
Problem-Oriented Documentation of
Design Patterns

Alexander Fülleborn1, Klaus Meffert2 and Maritta Heisel1

1 University Duisburg-Essen, Germany
alexanderfuelleborn@hotmail.de

maritta.heisel@uni-duisburg-essen.de
2 Technical University Ilmenau, Germany

pattern@klaus-meffert.com

Abstract. In order to retrieve, select and apply design patterns in a
tool-supported way, we suggest to construct and document a problem-
context pattern that reflects the essence of the problems that the design
pattern is meant to solve. In our approach, software engineers can choose
examples of source code or UML models from the special domains that
they are experts in. We present a method that enables software engineers
to describe the transformation from a problem-bearing source model to
an appropriate solution model. Afterwards, the inverse of that trans-
formation is applied to the UML solution model of the existing design
pattern, resulting in an abstract problem-context pattern. This pattern
can then be stored together with the solution pattern in a pattern li-
brary. The method is illustrated by deriving a problem-context pattern
for the Observer design pattern.

Key words: Design patterns, problem derivation, model abstraction,
cross-domain documentation, problem-context patterns, UML models,
source code

1 Introduction

Design patterns support software engineers in creating maintainable and extend-
able software. In order to select and apply design patterns, practitioners typically
learn a pattern by reading a design pattern book or paper or by studying UML
diagrams or source codes, respectively. From our point of view, this kind of doc-
umenting design patterns is lacking a machine-processable representation of the
problems in their contexts to be solved by the design patterns. The pattern it-
self as the solution for the related problems, however, is represented by UML
models, besides explanations in natural language and program code examples.
This is why it can be instantiated as a solution model to the concrete problems.
As there exists no corresponding problem model, it is difficult for software engi-
neers to judge whether their concrete source code or design models, respectively,
match the problems that the design pattern is meant to solve. They are forced
to make a comparison that is based on two different formats in order to select an

2 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

appropriate pattern. In addition, the contexts of the problems are expressed on
different abstraction levels. Due to the lack of cross-domain knowledge, there is a
risk that software engineers assume their problem to be of a domain-specific type
that does not match the essence of the problem addressed by a design pattern.
Therefore they do not choose the solution provided by such a design pattern,
even if it solved their problem.

We are interested in developing methods that help software engineers to
retrieve, select and apply design patterns in a tool-supported way. It should be
possible to apply these methods in the forward as well as in the re-engineering
phase of the software product lifecycle. In this paper, we put special emphasis
on problem orientation in documenting design patterns. We illustrate our ideas
by a re-engineering example. Key of our approach is to enable software engineers
in their role of pattern documentalists to use their daily, domain-specific work
together with their knowledge about design patterns, in order to complete the
documentation of these design patterns. We introduce the possibility for software
engineers to start this completion process either with UML models or with source
code, in order to obtain appropriate UML models that reflect the essence of the
related problems in their contexts. The resulting artefacts that we call problem-
context patterns are the basis for our overall methodology of semi-automated
retrieval, selection and application of design patterns.

Our approach consists of a sophisticated way of documenting the situation
before and after a design pattern is being applied. For the first part, this docu-
menting is done by adding non-functional requirements as annotations to con-
crete, domain-specific source code or UML models that have design deficiencies,
in order to document the problems in their contexts that the chosen design
pattern solves. For the second part, we formally document the solved problems
in a way that they can be compared to the situation before the chosen design
pattern was applied. By way of that comparison, the transformation between
the situation before and after applying the design pattern is made explicit. This
transformation is then reused on the design pattern abstraction level in order
to derive the reusable cross-domain representation of the situation before the
chosen design pattern is being applied. To obtain the problem-context pattern,
the inverse of the transformation is applied to the already existing UML model
of the chosen design pattern that we call solution pattern.

The rest of the paper is organized as follows: in Section 2, we introduce
our method for deriving problem-context patterns. We illustrate our method in
Section 3 by using an example from the business domain of human resources and
the Observer design pattern. Section 4 discusses other work in this area. Section
5 consists of conclusions of our findings and an outlook on future work.

Problem-Oriented Documentation of Design Patterns 3

2 A Method for Deriving Problem-Context Patterns

An overview of our method is given in Table 1.

Table 1. Method for deriving problem-context patterns

Step Description

1 Choose a problem-bearing, domain-specific source code or UML model example

2 Annotate the chosen problem-bearing source code and UML models with problem
motives

3 Perform transformations by applying design pattern under consideration to the
chosen source code and UML models

4 Annotate the resulting source code and UML models with solution motives

5 Annotate the UML solution model of the cross-domain design pattern with the
same solution motives as in Step 4

6 Perform inverse design pattern transformations to the existing design pattern
UML solution models that are annotated according to Step 5

Steps 1 to 4 are performed on the domain-specific level. In Step 1, software
engineers choose a concrete, problem-bearing source code or UML model exam-
ple that exists in their specific expert domain. In case software engineers choose
a problem-bearing source code for which no corresponding UML model exists yet
(the typical re-engineering case), the latter must be created, as it is needed in the
later steps of the method. In case software engineers choose a problem-bearing
UML model as a starting point for the example (the typical forward engineering
case), they do not need to have corresponding source code, as Steps 5 and 6 are
only based on the UML models. The chosen example must fit to the abstract,
natural-language problem description of the design pattern for which they want
to complete the documentation. We assume that software engineers are familiar
with the design pattern, for which they intend to complete the documentation.
By using specific examples from expert domains, the procedure of completing a
design pattern documentation is facilitated. The advantage of this approach is
that it is integrated into the usual work of software engineers. The effort needed
to complete the documentation of design patterns is minimized, because soft-
ware engineers can derive them by doing their daily work of modeling, coding
and improving designs.

In Step 2, annotations to the problem-bearing source code and to the UML
models are added manually. We call these annotations problem motives. A method
for deriving problem motives on the source code level can be found in [5]. On
the modeling level, we assign these problem motives to UML model elements.
They represent the non-functional requirements that need to be fulfilled by the
source code and UML models after the design pattern was applied.

In Step 3, the problem-bearing source code and UML models are transformed
step by step to re-engineered new source code and UML models, according to the
knowledge embodied in the design pattern. In case new elements are added or
existing elements are changed, annotations are manually added to these elements
in Step 4. We call these annotations solution motives. They directly correspond

4 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

to the problem motives in the problem-bearing source code and UML models. It
is also possible that there does not exist a problem motive that corresponds to a
solution motive. In this case, the solution provides an additional advantage. It is
also possible that a problem motive without any corresponding solution motive
exists. This indicates a non-optimal solution of the problem.

The preceding steps all take place on the domain-specific level with its special
vocabulary and semantics, and with limited reuse potential. In the final two steps
of our method, software engineers operate on the generic, cross-domain design
pattern level. Here, the main purpose is to complete the documentation of the
generic design pattern that can be reused across domains. The goal is to find an
appropriate cross-domain UML model for the situation before transformations
are being performed.

In Step 5, software engineers annotate the UML solution model of the chosen
design pattern that has been applied on the domain-specific level before. For this
purpose, they reuse the knowledge they already gained in the domain-specific
scenario: they take the same solution motives they also used for the domain-
specific UML solution model and add them as annotations to the cross-domain
UML solution models. Then, they also reuse the transformations, but in this
case, they apply these transformations inversely to the generic, cross-domain
UML solution models of this design pattern. Thus, they derive the cross-domain
problems in their cross-domain contexts that fit to the design pattern. Finally,
the obtained problem-context pattern can be stored together with the solution
pattern in a design pattern library. It then can be retrieved and selected accord-
ing to the method described in [2].

3 Case study Salary Statement Application

To illustrate our method, we present a case study from the human resources busi-
ness domain. It is about an existing software application for creating salary state-
ments of monthly employee salaries. This application needs to be re-engineered,
as it has non-functional deficiencies that can be removed by applying the Ob-
server design pattern. The software engineers who perform this re-engineering
task know the pattern well and are able to apply it to the existing code. No UML
models exist, only source code is available to them. Hence, this source code rep-
resents the problem-bearing, domain-specific source code example according to
Step 1 of our method. Besides this domain-specific, pure re-engineering task,
the software engineers are also asked to complete the Observer design pattern
documentation. Hence, they are asked to perform the remaining steps of our
method. In Sections 3.1 and 3.2, we present the results of Steps 1 to 4 of our
method on the source code level. We chose the object-oriented Java language for
demonstrating purposes as Java is widely spread and state-of-the-art. In Sections
3.3 and 3.4, we illustrate the results of Steps 1 to 4 on the UML model level. In
Section 3.5, the results of Steps 5 and 6 are presented.

Problem-Oriented Documentation of Design Patterns 5

3.1 Salary statement application: annotated problem-bearing,
domain-specific source code

According to Steps 1 and 2 of our method, the following source code from the
salary statement application has been chosen and annotated:

010 public c lass SalaryStatementAppl i cat ion {
020 public stat ic void main (St r ing [] a rgs) {
030 EmployeeDetail employeeDet = new EmployeeDetail () ;
040 acd EmployeeSelector employeeSel = new EmployeeSelector (

employeeDet) ;
050 // User Input in a GUI f i e l d . Sent by an event handler
060 employeeSel . updateEmployeeID (”D026143”) ;
070 }
080 }

100 public c lass EmployeeSelector {
110 a private EmployeeDetail employeeDet ;
120 private PersNo se lectedEmployee ;

130 acd public EmployeeSelector (EmployeeDetail employeeDet) {
140 ac this . employeeDet = employeeDet ;
150 }

180 // Method w i l l be c a l l e d a f t e r user entered employee ID
190 public void updateEmployeeID (PersNo ID) {
200 se lectedEmployee = ID ;
210 a employeeDet . changeEmployeeID (ID) ;
220 }
230 }

300 public c lass EmployeeDetail {
340 public void changeEmployeeID (PersNo ID) {
350 // Read employee with given ID from database
360 PersName name = . . .
370 // Read sa lary data for employee from database
380 Sa la rybracket s a l a ryb ra cke t = readSa la rybracket (ID) ;
390 // Update the d i sp lay of the graph ica l user in t e r f a c e
400 . . .
410 }

420 public Sa la rybracket readSa la rybracket (PersNo ID) {
430 // Read sa lary data with given ID from database
440 Sa la rybracket r e s u l t = . . .
450 return r e s u l t ;
470 }
480 }

Listing 1. Salary statement application: annotated problem-bearing, domain-
specific source code

The source code given in Listing 1 represents an application with three classes.
The first class, SalaryStatementApplication, is responsible for starting the ap-
plication. It creates two graphical elements. The first element is represented by
the class EmployeeSelector and implements a selection list with basic master
data related to employees. When users have chosen an entry from this list, the
detail information that is needed in this context can be read and displayed. In
our example, the detail information is represented by the second element, the
class EmployeeDetail, and is displayed as a screen area with detail data such
as Name and Salarybracket (which is the technical term for a salary group) of
the employee, that has been selected by the employee selector. As already men-

6 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

tioned above, the Observer design pattern should be applied to this source code.
According to the terminology used in Observer, the class EmployeeSelector cor-
responds to the Subject class, and EmployeeDetail is the observer class to the
subject. The basic non-functional deficiency of this source code is the fact that
the classes EmployeeSelector and EmployeeDetail are too tightly coupled, which
is not desired. We can further differentiate this fundamental problem for the
given context. Firstly, the subject class EmployeeSelector can only be reused in
a limited way, as it has an attribute of type EmployeeDetail. A common inter-
face provided by the subject class to share data or functionality with observers
is missing. This is a structural coupling. Secondly, objects of the class Employ-
eeDetail can only be registered at one point in time, namely when objects of
class EmployeeSelector are created. Thus, the objects of the classes Employ-
eeDetail and EmployeeSelector are also coupled in time. Thirdly, only objects of
the class EmployeeDetail can be registered with the class EmployeeSelector. A
unified registering mechanism for objects of arbitrary classes is missing, despite
of the fact that they are not present at the moment. According to Step 2 of our
method, the described detail problems are added to the source code as problem
motives by adding a character as an identifier to each detail problem. In Table
2, the used problem motives are listed.

Table 2. Salary statement application: problem motives

Problem motive
identifier Description

a Observer class does not implement any interface

c Observer class can only be registered at one given point in time

d No unified registering mechanism existing

Table 2 contains several aspects of the too tightly coupled problem, which are
addressed by the Observer design pattern. Note that identifier b does not appear
in the problem-bearing source code. The reason is that it has been reserved for a
solution motive in the post-transformation source code, that we will discuss later.
Performing Step 2 of our method, we place problem motive identifiers after the
line numbers in the problem-bearing source code. As already mentioned before, a
method exists for annotating source code which can be found in [5]. For example,
problem motive a has been declared for all lines of code that are affected by
the fact that class EmployeeDetail does not implement any interface. These are
all lines of code where this class type is used. Applying the Observer design
pattern removes the deficiencies that are mirrored by the problem motives. In
the following, the Observer design pattern is applied to the given source code
according to Steps 3 and 4 of our method.

Problem-Oriented Documentation of Design Patterns 7

3.2 Salary statement application: performing transformations by
applying the Observer design pattern

According to Step 3 of our method, every change of the problem-bearing source
code that is caused by applying the Observer design pattern is reflected by a
transformation. Performing method Step 4, each of these transformations has
an explanation, given by an annotated solution motive. This solution motive is
the complement to the problem motive and is directly related to the latter. A
problem motive that has been replaced by a solution motive indicates that the
given problem is solved. A solution motive without any corresponding problem
motive reflects a positive property that has been added without any problem
relationship. This is true for solution motive b, that we already mentioned, and
it is true for solution motive e. An identifier of a solution motive that equals
an identifier of the problem motive indicates that it solves the corresponding
problem. An overview of the solution motives used in this example is given in
Table 3.

Table 3. Salary statement application: solution motives

Solution motive identifier Description

a Treat observer classes equally

b Possibility to register any number of observers

c Possibility to register at any time

d Unified registering mechanism

e Notify all observers

The transformations used to apply the Observer pattern are all related to
these solution motives. For each transformation, we give the resulting source
code including the solution motives. If the transformation is a deletion, only
the deleted source code is shown. For better traceability, the line numbers from
Listing 1 are given, too. Equal line numbers in the post-transformation source
code indicate a change, new line numbers indicate an insertion.

Transformation T1: declaring the subject without relation to any ob-
server
In this transformation, the observer and subject class are decoupled from each
other by deleting the static attribute for observer from the subject class.

109 /**@@motive a(1): Treat observer classes equally*/

110 a private EmployeeDetail employeeDet;

Transformation T2: constructing the subject without relation to any
observer
This transformation causes the change of two dependent parts within the source
code, namely of a constructor declaration and the creation of objects of class
EmployeeSelector by this constructor. The changed constructor looks as follows:

8 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

127 /**@@motive a(2): Treat observer classes equally*/

128 /**@@motive c(1): Possibility to register at any time*/

129 /**@@motive d(1): Unified registering mechanism*/

130 public EmployeeSelector()

137 /**@@motiv a(3): Treat observer classes equally*/

138 /**@@motive c(2): Possibility to register at any time*/

139 /**@@motive d(2): Unified registering mechanism*/

140 this.employeeDet = employeeDet;

As a result, the constructor call must also be adjusted:
037 /**@@motive a(4): Treat observer classes equally*/

038 /**@@motive c(3): Possibility to register at any time*/

039 /**@@motive d(3): Unified registering mechanism*/

040 EmployeeSelector employeeSel = new EmployeeSelector();

As every solution motive can appear more than once, we use a serial number
per motive, which we put into brackets behind each solution motive.

Transformation T3: introducing the base class for observer
Part of the core concept of the Observer design pattern is the usage of an abstract
base class for observer classes. In this context, we call this class Observer. Firstly,
we introduce this base class:
899 /**@@motive a(5): Treat observer classes equally*/

900 public abstract class Observer

909 /**@@motive e(1): Notify all observers*/

910 public abstract void update(Object state);

920

Next, the specialized observer class EmployeeDetail can inherit from this
class:
299 /**@@motive a(6): Treat observer classes equally*/

300 public class EmployeeDetail extends Observer

Furthermore, the abstract method needs to be implemented:
309 /**@@motive e(2): Notify all observers*/

310 public void update(Object state)

320 changeEmployeeID((PersNo)state);

330

Transformation T4: introducing a universal registration mechanism
within the subject
Now, we can introduce a registration method with a variable for storing observer
references:
109 /**@@motive b(1): Possibility to register any number of observers*/

110 private List<Observer> observers = new Vector();

Problem-Oriented Documentation of Design Patterns 9

147 /**@@motive a(7): Treat observer classes equally*/

148 /**@@motive b(2): Possibility to register any number of observers*/

149 /**@@motive c(4): Possibility to register at any time*/

150 public void register(Observer a_observer)

160 observers.add(a_observer);

170

The newly introduced solution motive with the identifier b has no corre-
sponding problem motive in the problem-bearing source code. This means that
it is an additional advantage of the solution that was not seen as a problem
before.

Transformation T5: unified notification of all observers by the subject
The way the subject notifies its observers can be adjusted, too. Firstly, we

introduce a new method for notifications:
222 /**@@motive e(3): Notify all observers*/

223 public void notify()

224 /**@@motive a(8): Treat observer classes equally*/

225 /**@@motive e(4): Notify all observers*/

226 for(Observer observer:observers)

227 observer.update(selectedEmployee);

228

229

Now the method call must be placed at a suitable location:
209 /**@@motive e(5): Notify all observers*/

210 notify();

The remaining reference to EmployeeDetail in line 030 of the problem-bearing
source code can be replaced by a reference to the class Observer. However, this
is not needed here. To give readers of this paper a complete overview about
the resulting post-transformation source code, we provide it as a listing in an
appendix at the end of the long version of this paper.1

3.3 Salary statement application: annotated problem-bearing,
domain-specific UML model

Until now we performed Steps 1 to 4 of our method on the source code level.
Next, we repeat these steps on the UML model level, because Steps 5 and 6
are based on the UML models. We start with Steps 1 and 2. First, we create
domain-specific UML models of the annotated problem-bearing source code.
Extracting the model can be automated to a certain extent. Next, the problem
motives of the source code are added to those model elements that cause the
problem, according to Step 2 of our method. While taking over the problem
motives, some information gets lost, as not all of the problem motives can be
taken over to the UML model level. The reason is that problem motives in the
source code can also relate to single program statements that do not appear on
1 Available at http://swe.uni-duisburg-essen.de/techreports/Fase09Longversion.pdf

10 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

the UML model level. However, this loss of information can be reduced by using
UML comments, which contain these program statements with assigned problem
motives in order to give software engineers some guidance in implementing the
details. The resulting UML problem-context model, which is needed later in Step
6 to derive an appropriate problem-context pattern, is shown in Figure 1.

Fig. 1. Salary statement application: annotated UML model (problem-context model)

In this problem-context model, the problem motive identifiers of the anno-
tated problem-bearing source code are assigned to the relevant elements using
the tilde symbol. For example, annotation motives: a is assigned to the problem-
causing attribute employeeDet in the class EmployeeSelector. As stated in
Table 2, this identifier means Observer class does not implement any inter-
face, which refines the basic problem that class EmployeeSelector and class
EmployeeDetail are too tightly coupled. This problem is expressed by a static
attribute that limits the reuse of class EmployeeSelector. For the sake of read-
ability, we only look at the structural aspects in our example. In our research
work, we also applied the described steps to sequence diagrams, which works
well, but does not provide additional information and does not necessitate any
extension of the method.

3.4 Salary statement application: annotated resulting
domain-specific UML model

In this section, we repeat Step 2 of our method on the modeling level. The
resulting domain-specific UML solution model is directly generated from the re-
engineered source code. Then, software engineers analyze the differences between
the pre- and post-transformation UML models by considering the differences in
the pre- and post-transformation source codes, and annotate the models with

Problem-Oriented Documentation of Design Patterns 11

comments about the solved problem. The resulting annotated class diagram is
shown in Figure 2.

Fig. 2. Salary statement application: annotated resulting post-transformation UML
solution model

Note that there are comments assigned to several model elements. These
model elements are exactly the classes or relationships that have been changed
from the problem-context model. The comments log the type and the reason for
the change. The type of changes, namely adding or deleting is described by an
appropriate keyword. The reason for the change is described by adding solution
motives, which also establish relationships to the underlying problem motives
in the problem-context model. For example, a comment is added to the class
EmployeeSelector that states that the attribute employeeDet is deleted due to
solution motive a. In the problem-context model, this attribute still exists and
is annotated with the corresponding problem motive. By using a numbering
within the used motives, software engineers can better reflect the order of the
single transformation steps and the involved model elements.

3.5 Deriving a fitting problem-context pattern (cross-domain)

Up to this point in the procedure, all activities take place on the domain-specific
level. From now on, the cross-domain level is considered by following Steps 5 and
6 of our method. Here, the main purpose is to complete the generic, cross-domain

12 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

Observer design pattern by finding an appropriate cross-domain UML model, a
problem-context pattern for the pre-transformation situation. First, the existing
UML solution model of the Observer design pattern is annotated according to
Step 5 of our method. For this purpose, the solution motives that have been used
to annotate the domain-specific salary statement UML solution model are taken
as a starting point. Thus, software engineers extend the Observer UML solution
models with information about the problems they solve and with information
about the way how they solve them. As in the domain-specific example, for
the sake of readability and simplicity, we use a variant of the Observer design
pattern. In this variant, no explicit subject superclass exists, and observers do
not ask separately for state changes. Instead, the subject provides the observers
proactively with information about state changes. While adding information
about the performed transformations, the transformed model elements are also
abstracted. The result is illustrated in Figure 3.

Fig. 3. Annotated UML solution model of the Observer design pattern (variant) ac-
cording to method Step 5

Note that annotations have also been changed. They are adapted to the pat-
tern in the sense of an abstraction. For example, the model element attribute
employeeDet of class ConcreteSubject that can be found under the deleted anno-
tation has been renamed to attribute concreteObserver. This annotated solution
pattern is the starting point for the next step of inverse transformations. In
Step 6 of our method, a suitable Observer problem-context pattern is derived by

Problem-Oriented Documentation of Design Patterns 13

applying inverse transformations. All transformation steps, that have been per-
formed before on the domain-specific level, started from problem-bearing models
(problem-context models) and resulted in solution models. On the cross-domain
level, solution models exist already, as they are described in the literature [3].
Thus, in order to obtain appropriate problem models for the Observer design
pattern, the knowledge about the way to transform the problem-bearing models
into solution models on the domain-specific level is reused, but in the opposite
direction. For example, in Figure 3 the class Observer is annotated with:

added:

(1) class Observer, motives: a(3)

(2) method update(), motives: e(1)

This annotation is based on the transformations add class Observer and add
method update() to class Observer. Thus, the appropriate inverse transformations
are:

delete method update() from class Observer

delete class Observer

Besides performing inverse transformations, also problem motives are needed
in the derived problem-context pattern, which establish the link to the solution
motives in the solution pattern. These problem motives are derived from the
domain-specific problem-context model. The derived problem-context pattern is
illustrated as a result of the described actions in Figure 4.

Fig. 4. Derived problem-context pattern of the Observer design pattern according to
method Step 6

The illustrated problem-context pattern abstractly describes a possible start-
ing point for applying the Observer design pattern, using the same means of
expression as the solution, namely UML. Together with the UML solution mod-
els, the solution pattern, it forms the Observer design pattern and can be stored
in a pattern library. The problem-context pattern is the access key for a semi-
automated pattern retrieval and selection method. Such a method is described
in [2].

4 Related Work

There has only been little work on documenting the problem essence of design
patterns in an appropriate way. Different from our approach of expressing the
problem essence as UML models, other contributors take UML meta models as
the basis for their methods. Mili and El-Boussaidi [6] use transformation meta

14 Alexander Fülleborn, Klaus Meffert and Maritta Heisel

models, besides problem and solution meta models, to describe appropriate de-
sign pattern problem models and the way they are transformed to design pattern
solution models. Differently from our method, their problem meta models do not
contain any non-functional requirement or problem description that would be
comparable to our problem motives.

Kim and El Khawand [4] propose to rigorously specify the problem domain of
design patterns. In contrast to Mili and El-Boussaidi [6] and our approach, they
do not describe the problem-bearing model before a design pattern is applied to
it. Moreover, they focus on the functional aspects of design patterns, not on non-
functional aspects. The authors are mainly interested in developing tool support
for checking whether existing UML models conform to known design patterns.

The work of Fanjiang and Kuo [1] introduces the concept of design-pattern-
specific transformation rule schemata to be used as an additional design pattern
documentation. The transformation steps, which are described in natural lan-
guage, are similar to ours and are helpful in applying design patterns. However,
as the authors do not intend to support software engineers in their role of docu-
mentalists, they do not give guidance on deriving transformation rule schemata.

The work of O’Cinnéide and Nixon [7] aims at applying design patterns to
existing legacy code in a highly automated way. They target code refactorings.
Their approach is based on a semi-formal description of the transformations
themselves, needed in order to make the changes in the code happen. In con-
trast to our method, they describe precisely the transformation itself and under
which pre- and postconditions it can successfully be applied. In our work, we
illustrate the situation before and after the transformation. To a certain extent,
the described preconditions of the transformations can be compared with our
problem context as it outlines the situation before the design pattern is applied.
The advantage of our approach, however, is that we explicitly describe the non-
functional deficiencies by using annotations in the source code of the sub-optimal
situation.

5 Summary and Future Work

In this paper, we have presented a method for the problem-oriented documen-
tation of design patterns that consists of 6 steps. The results of Steps 1 to 2 are
an annotated problem-bearing source code and the corresponding UML mod-
els, stemming from the practical work of software engineers. By applying the
chosen design pattern and by adding solution motives to the resulting source
code and corresponding UML models, the outcome of Steps 3 and 4 are the
transformed and annotated solution source code and UML models. In Step 5,
the same solution motives are used to obtain annotated UML solution models of
the cross-domain design pattern. Finally, inverses of transformations according
to Step 3 are applied to these UML solution models, which result in a problem-
context pattern that fits to the chosen design pattern.

The use of expert domain, real world examples on the source code or on
the modeling level in order to derive the problem-context pattern on the cross-
domain level is novel and makes this approach especially useful and efficient in re-
engineering as well as in forward engineering projects. In addition to that reuse of

Problem-Oriented Documentation of Design Patterns 15

domain-specific knowledge on the abstract level, reusing the already documented
UML models of the design pattern solution part to derive the abstract problem-
context pattern is efficient.

To demonstrate how our method works, we used Observer, a behavioural
design pattern. In our research work, we also applied it to creational and struc-
tural patterns, which works well, too. Besides the scenario of completing existing
design patterns that are known from the literature, it also seems promising to
support the creation of new patterns in this way. This aspect is part of our future
work. Furthermore, we are working on the development of a problem statement
language that helps to reuse generic, standardized problems by making use of
the ideas provided by Willms et al. [8]. Another subject area we want to address
is the cross-domain reuse of functional requirements as opposed to the typical
non-functional requirements that are addressed by design patterns.

References

1. Yong-Yi Fanjiang and Jong-Yih Kuo. A pattern-based model transformation ap-
proach to enhance design quality. In H.D. Cheng, S.D. Chen, and R.Y. Lin, editors,
JCIS 2006, Proceedings of the 2006 Joint Conference on Information Sciences. At-
lantis Press, 2006.

2. Alexander Fülleborn and Maritta Heisel. Methods to create and use cross-domain
analysis patterns. In Uwe Zdun and Lise Hvatum, editors, EuroPLoP ’06, Pro-
ceedings of the 11th European Conference on Pattern Languages of Programs, pages
427–442. Universitätsverlag Konstanz, 2007.

3. Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. In Oscar Nierstrasz,
editor, ECOOP’93 - Object-Oriented Programming, 7th European Conference, pages
406–431. Springer, 1993.

4. Dae-Kyoo Kim and Charbel El Khawand. An approach to precisely specifying the
problem domain of design patterns. Journal of Visual Languages and Computing,
18(6):560–591, 2007.

5. Klaus Meffert and Ilka Philippow. Supporting program comprehension for
refactoring-operations with annotations. In Hamido Fujita and Mohamed Mejri,
editors, Proceedings of the fifth SoMeT06: New Trends in Software Methodologies,
Tools and Techniques, volume 147, pages 48–67. IOS Press, 2006.

6. Hafedh Mili and Ghizlane El-Boussaidi. Representing and applying design patterns:
What is the problem? In Lionel C. Briand and Clay Williams, editors, MoDELS
2005, Model Driven Engineering Languages and Systems, 8th International Confer-
ence, pages 186–200. Springer, 2005.

7. M. O’Cinnéide and P. Nixon. A methodology for the automated introduction of
design patterns. In ICSM ’99: Proceedings of the IEEE International Conference
on Software Maintenance, page 463, Washington, DC, USA, 1999. IEEE Computer
Society.

8. Janine Willms, Ina Wentzlaff, and Markus Specker. Kreativität in der informatik:
Anwendungsbeispiele der innovativen prinzipien aus triz. In Informatik 2000, Neue
Horizonte im neuen Jahrhundert, 30. Jahrestagung der Gesellschaft für Informatik.
Springer Berlin / Heidelberg, 2000.

