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Abstract. We present patterns for expressing dependability requirements, such
as confidentiality, integrity, availability, and reliability. The paper considers ran-
dom faults as well as certain attacks and therefore supports a combined safety
and security engineering. The patterns - attached to functional requirements - are
part of a pattern system that can be used to identify missing requirements. The
approach is illustrated on a cooperative adaptive cruise control system.

1 Introduction
Dependable systems play an increasingly important role in daily life. More and more
tasks are supported or performed by computer systems. These systems are required to
be safe, secure, available, reliable, and maintainable.

Safety is the inability of the system to have an undesirable effect on its environ-
ment, and security is the inability of environment to have an undesirable effect on the
system [16]. To achieve safety, systematic and random faults must be handled. For se-
curity, in contrast, certain attackers must be considered. Security can be described by
confidentiality, integrity and availability requirements. Confidentiality is the absence
of unauthorized disclosure of information. Integrity is the absence of improper system,
data, or a service alterations [15]. Availability is the readiness for service (up-time vs.
down-time) [14]1. Also for safety, integrity and availability must be considered. For
safety, integrity and availability mechanisms have to protect against random (and some
systematic) faults. Reliability is a measure of continuous service accomplishment [14].
A safety-critical system has to perform its safety-functions with a defined reliability
(or integrity) 2. In this case, reliability describes the probability of correct functionality
under stipulated environmental conditions [4]. This paper shows that reliability require-
ments can be defined not only from a safety point of view, but also from a security point
of view. Maintainability is the ability to undergo modifications and repairs [2]. Main-
tainability can be achieved by additional interfaces for updates (of the whole software or
components), by a maintainable structure of the software itself (e.g., documentation, ap-
propriate architectures, comments in the source code), and by maintenance plans (e.g.,
restart the software once a week to reduce memory fragmentation). Maintainability is
not considered in this paper.

Dependability requirements must be described and analyzed. Problem frames [12]
are a means to describe and analyze functional requirements, but they can be extended
to describe also dependability features, as shown in earlier papers [7, 8]. In Section 2,

1Availability, in contrast to reliability, does not require correct service.
2If the system can for example be safely deactivated, it is sufficient to define the integrity

requirement and the actions to be performed in case of an integrity error.
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we present problem frames and the parts of the problem frames meta-model [10] used
for the formalization of dependability features. In Section 3, we define a set of pat-
terns that can be used to describe and analyze dependability requirements. Section 4
describes how to integrate the use of the dependability patterns into a system develop-
ment process. The case study in Section 5 applies that process to a cooperative adaptive
cruise control system. Section 6 discusses related work, and the paper closes with a
summary and perspectives in Section 7.

2 Problem Frames

Problem frames are a means to describe software development problems. They were
invented by Jackson [12], who describes them as follows: “A problem frame is a kind
of pattern. It defines an intuitively identifiable problem class in terms of its context
and the characteristics of its domains, interfaces and requirement.” Problem frames
are described by frame diagrams, which consist of rectangles, a dashed oval, and links
between these (see Fig. 1). All elements of a problem frame diagram act as placeholders,
which must be instantiated to represent concrete problems. Doing so, one obtains a
problem description that belongs to a specific problem class.

Plain rectangles denote problem domains (that already exist in the application envi-
ronment), a rectangle with a double vertical stripe denotes the machine (i.e., the soft-
ware) that shall be developed, and requirements are denoted with a dashed oval. The
connecting lines between domains represent interfaces that consist of shared phenom-
ena.

Shared phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as indicated by
an exclamation mark. For example, in Fig. 1 the notation O!E4 means that the phenom-
ena in the set E4 are controlled by the domain Operator.

A dashed line represents a requirements reference. It means that the domain is re-
ferred to in the requirements description. An arrow at the end of such a dashed line
indicates that the requirements constrain the problem domain. Such a constrained do-
main is the core of any problem description, because it has to be controlled according to
the requirements. Hence, a constrained domain triggers the need for developing a new



software (the machine), which provides the desired control. In Fig. 1, the Controlled-
Domain domain is constrained, because the ControlMachine has the role to change it
on behalf of user commands for achieving the required Commanded Behaviour.

Jackson distinguishes the domain types CausalDomains that comply with some
physical laws, LexicalDomains that are data representations, and BiddableDomains
that are usually people. In Fig. 1, the C indicates that the corresponding domain is a
CausalDomain, and B indicates that it is a BiddableDomain. In our formal meta-model
of problem frames [10] (see Fig. 2), Domains have names and abbreviations, which
are used to define interfaces. According to Jackson, domains are either designed, given,
or machine domains. These facts are modeled by the Boolean attributes isGiven and
isMachine in Fig. 2. The domain types are modeled by the subclasses BiddableDomain,
CausalDomain, and LexicalDomain of the class Domain. A lexical domain is a special
case of a causal domain. This kind of modeling allows to add further domain types, such
as DisplayDomains as introduced in [3].

Problem frames support developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Other problem frames besides the
commanded behavior frame are required behaviour, simple workpieces, information
display, and transformation.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown which domain is in control
of the shared phenomena (see Fig. 3 for an example). Then, the problem is decomposed
into subproblems. If ever possible, the decomposition is done in such a way that the
subproblems fit to given problem frames. To fit a subproblem to a problem frame, one
must instantiate its frame diagram, i.e., provide instances for its domains, phenomena,
and interfaces. The instantiated frame diagram is called a problem diagram.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. A problem can only be fitted to a problem frame if the
involved problem domains belong to the domain types specified in the frame diagram.
For example, the Operator domain of Fig. 1 can only be instantiated by persons, but not
for example by some physical equipment like an elevator.

To describe the problem context, a ConnectionDomain between two other domains
may be necessary. Connection domains establish a connection between other domains
by means of technical devices. Typical connection domains are CausalDomains, e.g.,
video cameras, sensors, or networks.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine (see [13] for details).
The specification describes the machine and is the starting point for its construction.

3 Patterns for Dependability Requirements

We developed a set of patterns for expressing and analyzing dependability requirements.
An important advantage of these patterns is that they allow dependability requirements
to be expressed without anticipating solutions. For example, we may require data to
be kept confidential during transmission without being obliged to mention encryption,



which is a means to achieve confidentiality. The benefit of considering dependability
requirements without reference to potential solutions is the clear separation of problems
from their solutions, which leads to a better understanding of the problems and enhances
the re-usability of the problem descriptions, since they are completely independent of
solution technologies.

Our dependability requirements patterns are expressed as logical predicates. They
are separated from functional requirements. On the one hand, this limits the number
of patterns; on the other hand, it allows one to apply these patterns to a wide range of
problems. For example, the functional requirements for data transmission or automated
control can be expressed using a problem diagram. Dependability requirements for con-
fidentiality, integrity, availability and reliability can be added to that description of the
functional requirement.

For each dependability requirement, a textual description pattern and a correspond-
ing predicate pattern are given. The textual description helps to state dependability re-
quirements more precisely. The patterns help to structure and classify dependability re-
quirements. For example, requirements considering integrity can be easily distinguished
from the availability requirements. It is also possible to trace all dependability require-
ments that refer to a given domain.

The logical predicate patterns have several parameters. The first parameter of a pred-
icate is the domain that is constrained by the requirement, whereas the other parameters
are only referred to. The predicate patterns are expressed using the domain types of the
meta-model described in Figure 2, i.e., Domain, BiddableDomain, CausalDomain, and
LexicalDomain. From these classes in the meta-model, subclasses with special proper-
ties are derived:

– An Attacker is a BiddableDomain that describes all subjects (with their equipment)
who want to attack the machine.

– A User is a BiddableDomain that describes subjects who have an interface to the
machine.

– A Stakeholder is a BiddableDomain (and in some special cases also a CausalDo-
main) with some relation to stored or transmitted data. It is not necessary that a
stakeholder has an interface to the machine.

– A ConstrainedDomain is a CausalDomain that is constrained by a functional or
dependability requirement.

– An InfluencedDomain is a CausalDomain that is influenced by the machine to ful-
fill the dependability requirement (it can be the same domain as the Constrained-
Domain, but also another domain).

– A Display is a CausalDomain used to inform the user of the machine.
– StoredData is a CausalDomain or LexicalDomain used to store some data as de-

fined by the functional requirement. Also the machine domain may include some
(transient) stored data that must be considered.

– TransmittedData is a CausalDomain or LexicalDomain used to transmit data (e.g.,
a network).

– A Secret is a StoredData or TransmittedData that is used to implement a set of
security requirements.
To use the predicate patterns for describing the dependability requirements of a

concrete problem, the domains of the problem diagram (and in the context diagram)
must be derived from the domains given in the dependability patterns. They must be
described in such a way that it is possible to demonstrate that the dependability predicate



holds for all objects of this class. The parts of the pattern’s textual description printed
in bold and italics should be refined according to the concrete problem.

The instantiated predicates are helpful to analyze conflicting requirements and the
interaction of different dependability requirements, as well as for finding missing de-
pendability requirements.

The patterns for integrity, reliability, and availability considering random faults are
expressed using probabilities, while for the security requirements no probabilities are
defined. We are aware of the fact that no security mechanism provides a 100 % protec-
tion and that an attacker can break the mechanism to gain data with a certain probability
[17]. But in contrast to the random faults considered for the other requirements, no prob-
ability distribution can be assumed, because, e.g., new technologies may dramatically
increase the probability that an attacker is successful. For this reason we suggest to de-
scribe a possible attacker and ensure that this attacker is not able to be successful in a
reasonable amount of time.

3.1 Confidentiality
A typical confidentiality requirement is to

Preserve confidentiality of StoredData / TransmittedData for Stakeholders
and prevent disclosure by a certain Attacker.

The security requirement pattern can be expressed by the confidentiality predicate
confatt : CausalDomain×BiddableDomain×BiddableDomain→Bool. The suffix “att”
indicates that this predicate describes a requirement considering a certain attacker.

To apply the confidentiality requirement pattern, subclasses of StoredData or Trans-
mittedData, Stakeholder, and Attacker must be derived and described in detail. For
example, a special TransmittedData may be the PIN of a bank account, a special
Stakeholder may be the bank account owner, and a special Attacker may be the class
of all persons with no permission, who want to withdraw money and have access
to all external interfaces of the machine. The instances of Stakeholder and Attacker
must be disjoint. The Stakeholder is referred to, because we want to allow the access
only to Stakeholders with legitimate interest [5]. The reference to an Attacker is neces-
sary, because we can only ensure confidentiality with respect to an Attacker with given
properties.

Even if data is usually modeled using lexical domains, we derive StoredData or
TransmittedData from CausalDomain, because in some cases the storage device and
not the data is modeled. A LexicalDomain is a special CausalDomain. The following
patterns can be used to define confidentiality requirements:
∀ sd : StoredData; s : Stakeholder; a : Attacker • confatt(sd, s, a)
∀ td : TransmittedData; s : Stakeholder; a : Attacker • confatt(td, s, a)

They express the informal requirement given above as a logical formula. The con-
fidentiality predicate is often used together with functional requirements for data trans-
mission and data storage.

3.2 Integrity - Random Faults
Typical integrity requirements considering random faults are that

With a probability of Pi, one of the following things should happen: service (de-
scribed in the functional requirement) with influence on / of the Constrained-
Domain must be correct, or a specific action must be performed.



The specific action could be, e.g.:
– write a log entry into InfluencedDomain
– switch off the actuator InfluencedDomain
– do not influence ConstrainedDomain
– perform the same action as defined in the functional requirement on Constrained-

Domain.
– inform User

For this requirement it is important to distinguish ConstrainedDomain and Influenced-
Domain. The ConstrainedDomain is the domain that should work correctly or should
be influenced correctly as described in the functional requirement. The InfluencedDo-
main is the domain that should react as described in the dependability requirement.
The InfluencedDomain could be, e.g., an actuator or a log file. The last specific action
directly refers to the User. The User must be informed by some technical means, e.g.
a display. The assumption that the User sees the Display (being necessary to derive a
specification from the requirements) must be checked later for validity.

The requirement can be expressed by the integrity predicate intrnd : CausalDomain
×Domain×Probability→Bool. The suffix “rnd” indicates that this predicate describes
a requirement considering random faults.

The probability is a constant, determined by risk analysis. The standard ISO/IEC
61508 [11] provides a range of failure rates for each defined safety integrity level (SIL).
The probability Pi could be, e.g., for SIL 3 systems operating on demand 1 − 10−3 to
1− 10−4.

The following patterns can be used to define the integrity requirements for a given
probability Pi:
∀ cd : ConstrainedDomain; u : User • intrnd(cd, u, Pi)
∀ cd : ConstrainedDomain; id : InfluencedDomain • intrnd(cd, id, Pi)
∀ cd : ConstrainedDomain • intrnd(cd, cd, Pi)

The predicate intrnd(cd, cd, Pi) expresses that the specific action is either that the
ConstrainedDomain is not influenced any longer, or that it is influenced as described
in the functional requirement (same action).

3.3 Integrity - Security
A typical security integrity requirement is that

The influence (as described in the functional requirement) on / data in Con-
strainedDomain must be either correct, or in case of any modifications by some
Attacker a specific action must be performed.

The specific action may be the same as described for random faults in Section 3.2.
In contrast to the dependability requirement considering random faults, this require-
ment can refer to the data of a domain (instead of the functionality), because security
engineering usually focuses on data. For security the ConstrainedDomain in the func-
tional requirement is usually a display or some plain data. The security requirement
pattern can be expressed by the integrity predicate intatt : CausalDomain × Domain ×
BiddableDomain→ Bool.

Similarly to Section 3.2 the following patterns can be used to define integrity re-
quirements:
∀ cd : ConstrainedDomain; u : User; a : Attacker • intatt(cd, u, a)
∀ cd : ConstrainedDomain; id : InfluencedDomain; a : Attacker • intatt(cd, id, a)
∀ cd : ConstrainedDomain; a : Attacker • intatt(cd, cd, a)



3.4 Availability - Random Faults
A typical availability requirement considering random faults is that

The service (described in the functional requirement) with influence on / of
the ConstrainedDomain must be available for User with a probability of Pa.3

The requirement can be expressed by the availability predicate availrnd user :
CausalDomain× BiddableDomain× Probability→ Bool.

Pa is the probability that the service (i.e., the influence on the ConstrainedDomain)
is accessible for defined users. A probability Pa of 1 − 10−5 means that the service
(influence on the ConstrainedDomain) may be unavailable on average for 315 seconds
in one year. The following pattern can be used to define the availability requirements
for a given probability Pa:
∀ cd : ConstrainedDomain; u : User • availrnd user(cd, u, Pa)

3.5 Availability - Security
When we talk about availability in the context of security it is not possible to provide
the service to everyone due to limited resources and possible denial-of-service attacks.
Availability can be expressed with the predicate availatt user(cd, u, a) similar to the avail-
ability requirement considering random faults.

3.6 Reliability, Authentication, Management, and Secret Distribution
Reliability is defined in the same way as availability with the predicates relrnd user, relrnd,
and relatt user. The same failure rates as for integrity (see Section 3.2) can be used.
Other important security requirements are authentication (authatt(cd, sh, a)) to permit
access for Stakeholder (sh) and deny access for Attacker (a) on ConstrainedDomain
(cd), security management (manatt(sd, sh, a)) to manage security-relevant StoredData
(sd) (e.g., configure an access rule), and Secret (s) distribution (distatt(s, sh, a)) that
additionally keeps the managed secret s confidential.

4 Working with Dependability Requirement Patterns
This section describes how to work with the modular construction system built up on
the predicates defined in Section 3. It can be used to find possible interactions with other
dependability requirements and helps to complete the dependability requirements by a
set of defined necessary conditions for each mechanism that can be used to solve de-
pendability problem. To apply the dependability patterns, we assume that hazards and
threats are identified and a risk analysis is performed. The next step is to describe
the environment, because dependability requirements can only be guaranteed for some
specific intended environment. For example, a device may be dependable for personal
use, but not for military use with more powerful attackers or a non-reliable power sup-
ply. The functional requirements are described using patterns for this intended envi-
ronment (see Section 2). The requirements describe how the environment should behave
when the machine is in action. To describe the requirements, domains and phenomena
of the environment description should be used. From hazards and threats an initial set of
dependability requirements can be identified. These requirements are usually linked
to a previously described functional requirement.

3In [6], a variant that does not refer to users is presented (availrnd).
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For each dependability requirement, a pattern from our pattern catalog should be
selected, using the informal description of the dependability requirements given in Sec-
tion 3. After an appropriate pattern is determined, is must be “instantiated” with the
concrete domains from the environment description. To instantiate the domains that
represent potential attackers, a certain level of skill, equipment, and determination of
the potential attacker must be specified. Via these assumptions, threat models are in-
tegrated into the development process using dependability patterns. The values for
probabilities can be usually extracted from the risk analysis. For each dependability
requirement stated as a predicate, we select a generic mechanism that solves the prob-
lem; for example, to achieve integrity (intatt bidd) message authentication codes (MACs)
can be used. Table 1 lists for each dependability requirement pattern a set of possible
mechanisms. The dependability requirement predicates in the table refer to all instances
d of TransmittedData or StoredData, the ConstrainedDomains c1 and c2, the users u,
the Attackers a, and the Machine with all relevant connection domains m.

Table 1 supports the analysis of conflicts between the dependability patterns. For
some of the mechanisms, possible interactions with other dependability requirements
are given in the third column. These possible conflicts must be analyzed, and it must
be determined if they are relevant for the application domain. In case they are relevant,
conflicts can be resolved by modifying or prioritizing the requirements. For example, if
the MAC protection mechanism is applied and the specific action is to delete modified
data, we may have a contradiction with the availability of that data.

For many mechanisms, additional domains must be introduced or considered.
MAC protection, e.g., requires a Secret sSnd used to calculate the MAC and another
Secret sRcv used to verify the MAC. For asymmetric mechanisms, SenderSecret and
ReceiverSecret need to be introduced. They are special StoredData. For dynamic au-
thentication, the Secret sMchn (stored in the machine) and the Secret sExt (known by the
subject) are necessary. Such introduced domains must be added to the description of
the environment.

The next step is to inspect the necessary conditions and the conditions to be
established beforehand. The generic mechanisms usually have a set of necessary con-
ditions to be fulfilled. These necessary conditions describe conditions necessary to es-
tablish the dependability requirement when a certain mechanism is selected. For ex-
ample, the introduced secrets for the MAC protection must be kept confidential, and
their integrity must be preserved. Before the mechanism is applied, some other activ-
ities are necessary, e.g., a secret must be distributed before it can be used for MAC
calculation (conditions to be established beforehand). Two alternatives are possible to
guarantee that the necessary conditions hold: either, they can be assumed to hold, or
they have to be established by instantiating a further dependability requirement pattern,
that matches the necessary condition. What assumptions are reasonable depends on the
hazards to be avoided and the threats the system should be protected against. Assump-
tions cannot be avoided completely, because otherwise it may be impossible to achieve
a dependability requirement. For example, we must assume that the user sees a warning
messages on a display or keeps a password confidential. Only in the case that nec-
essary conditions cannot be assumed to hold, one must instantiate further appropriate
dependability patterns, and the procedure is repeated until all necessary conditions of
all applied mechanisms can be proved or assumed to hold. The dependencies expressed
as necessary condition are used to develop a consolidated set of dependability require-
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ments and solution approaches that additionally cover all dependent requirements and
corresponding solution approaches, some of which may not have been known initially.

The next step is to check the Related column. There, dependability requirements
that are commonly used in combination with the described dependability pattern are
mentioned. This information helps to find missing dependability requirements right at
the beginning of the requirements engineering process. The dependencies for security
requirements are based on previous work [9].

Table 1 only shows some important dependencies used in Section 5. A comprehen-
sive version can be found in our technical report [6]. The next step in the software
development life-cycle is to derive a specification, which describes the machine and is
the starting point for its development.

5 Case Study

The approach is illustrated by the development of a cooperative adaptive cruise control
(CACC) maintaining string stability. Such a system controls the speed of a car according
to the desired speed given by the driver and the measured distance to the car ahead. It
also considers information about speed and acceleration of the car ahead which is sent
using a wireless network5. The hazard to be avoided is an unintended acceleration or
deceleration (that may lead to a rear-end collision). The considered threat is an attacker
who sends wrong messages to the car in order to influence its speed.6 Examples for
domain knowledge of the CACC in the described environment are physical properties
about acceleration, breaking, and measurement of the distance (relevant for safety).
Other examples are the assumed intention, knowledge and equipment of an attacker. We
assume here that the attacker can only access the WAVE/WLAN interface. The context
diagram for the CACC is shown in Fig. 3. The functional requirement for the CACC
is to maintain string stability.

5cf. United States Patent 20070083318
6The risk analysis is left out here.



R1 The CACC should control the speed of a Car using the MotorActuator Break ac-
cording to the desired speed given by the Driver and the measured Distance to the
car ahead (commanded behaviour, see Section 2).

R2 The CACC should also consider information about speed and acceleration of Other
Cars with CACC ahead which is sent using a wireless network (WAVE/WLAN in-
terface) (required behaviour).

The next step is to identify an initial set of dependability requirements. For the
functional requirement R2, the following security requirement can be stated using the
textual pattern from Section 3.3:

The influence (as described in the functional requirement) on the MotorAc-
tuator Break must be either correct, or in case of any modifications by some
Attacker the ConstrainedDomain should not be influenced and the Driver
must be informed.

These requirements can be expressed using the integrity predicates
∀mab : MotorActuator Break; dr : Driver; a : Attacker •

intatt(mab, mab, a) ∧ intatt(mab, dr, a) (1)

The first occurrence of the variable mab in Equation 1 refers to the influenced domain
as described in the functional requirement, and the second occurrence of mab expresses
that this domain is not influenced in case of an attack.

A safety requirement is to keep a safe distance to the car ahead while being activated
(see R1). For each safety requirement the integrity or the reliability must be defined. For
the CACC only integrity is required, because it is safe to switch off the functionality
and inform the driver in case of a failure. The risk analysis performed in the first step
showed that a probability of at most 10−6 untreated random errors per hour (that may
lead to an accident) can be accepted. Hence, for R1 it can be stated that

With a probability of 1 − 10−6 per hour, one of the following things should
happen: service (described in the functional requirement) with influence on
the MotorActuator Break must be correct, or the ConstrainedDomain should
not be influenced and the Driver must be informed.

The corresponding predicates are:
∀mab : MotorActuator Break; dr : Driver •

intrnd(mab, mab, 1− 10−6) ∧ intrnd(mab, dr, 1− 10−6) (2)

Additionally, to satisfy the drivers buying the CACC:

The service (described in the functional requirement) with influence on the
MotorActuator Break must be available with a probability of 1− 10−4.

This requirement can be expressed with the predicate
∀mab : MotorActuator Break • availrnd(mab, 1− 10−4) (3)

For availability, we only consider random faults, because for the corresponding security
requirement we have to limit the group of users (the service is provided for) as described
in Section 3.5, and this is not possible in the described environment.

The next step is to Select appropriate generic mechanisms for each dependability
requirement expressed as a predicate. Depending on the generic mechanism, additional
domains must be introduced or considered.



To establish Equation 1 messages authentication codes (MACs) can be used to
check integrity and authenticity of the messages (position, acceleration and speed data)
from other cars with trusted CACCs. According to Table 1, Secrets for sender and
receiver are necessary to calculate and verify the MAC. We decide to use SessionSecrets
for Sender (ss2) and Receiver (ss1). A SessionSecret has the advantage that it has a
short life-time: even if the attacker is able to obtain this secret, it can only be used for a
short time period. The “necessary conditions” column of Table 1 shows for the MAC
mechanism that the secrets (ss1 and ss2) and the machine processing the secrets (cacc)
must be protected from modification and disclosure. In case of any modification by the
attacker, the driver is informed, and there will be no influence on MotorActuator Break
(Equation 4). The “conditions to be established beforehand” column of Table 1 shows
that the secrets must be distributed beforehand (Equation 7), as stated with the following
predicates:

∀ cacc : CACC; ss1, ss2 : SessionSecret;
mab : MotorActuator Break; dr : Driver, a : Attacker •

confatt(cacc, dr, a) ∧ intatt(cacc, dr, a) ∧ intatt(cacc, mab, a) ∧ (4)
confatt(ss1, dr, a) ∧ intatt(ss1, dr, a) ∧ intatt(ss1, mab, a) ∧ (5)
confatt(ss2, dr, a) ∧ intatt(ss2, dr, a) ∧ intatt(ss2, mab, a) ∧ (6)
distatt(ss1, cacc, a) ∧ distatt(ss2, cacc, a) (7)

The integrity and confidentiality of the CACC with its data, in particular the SessionSe-
cret ss1 (required by Equations 4 and 5), can be established by some physical protec-
tion. The SessionSecret ss2 is stored in the OtherCarsWithCACC. Its confidentiality
and integrity (Equation 6) are also established by physical protection. To establish
Equation 7, a dynamic authentication mechanism with random numbers can be used.
With this authentication mechanism additionally a session key can be generated. Since
replay attacks cannot be avoided in the described context, random numbers are used for
authentication (cf. CSPF Dynamic Authentication in [7]). The necessary conditions for
this mechanism are similar to those for MAC protection. Integrity and confidentiality of
the machines and secrets are established in the same way as for the MAC protection. Se-
cure distribution of the AuthenticationSecrets is assumed to be done in the production
environment of the CACC.

To establish Equation 2, we regard the machine CACC as consisting of two parts:
the CACCSoftware caccSW and the CACCHardware caccHW . For the hardware we use,
a reliability of only 1 − 10−4 is guaranteed. For our software we assume (and try to
achieve using several quality assurance activities, see ISO/IEC 61508 [11, Part 3]) a
reliability of 1 − 10−6. Therefore, our software must check the hardware and initiate
the required actions. Several checks on the hardware have to be performed as given,
e.g., in the standard ISO/IEC 61508, Part 2, Tables A.1 to A.15 [11]. The first row
of Table 1 shows for the checksum mechanism (as one example from [11]) that the
integrity of the Machine and of the Display have to be ensured; i.e., if these domains
are not able to forward the warning to the user, the user must be informed by other
means. The Machine is here the CACC Hardware, and the Display is here (to simplify
the example) the Car used in the following predicates (Equation 8). The warning is
given acoustically and visually to increase the probability that the Driver recognizes
the warning. Additionally, it is necessary that in this case there is no automatic control



of the speed of the car, i.e., no influence on the MotorActuator Break (Equation 9).
∀ caccHW : CACCHardware; car : Car; dr : Driver; mab : MotorActuator Break •

intrnd(caccHW , dr, 1− 10−6) ∧ intrnd(car, dr, 1− 10−6) ∧ (8)
intrnd(caccHW , mab, 1− 10−6) ∧ intrnd(car, mab, 1− 10−6) ∧ (9)

The first part of Equations 8 and 9 cannot be assumed, because of the reliability of the
hardware is only 1−10−4. Therefore, our solution for this contradiction consists of two
parts. The first one is the dependability requirements for the software:

With a probability of 1 − 10−6, one of the following things should happen:
service (described in the functional requirement) of the Hardware must be
correct, or the CACC must be switched off using SwitchOffPartsOfCAC-
CHardware caccHW OFF (omitted in Fig. 4).

∀ caccHW : CACCHardware; caccHW OFF : SwitchOffPartsOfCACCHardware •
intrnd(caccHW , caccHW OFF, 1− 10−6) (10)

To establish Equation 10, the pre-requisites according to Table 1 can be fulfilled by a re-
liability of 1−10−6 for the CACCSoftware and the SwitchOffPartsOfCACCHardware,
which is also assumed.

The second part of the solution is that the Car has to detect a switched-off CACC.
In this case the Car should warn the driver, and the Car should not use the output of
the CACC to control the MotorActuator Break. For this requirement (Rcar), the follow-
ing reliability (stated as a predicate) is necessary and must be assumed for the CACC
development7:

∀ car : Car • relrnd(car, 1− 10−6) (11)
To establish Equation 3, reliable hardware and software can be used, because relrnd(c, P)
⇒ availrnd(c, P). The required reliabilities of the machine and all relevant connection
domains are assumed as shown in [6]. The new context diagram for the CACC result-
ing from applying dependability requirements patterns is shown in Fig. 4. New domains
were added to the description of the environment, and the connection of the attacker
to the WAVE/WLAN Interface is replaced by the more generic “window to the world”,
because the new domains SessionSecret AuthenticationSecret, and the CACC itself are
of great interest for the Attacker. Additionally, the machine CACC is split into CAC-
CHardware and CACCSoftware. Since some dependability requirements state that the
Driver must be informed, the additional phenomenon WarnDriver is introduced.

By using the dependencies given in Section 4, we systematically developed more
than 27 dependability requirements to be inspected from the 3 initial dependability
requirements.

6 Related Work
We are not aware of any similar approach for modeling a wide range of dependabil-
ity requirements. However, the Common Criteria [1], Part 2 define a large set of so-
called Security Functional Requirements (SFRs) with explicitly given dependencies be-
tween these SFRs. But some of these SFRs directly anticipate a solution, e.g. the SFR
cryptographic operation in the class functional requirements for cryptographic support

7Equation 11 expresses together with the functional requirement Rcar the same requirements
as Equations 8 and 9.



(FCS COP) specifies the cryptographic algorithm, key sizes, and the assigned stan-
dard to be used. The SFRs in the Common Criteria are limited to security issues. The
dependencies given in the Common Criteria are re-used for our pattern system. Our de-
pendability requirements can be regarded on the level of Security Objectives that have
to be stated according to Common Criteria, Part 3, before suitable SFRs are selected.
For example, for intatt d the SFRs Cryptographic operation (FCS COP), Cryptographic
key management (FCS CKM), and Stored data integrity (FDP SDI) can be instantiated.

7 Conclusions and Future Work
In this paper, we have presented a set of patterns for expressing and analyzing depend-
ability requirements. These patterns are separated from the functional requirements and
expressed without anticipating solutions. They can be used to create re-usable depend-
ability requirement descriptions for a wide range of problems.

This paper also describes a pattern system that can be used to identify missing re-
quirements in a systematic way. The pattern system is based on the predicates used
to express the requirements. The parameters of the predicates refer to domains of the
environment descriptions and are used to describe the dependencies precisely. The pat-
tern system may also show possible conflicts between dependability requirements in an
early requirements engineering phase.

In summary, our pattern system has the following advantages:
– The dependability patterns are re-usable for different projects.
– A manageable number of patterns can be applied on a wide range of problems,

because they are separated from the functional requirements.
– Requirements expressed by instantiated patterns only refer to the environment de-

scription and are independent from solutions. Hence, they can be easily re-used for
new product versions.

– The patterns closely relate predicates and their textual descriptions. The textual
description helps to state the dependability requirements more precisely.

– The patterns help to structure and classify the dependability requirements. For ex-
ample, requirements considering integrity can be easily distinguished from avail-
ability requirements. It is also possible to trace all dependability requirements that
refer to one domain.

– The predicates are the basis of a modular construction system used to identify de-
pendencies and possible interactions with other dependability requirements.
In the future, we plan to elaborate more on the later phases of software development.

For example, we want to apply our patterns to software components to show that a
certain architecture is dependable enough for its intended usage. Additionally, we plan
to systematically search for missing dependability requirements and dependencies using
existing specifications (e.g., public Security Targets).
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