
A Security Engineering Process based on Patterns

Denis Hatebur1,2, Maritta Heisel2, and Holger Schmidt2

1 ITESYS Institut für technische Systeme GmbH, Dortmund, Germany
d.hatebur@itesys.de

2 Workgroup Software Engineering, Department of Computational and Cognitive Sciences,
University of Duisburg-Essen, Duisburg, Germany

{denis.hatebur, maritta.heisel, holger.schmidt}@uni-duisburg-essen.de

Abstract

We present a security engineering process based on se-
curity problem frames and concretized security problem
frames. Both kinds of frames constitute patterns for analyz-
ing security problems and associated solution approaches.
They are arranged in a pattern system that makes dependen-
cies between them explicit. We describe step-by-step how
the pattern system can be used to analyze a given security
problem and how solution approaches can be found. Fur-
ther, we introduce a new frame that focuses on the privacy
requirement anonymity.

1 Introduction
When building secure systems, it is instrumental to take

security concerns into account right from the beginning of
the development process [1]. Hence, security engineering
should become an integral part of the software engineering
process when developing secure software systems.

In this paper, we present a security engineering process
that focuses on the early phases of software development.
The basic idea is to make use of special patterns defined
for structuring, characterizing, and analyzing problems that
occur frequently in security engineering. Similar patterns
for functional requirements have been proposed by Michael
Jackson [6]. They are called problem frames. Accordingly,
our patterns are named security problem frames.

The advantage of using problem frames in requirements
engineering is that problems are mapped to well-known
problem classes that are practically relevant. Once a prob-
lem is successfully fitted to a problem frame, its most im-
portant characteristics are known, because these are shared
by all problems fitting to the frame.

According to the security engineering process proposed
in this paper, in a first step security problem frames must be
selected and their variable parts must be instantiated. Fur-
thermore, for each security problem frame, we define a set
of concretized security problem frames that take into ac-
count generic security mechanisms to prepare the ground

for solving a given problem. Security problem frames and
their concretized counterparts are arranged in a pattern sys-
tem that makes dependencies between solution approaches
and security problems explicit. Our security engineering
process incorporates that pattern system. After choosing
and instantiating concretized security problem frames in a
second step, further iterations of the proposed security en-
gineering process yield to all dependent subproblems that
must be solved in order to establish certain solution ap-
proaches for security problems.

In the following, we explain how to develop software us-
ing problem frames as proposed by Jackson [6] in Sect. 2.
In Sect. 3, we introduce the (concretized) security prob-
lem frames approach and as a sample frame, we discuss
a new (concretized) security problem frame that focuses on
the privacy requirement anonymity in Sect. 4. Section 5
presents a pattern system of (concretized) security problem
frames. In Sect. 6, we present a security engineering pro-
cess tailor-made to utilize (concretized) security problem
frames. Section 7 discusses related work, and we conclude
in Sect. 8.

2 Requirements Analysis using Problem
Frames

Problem frames are a means to describe software devel-
opment problems. They were invented by Michael Jack-
son [6], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable
problem class in terms of its context and the characteris-
tics of its domains, interfaces and requirement.” Problem
frames are described by frame diagrams, which basically
consist of rectangles, a dashed oval, and different links be-
tween these (see frame diagram in Fig. 1). The task is to
construct a machine that improves the behavior of the envi-
ronment it is integrated in.

Plain rectangles denote domains that already exist in the
application environment, a rectangle with a double verti-
cal stripe denotes the machine to be developed, and re-
quirements are denoted with a dashed oval. The connecting

1



SPF: Anonymity
Frame diagram

machine

Anonymity

B

B

C

AM!AnService

S!ToAnService

SpyService

AnService

SpyProperties

SubjectIdentity

SR

Subject

Spy

SubjectService

Access
target

Security requirement (SR)
Spy cannot deduce relation between Subject and AnService
using AccessTarget.
Declarations
at : AccessTarget; su : Subject; tas : ToAnService;
sp : Spy; originator : P(Subject × ToAnService)

Preconditions
tas ∈ confIf

Postconditions
(sp, at, originator) ∈ nonDeduce

Related
SPF: Integrity-Preserving Data Transmission
SPF: Authentication

Figure 1. Security problem frame for
anonymity

lines represent interfaces that consist of shared phenomena.
Shared phenomena may be events, operation calls, mes-
sages, and the like. They are observable by at least two
domains, but controlled by only one domain. A dashed
line represents a requirements reference, and an arrow in-
dicates that the requirements constrain a domain. If a do-
main is constrained by the requirements, we must develop
a machine, which controls this domain accordingly. Fur-
thermore, Jackson distinguishes causal domains that com-
ply with some physical laws, lexical domains that are data
representations, and biddable domains that are usually peo-
ple.

In the frame diagram depicted in Fig. 1, the “C” indi-
cates that the domain Access target is a causal domain, and
the “B” indicates that the domains Spy and Subject are bid-
dable domains. The notation AM!AnService means that the
phenomena in the set AnService are controlled by the ma-
chine domain Anonymity machine.

Problem frames greatly support developers in analyzing
problems to be solved. They show what domains have to be
considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Devel-
opers must elicit, examine, and describe the relevant prop-
erties of each domain. These descriptions form the domain
knowledge.

The domain knowledge consists of assumptions and
facts. Assumptions are conditions that are needed, so that
the requirements are accomplishable. Usually, they de-
scribe required user behavior. For example, it must be as-
sumed that a user ensures not to be observed by a malicious
user when entering some input. Facts describe fixed proper-
ties of the problem environment that hold regardless of how
the machine is built.

Requirements describe the environment, the way it
should be, after the machine is integrated. In contrast to
the requirements, the specification of the machine gives an
answer to the question: “How should the machine act, so
that the system fulfills the requirements?” Specifications
are descriptions that are sufficient for building the machine.
They are implementable requirements. For the correctness
of a specification S, it must be demonstrated that S, the facts
F, and the assumptions A imply the requirements R.

Software development with problem frames proceeds as
follows: first, the environment in which the machine will
operate is represented by a context diagram. Like a frame
diagram, a context diagram consists of domains and inter-
faces. However, a context diagram contains no require-
ments, and it is not shown which domain is in control of
the shared phenomena. Then, the problem is decomposed
into subproblems. If ever possible, the decomposition is
done in such a way that the subproblems fit to given prob-
lem frames. To fit a subproblem to a problem frame, one
must instantiate its frame diagram, i.e., provide instances
for its domains, interfaces, and requirement. The instanti-
ated frame diagram is called a problem diagram. For ex-
ample, a requirement such as “Chat users should be able
to send anonymous messages” can be used for instantiating
the anonymity frame of Fig. 1.

Since the requirements refer to the environment in which
the machine must operate, the next step consists in deriving
a specification for the machine (see [7] for details). The
specification describes the machine and is the starting point
for the development of the machine.

3 (Concretized) Security Problem Frames
Approach

Security problem frames [4] are special kinds of prob-
lem frames, which consider security requirements. They
strictly refer to the problems concerning security, without
anticipating solutions. For example, we may require that
data is kept confidential during transmission without being
obliged to mention encryption, which is a means to achieve
confidentiality.

The benefit of considering security requirements with-
out reference to potential solutions is the clear separation
of problems from their solutions, which leads to a better
understanding of the problems and enhances the reusability
of the problem descriptions, since they are completely in-
dependent of solution technologies. Further, the separation
of problems and solutions is helpful to analyze conflicting
requirements and the interaction of security and other non-
functional requirements [10].

2



Solving a security problem is initiated by choosing and
instantiating a concretized security problem frame. These
frames are derived from the security problem frames by
considering generic security mechanisms (such as using
symmetric or asymmetric encryption for keeping data con-
fidential during transmission).

Both kinds of frames are equipped with preconditions
and postconditions expressed as logical formulas [5]. The
preconditions express what conditions must be met by the
environment for a frame to be applicable; the postcondi-
tions are a formal representation of a (concretized) security
requirement, i.e., they describe what (concretized) security
requirement will be achieved by the machine to be built.

Each (concretized) security problem frame is described
according to the following template (see Fig. 1):

Name The name specifies what kind of security problem
is addressed by the security problem frame (SPF) or
concretized security problem frame (CSPF).

Frame diagram This diagram shows the relevant domains
and their interfaces, as well as the (concretized) secu-
rity requirement.

(Concretized) security requirement The (concretized)
security requirement is stated informally.

Declarations Entities that are necessary for stating the pre-
conditions and postconditions formally are declared.
These entities are implicitly universally quantified. We
use the domains and interfaces of the corresponding
frame diagram as data types.

Preconditions Conditions are given that must be met by
the environment for the frame to be applicable.

Postconditions These conditions are a formal representa-
tion of the (concretized) security requirement.

Related Different patterns will often be used in combina-
tion. Those frames that are commonly used in combi-
nation with the described frame are mentioned here.

4 (Concretized) Security Problem Frames for
Anonymity

Many privacy-critical systems are required to guarantee
that a subject using a service via a certain platform should
not be identifiable. In such a case, the system must conceal
the relation between the subject and the used service. For
example, a user of an online chat system should be able to
send messages to other chat users without being revealed
as the originator of the messages. A more critical exam-
ple is an e-voting system, which should keep the relation
between the vote and its voter confidential. To describe
and analyze such privacy problems, we propose the secu-
rity problem frame for anonymity shown in Fig. 1. The bid-
dable domain Subject denotes a person or a system (e.g., a
chat user) that makes use of a service ToAnService (service to
be anonymized, e.g., send a message). The service is pro-
vided through a certain platform, which is represented by
the causal domain Access target (e.g., the Internet). Those
subjects who want to reveal the identity of a subject using a
service are represented by the biddable domain Spy (e.g., the

other chat users). The machine domain is called Anonymity
machine, and its task is to prevent that a spy deduces the re-
lation between a subject and a used service. Therefore, the
interface AnService is controlled by the machine. It repre-
sents the already anonymized service, which is used by the
subject. The interface SubjectService between the domains
Subject and Access target represents the fact that a subject can
directly access the platform that provides the used service.
A similar fact is represented by the interface SpyService be-
tween the domains Spy and Access target. The control direc-
tions of both interfaces are not stated, because both direc-
tions are possible for concrete instances of the frame. The
requirements reference SpyProperties reflects relevant prop-
erties of the Spy domain, e.g., details about its equipment,
knowledge, and strength. The requirements reference Sub-
jectIdentity reflects the unique identity of the Subject domain.

The precondition tas ∈ confIf expresses that a confiden-
tial path tas between the machine domain Anonymity machine
and the domain Subject is necessary. It describes that data
transferred using this interface tas is kept confidential. Oth-
erwise, a spy could easily read the relation between Subject
and ToAnService.

The postcondition expresses that a spy sp is not able to
deduce the originator using the access target at.

The list of related frames contains the frames for
integrity-preserving data transmission and authentication
[4], because in many cases the data transferred using the in-
terface ToAnService must remain unchanged and the subject
must be authenticated.

To obtain a concretized security problem frame for
anonymity, we introduce the concept of an ID (e.g., a user
name or an IP address) to represent a subject’s identity. The
frame diagram structure of the concretized security prob-
lem frame for anonymity is the same as the frame diagram
depicted in Fig. 1. The usage of an ID only influences the
interfaces of the frame: each service is related to the ID of a
subject.

In a similar way, we can construct (concretized) security
problem frames for pseudonymity.

5 Pattern System
We have derived a pattern system by matching the pre-

conditions of the concretized security problem frames with
the postconditions of the security problem frames [5]. The
dependencies between the security problem frames and
their concretized counterparts are illustrated graphically.
The pattern system contains all available (concretized) se-
curity problem frames and the dependencies between them,
indicated by arrows pointing from the concretized security
problem frames to the security problem frames they depend
on. For example, the precondition of the concretized secu-
rity problem frame for anonymity shown in Fig. 1 contains a
formula that expresses a confidential path. For this reason,
the frame for anonymity depends on the frame for confi-
dential data transmission. Hence, we draw a line from the
box containing the CSPF Anonymity (using IDs) with an arrow
pointing at the box SPF Confidential Data Transmission. All

3



dependencies are established following this principle.
The pattern system is self-contained in the sense that for

any precondition of a frame covered by the pattern system,
there exists at least one frame contained in the pattern sys-
tem that provides a matching postcondition. Therefore, the
(concretized) security problem frames contained in the pat-
tern system can be used to completely analyze a given secu-
rity problem, whose initial security requirement is covered
by one of the frames.

6 Security Engineering Process using Pat-
terns

As we have presented the (concretized) security problem
frames approach in [4], and we have extended it in [5] by
pre- and postconditions to establish a pattern system, we
present in this paper a consolidated variant of a security en-
gineering process tailor-made to utilize (concretized) secu-
rity problem frames. We call this process SEPP (Security
Engineering Process using Patterns). Currently, SEPP has
a strong focus on security requirements engineering. We
plan to extend SEPP to support later phases of the software
development life-cycle, incorporating component technol-
ogy, architectural patterns, and security patterns [11]. An
overview of SEPP is illustrated in Fig. 2.

consolidated set of

security requirements

and solution approaches

select

select

extract

to be fulfilled

of

match

SPF

CSPF CSPF

SPF
instantiate

instantiate

preconditions

instance

instance

from catalogue

from catalogue

postconditions

Step 2

Step 1

security
requirements

initial set of

Figure 2. Security engineering process using
patterns

Step 1 – Select and Instantiate Security Problem Frames
Developing a secure system using (concretized) security
problem frames starts after the security goals and an ini-
tial set of security requirements are elicited using, e.g., the
MSRA (formerly known as CREE) method [2]. We pro-
vide a catalogue of security problem frames and their con-
cretized counterparts. Each elicited security requirement

must be compared to the informal descriptions of the secu-
rity requirements of the security problem frames contained
in the catalogue. For example, if users must access certain
services while hiding their real identity, the security prob-
lem frame for anonymity (or pseudonymity) presented in
Sect. 4 is applicable. After an appropriate security problem
frame is determined for each given security requirement,
these frames must be instantiated. When instantiating a se-
curity problem frame, the domains, phenomena, interfaces,
pre- and postconditions, and the security requirement must
be assigned concrete values.

To instantiate the domains that represent potential attack-
ers (e.g., the domain Spy in Fig. 1), a certain level of skill,
equipment, and determination of the potential attacker must
be assumed. Via these assumptions, threat models are inte-
grated into the method.

After the security problem frames are instantiated, a
security engineer proceeds with checking the “Related”
sections of the used frames, which mention those frames
that are commonly used in combination with the described
frame. This helps to find missing security requirements
right at the beginning of the security requirements engineer-
ing process.

Step 2 – Select and Instantiate Concretized Security
Problem Frames To solve a security problem character-
ized by an instance of a security problem frame, the process
continues with choosing a solution approach (e.g., using an
anonymous proxy to browse the web), thereby instantiat-
ing appropriate concretized security problem frames. Af-
terwards, the preconditions of the instantiated concretized
security problem frames must be inspected. If the instanti-
ated preconditions are already considered in a previous it-
eration of SEPP’s second step, the problems described by
the respective preconditions need not be taken into account
again. Otherwise, two alternatives are possible to guarantee
that these preconditions hold: either, they can be assumed
to hold, or they have to be established by instantiating a
further security problem frame whose postconditions match
the preconditions to be established. Such a frame can eas-
ily be determined using the pattern system by following the
arrow(s) pointing from the instantiated concretized security
problem frame under consideration to the security problem
frames that can be used to address dependent subproblems,
see Fig. 2.

What assumptions are reasonable depends on the threats
the system should be protected against. Moreover, some as-
sumptions cannot be avoided completely, because it may be
impossible to achieve a security requirement. For example,
we must assume that an administrator can distinguish a fake
user from an authentic user when creating a user account
and providing user name and password.

Only in the case that preconditions cannot be assumed to
hold, one must instantiate further appropriate security prob-
lem frames, and the procedure is repeated until all precondi-
tions of all applied concretized security problem frames can
be proved or assumed to hold. Therefore, the SEPP process

4



results in a set of consolidated security problems and so-
lution approaches that additionally contains all dependent
security problems and corresponding solution approaches,
some of which may not have been known initially.

The next step in the software development life-cycle is
to derive a specification, which describes the machine and
is the starting point for the development of the machine. As
it is beyond the scope of this paper, this issue will not be
discussed in detail.

7 Related Work
To elicitate security requirements, the threats to be con-

sidered must be analyzed. Lin et al. [8] use the ideas under-
lying problem frames to define so-called anti-requirements
and the corresponding abuse frames. The purpose of anti-
requirements and abuse frames is to analyze security threats
and derive security requirements. Hence, abuse frames and
security problem frames complement each other.

Gürses et al. [2] present the MSRA (formerly known as
CREE) method for multilateral security requirements anal-
ysis. Their method concentrates on confidentiality require-
ments elicitation and employs use cases to treat functional
requirements.

Haley et al. [3] present a framework for security require-
ments engineering. It defines the notion of security require-
ments, considers security requirements in an application
context, and helps answering the question whether the sys-
tem can satisfy the security requirements. Their definitions
and ideas overlap our approach, but they do not use patterns
and they do not give concrete guidance to identify and elicit
all requirements.

Popp et al. [9] apply extended use cases in the field of
security-critical system development. Use cases extended
by security information are used to develop the specifica-
tion of security-critical systems, whereas SEPP focuses on
identifying and analyzing requirements beforehand.

Security patterns [11] are applied later, in the phase of
detailed design. The relation between our concretized se-
curity problem frames, which still express problems, and
security patterns is much the same as the relation between
problem frames and design patterns: the frames describe
problems, whereas the design/security patterns describe so-
lutions on a fairly detailed level of abstraction.

8 Conclusion and Perspectives
In this paper, we have presented SEPP, a security engi-

neering process based on security problem frames and con-
cretized security problem frames. These special kinds of
problem frames are arranged in a pattern system, which
serve to structure, characterize, analyze, and finally solve
software development problems in the area of software and
system security. SEPP supports to obtain a complete set of
security requirements by analyzing the preconditions of the
used problem frames and deciding if they can be assumed
or must be established by applying more security frames.

Compared to the papers [4] and [5], this paper presents
a new security problem frame that allow us the take the the

privacy requirement of anonymity into account. Further-
more, it contains an elaborated version of the security engi-
neering process and its underlying pattern system.

In the future, we intend to find new patterns to extend
the catalogue of security problem frames and concretized
security problem frames. Additionally, we plan to elaborate
more on the later phases of software development. For ex-
ample, we want to investigate how to integrate component
technology in the development process. Finally, we plan to
provide tool support for SEPP.

References

[1] E. Fernandez. A methodology for secure software design.
In Proc. Int. Conference on Software Engineering Research
and Practice, 2004.

[2] S. Gürses, J. H. Jahnke, C. Obry, A. Onabajo, T. Santen, and
M. Price. Eliciting confidentiality requirements in practice.
In CASCON ’05: Proceedings of the 2005 conference of
the Centre for Advanced Studies on Collaborative research,
pages 101–116. IBM Press, 2005.

[3] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh. A
framework for security requirements engineering. In SESS
’06: Proceedings of the 2006 international workshop on
Software engineering for secure systems, pages 35–42, New
York, NY, USA, 2006. ACM Press.

[4] D. Hatebur, M. Heisel, and H. Schmidt. Security engineer-
ing using problem frames. In G. Müller, editor, Proceed-
ings of the International Conference on Emerging Trends in
Information and Communication Security (ETRICS), LNCS
3995, pages 238–253. Springer-Verlag, 2006.

[5] D. Hatebur, M. Heisel, and H. Schmidt. A pattern system
for security requirements engineering. In Proceedings of
the International Conference on Availability, Reliability and
Security (AReS), IEEE Transactions, pages 356–365. IEEE,
2007.

[6] M. Jackson. Problem Frames. Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[7] M. Jackson and P. Zave. Deriving specifications from re-
quirements: an example. In Proceedings 17th Int. Conf.
on Software Engineering, Seattle, USA, pages 15–24. ACM
Press, 1995.

[8] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson. Using abuse
frames to bound the scope of security problems. In Proceed-
ings of 11th IEEE International Requirements Engineering-
Conference (RE’04), pages 354–355, 2004.

[9] G. Popp, J. Jürjens, G. Wimmel, and R. Breu. Security-
critical system development with extended use cases. In
APSEC, pages 478–487, 2003.

[10] H. Schmidt and I. Wentzlaff. Preserving software quality
characteristics from requirements analysis to architectural
design. In Proceedings of the European Workshop on Soft-
ware Architectures (EWSA), volume 4344/2006, pages 189–
203. Springer Berlin / Heidelberg, 2006.

[11] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns: In-
tegrating Security and Systems Engineering. Wiley & Sons,
2005.

5


