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Abstract. Problem frames are patterns for analyzing, structuring, and character-
izing software development problems. This paper presents a formal metamodel
for problem frames expressed in UML class diagrams and using the formal spec-
ification notation OCL. That metamodel clarifies the nature of the different syn-
tactical elements of problem frames, as well as the relations between them. It
provides a framework for syntactical analysis and semantic validation of newly
defined problem frames, and it prepares the ground for tool support for the prob-
lem frame approach.

1 Introduction

It is a widely accepted opinion in the software engineering community that reusing
software development knowledge helps to avoid errors and to speed up the develop-
ment of a software product. One promising attempt that enables software engineers to
systematically construct software using a body of accumulated knowledge are patterns.

Patterns have been introduced on the level of detailed object oriented design [13].
Today, patterns are defined for different software development activities. Problem Frames
[20] are patterns that classify software development problems. Architectural styles are
patterns that characterize software architectures [8]. They are also called “architectural
patterns”. Design Patterns are used for finer-grained software design, while frameworks
[11] are considered as less abstract, more specialized. Finally, idioms are low-level pat-
terns related to specific programming languages [8], and are sometimes called “code
patterns”.

It is also acknowledged that the first steps of software development are essential
for the success of a software development project, because it is important to eliminate
any source of error as early as possible. We believe that it is of particular importance
to use patterns already in the requirements analysis phase of the software development
life-cycle, as is also advocated by, e.g., Fowler [12] and Sutcliffe et al. [28, 29].

Jackson [19, 20] proposes the concept of problem frames for presenting, classifying,
and understanding software development problems. A problem frame is a characteriza-
tion of a class of problems in terms of the considered requirement, their main compo-
nents (domains), and the connections between these components (interfaces, consisting
of shared phenomena). Once a problem is successfully fitted to a problem frame, its
most important characteristics are known.
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Jackson defines five basic problem frames, as well as some variants of them. These
frames are distinguished in the number and characteristics of the involved domains.
Jackson does not claim that these frames are complete in the sense that each software
development problem can be decomposed in such a way that all derived subproblems
fit to one of his problem frames.

Several new problem frames have been developed, such as the frames presented
in [10], architectural frames (combinations of architectural styles and problem frames)
[24], a dynamic and a static information frame [21], security problem frames [15, 16,
17], frames for database-related problems [9], and HCIFrames [25, 27], which focus on
usability problems.

Currently, the notation and semantics of problem frames are not defined rigorously.
Under these circumstances, it is difficult to decide whether a new problem frame con-
tains errors or contradictions. Some problem frames cannot make sense, e.g., because
they would require users to be constrained, which contradicts their domain characteris-
tics.

In this paper, we present a formal metamodel for problem frames, which contributes
to an unambiguous comprehension of the problem frame approach. This metamodel is
expressed in a Unified Modeling Language (UML) [31] class model, and the formal
specification notation Object Constraint Language (OCL) [30]. It clarifies the nature of
the different constituents of problem frames, as well as the relations between them.

As a consequence of formalizing the syntax of problem frames and their syntactical
elements, the metamodel practically helps designing new problem frames. We equipped
the metamodel with a number of integrity conditions, that allow one to verify that a
frame is valid according to the metamodel. Furthermore, the metamodel provides a ba-
sis for tool support for the problem frame approach, and it prepares the ground for
integrating a problem analysis phase based on problem frames into software develop-
ment processes.

In the following Sect. 2, we present the problem frames proposed by Jackson [20].
In Sect. 3, we introduce our formal metamodel for the problem frame approach. In
Sect. 4, we show how tool support for the problem frame approach can be provided
using our formal metamodel, and in Sect. 5, we create and check two sample problem
frames with the tool. Section 6 discusses related work, and we conclude in Sect. 7.

2 Problem Frames

Problem frames are a means to describe software development problems. They were in-
vented by Michael Jackson [20], who describes them as follows: “A problem frame is a
kind of pattern. It defines an intuitively identifiable problem class in terms of its context
and the characteristics of its domains, interfaces and requirement.” Problem frames are
described by frame diagrams, which basically consist of rectangles, a dashed oval, and
different links between them (see frame diagram in Fig. 1). The task is to construct a
machine that improves the behavior of the environment in which it is integrated in.

Plain rectangles denote domains that already exist in the application environment.
Jackson [20, p. 83f] considers three main domain types:
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Fig. 1. Simple workpieces problem frame

Biddable domains “A biddable domain usually consists of people. The most impor-
tant characteristic of a biddable domain is that it’s physical but lacks positive pre-
dictable internal causality. That is, in most situations it’s impossible to compel a
person to initiate an event: the most that can be done is to issue instructions to be
followed.”
Biddable domains are indicated by B, and they are always given.

Causal domains “A causal domain is one whose properties include predictable causal
relationships among its causal phenomena.”
Often, causal domains are mechanical or electrical equipment. They are indicated
with a C in frame diagrams. Their actions and reactions are predictable. Thus, they
can be controlled by other domains. Causal domains can be given or designed.

Lexical domains “A lexical domain is a physical representation of data – that is, of
symbolic phenomena. It combines causal and symbolic phenomena in a special
way. The causal properties allow the data to be written and read.”
Lexical domains are indicated by X. They are used for data representation purposes.
This type of domains can be given or designed.

A rectangle with a double vertical stripe denotes the machine to be developed,
and requirements are denoted with a dashed oval. The connecting lines between do-
mains represent interfaces that consist of shared phenomena. Shared phenomena may
be events, operation calls, messages, and the like. They are observable by at least two
domains, but controlled by only one domain, as indicated by an exclamation mark. For
example, in Fig. 1 the notation U!E3 means that the phenomena in the set E3 are con-
trolled by the domain User.

A dashed line represents a requirement reference, and an arrow indicates that the re-
quirement constrains a domain. If a domain is constrained by the requirement, we must
develop a machine, which controls this domain accordingly. In Fig. 1, the Workpieces
domain is constrained, because the Editor changes it on behalf of user commands to
satisfy the required Command effects.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown which domain is in control
of the shared phenomena. Then, the problem is decomposed into subproblems. If ever
possible, the decomposition is done in such a way that the subproblems fit to given
problem frames. To fit a subproblem to a problem frame, one must instantiate its frame
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diagram, i.e., provide instances for its domains, interfaces, and requirement. The instan-
tiated frame diagram is called a problem diagram. For example, a requirement such as
“Online forms have to be provided that can be filled out by web users” can be used for
instantiating the workpieces frame of Fig. 1.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine (see [22] for details).
The specification describes the machine and is the starting point for its development.

3 A Formal Metamodel for Problem Frames

Based on Jackson’s descriptions, we have developed a formal metamodel for problem
frames. The benefits of such a metamodel are:

– Gain an unambiguous comprehension of the problem frame approach.
– Clarify the syntax of problem frames and their constituents.
– Provide a framework for syntactical analysis and validation of problem frames.

This allows one to identify erroneous problem frames.
– Support the development of new problem frames.
– Provide a basis for tool support for the problem frame approach by an Eclipse [1]

application (see Sect. 4 for details).
– Prepare the ground for integrating a problem analysis phase based on the problem

frames approach into software development processes (see [16, 17] for details).

According to Jackson, the syntactical elements of a problem frame can be divided
into several categories and subcategories. For example, a domain is either a biddable,
causal, or lexical domain. For this reason, a formal method that supports object-orienta-
tion is appropriate to formalize problem frames and their syntactical elements. We use a
UML [31] class model, and the formal specification notation OCL [30] to construct our
formal metamodel for problem frames. The combination of a UML class model and a
set of OCL expressions enables us to rapidly provide tool support for the problem frame
approach.

In the following, we present the class model in Sect. 3.1, and the set of integrity
conditions, expressed in OCL, in Sect. 3.2.

3.1 UML Class Model

In our class model, each syntactical element of a problem frame is represented as a
class. Relations between the different elements are expressed using inheritance and as-
sociations. The associations are equipped with multiplicities, which express integrity
conditions about the minimal or maximal number of occurrences of the syntactical ele-
ments in a problem frame. The association ends have names, so that OCL expressions
about the objects that participate in an association can be specified (see Sect. 3.2).

Domains have names and abbreviations, which are used to define interfaces. Hence,
the class Domain has the attributes name and abbreviation of type string. According to
Jackson, domains are either designed, given, or machine domains. These facts are
modeled by the boolean attibutes isGiven and isMachine in Fig. 2.
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Fig. 2. Inheritance structure of different domain types

Jackson also distinguishes biddable, causal, and lexical domains. Therefore, we
introduce the subclasses BiddableDomain, CausalDomain, and LexicalDomain of the
class Domain. A lexical domain is a special case of a causal domain. This kind of mod-
eling allows to add further domain types, such as display domains as introduced in
[10].

Interfaces model connections between domains. The symbol “!” with a prefixed
abbreviation of a domain name indicates that the domain controls certain phenom-
ena contained in the interface. Therefore, we introduce the class Phenomenon, and its
subclass InterfacePhenomenon in Fig. 3. Phenomena have names. Therefore, the class
Phenomenon has an attribute name of type string. Jackson [20, 14] distinguishes sym-
bolic, causal, and event phenomena. We model the different kinds of phenomena as an
enumeration type PhenomenonType.

In frame diagrams, interfaces connect domains, and they contain phenomena. There-
fore, we introduce the class Interface, which has associations to the classes Interface-
Phenomenon and Domain. Interfaces connect (connects) at least two domains ([2..*]),
and they contain (contains) at least one ([1..*]) phenomenon. Each domain is connected
by at least one ([1..*]) interface (isConnectedBy), and each phenomenon is contained in
exactly one ([1]) interface (isContainedInIf). An additional association between the class
Domain and the class InterfacePhenomenon specifies that each interface phenomenon
is controlled by (isControlledBy) exactly one ([1]) domain.

A problem frame contains a requirement that refers to certain domains via re-
quirement references. A requirement constrains at least one domain. Hence, we in-
troduce the classes Requirement, RequirementReference, and its subclass Constrain-
ingRequirementReference. Furthermore, we introduce associations between the class
Requirement and the classes RequirementReference and ConstrainingRequirementRe-
ference. The latter two classes have also associations to the class Domain. A domain
is either referred to (isReferredToByUsing) or constrained by (isConstrainedByUsing) a
requirement reference or not ([0..1]). Each requirement reference is connected to (is-
ConnectedToDomain) exactly one ([1]) domain. A requirement reference or a constrain-
ing requirement reference is connected to (isConnectedToReq) exactly one ([1]) require-
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Fig. 3. Problem frames constituents and their relations

ment. A requirement refers to a domain using (refersToUsing) a requirement reference,
and it constrains a domain using (constrainsUsing) at least one ([1..*]) constraining re-
quirement reference.

Since each (constraining) requirement reference contains phenomena, we introduce
a subclass RequirementPhenomenon of the class Phenomenon, which has an associ-
ation to the class RequirementReference. A (constraining) requirement reference con-
tains (contains) at least one ([1..*]) requirement phenomenon.

According to Jackson, a problem frame consists of domains, a requirement, inter-
faces, and requirement references. Hence, we introduce a class ProblemFrame in Fig. 4.
A problem frame consists of one machine domain and at least one additional domain
(association end domains with multiplicity [2..*]), exactly one requirement (association
end requirement with multiplicity [1]), at least one interface (association end interfaces
with multiplicity [1..*]), and at least one constraining requirement reference (association
end requirementReferences with multiplicity [1..*]).

3.2 Integrity Conditions

The class model presented in the previous Sect. 3.1 makes it possible to define integrity
conditions on problem frames and their syntactical elements, which we express in OCL.
The class model with its associated integrity conditions constitutes a formal metamodel
for the development of new problem frames, as well as for validating and analyzing
given problem frames with respect to the metamodel.
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Fig. 4. A problem frame and its constituents

OCL is part of UML; it is a notation to describe constraints on object-oriented mod-
eling artefacts such as class models. A constraint is a restriction on one or more values
of an object-oriented model. For our metamodel, we make use of invariants, which are
constraints that must always be fulfilled. Invariants are labeled with the keyword inv.

The context definition of an OCL expression specifies the model entity for which
the OCL expression is defined. In our metamodel, this is usually a class defined in the
class model depicted in Figs. 2, 3, and 4. In the following, a selection of the OCL in-
tegrity conditions are described, according to their context. The complete set of integrity
conditions can be found in Appendix A. All integrity conditions have been checked
using the Octopus OCL Tool for Precise UML Specifications [4]. The relatively high
number of integrity conditions shows that the semantic integrity of problem frames is
not trivial.

context Domain
A machine domain is always a designed domain. Therefore, a machine domain
cannot be a given domain.

inv: self.isMachine implies not self.isGiven
context BiddableDomain

Biddable domains are always given domains.
inv: self.isGiven

A biddable domain cannot be constrained.
inv: self.isConstrainedByUsing->size() = 0

context ProblemFrame
A phenomenon contained in an interface is controlled by a domain connected by
that interface.
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inv: self.isContainedInIf.connects->includes(
self.isControlledBy)

Each phenomenon contained in an interface is controlled by exactly one domain
connected by that interface.

inv: self.contains->forAll(p: InterfacePhenomenon |
self.connects->one(d: Domain |
p.isControlledBy = d))

The machine domain is connected by an interface to a problem domain.
inv: self.interfaces->exists(i: Interface |
self.domains->exists(d: Domain |
self.domains->exists(m: Domain | m.isMachine and
m.isConnectedBy->includes(i) and
d.isConnectedBy->includes(i))))

The machine domain controls phenomena contained in an interface it is connected
to.

inv: self.interfaces->exists(i: Interface |
i.connects->exists(d: Domain | d.isMachine) and
i.contains->exists(p: InterfacePhenomenon |
p.isControlledBy.isMachine))

A domain is connected by interfaces, which are part of the problem frame.
inv: self.domains->forAll(d: Domain |
self.interfaces->includesAll(d.isConnectedBy))

The names of domains must be unique.
inv: self.domains->forAll(d1: Domain |
self.domains->forAll(d2: Domain |
(d1.name = d2.name) implies (d1=d2)))

The requirement’s constraining requirement references and requirement references
are those contained in the problem frame.

inv: self.requirementReferences->includesAll(
self.requirement.constrainsUsing)

4 Tool Support

Individual problem frames can be described as instantiations of the formal metamodel
presented in Sect. 3. This formal metamodel constitutes the basis for the development
of tool support for the problem frame approach.

We currently develop an Eclipse [1] application that supports generating newly de-
fined problem frames for requirements analysis. This tool will be a rich graphical prob-
lem frame editor that allows one to draw and store problem frames, and will check the
integrity conditions specified in the metamodel. We base this application on the open-
source frameworks Eclipse Modeling Framework (EMF) [2], and Graphical Editing
Framework (GEF) [3]. As an input for these frameworks, a metamodel specification
in, e.g., XML Metadata Interchange (XMI) [6] (XML [7] storage format for UML dia-
grams) can be used. UML tools such as Papyrus UML [5] can generate these XMI files
from the models presented in Figs. 2, 3, and 4. The XMI files serve as an input for EMF
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and GEF to automatically generate tool support for the problem frames approach. Ad-
ditionally, for all integrity expressions from Appendix A, checks must be implemented
or generated.

A a proof of concept, we have used the Octopus OCL Tool for Precise UML Spec-
ifications [4]. Octopus can check the syntax of the OCL constraints according to a cor-
responding UML class model. It can also import a class model from a tool supporting
the XMI storage format. We used Octopus to check the OCL expressions presented in
Appendix A, with the class diagram presented in Sect. 3.1, and to automatically gener-
ate a tool to create and edit instances of our formal metamodel for problem frames1.
The generated tool can check whether a given problem frame is valid according to our
formal metamodel2. It also generates a user interface prototype and an XML storage
facility.

The approach of our formal metamodel and the automatic tool generation with Oc-
topus (and also EMF and GEF) is comparable to the model-driven architecture (MDA)
approach proposed by the Object Management Group (OMG). This approach is based
on the metadata architecture including the XMI specification, called the meta object
facility. A typical metamodels proposed by OMG is the UML metamodel, as it is de-
scribed in the UML superstructure [31].

5 Formalizing and Checking Individual Problem Frames

We used the generated tool to check whether a given problem frame is valid according
to our formal metamodel. With its user interface, all elements of a problem frame can
be created and connected according to its graphical representation as an instance of
the metamodel. The tool stores the instance in an XML file. In this XML file, the tool
assigns an identification name to each instance of a class3. For each attribute of a class,
the tool stores a value, and for each each navigable association end the tool stores the
reference names of the connected class instances.

We validated our formal metamodel and the generated tool by instantiating Jack-
son’s basic problem frames. The complete instance of the simple workpieces problem
frame (see Fig. 1) can be found in [18]. The tool indeed shows that the instance is
valid according to the formal metamodel, i.e., it is type correct and all OCL integrity
conditions hold.

To demonstrate that the generated tool supports detecting errors, we consider the
erroneous “problem frame” shown in Fig. 5. It is an incorrect variant of the simple
workpieces problem frame shown in Fig. 1.

Figure 6 shows the domain User defined as a designed domain. According to the
formalization of the class BiddableDomain in our metamodel, a biddable domain is
always a given domain. Therefore, the generated tool finds an error when checking this
OCL integrity condition.

1 Download: http://swe.uni-duisburg-essen.de/en/members/schmidt/pftool/index.php
2 For OCL expressions with oclIsTypeOf no code can be generated by the available version

of Octopus.
3 For better readability, we replaced the automatically assigned numbers by meaningful names

in Fig. 6.
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Fig. 5. Erroneous variant of the simple workpieces problem frame shown in Fig. 1

< i n s t a n c e i d =” id U ” c l a s s =”PF . BiddableDomain ”>
< a t t r i b u t e name=”name” v a l u e =” User ” />
< a t t r i b u t e name=” a b b r e v i a t i o n ” v a l u e =”U” />
< a t t r i b u t e name=” i s G i v e n ” v a l u e =” f a l s e ” />
< a t t r i b u t e name=” i sMach ine ” v a l u e =” f a l s e ” />
< a t t r i b u t e name=” c o n t r o l s ” i d r e f s =” i d e 3 ” />
< a t t r i b u t e name=” i sConnec tedBy ” i d r e f s =” i d i e 3 ” />
< a t t r i b u t e name=” i s C o n s t r a i n e d B y U s i n g ” i d r e f =” i d c r r ” />

< / i n s t a n c e>

Fig. 6. XML specification of the domain User of the simple workpieces problem frame shown in
Fig. 1

The attribute isConstrainedByUsing has the value id crr. According to the formal-
ization of the class BiddableDomain in our metamodel, a biddable domain is never con-
strained. Therefore, the generated tool finds a further error when checking this OCL
integrity condition.

The other parts of the erroneous “problem frame” shown in Fig. 5 are valid with
respect to our formal metamodel.

6 Related Work

Not much work on providing the problem frame approach with a formal foundation can
be found.

Lencastre et al. [23] define a metamodel for problem frames using UML. Their
metamodel considers Jackson’s whole software development approach based on context
diagrams, problem frames, and problem decomposition. In contrast to our metamodel,
it only consists of a UML class model. Hence, the OCL integrity conditions of our
metamodel are not considered in their metamodel. The approach does not qualify for a
metamodel in terms of MDA since, e.g., the class Domain has subclasses Biddable and
Given, but an object cannot belong to two classes at the same time (c.f. Fig. 5 and 11 in
[23]).

Hall et al. [14] provide a formal semantics for the problem frame approach. They
introduce a formal specification language to describe problem frames and problem di-
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agrams. As compared to our metamodel, their approach does not consider integrity
conditions.

Seater et al. [26] present a metamodel for problem frame instances. In addition to the
diagram elements formalized in our metamodel, they formalize requirements and spec-
ifications. Consequently, their integrity conditions (“wellformedness predicate”) focus
on correctly deriving specifications from requirements. In contrast, our metamodel con-
centrates on the structure of problem frames and the different domain and phenomena
types.

7 Conclusions and Perspectives

In this paper, we have presented a formal metamodel for problem frames, which con-
tains a number of integrity conditions. The metamodel with its integrity conditions con-
stitutes a framework for the development of new problem frames as well as for the
semantic validation and syntax checking of individual problem frames with respect to
the metamodel. Additionally, it contributes to an unambiguous comprehension of the
problem frame approach.

We have shown that such a metamodel with its integrity conditions can be used
to automatically generate a tool according to the model-driven architecture approach.
We used the metamodel and the generated tool to instantiate Jackson’s basic problem
frames and to check our own variations of the frames (e.g., [9]).

In the future, we intend to further elaborate our approach in the following directions:

– Apply the metamodel to context diagrams and instantiations of problems frames.
– Consider instantiations of formally defined problem frames, and use these formal

descriptions to support the decomposition of problems into subproblems and the
composition of the solutions developed for the subproblems.

– Build a more mature graphical problem frame editor based on GEF and EMF.
– Integrate the problem frame approach with object-oriented problem analysis meth-

ods and software development processes.

In summary, we believe that with this paper, we have prepared the basis for a more
rigorous understanding of problem frames, which can also contribute to further matur-
ing and enhancing the problem frame approach in practice.
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A The Complete Set of Integrity Conditions

context Domain
A machine domain is always a designed domain. Therefore, a machine domain
cannot be a given domain.

inv: self.isMachine implies not self.isGiven
A machine domain cannot be referred to by a requirement using a requirement
reference.

inv: self.isMachine implies
self.isReferredToByUsing->size() = 0

A machine domain cannot be constrained.
inv: self.isMachine implies
self.isConstrainedByUsing->size() = 0

context BiddableDomain
Biddable domains are always given domains.

inv: self.isGiven
Machine domains are always causal domains. Hence, biddable domains cannot be
machine domains.

inv: not self.isMachine
A biddable domain cannot be constrained.

inv: self.isConstrainedByUsing->size() = 0
context LexicalDomain

Lexical domains cannot be machine domains since they represent data.
inv: not self.isMachine

context Interface
Each phenomenon contained in an interface is controlled by exactly one domain
connected by that interface.

inv: self.contains->forAll(p: InterfacePhenomenon |
self.connects->one(d: Domain |
p.isControlledBy = d))

context InterfacePhenomenon
A phenomenon contained in an interface is controlled by a domain connected by
that interface.

inv: self.isContainedInIf.connects->includes(
self.isControlledBy)

context RequirementReference
Machine domains cannot be referred to by requirements (other direction of associ-
ation).
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inv: not(self.isConnectedToDomain.isMachine)
context ConstrainingRequirementReference

A machine domain cannot be constrained.
inv: not (self.isConnectedToDomain.isMachine)

A biddable domain cannot be constrained (other direction of association).
inv: not(self.isConnectedToDomain
->oclIsTypeOf(BiddableDomain))

context ProblemFrame
A problem frame has exactly one machine domain.

inv: self.domains->one (d: Domain | d.isMachine)
A phenomenon contained in an interface is controlled by a domain connected by
that interface.

inv: self.isContainedInIf.connects->includes(
self.isControlledBy)

The machine domain is connected by an interface to a problem domain.
inv: self.interfaces->exists(i: Interface |
self.domains->exists(d: Domain |
self.domains->exists(m: Domain | m.isMachine and
m.isConnectedBy->includes(i) and
d.isConnectedBy->includes(i))))

The machine domain controls phenomena contained in an interface it is connected
to.

inv: self.interfaces->exists(i: Interface |
i.connects->exists(d: Domain |
d.isMachine) and
i.contains->exists(p: InterfacePhenomenon |
p.isControlledBy.isMachine))

Domains are connected by an interface to another problem domain.
inv: self.domains->forAll(d: Domain |
self.interfaces->exists(i: Interface |
d.isConnectedBy->includes(i)))

A domain can only control phenomena contained in those interfaces that are con-
nected to it.

inv: self.domains->forAll(d: Domain |
d.controls->forAll(p: InterfacePhenomenon |
d.isConnectedBy->exists(i: Interface |
i.contains->includes(p))))

A domain is connected by interfaces, which are part of the problem frame.
inv: self.domains->forAll(d: Domain |
self.interfaces->includesAll(d.isConnectedBy))

A domain can be constrained by constraining requirement references, which are
part of the problem frame.

inv: self.domains->forAll(d: Domain |
not d.isMachine implies self.requirementReferences
->includes(d.isConstrainedByUsing)
or d.isConstrainedByUsing->size()=0)
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A domain can be referred to by requirement references, which are part of the prob-
lem frame.

inv: self.domains->forAll(d: Domain |
not d.isMachine implies self.requirementReferences
->includes(d.isReferredToByUsing)
or d.isReferredToByUsing->size()=0)

The names of domains must be unique.
inv: self.domains->forAll(d1: Domain |
self.domains->forAll(d2: Domain |
(d1.name = d2.name) implies (d1=d2)))

The abbreviations of domains must be unique.
inv: self.domains->forAll(d1: Domain |
self.domains->forAll(d2: Domain |
(d1.abbreviation = d2.abbreviation)
implies (d1=d2)))

The names of problem domains and the phenomena names must be disjoint.
inv: self.domains->forAll(d: Domain |
self.interfaces->forAll(
i: Interface | i.contains->forAll(
p: InterfacePhenomenon | d.name <> p.name)))

Each interface is connected to a domain contained in the problem frame.
inv: self.interfaces->forAll(i: Interface |
self.domains->includesAll(i.connects))

Phenomena contained in an interface are controlled by exactly one domain that is
contained in the problem frame and connected by the interface at hand.

inv: self.interfaces->forAll(i: Interface |
i.contains->forAll(p: InterfacePhenomenon |
self.domains->one(d: Domain |
d.controls->includes(p) and
i.connects->includes(d))))

The requirement’s constraining requirement references and requirement references
are those contained in the problem frame.

inv: self.requirementReferences->includesAll(
self.requirement.constrainsUsing)

The requirement references are connected to the requirement of the problem frame
(both directions of association).

inv: self.requirement.refersToUsing =
self.requirementReferences

inv: self.requirementReferences->forAll(
rr: RequirementReference |
rr.isConnectedToReq = self.requirement)

The constraining requirement references and requirement references are connected
to the domains of the problem frame.

inv: self.requirementReferences->forAll(
rr: RequirementReference |
self.domains->includes(rr.isConnectedToDomain))


