
lution operator(s) chooseARCHITECTURALSTYLE/DESIGNPATTERN
and/or modifyARCHITECTURE in the subsequent evolution steps. However,
all subproblems given in the new grammar are still implemented in one application.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

18 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

The changes made in the subproblem relationships facilitate the evolution task.
Driven by evolution operators, the grammar provides hints on (subproblem specific
modularization of functionality that triggers) activities for changing the architec-
ture. These activities may involve re-engineering techniques.

Peer

Receiver

Forwarder

Registry

BT

Client

Server

Dispatcher
BT

<<use>>

<<use>>

<<use>>

Peer with Dispatcher Application

Adapter

<<use>>

W−LAN

Fig. 10. Extending a Peer Application by a Dispatcher for Alternative I

Alternative I: Forwarder-Receiver and Client-Dispatcher-Server
This design solution chosen in Section 5 is a hybrid architecture. Figure 10 shows
the composite structure diagram corresponding to the architecture given in Fig-
ure 6. We can see that the responsibilities have been re-organized within the Peer

Application. The Client-Dispatcher-Server pattern is plugged to the existing compo-
nents via “use-relations”. The Dispatcher component takes on the responsibility of
maintaining the participants list. This is indicated by the changed use-relation of
Registry, which shifts from the Forwarder to the Dispatcher. In addition, the Dispatcher

component converts the Bluetooth communication into a W-LAN communication.
In this role, the Dispatcher also implements the responsibilities of an Adapter. The
Peer with Dispatcher Application is now in the position to fulfill eR5: The result enables
extended communication capabilities.

Forwarder

Receiver

<<use>>

Registry

Peer with Adapter Application

Peer Adapter

BT

BT

W−LAN

Fig. 11. A Peer Application utilizing an Adapter for Alternative II

Alternative II: Forwarder-Receiver and Adapter
A straightforward (probably more intuitive) solution for the new requirement eR5

is to introduce a new component which simply converts signals from Bluetooth to
W-LAN and vice-versa. This would then lead us to the Adapter design pattern 7. All

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 19

other responsibilities within the Peer, especially the Forwarder-Registry relationship,
remain unaffected. The adapter, which is responsible for the conversion task, is
simply connected to the Bluetooth interface (cf. Figure 11).

The presented design Alternative I and Alternative II are based upon the
assumption that the Bluetooth communication is substituted or encapsulated by
the W-LAN. This assumption is introduced by the parallel subproblem relationship
of MessageForwarder<peer> and MessageForwarder<wide>. In addition, it is re-
inforced by the domain knowledge about the limited communication range of the
Bluetooth device, which results in a changed external interface for the two alterna-
tive composite structure models. The following Alternative III and Alternative
IV consider the case, when the grammar specifies an alternative relationship be-
tween MessageForwarder<peer> and MessageForwarder<wide>.

<peer> ::= (MessageForwarder<peer> || MessageReceiver<peer>) |
(MessageForwarder<wide> || MessageReceiver<peer>)

<wide> ::= (MessageDispatcherBT/W−LAN <peer> ||
MessageDispatcherW−LAN/BT <peer>)

Alternative III: Forwarder-Receiver and Strategy
Another architectural solution is the usage of the Strategy design pattern 7, working
as a switch. The switch selects between either the Bluetooth or the W-LAN network,
depending on whether local or wide area access is desired (in Figure 12, disregarding
the use-relation of Adapter for this design alternative). This solution is only possible
if both protocols are supported by the device that holds the peer. Otherwise an
adapter must be implemented (see the following Alternative IV).

Alternative IV: Forwarder-Receiver, Strategy, and Adapter
This design alternative is similar to Alternative III. The difference is that it deals
with the situation that the device holding the Peer Application does not support
both communication protocols. Hence, it is necessary to add an Adapter that takes
over the BT/W-LAN conversion provided through the corresponding use-relation
in Figure 12. The Strategy then selects between the existing BT or the adapted W-
LAN communication variant. The external interface of the Peer Application provides
local BT, as well as wide W-LAN access.

All the alternatives presented in this section only make changes within a Peer

Application. They characterize an equivalence class of architectural design solutions
with monolithic applications (fat peers) and a decentralized communication struc-
ture. The effort needed for the evolution tasks depends on the degree of modular-
ization. As a result, combining the Forwarder-Receiver architecture with a Client-
Dispatcher-Server style requires more engineering experience and understanding of
the given system, than attaching a simple adapter. But, knowing the responsibili-
ties of the Dispatcher component eases the shift of functionality demanded by further
evolution tasks, as we discuss next.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

20 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

Peer

Forwarder

Forwarder

 Receiver

 Receiver

Registry

Adapter

 Strategy

BT

BT

<<use>>

<<use>>

<<use>>

<<use>>

Peer with Strategy (and Adapter) Application

W−LAN

W−LAN

Fig. 12. Peer with Strategy (and Adapter) for Alternative III/IV

7.3. Design Alternatives for Evolution Scenario II

The evolution scenario II in Section 6 incorporates a hardware constraint (devices
with limited capacity/connectivity are used) that results in the need to make the
peers slimmer. In this case it is not sufficient to only re-organize the functionality by
shifting them around within the peer. This time it is necessary to outsource them
to another entity, located outside of the peer.

We consider the given subproblems and derive a new subproblem out of the
given “Message Dispatcher” that handles several peers communicating via W-LAN
by applying evolution operator addSUBPROBLEM. A new non-terminal sym-
bol <server> is added to the grammar for handling the entity that holds the
outsourced responsibilities.

The grammar for describing the subproblem relationships is:

<client> ::= (MessageForwarder<client> || MessageReceiver<client>) ||d
(MessageForwarder<wide> || MessageReceiver<client>)

<wide> ::= (MessageDispatcherW−LAN/BT <client> ||
MessageDispatcherBT/W−LAN <server>)

<server> ::= MessageDispatcherW−LAN/W−LAN <wide>

The outsourced responsibilities (given by the <server> part of the above gram-
mar) do not affect the Adapter functionality of the peer, but the parts related to the
participants list (Registry) and thus the management of message broadcasting. Each
of the mentioned design alternatives in Section 7.2 can be used as basis for this
second evolution scenario II. Depending on the starting point, more or less effort is
needed to evolve the system, though.

Alternative A: Outsourcing parts of the dispatcher
The basis for this design alternative is the hybrid architectural solution presented
in Section 5 as well as in Alternative I, cf. Section 7.2. The functionality of
the dispatcher located within the peer is split by applying the evolution opera-

dHere, we use a parallel subproblem relationship || for design A and an alternative relationship |
for design B. However, the main emphasis of this Section 7.3 is the reallocation of Peer Application
functionality related to the <server> part of this grammar.

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 21

Peer

Receiver

Forwarder
BT

Client

Server
BT

<<use>>

<<use>>

Adapter

<<use>>

W−LAN

Part4Adapter

W−LAN
Dispatcher−

Part4−
Registry

1:n

1:1

Registry <<use>>

Peer with outsourced part of Dispatcher Application Dispatcher−"server" Application

Dispatcher−

Access Control
<<use>>

Fig. 13. A Peer with outsourced part of the Dispatcher for Alternative A

tor addSUBPROBLEM. In Figure 10 the Dispatcher component is responsible
for Adapter and Registry tasks; now these functionality are separated into a part
responsible for establishing a BT/W-LAN connection via an adapter named Dis-

patcherPart4Adapter and a part responsible for managing the participating peers as
well as broadcasting messages (which refers to Registry, cf. use-relation of Dispatcher-

Part4Registry) in Figure 13. The functionality that implements Registry responsibil-
ities is transferred into a new application named Dispatcher-“server” Application run-
ning on a “server”e outside the peer. This “server” is from now on responsible for
locating other peers, handling the list of participating peers, and broadcasting the
data between them. The Dispatcher within the Peer Application is transformed into a
simple adapter used for converting the signals from one network to the other.

Now a Peer Application only knows the location of its Dispatcher-“server”; it is not
directly connected to all participating peers anymore for establishing a connection.
We achieve a 1 : 1 connection by this design alternative for each peer and thus
take the hardware constraint (limited capacity of devices) into account. This is in
contrast to the previous hybrid architectural solution where each peer has its own
dispatcher (and thus a 1 : n connection, where n is the number of participating
peers, cf. Figure 13).

Usually the only responsibility of a Dispatcher-“server”-Application is related to the
Registry that is maintaining the participants list and establishing connections. If a
connection link is set up, broadcasting of messages will be managed again directly
between participating peers, which restores a 1 : n communication between them.
We discuss how to overcome this drawback, when the responsibilities of a dispatcher
are extended to a proxy as discussed in the Alternative B.

However, the currently discussed alternative represents no exclusive peer-to-peer
architecture anymore such as given in Sections 7.1 and 7.2. It moves to a client-server
variant, where a Peer Application implements the subproblems related to <client>
and <wide> and the Dispatcher-“server”-application implements the subproblems re-
lated to <server>.

ean independent node that is not a peer itself

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

22 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

Alternative B: Forwarder-Receiver, Strategy, Adapter, and Proxy
A peer-to-peer architecture that is extended by strategy and adapter such as in
Alternative IV of evolution scenario I in Section 7.2 could be the starting point
for the alternative presented here, see Figure 12. A design solution comparable to
Alternative A for this second evolution scenario II is achievable by extending the
dispatcher responsibilities to a Proxy 7. In general, a proxy is more powerful than a
dispatcher. In contrast to a dispatcher, a proxy does not only establish connections,
it also provides Access Control and manages these connections. Thus, a proxy is a
dispatcher with extended responsibilities. It can provide filters for establishing only
permitted connections or otherwise refuse to set up a connection, cf. Figure 14.

Peer

Forwarder

Forwarder

 Receiver

 ReceiverAdapter

 Strategy

BT

BT

<<use>>

<<use>>

<<use>>

Peer with Strategy (and Adapter) Application

W−LAN

W−LAN

Registry
local

Proxy Application

Registry
wide

W−LAN
Proxy

1:1

1:1

1:n

1:n

<<use>>

<<use>>

Access Control

Fig. 14. A Peer connected via a Proxy for Alternative B

In contrast to Alternative A in Figure 13 the connection of a peer to a proxy
remains 1 : 1 (for maintaining the participants list and broadcasting messages). The
Proxy Application becomes a central node for the peers’ communication. The variants
of this Alternative B differ in their use of the proxy. For example, the Bluetooth
communication is additionally directed via proxy (where Registrylocal is allocated
to proxy) or the implementation of Access Control varies (user login, passwd, etc.).
However, treating the additional subproblems related to access control is out of the
scope of this work. As in Alternative A, we shift functionality out of the peer into
another entity. This time, however, the shifting results in a two-tier architecture
with a slimf client (peer).

The alternatives presented in this section require to shift responsibilities out-
side a Peer Application. It is necessary to extract functionality and transfer them to
an extra entity. Therefore, considering subproblem relationships is of value. The
design alternatives of this section characterize an equivalence class of architectural
design solutions that results in slim client (peer) applications and a centralized
communication structure (two-tier system).

7.4. Discussion of Design Alternatives

In Sections 7.2 and 7.3 we have discussed several alternative architectures, which
all are valid solutions to the same development problem. All alternatives are based

fwith respect to the set of subproblems that we have taken into account

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 23

on commonly known patterns for the design phase. Evolution operators guide the
systematic generation of diverse architectures. In our example, these design alterna-
tives vary between exclusive peer-to-peer or client-server systems, and some hybrid
variants in between. Choosing among these architectures strongly depends on the
properties of the deployment environment. That environment constrains the allo-
cation of coherent functionality (related to some responsibilities) and thus their
organization into a structure 1, which is named architecture.

By means of problem frames and a grammar for representing subproblem rela-
tionships, we are in the position to identify components and their collaborations to
fulfill a specific task. These architectural building blocks are assembled according
to certain (extra-functional) conditionsg, which require an in-depth understanding
of the environment (domain knowledge) into which the resulting software is in-
tegrated. We have shown that diverse architectural alternatives are possible, but
not all structures are applicable for balancing the core-functionality with the given
environmental conditions.

Software evolution causes changes on requirements or properties of the deploy-
ment environment. For capturing the evolution effects, we introduced operators that
guide systematic changes on the development documents to meet the changed condi-
tions. The evolution task (especially the modification of the architectural structure)
is accomplished by pattern-based (re-)engineering activities.

8. Conclusion and Future Work

We have introduced a pattern-based development method, incorporating evolution
in each step, and driven by evolution operators. With this method, it is possible to
perform software evolution systematically whenever new requirements or changes
in the application environment occur.

Through a chat application example, we have shown the usage of our method.
We illustrated how a system evolved from a straight peer-to-peer architecture via a
hybrid architecture to a client-dispatcher-server system. This evolution is achieved
by applying evolution operators. They allow for identifying those development doc-
uments, which have to undergo change. Thus, they provide guidance for performing
the necessary modifications in phases to come.

This approach enables us to perform a systematic rework on the affected devel-
opment documents by means of patterns. We have shown that it is possible to link
the artifacts of the analysis phase to the artifacts of the design phase. Therefore,
changes in the analysis help to perform an analogous procedure in the design phase.

Our method does not intend to replace existing methods or notations. It rather
extends them by a goal-oriented, pattern-based approach resulting in coherent and
precise specifications. The method does not postulate a dogmatic approach, always

gsuch as software quality aspects, whose evaluation always depends on the properties of the de-
ployment environment

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

24 Isabelle Côté, Maritta Heisel, Ina Wentzlaff

resulting in exactly one unique solution. We intend to constrain the possible solu-
tions (design space) to provide a small, most promissing set of patterns useful for
solving the problem.

Also non-functional requirements can be treated with our approach: If these
quality aspects are specified in the problem frames (such as HCIFrames 14 or using
Security Problem Frames 8), they will lead to solutions that address these non-
functional issues, see evolution scenario I in Section 5. Additionally, non-functional
aspects that are manifested in domain knowledge can be covered, see evolution
scenario II in Section 6.

Furthermore, we illustrated that it is possible to obtain several design alterna-
tives, moving between the boundaries of an exclusive peer-to-peer and an exclusive
client-server architecture. These alternatives are generated by applying the evolu-
tion operators and by taking environmental circumstances, as well as knowledge
about different architectural styles into account. Selecting among the different al-
ternatives is guided by the environment the software will be deployed in. Hence, the
quality (extra-functional) requirements influence which of the present alternatives
is the most suited one and should therefore be chosen as architectural solution.

In summary, the advantages of our approach are the following:

• Our method is pattern-to-pattern, integrating evolution. Hence, it has all assets
that come with the use of patterns, in particular, reuse of established analysis
and design knowledge in a variety of application domains.

• Our evolution operators provide guidance concerning pattern selection and
transformation. They help to adapt the development problem and to find new
solutions if necessary.

• Extra- or non-functional requirements can be treated, as well.
• Our method supports setting up different design alternatives and choosing

among them.

Currently, we are working on a formalization of the problem frames. For that
purpose, we are building a formal metamodel. This model is equipped with integrity
conditions to ensure the validity of a frame with respect to the metamodel. It is
planned to create an Eclipse 6 plug-in for the metamodel. The plug-in will work
as an editor to create valid frame diagrams in the context of our metamodel. The
metamodel will also serve as a basis for investigating which of the evolution oper-
ators can be formalized and incorporated into it. In a further step, the plug-in will
be extended to allow for an automation of the formalized evolution operators.

In the future, we also plan to analyze the effects of domain knowledge within
the evolution process in more depth. Additionally, we plan to examine the impact
of the change in the architectural structures to later documents of the software
life cycle, especially considering the source code. Furthermore, we intend to put
stronger emphasis on distinguishing internal and external quality aspects and how
they are successfully covered by our method. It is also planed to have a detailed
look at the decompositions and compositions of the subproblems with respect to the

January 16, 2008 12:55 WSPC/INSTRUCTION FILE ws-ijcis

Pattern-based Exploration of Design Alternatives for the Evolution of Software Architectures 25

architecture, which would also contribute to investigate the scalability of problem
frames. We further will investigate which problem frames should be related to which
architectural design patterns or architectural styles for completing our method.

Acknowledgments

We want to thank the anonymous reviewers for their constructive comments on a
previous version of this work, which especially contributed to the improvement of
our evolution operators.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 1997.

2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

3. C. Choppy, D. Hatebur, and M. Heisel. Architectural Patterns for Problem Frames.
IEE Proceedings - Software, 152(4):198–208, 2005.

4. C. Choppy and M. Heisel. Use of Patterns in Formal Development: Systematic Tran-
sition From Problems to Architectural Designs. In Recent Trends in Algebraic Devel-
opment Techniques, 16th WADT, Selected Papers, pages 205–220. Springer, 2003.

5. M. Ó. Cinnéide and P. Nixon. Automated Software Evolution towards Design Pat-
terns. In IWPSE ’01: Proceedings of the 4th International Workshop on Principles of
Software Evolution, pages 162–165, New York, NY, USA, 2001. ACM Press.

6. T. E. Foundation. Eclipse - an open development platform, 2007.
http://www.eclipse.org.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

8. D. Hatebur, M. Heisel, and H. Schmidt. Security Engineering using Problem Frames.
In Proc. of the Int. Conference on Emerging Trends in Information and Communica-
tion Security (ETRICS), volume 3995/2006, pages 238–253. Springer, 2006.

9. M. Jackson. Problem Frames. Analyzing and Structuring Software Development Prob-
lems. Addison-Wesley, 2001.

10. S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall, 2001.
11. L. Rapanotti, J. G. Hall, M. A. Jackson, and B. Nuseibeh. Architecture-driven Prob-

lem Decomposition. In Proceedings of the 12th IEEE International Requirements En-
gineering Conference (RE’04), Kyoto, Japan, 2004. IEEE.

12. H. Schmidt and I. Wentzlaff. Preserving Software Quality Characteristics from Re-
quirements Analysis to Architectural Design. In Proceedings of the 3rd European
Workshop on Software Architectures (EWSA’06), Nantes, France, 2006. Springer.

13. UML Revision Task Force. OMG Unified Modeling Language: Superstructure, 2007.
http://www.omg.org.

14. I. Wentzlaff and M. Specker. Pattern-based Development of User-Friendly Web Ap-
plications. In Workshop Proceedings of the 6th International Conference on Web En-
gineering (ICWE), New York, NY, USA, 2006. ACM Press.

15. S. M. Yacoub and H. H. Ammar. Pattern-oriented Analysis and Design: Composing
Patterns to Design Software Systems. Addison-Wesley, 2003.

