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Abstract. We present an approach to security requirements engineer-
ing, which makes use of special kinds of problem frames that serve to
structure, characterize, analyze, and solve software development prob-
lems in the area of software and system security.
In this paper, we focus on confidentiality problems. We enhance previ-
ously published work by formal behavioral frame descriptions, which en-
able software engineers to unambiguously specify security requirements.
Consequently, software engineers can prove that the envisaged solutions
provide functional correctness and that the solutions fulfill the specified
security requirements.

1 Introduction

As a consequence of an increasing demand for security, software engineers are
not only confronted with functional requirements, but also with security require-
ments, although they are not experts in security engineering. In the early phases
of software development, functional as well as security requirements have to be
elicited and analyzed. This task alone is difficult enough, but the software engi-
neers are then faced with realizing the requirements. Clearly, they need methods
and techniques that help them to elicit, analyze, specify and finally realize secu-
rity requirements in a feasible and correct way.

In earlier publications (cf. [4, 5, 6, 7]), we introduced a security engineering
process that focuses on the early phases of software development. The basic
idea is to make use of special patterns defined for structuring, characterizing,
and analyzing problems that occur frequently in security engineering. Similar
patterns for functional requirements have been proposed by Jackson [11]. They
are called problem frames. Accordingly, our patterns are named security problem
frames. Furthermore, for each of these frames, we define a set of concretized
security problem frames that take into account generic security mechanisms to
prepare the ground for solving a given security problem.

In this paper, we concentrate on the (concretized) security problem frames
that deal with confidentiality. We present the following enhancements of our
security requirements engineering approach:

– We underlay the (concretized) security problem frames with a formal behav-
ior description to gain an unambiguous comprehension of the frames, and
to clarify their semantics.



– As a prerequisite for software development based on stepwise refinement,
we prove that the step from security problem frames to concretized security
problem frames is a functionally correct refinement, which preserves the
confidentiality requirement.

– We provide a point of contact to the formal probabilistic (and possibilis-
tic) security requirement descriptions by Santen [18]. This allows software
engineers to express security requirements in a well-defined way.

Furthermore, the work in this paper constitutes a basis to analyze the instan-
tiation process of the (concretized) security problem frames and to investigate
necessary applicability conditions for the frames.

The bottom line of these enhancements is a security engineering approach
that focuses on the early phases of secure software development. Furthermore,
it yields a formal specification of the software to be built, which constitutes a
starting point for software design and implementation.

In the following, we first present Jackson’s problem frames as well as security
problem frames and concretized security problem frames in Sects. 2 and 3. In
Sect. 4, we briefly introduce the formal specification language CSP (Communi-
cating Sequential Processes) [9], which we subsequently use to create formal be-
havior descriptions of (concretized) security problem frames for confidential data
transmission (using encryption). Furthermore, we analyze these formal models
with respect to confidentiality-preserving refinement in Sect. 5. Section 6 dis-
cusses related work, and the paper closes with a summary and perspectives in
Sect. 7.

2 Problem Frames

Problem frames are a means to analyze and classify software development prob-
lems. Jackson [11] describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its con-
text and the characteristics of its domains, interfaces and requirement.” Problem
frames are described by frame diagrams, which basically consist of rectangles and
links between these (see frame diagrams in Figs. 1 and 2). The task is to con-
struct a machine that improves the behavior of the environment it is integrated
in.

Plain rectangles denote domains (that already exist), a rectangle with a
single vertical stripe denotes a designed domain physically representing some
information, and a rectangle with a double vertical stripe denotes the machine
to be developed. Requirements are denoted with a dashed oval. The connecting
lines represent interfaces that consist of shared phenomena. Shared phenomena
may be events, operation calls, messages, and the like. They are observable by
at least two domains, but controlled by only one domain. For example, if a
user types a password to log into an IT-system, this is a phenomenon shared
by the user and the system, which is controlled by the user. A dashed line
represents a requirements reference, and the arrow shows that it is a constraining
reference. Furthermore, Jackson distinguishes causal domains that comply with
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Fig. 1. Security problem frame for confidential data transmission

some physical laws, lexical domains that are data representations, and biddable
domains that usually are people.

In the frame diagram depicted in Fig. 1, a marker “X” indicates a lexical
domain, “B” indicates a biddable domain, and “C” indicates a causal domain.
The notation “SM!E1” means that the phenomena of interface E1 are controlled
by the machine domain Sender machine.

Problem frames greatly support developers in analyzing problems to be
solved. They show what domains have to be considered, and what knowledge
must be described and reasoned about when analyzing the problem in depth.
Developers must elicit, examine, and describe the relevant properties of each
domain. These descriptions form the domain knowledge.

The domain knowledge consists of assumptions and facts. Assumptions are
conditions that are needed, so that the requirements are realizable. Usually,
they describe required user behavior. For example, it must be assumed that a
user ensures not to be observed by a malicious user when entering a password.
Facts describe fixed properties of the problem environment regardless of how the
machine is built.

Requirements describe the environment, the way it should be, after the ma-
chine is integrated. In contrast to the requirements, the specification of the ma-
chine gives an answer to the question: “How should the machine act, so that
the system, i.e., the machine together with the environment, fulfills the require-
ments?” Specifications are descriptions that are sufficient for building the ma-
chine. They are implementable requirements.

3 (Concretized) Security Problem Frames

To meet the special demands of software development problems occurring in the
area of security engineering, we introduced security problem frames (SPF) [4, 5].
SPFs are a special kind of problem frames, which consider security requirements.
The SPFs we have developed strictly refer to the problems concerning security.
They do not anticipate a solution. For example, we may require the confidential



transmission of data without mentioning encryption, which is a means to achieve
confidentiality.

Solving a security problem is achieved by applying generic security mecha-
nisms (e.g., encryption to keep data confidential), thereby transforming security
requirements into concretized security requirements. The generic security mech-
anisms are represented by concretized security problem frames (CSPF). The
benefit of considering security requirements without reference to potential so-
lutions is the clear separation of problems from their solutions, which leads to
a better understanding of the problems and enhances the re-usability of the
problem descriptions, since they are independent of solution technologies.
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Fig. 2. Concretized security problem frame for confidential data transmission using
encryption

Figure 1 shows the frame diagram of the SPF for confidential data transmis-
sion. The domain Sent data denotes the data that is sent by a sender, represented
by the machine domain Sender machine. Analogously, the domain Received data de-
notes the data that is received by the domain Receiver machine. The data is trans-
mitted over some network, which is represented by the domain Communication

medium. Informally speaking, the sender machine generates the transmitted data
from the sent data, and the receiver machine generates the received data from
the communication medium. In this scenario, a potential attacker represented
by the domain Malicious subject can eavesdrop on the Communication medium. The
informal security requirement SR is described as follows:

Malicious subject should not be able to infer Sent data and Received data

except for their length by eavesdropping on Communication medium.

One of the CSPFs for confidential data transmission considers (symmetric
and asymmetric) encryption. Its frame diagram is shown in Fig. 2. In transform-
ing the security requirement for confidential data transmission into a concretized



security requirement CSR, the domains Secret1 and Secret2 are introduced for the
encryption mechanism. The informal concretized security requirement CSR is
described as follows:

Malicious subject should not be able to infer Sent data and Received data ex-
cept for their length without Secret1 and Secret2 by eavesdropping on Com-

munication medium. Malicious subject should not be able to obtain Secret1
and Secret2.

In the subsequent Sects. 4 and 5, we first equip the frame diagrams of the
(C)SPFs depicted in Figs. 1 and 2 with formal behavior descriptions, and second
we analyze these formal descriptions with respect to confidentiality-preserving
refinement.

4 Formal Foundation of (C)SPFs

The software development principle of stepwise refinement is popular in soft-
ware engineering, and is also well supported by formal methods. When per-
forming stepwise refinement, a software engineer develops software by creating
intermediate levels of abstraction. Starting with the requirements, an abstract
specification is constructed, which is refined by a more concrete implementation.
Then, the implementation must be verified against the specification, and fur-
ther refinement steps are accomplished until the desired level of abstraction is
achieved.

Refinement is traditionally either data-refinement or behavior-refinement.
Since the (C)SPFs deal with interfaces and communicating domains rather than
with states, we decided to describe them using CSP (Communicating Sequential
Processes) [9]. CSP is a model-based formal method to describe parallel pro-
cesses that communicate synchronously via message passing. Furthermore, with
the model-checker FDR2 (Failure-Divergence Refinement) [14] sophisticated tool
support is available for CSP.

In Sect. 4.1, we present a general procedure to create a formal CSP model
for a given (C)SPF. In Sect. 4.2, we apply the procedure described in Sect. 4.1
to create CSP models for the (C)SPFs shown in Figs. 1 and 2. Furthermore, we
formalize the (concretized) security requirements of the (C)SPFs based on the
functional CSP models in Sect. 4.3.

In Sect. 5, we show that the CSPF model in Fig. 7 is a refinement of the
SPF model in Fig. 5, and we include the confidentiality requirements presented
in Sect. 4.3 in our analysis in order to show a confidentiality-preserving refine-
ment (CPR). Figure 3 describes that CPR is not only of interest on the pattern
level, but also on the instance level. It is desirable that once we have shown
the functional and confidentiality-preserving refinements on the pattern level,
they also apply (conditionally or not) to the instance level. We call the latter
confidentiality-preserving instantiation.

Applying CSP and stepwise refinement to the (C)SPF approach has several
benefits:
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– Enable a developer to unambiguously express security requirements captured
by (C)SPFs.

– Since problem frames and (C)SPFs as such only provide a static view of a
system 1, we obtain an understanding of the dynamic aspects of (C)SPFs.

– Allow one to verify that the functional and the security requirements of a
SPF are correctly implemented by an associated CSPF, i.e., that the func-
tionality and the security requirement are preserved.

– Verification is tool-supported by the model-checker FDR2.
– The CSP models provide a point of contact to the formal probabilistic (and

possibilistic) security requirement descriptions by Santen [18].

Note that the enhancements described in this paper are not restricted to
(C)SPFs concerning confidentiality. In fact, also frames concerning integrity and
authentication problems can be translated into CSP models to formally express
the security requirements they capture.

4.1 Formal (C)SPF Models in CSP

We make use of the CSP ASCII notation named CSPM since this is a prerequisite
for formal verification using the model-checker FDR2.

Using CSPM notation, we define processes that interact only by communi-
cating. Communication takes the form of visible events or actions. A sequence
of events produced by a process is called a trace. The set of all traces that can
be produced by a process P are denoted traces(P). Let a be an action and P be
a process; then a− > P is the process that performs a and behaves like P after-
wards. This is called prefixing. A process can have a name, e.g., Q = a− > P .
Recursion makes it possible to repeat processes and to construct processes that
go on indefinitely, e.g., Q = a− > Q .

We can make use of input and output data: the expression in?x binds the
identifier x to whatever value is chosen by the environment, where x ranges
over the type of channel in. The expression out !y binds an output action to the
identifier y , where y ranges over the type of channel out . The variables x and y

1 A formal metamodel covering the static nature of problem frames is already devel-
oped (cf. [8]).



can then be used in the process following the prefix. By convention, ? denotes
input data and ! denotes output data.

A process acts in a nondeterministic way when its behavior is unpredictable
because it is allowed to make internal decisions that affect its behavior as ob-
served from outside. The replicated internal choice operator |∼| models these
internal decisions: let P be a process and X a finite and non-empty data type,
then |∼| a : X • P(a) behaves according to the selected a. This operator gives
the environment no control over which data item is chosen. In contrast, the repli-
cated external choice operator [] models external decisions: let P be a process
and X a non-empty data type, then [] a : X • P(a) behaves according to the a
selected by the environment.

To formalize a given (C)SPF, we describe each of its domains as a recursive
CSP process. The interfaces and the control direction of the shared phenomena
(control flow) of a domain are translated into CSP channels as well as input and
output events. For lexical shared phenomena, we define data types and declare
the corresponding channels to be of one of these data types.

Note that when using a model-checker such as FDR2 to analyze real-world
problems, we have to address the state explosion problem. A common approach
to keep the model-checking effort manageable is to simplify the system to be
analyzed. For that reason, we usually must define simplified data types.

We describe a (C)SPF as a CSP process consisting of the CSP processes
of all of its domains. The processes are combined using synchronized parallel
communication denoted by [| |]. The synchronization is accomplished over the
channels modelling the interfaces that connect the domains.

The described procedure can be applied to express any (C)SPF as a formal
CSP model.

4.2 CSP Models of (C)SPFs Confidential Data Transmission (using
Encryption)

As examples, we present in Figs. 5 and 7 the CSP models of the (C)SPFs confi-
dential data transmission (using encryption) shown in Figs. 1 and 2.

-- Data type definitions

datatype Plaintext = p1 | p2 | p3 | p4

datatype Length = short | long

-- Channel declarations

channel SD_Y1, RM_Y2, SM_E1_S, CM_C1_S: Plaintext

channel CM_monitor_S : Length

-- Function definition

f(p) = if p==p1 or p==p2 then short else long

Fig. 4. Type and function definitions as well as channel declarations for the CSP model
in Fig. 5



Figure 4 shows type and function definitions as well as channel declarations
for the CSP model in Fig. 5. We define a simple data type named Plaintext
with four values p1, p2, p3, p4. Then, we declare the channels SD Y 1, RM Y 2,
SM E1 S , and CM C 1 S (see Fig. 1) to be of this data type, i.e., all events
communicated over these channels are p1, p2, p3, or p4.

We represent the interface between the Malicious subject domain and the Com-

munication medium domain by a channel CM monitor S of the data type Length.
The data items leaked over this channel are defined by a leakage function f . As
an example, the leaked data items are short and long , and they correspond to the
lengths of the plaintexts sent over the channels of the process CM monitor S
(see definition of function f in Fig. 4).

-- Process for domain Sent data

SD_S = |~| pt : Plaintext @ SD_Y1!pt -> SD_S

-- Process for domain Sender machine

SM_S = SD_Y1?pt -> SM_E1_S!pt -> SM_S

-- Process for domain Communication medium

CM_S = SM_E1_S?pt -> CM_monitor_S!f(pt) -> CM_C1_S!pt -> CM_S

-- Process for domain Malicious subject

MS_S = CM_monitor_S?l -> MS_S

-- Process for domain Receiver machine

RM_S = CM_C1_S?pt -> RM_Y2!pt -> RM_S

-- Process for domain Received data

RD_S = RM_Y2?pt -> RD_S

-- Process for SPF Confidential Data Transmission

SPF_CONF = ((((SD_S [| {|SD_Y1|} |] SM_S)

[| {|SM_E1_S|} |] CM_S) [| {|CM_monitor_S|} |] MS_S)

[| {|CM_C1_S|} |] RM_S) [| {|RM_Y2|} |] RD_S

Fig. 5. CSP model of SPF depicted in Fig. 1

We describe each domain of the SPF in Fig. 1 as a recursive CSP process, e.g.,
the process SM S in Fig. 5 is a formal representation of the domain Sender ma-

chine of the SPF confidential data transmission. The process SD S in Fig. 5 offers
a data item pt that might be internally processed (expressed using the replicated
internal choice operator) to the environment using the channel SD Y 1. Then,
the process SM S begins with reading in this data item pt over channel SD Y 1,
and pt might be passed over to the environment using the channel SM E1 S .

We specify the SPF in Fig. 1 as a process SPF CONF in Fig. 5 that combines
all formalized domains of the SPF confidential data transmission. For example,
the process SM S synchronizes over the channel SD Y 1 with the process SD S ,



or, informally speaking, the domain Sender machine reads data from the domain
Sent data.

-- Data type definitions

datatype Ciphertext = c1 | c2 | c3 | c4

datatype Secret = s1 | s2 | s3 | s4

-- Channel declaration

channel S1_Y3, S2_Y4 : Secret

channel SM_E1_I, CM_C1_I : Ciphertext.Secret

channel CM_monitor_I : Ciphertext.Length

-- Function definition

encr(p1,s1) = c1 encr(p1,s2) = c2 encr(p1,s3) = c1 encr(p1,s4) = c2

encr(p2,s3) = c2 encr(p2,s4) = c1 encr(p2,s1) = c2 encr(p2,s2) = c1

encr(p3,s1) = c3 encr(p3,s2) = c4 encr(p3,s3) = c3 encr(p3,s4) = c4

encr(p4,s3) = c4 encr(p4,s4) = c3 encr(p4,s1) = c4 encr(p4,s2) = c3

decr(c1,s1) = p1 decr(c1,s2) = p2 decr(c1,s3) = p1 decr(c1,s4) = p2

decr(c2,s1) = p2 decr(c2,s2) = p1 decr(c2,s3) = p2 decr(c2,s4) = p1

decr(c3,s1) = p3 decr(c3,s2) = p4 decr(c3,s3) = p3 decr(c3,s4) = p4

decr(c4,s1) = p4 decr(c4,s2) = p3 decr(c4,s3) = p4 decr(c4,s4) = p3

Fig. 6. Type and function definitions as well as channel declarations for the CSP model
in Fig. 7

Figure 6 shows type and function definitions as well as channel declarations
for the CSP model in Fig. 7. We introduce data types Secret and Ciphertext ,
and the functions encr and decr in Fig. 6 to model that encryption is used in
the CSPF confidential data transmission using encryption. The functions encr
and decr model a length-preserving cryptographic mechanism. Furthermore, we
declare the channels S1 Y 3 and S1 Y 4 to be of type Secret and the chan-
nels SM E1 I and CM C 1 I to be of the composed type Ciphertext .Secret .
The role of the Malicious subject’s monitoring channel has changed: the channel
CM monitor I not only leaks the lengths of the transferred data items to the
environment, but also the complete ciphertexts. For that reason, the channel
CM monitor I is of the composed type Ciphertext .Length.

We introduce two new processes S1 I (s) and S2 I (t) in the CSP model in
Fig. 7. They stand for the domains Secret1 and Secret2 of the CSPF confidential
data transmission using encryption. Both processes are equipped with parame-
ters that represent the secrets chosen by the environment. The process SM I
corresponds to the process SM S of the CSP model in Fig. 5, and is extended
by reading in a secret s over the channel S1 Y 3. Proceeding with the events of
the process SM I , the function encr is applied to a plaintext pt using a secret s,
and the result as well as the secret s is passed over to CM I using the channel
SM E1 I . Afterwards, the ciphertext ct as well as the secret s are passed over
to the environment using the channel CM C 1 I . In a similar way, the function



-- Process for domain Sent data

SD_I = |~| pt : Plaintext @ SD_Y1!pt -> SD_I

-- Process for domain Secret_1

S1_I(s) = S1_Y3!s -> S1_I(s)

-- Process for domain Sender machine

SM_I = SD_Y1?pt -> S1_Y3?s -> SM_E1_I!encr(pt,s).s -> SM_I

-- Process for domain Communication medium

CM_I = SM_E1_I?ct.s -> CM_monitor_I!ct.f(decr(ct,s))

-> CM_C1_I!ct.s -> CM_I

-- Process for domain Malicious subject

MS_I = CM_monitor_I?ct.l -> MS_I

-- Process for domain Secret_2

S2_I(t) = S2_Y4!t -> S2_I(t)

-- Process for domain Receiver machine

RM_I = CM_C1_I?ct.s -> S2_Y4?t -> RM_Y2!decr(ct,t) -> RM_I

-- Process for domain Received data

RD_I = RM_Y2?pt -> RD_I

-- Process for CSPF Confidential Data Transmission using Encryption

CSPF_CONF_ENCRYPTION(s, t) = ((((

(SD_I [| {|SD_Y1|} |] SM_I) [| {|S1_Y3|} |] S1_I(s))

[| {|SM_E1_I|} |] CM_I) [| {|CM_monitor_I|} |] MS_I)

[| {|CM_C1_I|} |] (RM_I [| {|S2_Y4|} |] S2_I(t)))

[| {|RM_Y2|} |] RD_I

-- initialization: choosing secrets

INIT_CSPF_CONF_ENCRYPTION =

([] x : Secret, y : Secret, x == y @ CSPF_CONF_ENCRYPTION(x, y))

Fig. 7. CSP model of CSPF depicted in Fig. 2

decr is used when receiving encrypted data (see process RM I ). The process
MS I corresponds to the process MS S of the CSP model in Fig. 5, and is
changed to be able to receive the ciphertexts and their lengths over channel
CM monitor I .

We specify the CSPF in Fig. 2 as a process CSPF CONF ENCRYPTION
(s, t) in Fig. 7 that combines all formalized domains of the CSPF confidential
data transmission using encryption.

The parameters of the processes S1 I (s) and S2 I (t) provide a point of
contact to the (C)SPFs Distributing Secrets [5], which consider the problem to
communicate matching secrets to those subjects who are privileged to receive



them (cf. [4]). Since no CSPF Distributing Secrets is considered in this paper, we
simulate the mechanism using the replicated external choice operator to define
the process INIT CSPF CONF ENCRYPTION . Hence, the secrets are chosen
by the environment, and as an example for modelling a symmetric encryption
mechanism, the constraint x == y requires both secrets to be equal.

Using FDR2, we successfully verified that the CSP models in Figs. 5 and 7
are deadlock-free and livelock-free.

4.3 Formal Description of Confidentiality Requirements

Confidentiality requirements can be expressed as information flow properties of
two flavors:

possibilistic based on the fact that an IT system has a system behavior, which
produces observations visible to the environment, there must exist at least
one alternative possible system behavior that produces the same observation.

probabilistic stochastic system behavior is taken into account.

In this section, we consider possibilistic information flow properties, and we
apply the framework for the specification of confidentiality requirements by San-
ten [18] to capture the confidentiality requirement of the (C)SPF confidential
data transmission (using encryption).

In general, we call the formal description of a confidentiality requirement a
confidentiality property (cf. Definition 9 in [18]). Since confidentiality properties
are predicates on sets of traces, they cannot be modelled in CSP, and thus
cannot be verified using FDR2. Nevertheless, we can specify a confidentiality
property “on paper” and prove that a given machine and environment satisfy
the property.

There does not exist the confidentiality property that allows us to express
every (informal) confidentiality requirement. Instead, an adequate confidentiality
property depends on the confidentiality requirement that it formalizes (cf. [15]
for a comprehensive overview of possibilistic information flow properties).

The concept of indistinguishable traces (cf. [18, p. 223]) is the foundation
for defining confidentiality properties. Given a set of channels W , two traces s,
t ∈ traces(P) of a process P are indistinguishable by W (denoted s ≡W t) if
their projections to W are equal: s ≡W t ⇔ s � W = t � W , where s � W is the
projection of the trace s to the sequence of events on W . The indistinguishability
class J P,k

W (o) contains the traces of P with a length of at most k that produce
the observation o on W .

Applied to the CSP models presented in Sect. 4.2 this means that any distinc-
tion (e.g., data item length is short or long) the malicious subject can make about
the internal communication of the system (e.g., sending different plaintexts and
ciphertexts) based on the observations on CM monitor S and CM monitor I
is information revealed by the system. Conversely, any communication that can-
not be distinguished by observing CM monitor S and CM monitor I is con-
cealed by the system. We can determine two indistinguishability classes, one
that contains those traces that produce the observation short on the monitoring



channel, and another one that contains those traces that produce the observation
long on the monitoring channel.

An adversary model (cf. [18, p. 222]) is a system model that consists of the
machine to be developed, the honest user environment, the adversary enviro-
ment, and their interfaces. The CSP models presented in Sect. 4.2 constitute
valid adversary models.

As defined by Santen (cf. Definition 11 in [18]), a mask M for an ad-
versary model is a set of subsets of the traces over the alphabets of the pro-
cesses modelling the machine to be developed, the honest user environment,
and the adversary enviroment such that the members of each set are indistin-
guishable by observing the monitoring channel of the adversary enviroment W :
∀M :M; t1, t2 : M • t1 ≡W t2.

If Malicious subject observes the single event CM monitor S .l (where l ∈
Length), then s/he knows that exactly one data transfer has taken place. All
traces of the form

t0(pt) =

{
〈SM E1 S .pt , CM monitor S .short〉 if pt ∈ {p1, p2},
〈SM E1 S .pt , CM monitor S .long〉 else,

where pt ∈ Plaintext , produce the observation CM monitor S .l for Malicious

subject. According to the informal confidentiality requirement as it has been
stated in Sect. 3, this observation should not allow Malicious subject to infer the
transferred plaintext.

Note: the leakage function f must not be injective. If the function f were
injective, i.e., f assigns exactly one plaintext to each length, the confidentiality
requirement could not be achieved.

A maskM0 supporting the confidentiality requirement needs to require that
for a given length l all variations of plaintexts pt in the parameter list of the
trace t0 are possible causes of the observation CM monitor S .l . Therefore, the
sets M0 = {t0(p1), t0(p2)} and M1 = {t0(p3), t0(p4)} should be members ofM0.

If the traces in a set M ∈ M are indistinguishable by observing the moni-
toring channel, then the differences between these traces are kept confidential.
This confidentiality property is named concealed behavior (cf. [18, p. 228]). It
is formalized based on a set inclusion M ⊆ J QE ,k

W (o), where the process QE is
a variant (i.e., a purely deterministic process, cf. [18, p. 228]) of the adversary
model. It is required that members of M are either completely contained in an
indistinguishability class, or not at all. One says that the set of indistinguisha-
bility classes I covers M.

In general, a given adversary model satisfies a confidentiality property, which
is defined based on a basic confidentiality property (cf. [18, p. 225]), if there exists
a probabilistic deterministic realization of a machine that satisfies the basic
confidentiality property in all admissible environments. In the case of concealed
behavior, the question is if there is an adversary model that covers a given mask.

To show that the adversary model represented by the CSP model in Fig. 5
conceals the mask M0, a deterministic machine realization must be found such
that its composition with all realizations of the environment covers M0.



We choose the implementation of the CSP model in Fig. 5 that resolves the
nondeterministic choice of the process SM S in Fig. 5 by a probabilistic choice
with equal probabilities for all alternatives.

The admissible environments consist of realizations that deterministically
produce traces according to the pattern t0(pt), where pt ∈ Plaintext , i.e., data
transmissions from Sender machine to Receiver machine.

The members M0 and M1 of M0 are covered by the indistinguishability
classes of all resulting variants of SPF CONF , because the chosen machine
realization does not exclude any of the traces t0(pt), where pt ∈ Plaintext .

In summary, we formally described the (C)SPFs confidential data transmis-
sion (using encryption) by CSP models. Furthermore, we introduced a formal
description of a sample confidentiality requirement. The presented approach is
not limited to express an informal confidentiality requirement only by the con-
fidentiality property concealed behavior. In contrast, other confidentiality prop-
erties (e.g., ensured entropy [18, p. 229]) can be used. In the next sections, we
verify that the CSPF model is a correct refinement of the SPF model, and that
the confidentiality requirement is preserved under refinement.

5 Confidentiality-Preserving Refinement

Refinement is the transformation of an abstract specification into a concrete
specification (implementation). CSP supports three types of process refinements:

Trace refinement A process Q trace-refines a process P , if all the possible
sequences of communications, which Q can perform, are also possible in P .

Failure refinement Trace refinement extended by consideration of deadlocks.
Failure-divergence refinement Failure refinement extended by consideration

of livelocks.

We first prove on a functional level that the CSPF confidential data transmis-
sion using encryption failure-divergence refines the SPF confidential data trans-
mission (Sect. 5.1). Second, we show that the confidentiality requirement is pre-
served in the CSPF confidential data transmission using encryption (Sect. 5.2).

5.1 (C)SPF Functional Refinement

To show that a CSPF refines a SPF, we make use of the failure-divergence
refinement. Since all structural elements of a SPF are preserved in an associated
CSPF, we can show a failure-divergence refinement after we reduce the structural
additions of the CSPF to the SPF structure:

– We hide events that can only be communicated in the CSPF model, i.e., all
events communicated over S1 Y 3 and S2 Y 4.

– We map those events that have a more concrete structure in the CSPF model
to events that are compatible with events of the SPF model, e.g., events
passed over SM E1 I are substituted by events passed over SM E1 S .
This mapping constitutes a data refinement.



– The data refinement is characterized by the fact that a plaintext is refined
by a pair consisting of a ciphertext and a secret. In the implementation,
two such pairs are indistinguishable if the ciphertexts are equal, because the
malicious subject can observe the ciphertexts and their lengths using channel
CM monitor I .

We construct a CSP process ABS CSPF CONF ENCRYPTION using re-
lational renaming [[ < − ]] and hiding \ (the corresponding CSP artifacts are
not shown in this paper because of space limitations). This process failure-
divergence refines the CSP process SPF CONF , which we successfully verified
using FDR22. This kind of refinement is called behavior refinement of adversary
models (cf. [18, p. 232]).

5.2 (C)SPF Refinement of Confidentiality Requirements

After we have shown that the CSPF model in Fig. 7 is a functionally correct
refinement of the SPF model in Fig. 5, we include the confidentiality requirement
presented in Sect. 4.3 in our analysis in order to show that it is a confidentiality-
preserving refinement.

In the CSP model of the CSPF confidential data transmission using encryp-
tion depicted in Fig. 7, the monitoring channel CM monitor I has changed
compared to its specification CM monitor S . This harbors the danger that
leaks are introduced in the implementation through stepwise refinement.

To show that the confidentiality property concealed behavior, i.e., that the
CSP model of the SPF confidential data transmission in Fig. 5 conceals M0, is
preserved (and no further leaks are introduced), we must show that a similar
property applies for the CSP model of the CSPF confidential data transmission
using encryption in Fig. 7. Figure 8 informally describes the approach.

short ciphertexts
(CSPF)

short plaintexts
(SPF)

CSPF
CM_monitor_I

SPF
CM_monitor_S

p2

p1

(c1,s3)

(c2, s1)
(c2,s3)

(c2,s4)

(c1,s2)

(c1,s4)

(c1, s1)

(c2,s2)

encr

Fig. 8. Concretization and indistinguishability

Let p1 and p2 be indistinguishable plaintexts with respect to the chan-
nel CM monitor S and the SPF model, i.e., p1 ≡SPF

CM monitor S p2. Accord-
2 FDR2 has to check 3.732.737 states with 10.323.200 transitions, which takes ∼ 3

minutes on a dual-core machine with 2 × 2 GHz and 2GB RAM.



ing to the function encr , the plaintext p1 is represented by the pairs (c1, s1),
(c1, s3), (c2, s2), and (c2, s4), and the plaintext p2 is represented by the pairs
(c1, s2), (c1, s4), (c2, s1), and (c2, s3). Thereby, the pairs containing c1 as well
as the pairs containing c2 are indistinguishable with respect to the channel
CM monitor I and the CSPF model. Similar facts apply to the long plaintexts
and ciphertexts.

In the concrete CSPF model, all traces of the form

〈SM E1 I .ct .s, CM monitor I .ct .l , CM C 1 I .ct .s〉

where ct ∈ Ciphertext , and s ∈ Secret produce the observation CM monitor I .ct
for Malicious subject. In Sect. 5.1, the behavior refinement changed the monitoring
channel and refined the data communicated by the processes. Since the confiden-
tiality property concealed behavior refers to both, the monitoring channel and
the data, we must relate the concrete monitoring channel and the data back to
the abstract ones originally referred to by the confidentiality property. Applied
to concealed behavior, this general concept provides a basis for defining refined
concealed behavior (cf. [18, p. 239]).

After the re-abstraction, we must check if the re-abstracted traces are mem-
bers of M0: the re-abstracted traces are the same traces as the abstract ones.
For that reason, the CSP model of the CSPF confidential data transmission
using encryption in Fig. 7 conceals M0, and the confidentiality property con-
cealed behavior is preserved in the CSPF confidential data transmission using
encryption.

6 Related Work

In this section, we discuss our work in connection with other formal approaches to
security requirements engineering, as well as with other approaches to formalize
problem frames. Note that not all relevant publications are mentioned because
of space limitations.

Li et al. [13] use an extended CSP version [12] to systematically derive a
specification from requirements. Their work does not consider non-functional
requirements such as security requirements. Furthermore, biddable domains are
not formalized. Since biddable domains are used to model unpredictable parts
of the environment (such as honest and malicious users), we believe that this is
a key feature to security requirements engineering.

Nelson et al. [17] describe problem frames as well as requirements using
Alloy [10]. Compared to our work, security requirements and their refinement to
specifications are not considered. Additionally, Alloy does not allow to express
security requirements in terms of information flow properties.

KAOS – Keep All Objectives Satisfied3 is a goal-driven requirements engi-
neering approach that can also be used to address security requirements by
means of anti-goals [19]. A linear real-time temporal logic is used to formalize
goals. The goals and further ingredients such as domain properties as well as

3 c.f. http://www.info.ucl.ac.be/~avl/ReqEng.html



pre- and postconditions form patterns that can be instantiated and negated to
describe anti-goals. This formal approach is also adopted by Secure Tropos [16].

SREF – Security Requirements Engineering Framework [2] is a framework
that defines the notion of security requirements, considers security requirements
in an application context, and helps answering the question whether the system
can satisfy the security requirements. Haley et al. [1] introduce the notion of a
trust assumption, which is “an assumption by an analyst that the specification
of a domain can depend on certain properties of some other domain in order
to satisfy a security requirement”. To decide whether a system can satisfy the
security requirements, Haley et al. make use of structured informal and formal
argumentation [3]. A two-part argument structure for security requirement satis-
faction arguments consisting of an informal and a formal argument is proposed.
In combination with trust assumptions, satisfaction arguments facilitate showing
that a system can meet its security requirements.

In contrast to our work, the approaches by van Lamsweerde (including Secure
Tropos) and SREF do not allow to express security requirements in terms of
information flow properties. Moreover, the refinement of security requirements
to specifications is not covered.

7 Conclusion and Future Work

The paper at hand constitutes an extension of the (C)SPF approach by a formal
foundation and a pattern-based refinement analysis, which is heavily based on
Santen’s work on the preservation of security requirements under refinement [18].
In fact, we combined his proposals for a formal security requirements analysis
approach with our hitherto informal (C)SPF approach.

The main benefits of the extension are the clear and unambiguous security re-
quirements descriptions and the support of verifiably correct and confidentiality-
preserving refinement steps.

In the future, we would like to consider probabilistic confidentiality prop-
erties, applicability conditions and environment patterns for (C)SPFs, and the
compositionality of confidentiality-preserving refinement.
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