
Enhancing Dependability of
Component-based Systems

Denis Hatebur1, Maritta Heisel1, Arnaud Lanoix2 and Jeanine Souquières2

1 Universität Duisburg-Essen, Abteilung Informatik und Angewandte
Kognitionswissenschaft, D-47048 Duisburg,

{Denis.Hatebur,Maritta.Heisel}@uni-duisburg-essen.de
2 LORIA – Université Nancy 2, Campus Scientifique BP 239

F-54506 Vandœuvre lès Nancy cedex,
{Arnaud.Lanoix,Jeanine.Souquieres}@loria.fr

Abstract. We present a method to add dependability features to com-
ponent-based software systems. The method is applicable if the depend-
ability features add new behavior to the system, but do not change its
basic functionality. The idea is to start with a layered software architec-
ture whose central component is an application component that covers
the behavior of the system for the normal case. It is then possible to
enhance the system by adding dependability features in such a way that
the central application component remains untouched. Adding depend-
ability features necessitates to change the overall system architecture by
replacing or newly introducing software or hardware components. To the
initial software architecture, however, only new adapter components have
to be added; the other software components need not be changed. Thus,
the dependability of a component-based system can be enhanced in an
incremental way. Using the formal method B, we derive specifications for
the adapters and show that the components of the enhanced architecture
interoperate as intended.

1 Introduction

Component orientation is a new paradigm for the development of software-
based systems. The basic idea is to assemble the software by combination of
pre-fabricated parts (called software components), instead of the developing it
from scratch. This procedure resembles the construction methods applied in
other engineering disciplines, such as civil or mechanical engineering.

Software components are put together by connecting their interfaces. A pro-
vided interface of one component can be connected with a required interface of
another component if the provided interface offers the services needed to imple-
ment the required interface. Sometimes, an adapter may be necessary to map
the required services to the provided ones.

Hence, an appropriate description of the provided and required interfaces
of a software component is crucial for component-based development. In earlier
papers [1,2], we have investigated how to formally specify interfaces of software

2 Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

components and how to demonstrate their interoperability, using the formal
method B.

In the present paper, we study how dependability features, such as safety,
security or fault tolerance features, can be added to component-based software.
The goal is to retain the initial software components as far as possible and only
add new software components in a systematic way. This approach works out if the
inital software architecture is structured in such a way that the core functionality
is clearly separated from auxiliary functionality that is needed to connect the
components implementing the core functionality to their environment.

To make a software-based system more dependable, new components (hard-
ware or software) must be added, or existing components must be replaced by
more dependable ones, while the core functionality remains the same. As a con-
sequence, new or modified interfaces must be taken into account. In order to
connect the existing interfaces of the “core” components to the new or modified
ones introduced with the addition of dependability features, adapter components
must be developed. These adapters “shield” the core components by intercepting
and possibly modifying their inputs and outputs. We show how the specifications
of the adapters can be derived from the specifications of the interfaces they must
connect.

In Section 2 we describe how we support component-based development us-
ing the formal specification language B. We then describe our method to add
dependability features in Section 3. The method is illustrated by the case study
of an access control system, presented in Section 4. The paper closes with the
discussion of related work in Section 5 and concluding remarks in Section 6.

2 Using B for Component-Based Development

We first briefly describe the formal language B and then explain how we use B
in to context of component-based software and system development.

2.1 The Formal Method B

The B method [3] is a formal software development method based on set theory.
Because of its rigor and powerful tool support, it is often used to develop soft-
ware for critical systems. The B method supports an incremental development
process, using refinement. A development begins with the definition of an ab-
stract specification, which can be refined step by step until an implementation
is reached.

The method has been successfully applied in the development of several com-
plex real-life applications, such as the METEOR project [4]. It is one of the few
formal methods which has robust and commercially available support tools for
the entire development life-cycle from specification down to code generation [5].

B specifications consist of abstract machines, which are very close to notions
well-known in programming under the names of modules, classes or abstract

Enhancing Dependability of Component-based Systems 3

data types. Each abstract machine consists of a set of variables, invariant prop-
erties of those variables, and operations. The state of the machine, i.e. the set of
variable values, is modifiable by operations, which must preserve its invariant.
The invariant clause characterizes the meaningful states that are permitted for
the machine. The machine should never arrive at a state in which some part of
the invariant clause is false.

The B method provides structuring primitives that allow one to compose
machines in various ways. Proofs of invariance and refinement are part of each
development. The proof obligations are generated automatically by support tools
such as AtelierB [6] or B4free [7], an academic version of AtelierB. Checking
proof obligations with B support tools (either through automatic or interactive
proofs) [8], is an efficient and practical way to detect errors introduced during
development.

2.2 Specifying Component Interfaces with B

We define software as well as hardware components of a component-based sys-
tem by UML sequence diagrams describing the visible behavior of the specified
component, and a B machine for each provided and each required interface spec-
ifying:

– the types used in the interface
– a data state as far as necessary to express the effects of operations
– invariants on that data state

Each machine specifies the operations belonging to its corresponding inter-
face. An operation specification consists of its signature (i.e., the types of its
input and output parameters), its precondition expressing under which circum-
stances the operation may be invoked, and its postcondition expressing the effect
of the operation.

2.3 Proving Interoperability of Component Interfaces

In component-based development, the components must be connected in an ap-
propriate way. To guarantee interoperability of components, we must consider
each connection of a provided and a required interface contained in a system or
software architecture and try to show that – after some syntactic transforma-
tions – the provided interface is a B refinement of the required interface. This
means that the provided interface constitutes an implementation of the required
interface, and we can conclude that the two components can be connected as in-
tended. The process of proving interoperability between components is described
in [1].

4 Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

3 Adding Dependability Features to Component-Based
Software

4 Case Study

We illustrate our purpose with the case study of a simple access control system
which manages the access of authorized persons to existing buildings [?]. Persons
who are authorized to enter the buildings have to be identified. Turnstiles block
the entrance and the exit of each building until an authorization is given whereas
identification systems are installed at each entrance and exit of the concerned
buildings. The system communcates with a data base which know information
about authorized persons and persons present in the buildings.

TurnstileController

:Network
Database

IAL

:Entry
Turnstile

IAL

:Exit
Turnstile

IAL

:Application

:Smartcard
IAL

Ap_P_Sm Ap_R_ND Ap_P_TSE Ap_R_TSE AP_P_TSX

Smartcard Reader Database Entry Turnstile Exit Turnstile

Fig. 1. Required software architecture for TurnstileController

We will concentrate on the software components of the TurnstileController

which can be seen as a layered software architecture as presented in the UML 2.0
composite structure diagram of Figure 1. It consists of an Application component
and further software components, the drivers, that are needed to communicate
with the hardware components. The component Application interacts with four
components and its interfaces are described Figure 2. Each interface is modelled
by a class diagram with its attributes (if needed) and methods. For example,
AP P Sm corresponds to its provided interface related to the SmartcardIAL com-
ponent with one method, namely Card inserted which is parameterized by a user
identifier.

We dispose of three existing COTS components, namely SmartcardIAL, Net-

workDatabaseIAL and TurnstileIAL. Each IAL component, i.e. interface abstraction
layer, is described Figure 3.

Enhancing Dependability of Component-based Systems 5

Application

<< interface >>
Ap_P_TSX

left_building()

<< interface >>
Ap_R_TSE

unblock()

<< interface >>
Ap_P_TSE

entered()

<< interface >>
Ap_P_ND

has_permission(UserID, DoorID) : Permission

<< interface >>
Ap_P_Sm

card_inserted(UserID)

Fig. 2. The different interfaces of Application

Smartcard
IAL

<< interface >>
Ap_P_Sm

card_inserted(UserID)

(a) SmartcardIAL

Network
Database

IAL

<< interface >>
ND_P

 getDBEntry(UserID, DoorID) :
 <Permission, MAC>

(b) NetworkDatabaseIAL

Turnstile
IAL

<< interface >>
TS_R

pushed()

<< interface >>
TS_P

turnstile : LOCKED
unlock()
lock()

(c) TurnstileIAL

Fig. 3. COTS components used by TurnstileController

6 Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

4.1 Description of the System for the Normal Case

When loocking at the different interfaces of the COTS and the Application com-
ponent, we can see that the SmartcardIAL can be used directly. It is not the case
for the data base and the turnstile. in order to correctly connect these two COTS
components to realize the required application, adapters have to be introduced
as presented Figure 4. It is to be noted that the turnstile component is used
twice with a different adapter.

:Network
Database
IAL

:Turnstile
IAL

:Smartcard
IAL

Ap_P_Sm

Ap_R_ND Ap_P_TSE Ap_R_TSE AP_P_TSX

TurnstileController

:Application

:Turnstile
IAL

DBAdapter EntryAdapter ExitAdapter

ND_P TS_R TS_P TS_R TS_P

Smartcard Reader Database Entry Turnstile Exit Turnstile

Fig. 4. Software Architecture for TurnstileController

The DBAdapter. The B architecture of DBAdapter is given Figure 5. This schema
traduces the adaptation protocol between the required interface Ap R ND of the
application and the provided interface ND P of the NetworkDatabaseIAL compo-
nent, expressed by the UML 2.0 sequence diagram of Figure 6.

REFINES INCLUDES

MODEL
 Ap_R_DB
OPERATIONS
 has_permission
END

REFINEMENT
 DBAdapter
END

MODEL
 ND_P
OPERATIONS
 getDBEntry
END

Fig. 5. B architecture for DBAdapter

Enhancing Dependability of Component-based Systems 7

:Application :DBAdapter :Network
DatabaseIAL

has_permission(uid,did)
getDBEntry(uid,did)

getDBEntry(_) : <perm,mac>
has_permission(_) : perm

Fig. 6. Sequence diagram for DBAdapter

The EntryAdapter. This adapter is more complex than the previous one because
both kinds of interfaces are needed for both components. As presented Figure 7,
the sequence diagram shows the sequence of the operation calls between the two
interfaces of Application and TurnstimeIAL. This is traduced by the B architecture
given Figure 8.

:Application :EntryAdapter :TurnstileIAL

unblock()
unlock()

pushed()

blocked

unblocked

entered()
lock()

blocked

Fig. 7. Sequence diagram for EntryAdapter

4.2 Adding dependability features to the Previous System

Let us now introduce a safety and a security mechanisms. The security mech-
anism concerns the data base. Its content is now checked using a message au-
thentification code (called mac). A new component called Secret is introduced for
storing a secret. The DBAdapter that connects the Application component to the
data base is changed to communicate with the Secret component. The Application

component stays unchanged.
The safety mechanism concerns the reaction to fire. If a fire occurs, the entry

turnstile must remain locked: nobody is allowed to enter the building (we assume
the fire brigade uses another entry). Here, the EntryAdapter has to be changed to
communicate with the fire detection component.

8 Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

REFINES

INCLUDES

MODEL
 TS_P
OPERATIONS
 unlock
 lock
END

REFINEMENT
 EntryAdapter
END

MODEL
 Ap_P_TSE
OPERATIONS
 entered
ENDMODEL

 EntryAdapter
_abs
END

MODEL
 Ap_R_TSE
OPERATIONS
 unblock
END

MODEL
 TS_R
OPERATIONS
 pushed
END

INCLUDESEXTENDS

EXTENDS

Fig. 8. B architecture for EntryAdapter

:Smartcard
IAL

Ap_P_Sm

TurnstileController

:Applicatio
n

Ap_R_ND
AP_P_TSX

Ap_R_TSEAp_P_TSE

SecurityAdapter SafetyAdapter

ExitAdapter

:Turnstile
IAL

TS_R TS_P

:Turnstile
IAL

TS_R TS_P

:Network
Database

IAL

ND_P

:Fire
Detector
IAL

:Secret

S_P

:Facility
Service
IAL

FS_R FS_P

Safety / Security / Service Application

FD_R

SSS_P_SeA SSS_P_SaA SSS_R_SaA

Service Fire DetectorSmartcard Reader Database Entry Turnstile Exit Turnstile

Fig. 9. Safety and Security Software Architecture for TurnstileController

Enhancing Dependability of Component-based Systems 9

Figure 9 describes the new software architecture of the TurnstileController

wchich takes into account these two safety and security policies. Adapters deal
now with these policies:

– SecurityAdapter checks the message authentication code and the signature for
each database entry and notifies the Safety / Security / Service Application in
case of a violation.

– SafetyAdapter blocks the Entry turnstile in case of a fire and informs the Safety

/ Security / Service Application. The turnstile must be unblocked using this
SafetyAdapter.

The SecurityAdapter. Figure 10 presents a sequence diagram that introduce se-
curity policy between the different involved components. The B architecture of
this adapter is given Figure 11.

alt

:Application :SecurityAdapter :Network
DatabaseIAL

has_permission(uid,did)
getDBEntry(uid,did)

getDBEntry(_) : <perm,mac>

has_permission(_) : perm

:SSSApplication :Secret

is_signature_ok(uid, did, perm, mac)

is_signature_ok(_) : checked

{checked = ok}

{else}

has_permission(_) : 'denied'

notify_violation

Fig. 10. Sequence diagram for SecurityAdapter

The SafetyAdapter. Figure ?? shows a sequence diagram that explains the safety
reaction of the adapter when it receives a fire detected call : the turnstile will be
locked until the fire alert will be canceled.

5 Related Work

6 Conclusion and Perspectives

References

1. Chouali, S., Heisel, M., Souquières, J.: Proving Component Interoperability with
B Refinement. In Arabnia, H.R., Reza, H., eds.: International Worshop on Formal
Aspects on Component Software, CSREA Press (2005) 915–920

10 Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

REFINES INCLUDES

MODEL
 Ap_R_DB
OPERATIONS
 has_permission
END

REFINEMENT
 SecurityAdapter
END

MODEL
 ND_P
OPERATIONS
 getDBEntry
END

MODEL
 S_P
OPERATIONS
 is_signature_ok
END

MODEL
 SSS_P_SeA
OPERATIONS
 notify_violation
END

INCLUDES

INCLUDES

Fig. 11. B architecture for SecurityAdapter

:SSSApplication :SafetyAdapter :TurnstileIAL:Application :FireDetector
IAL

loop(0,*)
unblock()

reset_fire()

lock()

fireDetected

fire_detected()

blocked

unblocked

notify_fire()

Fig. 12. Sequence diagram for SafetyAdapter

REFINES

INCLUDES

MODEL
 TS_P
OPERATIONS
 unlock
 lock
END

REFINEMENT
 SafetyAdapter
END

MODEL
 Ap_P_TSE
OPERATIONS
 entered
END

MODEL
 SafetyAdapter
_abs
END

MODEL
 Ap_R_TSE
OPERATIONS
 unblock
END

MODEL
 TS_R
OPERATIONS
 pushed
END

INCLUDESEXTENDS

EXTENDS
MODEL
 SSS_P_SaA
OPERATIONS
 notify_fire
END

INCLUDES

MODEL
 SSS_R_SaA
OPERATIONS
 reset_fire
END

EXTENDS

MODEL
 FD_R
OPERATIONS
 fire_detected
END

EXTENDS

Fig. 13. B architecture for SafetyAdapter

Enhancing Dependability of Component-based Systems 11

2. Hatebur, D., Heisel, M., Souquières, J.: A method for component-based software
and system development. In: Proc. Euromicro. (2006)

3. Abrial, J.R.: The B Book. Cambridge University Press - ISBN 0521-496195 (1996)
4. Behm, P., Benoit, P., Meynadier, J.: METEOR: A Successful Application of B in

a Large Project. In: Integrated Formal Methods, IFM99. Volume 1708 of LNCS.,
Springer Verlag (1999) 369–387

5. Bert, D., Boulmé, S., Potet, M.L., Requet, A., Voisin, L.: Adaptable Translator of
B Specifications to Embedded C Programs. In: Integrated Formal Method, IFM’03.
Volume 2805 of LNCS., Springer Verlag (2003) 94–113

6. Steria: Obligations de preuve: Manuel de référence. Steria - Technologies de
l’information (version 3.0. Available at http://www.atelierb.societe.com)

7. Clearsy: B4free. Available at http://www.b4free.com (2004)
8. Abrial, J.R., Cansell, D.: Click’n’Prove : Interactive Proofs Within Set Theory. In

et B. Wolff, D.B., ed.: 16th International Conference on Theorem Proving in Higher
Order Logics - TPHOLs’2003. Volume 2758 of LNCS., Springer Verlag (2003) 1–24

	Enhancing Dependability of Component-based Systems
	Denis Hatebur, Maritta Heisel, Arnaud Lanoix and Jeanine Souquières

