
Analysis and Component-based Realization of Security Requirements

Denis Hatebur1,2 Maritta Heisel1 Holger Schmidt1

1 University Duisburg-Essen, Faculty of Engineering, Department of Computer Science, Workgroup Software Engineering, Germany,
email: {maritta.heisel, denis.hatebur, holger.schmidt}@uni-duisburg-essen.de

2 ITESYS Institut für technische Systeme GmbH, Germany, email: d.hatebur@itesys.de

Abstract

We present a process to develop secure software with an
extensive pattern-based security requirements engineering
phase. It supports identifying and analyzing conflicts be-
tween different security requirements. In the design phase,
we proceed by selecting security software components that
achieve security requirements. The process enables soft-
ware developers to systematically identify, analyze, and fi-
nally realize security requirements using security software
components. We illustrate our approach by a lawyer agency
software example.

1 Introduction

Software projects have an increasing demand for secu-
rity. There are various reasons for this situation: many
stakeholders act according to a “hunter-gatherer” scheme
and pile up data that must be protected against unautho-
rized access; security measures are often required by law
and standards; network-based software is connected over
the insecure Internet, etc.

As a consequence, software engineers are not only con-
fronted with functional properties, but with quality require-
ments concerning security, although they are not experts in
security engineering. Furthermore, tools, processes, and
methods, which are necessary to analyze, design, imple-
ment, and test secure software are rare or sometimes non-
existent. Hence, security is “added” to already developed
software, or software engineers choose off-the-shelf secu-
rity components as they are provided by many APIs (appli-
cation programming interfaces) without thorough require-
ments analysis, software specification, and architectural as
well as fine-grained software design.

In earlier publications (see [6], [7], [8]), we introduced
a security engineering process that focuses on the early
phases of software development. The basic idea is to make
use of special patterns defined for structuring, characteriz-
ing, and analyzing problems that occur frequently in secu-
rity engineering. Similar patterns for functional require-
ments have been proposed by Michael Jackson [9]. They

are called problem frames. Accordingly, our patterns are
named security problem frames. Furthermore, for each of
these frames, we define a set of concretized security prob-
lem frames that take into account generic security mech-
anisms to prepare the ground for solving a given security
problem.

In this paper, we extend our approach by the analysis
of conflicts between different security requirements, as well
as by the usage of security software components that repre-
sent implementations of security mechanisms. These com-
ponents support software engineers in developing a secure
software architecture.

In the following, we first present Jackson’s problem
frames as well as security problem frames and concretized
security problem frames in Sect. 2. We describe security
software components in Sect. 3. In Sect. 4, we introduce our
extended security engineering process, and we illustrate our
approach by a lawyer agency software example in Sect. 5.
Section 6 discusses related work, and we give a summary
and discuss perspectives in Sect. 7.

2 Problem Frames for Security Engineering

2.1 Problem Frames

Problem frames are a means to analyze and classify
software development problems. They were invented by
Michael Jackson [9], who describes them as follows: “A
problem frame is a kind of pattern. It defines an intuitively
identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.”
Problem frames are described by frame diagrams, which
basically consist of rectangles and links between these (see
frame diagram in Fig. 1). The task is to construct a ma-
chine that improves the behavior of the environment it is
integrated in.

Plain rectangles denote application domains (that al-
ready exist), and a rectangle with a single vertical stripe
denotes a designed domain physically representing some
information, a rectangle with a double vertical stripe de-
notes the machine to be developed. Requirements are de-
noted with a dashed oval. The connecting lines represent



interfaces that consist of shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the
like. They are observable by at least two domains, but con-
trolled by only one domain. For example, if a user types
a password to log into an IT-system, this is a phenomenon
shared by the user and the system, which is controlled by
the user. A dashed line represents a requirements reference,
and the arrow shows that it is a constraining reference. Fur-
thermore, Jackson distinguishes causal domains that com-
ply with some physical laws, lexical domains that are data
representations, and biddable domains that are usually peo-
ple.

In the frame diagram depicted in Fig. 1, the “X” indi-
cates that the corresponding domain is a lexical domain, and
the “B” indicates a biddable domain. The notation “S!E1”
means that the phenomenon of interface E1 is controlled by
the biddable domain Subject.

Problem frames greatly support developers in analyzing
problems to be solved. They show what domains have to be
considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Devel-
opers must elicit, examine, and describe the relevant prop-
erties of each domain. These descriptions form the domain
knowledge.

The domain knowledge consists of assumptions and
facts. Assumptions are conditions that are needed, so that
the requirements are accomplishable. Usually, they de-
scribe required user behavior. For example, it must be as-
sumed that a user ensures not to be observed by a malicious
user when entering a password. Facts describe fixed proper-
ties of the problem environment regardless of how the ma-
chine is built.

Requirements describe the environment, the way it
should be, after the machine is integrated. In contrast to the
requirements, the specification of the machine gives an an-
swer to the question: “How should the machine act, so that
the system, i.e. the machine together with the environment,
fulfills the requirements?” Specifications are descriptions
that are sufficient for building the machine. They are imple-
mentable requirements. For the correctness of a specifica-
tion S , it must be demonstrated that S , the facts F , and the
assumptions A imply the requirements R: A∧F ∧S ⇒ R,
where A ∧ F ∧ S must be non-contradictory.

2.2 (Concretized) Security Problem
Frames

To meet the special demands of software development
problems occurring in the area of security engineering, we
introduced security problem frames (SPF) [6]. SPFs are
special kinds of problem frames, which consider security
requirements. The SPFs we have developed strictly refer to
the problems concerning security. They do not anticipate
a solution. For example, we may require the confidential
transmission of data without being obliged to mention en-
cryption, which is a means to achieve confidentiality.

Solving a security problem is achieved by choosing
generic security mechanisms (e.g., encryption to keep data
confidential), thereby transforming security requirements
into concretized security requirements. The generic security
mechanisms are represented by concretized security prob-
lem frames (CSPF) The benefit of considering security re-
quirements without reference to potential solutions is the
clear separation of problems from their solutions, which
leads to a better understanding of the problems and en-
hances the re-usability of the problem descriptions, since
they are completely independent of solution technologies.

Each (C)SPF is described according to the following
template (see Fig. 1):

• Name The name specifies what kind of security prob-
lem is addressed by the frame. It is also specified if
it is a security problem frame (SPF) or a concretized
security problem frame (CSPF).

• Frame diagram This diagram shows the relevant do-
mains and their interfaces, as well as the (concretized)
security requirement.

• Security requirement or concretized security re-
quirement Here, the security requirement or con-
cretized security requirement to be achieved is stated
informally.

• Declarations In this section, entities that are neces-
sary for stating the preconditions and postconditions
are declared. The entities are implicitly universally
quantified. We use the domains and interfaces of the
corresponding frame diagram as data types.

• Preconditions Conditions are given that must be met
by the environment for the frame to be applicable.

• Postconditions These conditions are a formal rep-
resentation of the (concretized) security requirement,
i.e., they describe what (concretized) security require-
ment will be achieved by the machine to be built.

• Related Different patterns will often be used in combi-
nation. Those frames that are commonly used in com-
bination with the described frame are mentioned here.

The pre- and postconditions are expressed as logical formu-
las, and they form the basis for the pattern system described
in Sect. 4.

2.3 Example: Concretized Security Prob-
lem Frame for Accountability by Log-
ging

As an example, we present a CSPF for accountability by
logging, which is depicted in Fig. 1. This CSPF represents
the generic security mechanism of using logs to achieve ac-
countability. A realization of this technique is, for example,
the Linux logging system.



CSPF: Accountability by Logging
Frame diagram

E1
B

X

Subject

machine

Audit
AM!Y1

B

Malicious

subject

S!E1

Y1
CSRLog

Y2

E1 := {ActionsOfSubject}
Y1 := {LoggedActions}
Y2 := {PropertiesOfMaliciousSubject}

Concretized security requirement (CSR)
The Subject cannot deny the logged actions (which are
related to its performed actions).

Declarations
y1 : Y 1; e1 : E1; s : Subject ; l : Log
ms : MaliciousSubject ; am : AuditMachine
Preconditions
{(l ,ms), (l , s)} ∩ write access = ∅
{e1, y1} ⊆ intIf
{(s, am)} ⊆ authenticated
Postconditions
{(s, y1)} ⊆ accountable
Related
SPF Confidential Data Storage (for Log)
SPF Security Management

Figure 1. CSPF Accountability by Logging

The frame diagram depicted in Fig. 1 contains a Subject,
which performs actions using interface E1. These actions
are captured and possibly filtered by the Audit machine,
which writes them to a Log using interface Y1.

The postcondition expresses that all actions performed
by Subject cannot be denied by Subject, which also implies
that all actions not performed by Subject cannot be assigned
to Subject. The concretized security requirement CSR is
stated according to this description.

To achieve this postcondition, we must ensure that only
the machine is allowed to modify the Log. The first precon-
dition expresses that the Log (l ) must be protected against
modification by Subject (s) and Malicious subject (ms).

The Malicious subject is a potential attacker who may
try to change the Log. For the Malicious subject, we intro-
duce a requirement reference Y2, which contains a symbolic
phenomenon PropertiesOfMaliciousSubject reflecting rele-
vant properties of the Malicious subject domain. This do-
main has no explicit interfaces. Instead, we assume that it
possibly has access to all domains (except the machine do-

main) and interfaces contained in the frame diagram, which
we graphically denote using a small rectangle connected by
a line to the domain box. Generally, we assume that the
machine is not corrupted, and the malicious subject has no
direct interface to the machine.

The second precondition describes that data transmitted
over the interfaces E1 (e1) and Y1 (y1) should remain un-
changed, or a modification by Malicious subject is detected.
This precondition is necessary, because we must ensure that
Malicious subject does not modify the ActionsOfSubject of
interface E1 as well as the LoggedActions of interface Y1.
Otherwise, the Log does not correspond to the actions per-
formed by the Subject.

The third precondition expresses that Subject (s) should
be authentic for the Audit machine (am).

Confidential storage of the log is not required for ac-
countability, but it may be relevant if additional privacy con-
cerns should be considered. For example, if it is required
to conceal the identities of the subjects whose actions are
logged (anonymity of the subjects), the log should be stored
confidentially. For that reason, the list of related frames
contains the SPF Confidential Data Storage. It also con-
tains the SPF Security Management, because management
functions may be necessary to define actions to be logged,
to define the time period for storing a log, etc.

3 Security Software Components

Software components can be used to solve software de-
velopment problems. We associate a set of software com-
ponents that solve security problems to each CSPF. There
are off-the-shelf components (such as the security software
components included in mainstream software development
platforms such as .NET and Java) or to tailor-made compo-
nents that must be developed from scratch. Examples for
off-the-shelf security software components are components
for encryption / decryption, authentication, and access con-
trol.

We denote software components using UML [3] com-
posite structure diagrams. There, components are repre-
sented as named boxes. Each component has a number of
ports that can be used to connect the component at hand to
other components. The ports of two or more components
can be connected using a number of interfaces, represented
by “sockets” (required interfaces) and “lollipops” (provided
interfaces). The name of a port shows the purpose of the
connected component.

As an example security software component, we present
the component Logging shown in Fig. 2 that realizes the
functionality required by the CSPF Accountability by log-
ging. An existing implementation of such a component is,
e.g., the Linux “syslogd” logging component.

The logging component provides an interface actions for
a number of other components to log their actions. These
components can use the interface to log what actions have
been performed, the user (or a pseudonym) performing



Logging

logs

config

actions

read_writedate_time

Figure 2. Logging component

them, and possibly some additional descriptions.
The logging component uses an interface read write to

access a (possibly remote) storage component using basic
read and write operations. The log data contained in the
storage component must be protected against modification
and unauthorized disclosure using, e.g., an access control
component.

The logging component can have a filter mechanism, that
selects which of the performed actions are stored in the log.
Hence, the logging component can have an interface con-
fig, which allows another component to configure the filter.
If such a functionality is required (see “Related” section in
Fig. 1: SPF Security Management), the config interface can
be implemented as a provided interface (e.g., a GUI) or a
required interface (e.g., a configuration file). Since the con-
figuration functionality is optional, the interface config in
Fig. 2 is depicted in gray color.

To associate time stamps to the performed actions, the
logging component can make use of a component provid-
ing date and time information using the required interface
date time. For example, the Linux “syslogd” logging com-
ponent provides a filtering mechanisms and time stamps.

4 Security Engineering Process using Pat-
terns

We present in this paper a consolidated variant of a se-
curity engineering process based on (C)SPFs [8]. We call
this process SEPP (Security Engineering Process using Pat-
terns). It consists of the following four steps.

Step 1 – Select and Instantiate SPFs Developing a se-
cure system using (C)SPFs starts after an initial set of se-
curity requirements is identified. For these security require-
ments, compare each elicited security requirement to the in-
formal descriptions of the security requirements of the SPFs
contained in our catalog. After an appropriate SPF is deter-
mined, instantiate it. When instantiating an SPF, the do-
mains, phenomena, interfaces, pre- and postconditions, and
the security requirement must be assigned concrete instan-
tiations.

To instantiate the domains that represent potential attack-
ers, a certain level of skill, equipment, and determination of
the potential attacker must be specified. Via these assump-
tions, threat models are integrated into SEPP.

1 2 3 4 5 6 7 8 9 10

S
P

F
 C

on
fi

de
nt

ia
l D

at
a 

T
ra

ns
m

is
si

on

S
P

F
 C

on
fi

de
nt

ia
l D

at
a 

S
to

ra
ge

S
P

F
 A

no
ny

m
ou

s 
T

ra
ns

m
is

si
on

S
P

F
 A

no
ny

m
ou

s 
S

to
ra

ge

S
P

F
 I

nt
eg

ri
ty

-p
re

se
rv

in
g 

D
at

a 
T

ra
ns

m
is

si
on

S
P

F
 I

nt
eg

ri
ty

-p
re

se
rv

in
g 

D
at

a 
S

to
ra

ge

S
P

F
 A

ut
he

nt
ic

at
io

n

S
P

F
 A

cc
ou

nt
ab

il
it

y

S
P

F
 D

is
tr

ib
ut

in
g 

S
ec

re
ts

S
P

F
 S

ec
ur

it
y 

M
an

ag
em

en
t

1 C/P P R P P

2 C/P P R P R P

3 P C/P/- R P R

4 P C/P/- R P R P

5 P C/P R P

6 CSPF Anonymous Transmission P C R ! ! R

7 CSPF Anonymous Storage P P C ! ! !

8 R P C/P P P

9 R P C/P P R P

10 R ! P C/P P R

11 R ! P C/P P R P

12 P ! P C/P P

13 P P ! ! P P C P

14 ! ! P C P

15 CSPF Authentication (dynamic) P ! ! P C P

16 CSPF Accountability by Logging R ! ! P P C R

17 P P P P R R C 

18 P P P P P C 

19 CSPF Security Management R R P P R R C

CSPF Confidential Data 
Transmission (symmetric)
CSPF Confidential Data 
Transmission (asymmetric)
CSPF Confidential Data Storage 
by Access Control

CSPF Confidential Configurable 
Data Storage by Access Control

CSPF Confidential Data Storage 
by Encryption

CSPF Integrity-preserving Data 
Transmission (symmetric)
CSPF Integrity-preserving Data 
Transmission (asymmetric)
CSPF Integrity-preserving Data 
Storage by Access Control
CSPF Integrity-preserving 
Configurable Data Storage by 
Access Control
CSPF Integrity-preserving Data 
Storage (Cryptographic 
authentication code)
CSPF Authentication (static, 
using secrets)
CSPF Authentication using 
unforgeable credentials

CSPF Distributing Secrets 
(trusted path)
CSPF Distributing Secrets 
(negotiation)

Table 1. Pattern system of (C)SPFs

Step 2 – Select and Instantiate CSPFs Table 1 shows
the relations between a set of important SPFs and some
CSPFs. The following substeps make use of these relations,
and they are repeated until all instantiated SPFs are consid-
ered. Step 2 of SEPP results in a consolidated set of security
problems and solution approaches that additionally cover
all dependent security problems and corresponding solution
approaches, some of which may not have been known ini-
tially.

Step 2.1 – Select CSPF To solve a security problem
characterized by an instance of an SPF, the process contin-
ues with choosing a solution approach. Inspect in Table 1
the column of the SPF under consideration. In this column,
rows with CSPF candidates are indicated by the letter ’C’.
Choose an appropriate candidate.



For example, for the SPF Confidential Data Storage
(column 1), we can choose one of the CSPFs in rows 3,
4, and 5.

Step 2.2 – Analyze Conflicts Table 1 supports the
analysis of conflicts between the SPF instance and the CSPF
candidates. Such a conflict is indicated by the symbol ’!’. If
this symbol is contained in the row of the chosen CSPF, then
a conflict between the SPF instance and the CSPF candidate
is possible. Analyze the possible conflict, and determine if
it is relevant for the application domain. In the case that it
is relevant, resolve the conflict by modifying or prioritizing
the requirements.

For example, if actions are logged (CSPF Accountability
by Logging, row 16 in Table 1), anonymity (columns 3 and
4) cannot be achieved.

Step 2.3 – Instantiate CSPF Instantiate the chosen
CSPF with its domains, phenomena, interfaces, pre- and
postconditions, and the security requirement. All knowl-
edge from the corresponding SPF instantiation can be
reused.

Step 2.4 – Inspect Preconditions Inspect the precon-
ditions of the instantiated CSPF. Two alternatives are possi-
ble to guarantee that these preconditions hold: either, they
can be assumed to hold, or they have to be established by
instantiating a further SPF, whose postconditions match the
preconditions to be established. Such a frame can easily be
determined using Table 1 by checking the row of the instan-
tiated CSPF. The SPFs that establish the preconditions of a
CSPF are indicated by the letter ’P’.

What assumptions are reasonable depends on the threats
the system should be protected against. Assumptions can-
not be avoided completely, because otherwise it may be im-
possible to achieve a security requirement. For example, we
must assume that an administrator can distinguish a fake
user from an authentic user when creating a user account
and providing user name and password.

Only in the case that preconditions cannot be assumed to
hold, one must instantiate further appropriate SPFs, and the
procedure is repeated until all preconditions of all applied
CSPFs can be proved or assumed to hold.

For example, the preconditions of the CSPF Confidential
Data Storage by Access Control (row 3) match the postcon-
ditions of three further SPFs:
• SPF Confidential Data Transmission (column 1) for

the data that should be stored,
• SPF Confidential Data Storage (column 2) to ensure

that stored data is protected from disclosure, because
the CSPF Confidential Data Storage by Access Con-
trol does not solve the problem if access to the data is
possible using another channel, and
• SPF Authentication (column 7) to ensure that access is

only granted to the authorized user.
CSPF Confidential Configurable Data Storage by Access
Control (row 4) additionally needs a configuration that must
be protected from modification, and that can only be per-
formed by an authentic user ((C)SPF Security Management,

column 10, row 19). In contrast, CSPF Confidential Data
Storage by Encryption (row 5) needs no authentication, but
a secret that is distributed in a confidential and integrity-
preserving way (column 9).

Step 2.5 – Inspect related SPFs Proceed with check-
ing the “Related” section of the CSPF. There, SPFs that are
commonly used in combination with the described frame
are mentioned. This information helps to find missing se-
curity requirements right at the beginning of the security
requirements engineering process. Using Table 1, check the
row of the instantiated CSPF. The SPFs that are related to
the CSPF at hand are indicated by the letter ’R’.

For example, confidential data transmission in rows 1
and 2 may be useless in some context, if the data can be
modified. Hence, CSPF Integrity-preserving Data Trans-
mission should be considered, too.

Step 3 – Specify Machine The next step in the software
development life-cycle is to derive a specification, which
describes the machine and is the starting point for its devel-
opment. To specify the machine, choose concrete security
mechanisms. For example, for encryption, a software de-
veloper must select the algorithms and the key lengths ac-
cording to the assumptions about the attacker.

Step 4 – Develop Software Architecture The software
architecture should be built from reusable components as
far as possible. To develop the software architecture, instan-
tiate component patterns or use existing components from
libraries, APIs, or from the operating system. For most of
the CSPFs, corresponding components exist. If no compo-
nent can be reused to fulfill the requirements assigned to
a CSPF, it must be developed from scratch. The compo-
nents must be connected: a required interface of one com-
ponent must be connected to a provided interface of another
component. If the interfaces do not fit completely, adapters
must be developed, e.g., as described in [10]. Additional
constraints must be considered: those components that han-
dle security-critical data must preserve the security require-
ments. For example, user interfaces or protocol components
must not leak any information if confidentiality is required,
and they must not allow to change information if integrity is
required. On the level of software architectures, additional
hidden channels has to be considered.

5 Case Study

We now present a case study concerning the secure han-
dling of legal cases. Fernandez et al. [2] identified the fol-
lowing threats (possible attacks) using UML [3] uses cases
and activity diagrams:

T1 When a new legal case is started, the client or the re-
sponsible lawyer might be impostors.

T2 A lawyer might create a false contract.



Threat SPF CSPF Component
T1 Authentication ... using unforge-

able credentials
environment

T2, T3,
T4, T5,
T6, T7

Integrity-
preserving
Data Storage

... by Access Con-
trol

AccessControl

Accountability ... by Logging Logging
T8 Accountability ... by Logging Logging
T9 Integrity-

preserving Data
Transmission

... (asymmetric) environment

Confidential Data
Transmission

... (asymmetric) environment

precond. Authentication ... (static, using
secrets)

Authentication

precond. Integrity-
preserving
Data Storage

... by Access Con-
trol

AccessControl

related Confidential Data
Storage

... by Access Con-
trol

AccessControl

Table 2. Mitigating threats by SPFs and
CSPFs

T3 The client or the external people1 might give a false de-
position.

T4 A lawyer may change a deposition.
T5 A lawyer or a secretary may produce intentionally in-

correct precedents, briefs, or costs.
T6 A secretary may produce an increased or decreased bill.
T7 A lawyer may change some aspects of the outcome (of

the legal case) to collect a higher fee.
T8 A lawyer can disseminate client or case information for

monetary gain.
T9 An external attacker may read / change case informa-

tion or access client / lawyer communications.

Step 1 – Select and Instantiate SPFs For these threats
(possible attacks), we can derive security requirements and
select SPFs from our catalog.

Step 1.1 – Select SPFs These requirements can be de-
scribed using SPFs. As shown in Table 2, SPFs are used to
mitigate the threats.

To mitigate T1, client and responsible lawyer should au-
thenticate themselves against each other (SPF Authentica-
tion). The main concern is to preserve the integrity of
contracts (T2), depositions (T3 / T4), precedents, briefs,
costs, (T5), bills (T6), outcome (T7), and case information
(T9). Only authorized persons (all lawyers, the responsible
lawyer, the secretary) should be allowed to modify these
documents (SPF Integrity-preserving Data Storage). For
example, only lawyers are allowed to create and change
contracts. Generally, only lawyers and the secretary are al-
lowed to add or change documents. But the SPF Integrity-
preserving Data Storage only covers a part of the threats: all
lawyers are allowed to create contracts, but they may create

1the opponent or other people involved in the case

(intentionally) a false contract. Such modifications cannot
be avoided. But if these actions are logged, malicious modi-
fications can be assigned to persons. As a consequence, this
may lead to persons performing no malicious actions and
acting carefully. Hence, the SPF Accountability should be
instantiated for T2, T3, T4, T5, T6, and T7. Client and case
information (T8) should be kept confidential. Here, log-
ging of read access to the data can help to identify lawyers
who disseminate information (SPF Accountability). Client
/ lawyer communications (T9) should be protected against
disclosure (SPF Confidential Data Transmission) and mod-
ification (SPF Integrity-preserving Data Transmission).

Step 1.2 – Instantiate SPFs In all SPFs the malicious
subjects must be instantiated: we must deal with internal
and external attackers (malicious subjects). Internal attack-
ers may have sensitive information about the system and the
processes, whereas external attackers may have more tech-
nical knowledge, but less information about the system and
the processes.

Step 2 – Select and Instantiate CSPFs After all threats
are covered by security requirements and all necessary SPFs
are instantiated, we can select and instantiate the CSPFs.

Step 2.1 – Select CSPFs As shown in Table 2, CSPFs
are chosen according to the entries in Table 1. For exam-
ple, the SPF Accountability (Table 1, column 8) can be
concretized by CSPF Accountability by Logging (Table 1,
row 16). For the SPFs Integrity-preserving Data Storage
(Table 1, column 5), the frames in rows 10, 11, and 12 can
be chosen. We choose the CSPF Integrity-preserving Data
Storage by Access Control, since we need role-based access
control, but the access control rules need not to be config-
ured at runtime.

Step 2.2 – Analyze Conflicts In this case study no
explicit privacy requirements are derived from the threats.
Let us suppose that anonymity is an issue: in such a sce-
nario, accountability and anonymity requirements cannot be
achieved at the same time (Table 1, row 16, columns 3, and
4) and a conflict between these two security requirements
arises. We can add requirements to resolve this conflict. To
ensure a certain level of privacy, only relevant access actions
should be logged (e.g., not the time the secretary needs to
write a document), the logs should be deleted automatically
after a certain time period, and the logs should be stored
confidentially. The protection of the logs can be described
by the SPF Confidential Data Storage (column 2).

Step 2.3 – Instantiate CSPF In the CSPFs, e.g., the
concrete access rules, the format, and the actions to be
logged must be described. The machine maintaining the
data is a server connected via a local network with client
computers.

Step 2.4 – Inspect Preconditions The preconditions
of the CSPF Integrity-preserving Data Storage by Access



Control (Table 1, row 10) require that the integrity of trans-
ferred data must be preserved (column 5). This can be as-
sumed to be fulfilled if the used network can only be ac-
cessed inside a secured area, where an unknown person can-
not connect to it. We assume that there is no direct write
access to data (column 6), since the data is stored in a phys-
ically protected room. Additionally, the users who want to
read data must be authenticated (column 7). Hence, we have
to instantiate the SPF Authentication.

For CSPF Accountability by Logging (Table 1, row 16),
users must be authenticated, too (column 7). The audit
logs must be protected against modification (SPF Integrity-
preserving Data Storage, column 6).

The assumptions described in this step are marked with
the word environment in Table 2, column Component, to
emphasize that the associated requirements need not to be
achieved by the software to be constructed, but by its envi-
ronment.

Step 2.5 – Inspect Related SPFs For all instantiated
CSPFs, we checked if any related frame has to be taken into
account. In this scenario, for CSPF Integrity-preserving
Data Storage by Access Control we decided, that SPF Con-
fidential Data Storage should be instantiated for the logs.

Step 1 / 2 – Additional SPFs For all relevant related SPFs
and the SPFs in the preconditions that cannot be assumed,
steps 1 and 2 are executed again.

First, we instantiate the additional SPFs (step 1) and the
selected CSPFs as shown in Table 2:
• SPF Authentication, necessary for logging and access

control, can be concretized by the CSPF Authentica-
tion (static, using secrets) (row 13, step 2.1). Again,
we assume that a secure communication channel is
used to protect against disclosure and modification to
prevent replay attacks. The secrets in the frame are in-
stantiated by passwords (step 2.3). Additionally, pass-
words are distributed by an administrator, stored con-
fidentially and protected against modification (steps
2.4). No further related frames need to be considered.
• For SPF Integrity-preserving Data Storage of logs

(column 6), we select the CSPF Integrity-preserving
Data Storage by Access Control (row 10, step 2.1),
we check if conflicts may exist (step 2.2), and we in-
stantiate the frame with the log data to be protected
(step 2.3). The preconditions and related frames are
the same as considered before (steps 2.4 and 2.5).
• The preconditions of the CSPF Integrity-preserving

Data Storage by Access Control require an integrity-
preserving transmission of the data to be stored (SPF
Integrity-preserving Data Transmission), that direct
write access to the data is not possible (SPF Integrity-
preserving Data Storage), and that users are authenti-
cated (SPF Authentication). Integrity-preserving data
transmission can be assumed to be fulfilled if the net-
work can only be accessed inside a secured area, where
an unknown person cannot connect to the network. We

can assume that no direct write access to data is possi-
ble, since the data and backups are stored in a physi-
cally protected room.

Step 3 – Specify Machine The specification is not pre-
sented in detail as it is beyond the scope of this paper.

The authentication of client and lawyer (instantiated
CSPF Authentication using unforgeable credentials) need
not be supported by the machine.

For client / lawyer communications (instantiated CSPF
Confidential Data Transmission (asymmetric), CSPF
Integrity-preserving Data Transmission (asymmetric), and
CSPF Distributing secrets (trusted path)) separate solu-
tions, such as PGP or S / MIME-certificates can be used.

All other instantiated CSPFs should be implemented by
the machine. For these subproblems, the behavior at the ex-
ternal interfaces of the machine must be described. Further-
more, we must describe the authentication functionality, the
functions to distribute the secrets for authentication, the ac-
cess control rules that are necessary for confidentiality and
integrity, and the actions to be logged (e.g., read access and
write access on all data objects for case handling with the
attributes user, date, time, and object).

Step 4 – Develop Software Architecture The architec-
ture, shown in Fig. 3 can be developed from reusable com-
ponents (see Table 2).

AuthenticationLogging

UserSession

Storage

AccessControl

uids_pwdslogs

user_data

rules_configlog+user_data+uids_pwds

user_cmds

actions

authenticateactions

actions

date_time data_access

actions

file_access

user_info

Figure 3. Partial software architecture

A component UserSession should be designed, that is
used to enforce authentication, before any other action can
be performed. For distributing authentication secrets, no
separate component is used. It should be implemented as
a part of the UserSession component and using an appro-
priate configuration of the AccessControl component: only



the administrator should be allowed to create new user ac-
counts. Creating accounts and resetting passwords should
be logged using the Logging component. The UserSession
component interface provides an interface to the users and
the administrator, that can be used to access the user’s data
after successful authentication. Also, a required interface
to the users and the administrator is used to return the re-
quested information if allowed.

Authentication with passwords for users and the admin-
istrator (CSPF Authentication (static, using secrets)) is im-
plemented in the Authentication component. This compo-
nent provides the interface authenticate, that can be used
to check if the supplied pair of user name and password is
valid. The result of the check is returned and logged using
the interface actions.

An AccessControl component is instantiated, that im-
plements the rules for access control according to the in-
stantiated CSPFs for Confidential Data Storage by Access
Control and CSPFs for Integrity-preserving Data Storage
by Access Control. The AccessControl component provides
an interface actions, which is used by the Logging compo-
nent, the UserSession component, and the Authentication
component (for reasons of better readability of the software
architecture in Fig. 3, the required and provided interfaces
actions are not connected to each other). These components
send the performed actions, combined with a user id or a
component identifier to the Logging component.

A component Logging (see also Fig. 2) is instantiated,
that implements the requirements stated in the instances
of CSPF Accountability by Logging. The Logging compo-
nent logs the actions performed by the administrator and the
users. It provides an interface actions to log actions. To cre-
ate correct time stamps, the component requires an interface
to the operating system to retrieve current time and date in-
formation. Note that the reliability of this functionality has
direct influence to the reliability of the Logging component.

A component Storage should be used, that provides an
interface file access to access a database using read , write ,
create, and delete operations. This interface is used by
the AccessControl component to store user data (user data),
user passwords (uid pwd), logs, and the rules representing
the access control configuration (rules config).

As a result of applying SEPP to the lawyer agency soft-
ware example, we have identified and analyzed in detail
several security problems. Following the dependencies of
our pattern system helped us to systematically and com-
pletely set up all the necessary subproblems and to resolve
conflicts between security requirements. Furthermore, we
selected pre-defined security software components, which
led us to a software architecture that implements the secu-
rity requirements.

The next step in the software development life-cycle is
to consider fine-grained design and implementation details.
As it is beyond the scope of this paper, these issues will not
be discussed.

6 Related Work

To elicitate security requirements, the threats to be
considered must be analyzed. Lin et al. [11] use the
ideas underlying problem frames to define so-called anti-
requirements and the corresponding abuse frames. The pur-
pose of anti-requirements and abuse frames is to analyze
security threats and derive security requirements. Hence,
abuse frames and SPFs complement each other.

Gürses et al. [4] present the MSRA (formerly known as
CREE) method for multilateral security requirements anal-
ysis. Their method concentrates on confidentiality require-
ments elicitation and employs use cases to treat functional
requirements. The MSRA method can be useful to be ap-
plied in a phase of the security requirements engineering
process that mainly precedes the application of SEPP.

Haley et al. [5] present a framework for security require-
ments engineering. It defines the notion of security require-
ments, considers security requirements in an application
context, and helps answering the question whether the sys-
tem can satisfy the security requirements. Their definitions
and ideas overlap our approach, but they do not use patterns
and they do not give concrete guidance to identify and elicit
all necessary requirements.

Popp et al. [13] apply extended use cases in the field of
security-critical system development. Use cases extended
by security information are used to develop the specifica-
tion of security-critical systems, whereas SEPP focuses on
identifying and analyzing requirements beforehand.

Security patterns [14] are applied later, in the phase of
detailed design. The relation between our CSPFs, which
still express problems, and security patterns is much the
same as the relation between problem frames and design
patterns: the frames describe problems, whereas the de-
sign/security patterns describe solutions on a fairly detailed
level of abstraction.

Moreover, there exist other promising approaches to se-
curity requirements engineering, such as the agent-oriented
secure TROPOS methodology [1, 12], and the goal-driven
KAOS approach [15], which are not pattern-based, and
which we do not discuss in detail due to lack of space.

We applied SEPP to the lawyer agency software exam-
ple treated by Fernandez et al. [2]. As a consequence, we
identify strengths, weaknesses, and possible synergies of
the two methodologies in the following.

The method of Fernandez et al. is based on use case di-
agrams that represent the functional context of a software
development problem. Activity diagrams serve to identify
threats. They link solution patterns represented by class di-
agrams and sequence diagrams to the identified threat in a
certain functional context. The class diagrams are equipped
with association classes that represent access control poli-
cies.

Using activity diagrams to identify threats is helpful to
find security requirements, and in our opinion this technique
can precede SEPP’s first step, namely instantiating SPF to



identify and represent initial security requirements. After-
wards, dependent security requirements are detected based
on our pattern system.

Compared to use case diagrams, SPF instances contain
more information about the environment and the software
to be constructed (e.g., they explicitly state data items to
be protected and potential attackers). We believe that a
comprehensive description of the environment is a key fea-
ture for high-quality security engineering. Therefore, us-
ing SPFs can be regarded as a strength of SEPP. The so-
lution patterns proposed by Fernandez et al. can be com-
pared with our CSPFs and security software components
as presented in Sects. 2 and 3. The access control policies
contained in the class diagrams are represented by the post-
conditions of CSPF instances. In summary, we believe that
SEPP can partly be combined with the methods proposed by
Fernandez et al. [2] as well as with Gürses et al.’s approach
MSRA [4].

7 Conclusions and Future Work

In this paper, we have presented a consolidated and ex-
tended variant of SEPP, a process that supports developing
secure software in a systematic way. SEPP is a pattern-
and component-driven process, which includes an extensive
security requirements engineering phase. Security require-
ments are identified, captured, and analyzed using SPF pat-
terns. Afterwards, solution approaches are determined and
described using the more detailed pattern type CSPF.

We have extended the security requirements engineering
phase by support for analyzing conflicts between different
security requirements. This is achieved by contrasting the
SPFs and CSPFs, and then identifying possible conflicts be-
tween them. We made these conflicts explicit in the form of
entries in a table, which can be consulted when applying
SEPP.

Furthermore, we have added a further development step
to SEPP that makes use of security software components.
These components are related to CSPFs, and they represent
implementations of security mechanisms. The components
implicitly lead software developers to a secure software ar-
chitecture.

In the future, we plan to elaborate more on the later
phases of software development. For example, we want to
investigate in more detail how to design a software archi-
tecture in the development process. Additionally, we plan
to provide tool support for our SEPP.

References

[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. Tropos: An agent-oriented software development
methodology. Journal of Autonomous Agents and Multi-
Agent Systems, Kluwer Academic Publishers Volume 8, Is-
sue 3:203 – 236, May 2004.

[2] E. B. Fernandez, D. L. la Red M., J. Forneron,
V. E. Uribe, and G. Rodriguez. A secure anal-
ysis pattern for handling legal cases. to be pub-
lished in: SugarLoafPLoP’2007 - 6th Latin America
Conference on Pattern Languages of Programming,
http://sugarloafplop.dsc.upe.br/wwD.zip,
2007.

[3] U. R. T. Force. OMG Unified Modeling Language: Super-
structure, August 2005. http://www.uml.org.

[4] S. F. Gürses, J. H. Jahnke, C. Obry, A. Onabajo, T. San-
ten, and M. Price. Eliciting confidentiality requirements in
practice. In CASCON ’05: Proceedings of the 2005 confer-
ence of the Centre for Advanced Studies on Collaborative
research, pages 101–116. IBM Press, 2005.

[5] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh. A
framework for security requirements engineering. In SESS
’06: Proceedings of the 2006 international workshop on
Software engineering for secure systems, pages 35–42, New
York, NY, USA, 2006. ACM Press.

[6] D. Hatebur, M. Heisel, and H. Schmidt. Security engineer-
ing using problem frames. In G. Müller, editor, Proceed-
ings of the International Conference on Emerging Trends in
Information and Communication Security (ETRICS), LNCS
3995, pages 238–253. Springer-Verlag, 2006.

[7] D. Hatebur, M. Heisel, and H. Schmidt. A pattern system
for security requirements engineering. In Proceedings of the
International Conference on Availability, Reliability and Se-
curity (AReS), pages 356–365. IEEE, 2007.

[8] D. Hatebur, M. Heisel, and H. Schmidt. A security engineer-
ing process based on patterns. In Proceedings of the Inter-
national Workshop on Secure Systems Methodologies using
Patterns (SPatterns), pages 734–738. IEEE, 2007.

[9] M. Jackson. Problem Frames. Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[10] A. Lanoix, D. Hatebur, M. Heisel, and J. Souquières. En-
hancing dependability of component-based systems. In
N. Abdennadher and F. Kordon, editors, Reliable Software
Technologies – Ada Europe 2007, LNCS 4498, pages 41–
54. Springer-Verlag, 2007.

[11] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Mof-
fett. Introducing abuse frames for analysing security re-
quirements. In Proceedings of 11th IEEE International Re-
quirements Engineering Conference (RE’03), pages 371–
372, 2003. Poster Paper.

[12] H. Mouratidis and P. Giorgini. Secure tropos: A security-
oriented extension of the tropos methodology. International
Journal of Software Engineering and Knowledge Engineer-
ing, World Scientific 17(2):285–309, 2007.

[13] G. Popp, J. Jürjens, G. Wimmel, and R. Breu. Security-
critical system development with extended use cases. In
APSEC, pages 478–487, 2003.

[14] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns: In-
tegrating Security and Systems Engineering. Wiley & Sons,
2005.

[15] A. van Lamsweerde, S. Brohez, R. De Landtsheer, and
D. Janssens. From system goals to intruder anti-goals: At-
tack generation and resolution for security requirements en-
gineering. In Proceedings of the RE’03 Workshop on Re-
quirements for High Assurance Systems (RHAS), pages 49–
56, September 2003.


