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Abstract. We present a new UML profile serving to support a pattern-
and model-based requirements engineering method based on Jackson’s
problem frames. The UML profile allows us to express the different mod-
els being defined during requirements analysis using UML diagrams. In
order to automatically perform semantic validations associated with the
method, we provide integrity conditions, expressed as OCL constraints.
These constraints concern single models as well as the coherence of dif-
ferent models. To provide tool support for the requirements engineering
method, we have developed a tool called UML4PF. It is based on the
Eclipse development environment, extended by an EMF-based UML tool,
in our case, Papyrus. To demonstrate the applicability of our approach,
we use the case study of a vacation rentals reservation system.

1 Introduction

Model-based development is a promising approach to develop high-quality soft-
ware. This is because the development process consists of setting up a sequence
of models, which cover different aspects of the software to be developed, but are
not independent of each other. Thus, model-based development offers various
possibilities to check the coherence of the developed models. Such checks not
only concern syntactic properties, but also semantic ones.

Another concept to enhance the quality of software is to re-use previously ac-
quired development knowledge, thus avoiding to re-invent the wheel each time a
new software is built. Patterns are a means to represent such development knowl-
edge. For each phase of software development, patterns are available. However,
currently the use of patterns is not an integral part of model-based development.
It is our aim to bring the two approaches (model- and pattern-based software
development) together, thus exploiting the advantages of both of them.

In an earlier paper, we have defined a UML meta-model for problem frames
[?]. Problem frames are patterns supporting requirements analysis [?]. We pro-
vided integrity conditions that allow one to check if a given problem frame is
semantically valid. In this paper, we go further and support not only the defini-
tion, but also the use of problem frames. In particular, we have defined a UML



profile that allows us to represent the models being set up when analyzing soft-
ware development problems according to the problem frame-approach in UML.
In this way, the use of problem frames can be seamlessly integrated into a model-
based software development process, and the models set up during requirements
analysis can be re-used and referred to in later development phases.

For analyzing software development problems using problem frames, numer-
ous integrity conditions can be identified. On the one hand, such conditions con-
cern the semantic integrity of single models. For example, human users cannot
be obliged by the software to perform certain actions. This means, the software
is not allowed to constrain users. On the other hand, integrity conditions may
concern the coherence of different models. For example, the simple software de-
velopment problems obtained by problem decomposition must be valid instances
of problem frames. Furthermore, they must correctly refer to the previously de-
scribed application domain.

We express the identified integrity conditions as OCL constraints, and pro-
vide tool support for automatically checking them. Models can be checked im-
mediately after they have been developed. This makes it possible to detect errors
early in the development process.

In the following, we introduce the problem frames approach [?] and the cor-
responding UML profile (Sect. 2). Our tool UML4PF is described in Sect. 3.
Section 4 describes a selection of the integrity conditions we have identified. Sec-
tion 5 illustrates the approach by the case study of a web-based vacation rentals
system. Section 6 discusses related work. Finally, Sect. 7 concludes the paper
with a summary, ongoing work, and directions for future research.

2 UML Profile for Problem Frames

Problem frames are a means to describe software development problems. They
were introduced by Jackson [?], who describes them as follows: “A problem frame
is a kind of pattern. It defines an intuitively identifiable problem class in terms of
its context and the characteristics of its domains, interfaces and requirement.”

Figure 1 shows a problem frame called commanded behaviour in UML no-
tation. Informally, there is some part of the physical world whose behaviour is
to be controlled with commands issued by an operator. The problem is to build
a machine that will accept the operator’s commands and impose the control ac-
cordingly. [?]. We describe problem frames using class diagrams extended by
stereotypes. All elements of a problem frame diagram act as placeholders, which
must be instantiated to represent concrete problems. Doing so, one obtains a
problem description that belongs to a specific problem class.

The UML-class with the stereotype <<machine>> represents the software
to be developed (possibly complemented by some hardware). The classes with
domain stereotypes (e.g., <<CausalDomain>> or <<BiddableDomain>>) rep-
resent problem domains that already exist in the application environment.

In problem frame diagrams, interfaces connect domains, and they contain
shared phenomena. Shared phenomena may be events, operation calls, messages,
and the like. They are observable by at least two domains, but controlled by only
one domain, as indicated by an exclamation mark. For example, in Fig. 1 the
notation O!E4 means that the phenomena in the set E4 are controlled by the

2



Fig. 1. Commanded behaviour problem frame using
UML notation Fig. 2. Requirement stereo-

type inheritance structure

domain Operator. These interfaces are represented as associations in UML with
the stereotype <<connection>> or a specialized stereotype, and the name of the
associations contain the phenomena and the domain controlling the phenomena.

A association with the stereotype <<connection>> or a specialization can
also be represented by interface classes, whose operations correspond to phe-
nomena. The interface classes are either controlled or observed by the connected
domains, represented by dependencies with the stereotypes <<controls>> or
<<observes>>. Each interface can be controlled by at most one domain. A
controlled interface must be observed by at least one domain, and an observed
interface must be controlled by exactly one domain.3

Problem frames substantially support developers in analyzing problems to
be solved. They show what domains have to be considered, and what knowledge
must be described and reasoned about when analyzing the problem in depth.
Developers must elicit, examine, and describe the relevant properties of each
domain. These descriptions form the domain knowledge. The domain knowledge
consists of assumptions and facts. Assumptions are conditions that are needed,
so that the requirements are accomplishable. Usually, they describe required user
behavior. Facts describe fixed properties of the problem environment, regardless
of how the machine is built.

Domain knowledge and requirements are special statements. A statement
is modeled similarly to a SysML requirement [?] as a class with a stereotype.
In this stereotype a unique identifier and the statement text are contained as
stereotype attributes. Figure 2 shows the new stereotype Statement that extends
the meta-class Class of the UML meta-model.

When we state a requirement, we want to change something in the world
with the machine to be developed. Therefore, each requirement constrains at

3 Such conditions form integrity conditions for problem frames, which are implemented
in UML4PF.
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least one domain. This is expressed by a dependency from the requirement to a
domain with the stereotype <<constrains>>. Such a constrained domain is the
core of any problem description, because it has to be controlled according to the
requirements.

A requirement may refer to several domains in the environment of the ma-
chine. This is expressed by a dependency from the requirement to a domain with
the stereotype <<refersTo>>. The domains referred to are also given in the re-
quirements description. In Fig. 1, the Controlled Domain domain is constrained,
because the Control Machine has the role to change it on behalf of user commands
for achieving the required Commanded Behaviour.

Jackson distinguishes the domain types biddable domains that are usually
people, causal domains that comply with some physical laws, and lexical domains
that are data representations. The domain types are modeled by the stereotypes
<<BiddableDomain>> and <<CausalDomain>> being subclasses of the stereo-
type <<Domain>>. A lexical domain (<<LexicalDomain>>) is modeled as a
special case of a causal domain. This kind of modeling allows us to add further
domain types, such as <<DisplayDomain>> (introduced in [?]) being a special
case of a causal domain.

To describe the problem context, a connection domain between two other
domains may be necessary. Connection domains establish a connection between
other domains by means of technical devices. Connection domains are, e.g., video
cameras, sensors, or networks. Whenever a connection domain is introduced, it
is necessary to refine or concretize an association. For this purpose, we intro-
duce the stereotypes <<refines>> and <<concretizes>>. We suggest to use the
stereotype <<refines>> if a refinement relation is defined, e.g., Z-Refinement
[?]. Otherwise, we suggest to use the stereotype <<concretizes>>.

Software development with problem frames proceeds as follows: first, the
environment in which the machine will operate is represented by a context
diagram. Like a frame diagram, a context diagram consists of domains and
interfaces. However, a context diagram does not take requirements into account
(see Fig. 4 for an example). Then, the problem is decomposed into subproblems.
If possible, the decomposition is done in such a way that the subproblems fit
to given problem frames. To fit a subproblem to a problem frame, one must
instantiate its frame diagram, i.e., provide instances for its domains, phenomena,
and interfaces. The instantiated frame diagram is called a problem diagram.

Successfully fitting a problem to a given problem frame means that the con-
crete problem indeed exhibits the properties that are characteristic for the prob-
lem class defined by the problem frame. A problem can only be fitted to a prob-
lem frame if the involved problem domains belong to the domain types specified
in the frame diagram. For example, the Operator domain of Fig. 1 can only be
instantiated by persons, but not for example by some physical equipment like
an elevator.

Since the requirements refer to the environment in which the machine must
operate, the next step consists in deriving a specification for the machine (see
[?] for details). The specification describes the machine and is the starting point
for its construction.
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Fig. 3. Tool realization overview

The different diagram types make use of the same basic notational ele-
ments. As a result, it is necessary to explicitly state the type of diagram by ap-
propriate stereotypes. In our case, the stereotypes are <<ContextDiagram>>,
<<ProblemDiagram>>, and <<ProblemFrame>>. These stereotypes extend
(some of them indirectly) the meta-class Package in the UML meta-model.

According to the UML superstructure specification [?], it is not possible that
one UML element is part of several packages. Nevertheless, several UML tools
allow one to put the same UML element into several packages within graphical
representations. We want to make use of this information from graphical repre-
sentations and add it to the model (using stereotypes of the profile). Thus, we
have to relate the elements inside a package explicitly to the package. This can
be achieved with a dependency stereotype <<isPart>> from the package to all
included elements (e.g., classes, interfaces, comments, associations).

3 Tool Support
We have developed a tool called UML4PF to support the requirements engineer-
ing method sketched in Section 2 as well as subsequent development steps, such
as deriving software architectures from problem descriptions. Figure 3 provides
an overview of the context of our tool. Gray boxes denote re-used components,
whereas white boxes describe those components that we created. Basis is the
Eclipse platform [?] together with its plug-ins EMF [?] and OCL [?]. With OCL
it is possible to formally specify constraints over a given model. Our UML-profile
is conceived as an Eclipse plug-in, extending the EMF meta-model. We store the
data in the profile in XMI-format. We store all our OCL constraints in one file in
XML-format. Listing 1.1 shows an example of such a constraint. It formalizes the
general fact that a model contains exactly one context diagram. In Listing 1.1,
all packages in the model (line 1) having the stereotype <<ContextDiagram>>
assigned (accessed by the EMF keyword getAppliedStereotypes in line 2) are se-
lected. The number of packages in the selected set must then be equal to one
(line 3).

1 Package . a l l I n s t a n c e s ( )
2 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )
3 −>s i z e ( )=1

Listing 1.1. Only one context diagram in a project

The functionality of our tool UML4PF comprises the following:

– It checks if the developed model is valid and consistent by using our OCL
constraints.
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– It returns the location of invalid parts of the model.
– It automatically generates model elements, e.g., it generates observed and

controlled interfaces from association names, as well as dependencies with
stereotype <<isPart>> for all domains and statements being inside a pack-
age in the graphical representation of the model.

The graphical representation of the different diagram types can be manipu-
lated by using any EMF-based editor. We selected Papyrus [?] as it is available as
an Eclipse plug-in, open-source, and EMF-based. UML4PF provides additional
windows in Eclipse to edit requirements and traceability links as an easy-to-
use user interface. Requirements and traceability links are directly stored in the
UML model.

4 Checking Integrity Constraints

In this section, we show how the different models can be checked using OCL-
constraints. We have identified mainly two classes of constraints. The first class
enables us to check the integrity and consistency of single diagrams. The second
class allows us to check the consistency of different types of diagrams. The con-
straints given below in italics mark the selection of constraints given in detail
in this paper4. The relevant diagram types covered in this paper are: context
diagram, problem diagram and problem frame.

4.1 Checking Single Diagrams

We first give expressions that are related to all three diagram types, followed
by expressions for context diagrams, and finally constraints that apply to both
problem diagrams as well as problem frames.
OCL-Expressions related to all three diagram types:

1. A context diagram or problem diagram or problem frame must contain at
least one machine domain.5

2. A context diagram/problem diagram/ problem frame only consists of allowed
elements, e.g., classes and associations.

3. Domains contained in another domain must be of same type or of a sub-type.
4. Each connection connects at least two domains.
5. Each interface can be controlled by at most one domain.
6. A controlled interface must be observed by at least one domain.
7. Stereotypes <<CausalDomain>> (and sub-types) and <<BiddableDomain>>

are not allowed together for one class.
8. Interfaces can only contain other interfaces.
9. Connection domains have at least one observed and exactly one controlled

interface.
10. Each machine controls at least one interface.
11. Dependencies with the stereotypes <<observes>> and <<controls>> point

from domains to interfaces.

4 The complete presentation of the OCL constraints can be found in [?].
5 In contrast to Jackson, we allow more than one machine domain to be able to model

distributed systems.
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1 Package . a l l I n s t a n c e s ( )−>select (p |
2 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ContextDiagram ’ ) or
3 p . oclAsType ( Package ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ProblemDiagram ’ ) or
4 p . oclAsType ( Package ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ProblemFrame ’ )
5 )−> forAll (p |
6 p . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
7 . target−>select ( cd elem |
8 cd elem . oclIsTypeOf ( Class ) and cd elem . oclAsType ( Class )

. ge tApp l i edSte reotypes ( ) . name −>includes ( ’ Machine ’ )
9 )−>s i z e ( )>=1)

Listing 1.2. Context diagram/problem diagram/problem frame must contain
at least one machine domain

Listing 1.2 contains the OCL-expression for Condition 1: It expresses that
the context diagram must contain at least one machine. We first select all pack-
ages with the appropriate stereotype, i.e, <<ContextDiagram>>, <<Problem-
Diagram>>, or <<ProblemFrame>> (lines 1 to 4). In this set of packages we
collect all dependencies of this package (using clientDependency) and select those
with the stereotype <<isPart>> (line 6). Using the target ends of the depen-
dencies, we collect all elements of the package and select (line 7) those elements
(cd elem) being classes with the stereotype <<Machine>> (line 8). The size of
the resulting bag must be greater than or equal to one (line 9).

1 Package . a l l I n s t a n c e s ( ) −>select (p |
2 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ContextDiagram ’ ) or
3 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ProblemDiagram ’ ) or
4 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ProblemFrame ’ ) ) .
5 cl ientDependency−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . ta rget−>forAll ( oe |
6 ( oe . ocl IsTypeOf ( Class ) and
7 ( oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’Domain ’ ) or
8 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .

name −>includes ( ’Domain ’ ) or
9 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .

g ene ra l . name −>includes ( ’Domain ’ ) or
10 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .

g ene ra l . g ene ra l . name −>includes ( ’Domain ’ ) or
11 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Statement ’ ) or
12 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .

name −>includes ( ’ Statement ’ ) or
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13 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .
g ene ra l . name −>includes ( ’ Statement ’ ) or

14 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . g ene ra l .
g ene ra l . g ene ra l . name −>includes ( ’ Statement ’ ) )

15 ) or
16 oe . oclIsTypeOf ( I n t e r f a c e ) or
17 ( oe . ocl IsTypeOf ( As soc i a t i on ) and
18 ( oe . oclAsType ( As soc i a t i on ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ connect ion ’ ) or
19 oe . oclAsType ( As soc i a t i on ) . ge tApp l i edSte reotypes ( ) .

g ene ra l . name −>includes ( ’ connect ion ’ ) or
20 oe . oclAsType ( As soc i a t i on ) . ge tApp l i edSte reotypes ( ) .

g ene ra l . g ene ra l . name −>includes ( ’ connect ion ’ ) or
21 oe . oclAsType ( As soc i a t i on ) . ge tApp l i edSte reotypes ( ) .

g ene ra l . g ene ra l . g ene ra l . name
−>includes ( ’ connect ion ’ ) )

22 ) or
23 ( oe . ocl IsTypeOf ( Dependency ) and
24 ( oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f e r sTo ’ ) or
25 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) or
26 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) or
27 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ obse rves ’ ) or
28 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) or
29 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e p l a c e s ’ ) or
30 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e s t r i c t s ’ ) or
31 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ mod i f i e s ’ ) or
32 oe . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ supplements ’ ) )
33 ) or
34 oe . oclIsTypeOf (Comment)
35 )

Listing 1.3. The packages only consist of allowed elements

All diagram types rely on the same basic notational elements (see Condition 2).
However, not all existing notational elements are allowed to be used in the dif-
ferent diagram types. In a problem diagram, for instance, allowed elements are
classes, interfaces, associations, dependencies, and comments. In the following,
we show an OCL constraint expressing that for some of these elements, only
a defined set of stereotypes is allowed. Not allowed in a problem diagram are,
e.g. packages, components, or classes without any stereotype. This constraint is
shown in Listing 1.3: First, we select all packages that are annotated with the
stereotype <<ProblemDiagram>> (lines 1-3). Second, we select all the elements
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being part of the package el (line 4) that satisfy the conditions for allowed ele-
ments, i.e., it is a class, an interface, an association, a dependency, or a comment
(lines 5, 9, 10, 14, and 18).

– Classes (line 5) being part of the problem diagram package must have a
stereotype <<Domain>> or a specialized domain stereotype. In line 6, we
initialize the variable s, which is a set of type Stereotype, with the stereotypes
applied for the class el . In line 7, we check that the name of the stereotype
is ’Domain’ or a sub-type of ’Domain’. Classes may also have the stereotype
<<Statement>> or a sub-type such as <<Requirement>> (line 8).

– For interface classes (line 9) the usable stereotypes are not restricted.
– Any association (line 10) being part of the problem diagram package repre-

sents an interface. Therefore, it must have the stereotype <<connection>>
or must be of a sub-type, e.g., <<ui>> for a user interface (lines 11-13).

– The included dependencies (line 14) must be (of the already described)
stereotypes <<observes>>, <<controls>>, <<refersTo>>, <<constrains>>,
or <<isPart>>, or of the stereotypes <<concretizes>>, <<refines>>,
<<replaces>>, <<restricts>>, <<modifies>>, or <<supplements>> (lines
15-17). The latter stereotypes are not treated in this paper, as they are out
of scope.

– For comments (line 18) the usable stereotypes are not restricted.

1 Class . a l l I n s t a n c e s ( ) −>forAll ( c | c . oclAsType ( Class ) . member
2 −>forAll (p | (p . oclIsTypeOf ( Property ) and

p . oclAsType ( Property ) . type . oclIsTypeOf ( Class ) ) implies
3 p . oclAsType ( Property ) . type . ge tApp l i edSte reo types ( ) . name
4 −>forAll ( s t name o f pa r t |
5 ( c . ge tApp l i edSte reotypes ( ) . name

−>includes ( s t name o f pa r t ) ) or
6 ( (
7 ( s t name o f pa r t=’ ConnectionDomain ’ or
8 s t name o f pa r t=’ BiddableDomain ’ or
9 s t name o f pa r t=’ CausalDomain ’ or

10 s t name o f pa r t=’ DisplayDomain ’ or
11 s t name o f pa r t=’ LexicalDomain ’ or
12 s t name o f pa r t=’ Machine ’ or
13 s t name o f pa r t=’ DesignedDomain ’ or
14 s t name o f pa r t=’Domain ’
15 ) and c . ge tApp l i edSte reo types ( ) . name

−>includes ( ’Domain ’ )
16 ) or
17 (
18 ( s t name o f pa r t=’ ConnectionDomain ’ or
19 s t name o f pa r t=’ DisplayDomain ’ or
20 s t name o f pa r t=’ LexicalDomain ’ or
21 s t name o f pa r t=’ Machine ’ or
22 s t name o f pa r t=’ DesignedDomain ’ or
23 s t name o f pa r t=’ CausalDomain ’
24 ) and c . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ CausalDomain ’ )
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25 ) or
26 (
27 ( s t name o f pa r t=’ LexicalDomain ’ or
28 s t name o f pa r t=’ Component ’ or
29 s t name o f pa r t=’ ReusedComponent ’ or
30 s t name o f pa r t=’ Machine ’
31 ) and c . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ Machine ’ )
32 ) or
33 (
34 ( s t name o f pa r t=’ Component ’ or
35 s t name o f pa r t=’ ReusedComponent ’
36 ) and c . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ Component ’ )
37 )
38 )
39 )
40 )
41 )

Listing 1.4. Domains being part of another domain must be of the same type
or of a sub-type

To realize Condition 3, i.e. that domains being part of another domain must be
of the same type or of a sub-type, we must do a case distinction according to the
different domain types. Listing 1.4 shows the corresponding for the expression:
Note that lexical domains may also be parts of a machine. In line 1, we get all
class instances. For those instances we verify that all the class members being
properties 6 have either the stereotype names of the contained class (accessed
with type and getAppliedStereotypes().name) (lines 3 and 4) included in the list of
stereotypes of the class (line 5), i.e. they have the same name or the list of names
contain allowed sub-types of Domain (lines 7-15). We have to do this check for
<<CausalDomain>> (lines 18-24) and <<Machine>> (lines 27-31), as well.
In lines 34-36 we check that only allowed elements for domain are considered
when deriving software architectures in the design step.

1 Assoc i a t i on . a l l I n s t a n c e s ( ) −>forAll ( a |
a . oclAsType ( As soc i a t i on ) . memberEnd−>s i z e ( )>=2) and

2 Assoc i a t i on . a l l I n s t a n c e s ( ) −>select (
3 ge tApp l i edSte reotypes ( ) . name −>includes ( ’ connect ion ’ ) or
4 gene ra l . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ connect ion ’ ) or
5 gene ra l . g ene ra l . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ connect ion ’ ) or
6 gene ra l . g ene ra l . g ene ra l . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ connect ion ’ )
7 ) . endType−>forAll ( s |
8 s . ge tApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or

6 In EMF, attributes, associations, aggregations and compositions are modeled as
properties. Attributes, aggregations and compositions may have the type Class.
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9 s . ge tApp l i edSte reo types ( ) . g ene ra l . name −>includes ( ’Domain ’ )
or

10 s . ge tApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name
−>includes ( ’Domain ’ )

11 )

Listing 1.5. Each connection connects at least two domains

Condition 4 is described in Listing 1.5. In line 1 we check that each association
a has at least 2 association ends. Additionally, in line 2-6 we select all associ-
ations with the stereotype <<connection>> or a sub-type and check for these
associations that connected elements have the stereotype <<Domain>> or a
sub-type.

1 I n t e r f a c e . a l l I n s t a n c e s ( ) −>forAll ( i |
2 i . oclAsType ( I n t e r f a c e ) . g e t R e l a t i o n s h i p s ( ) −>select ( r |
3 r . oclAsType ( Re la t i on sh ip ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n s t r a i n s ’ )
4 )−>s i z e ( )<=1)

Listing 1.6. Each interface can be controlled by at most one domain

Condition 5 is described in Listing 1.6. It checks for each interface in the model
i (line 1) that the number of its relationships (i.e., dependencies) r (line 2) with
the stereotype <<constrains>> (line 3) is smaller than or equal to 1 (line 4).

1 I n t e r f a c e . a l l I n s t a n c e s ( ) −>forAll ( i |
2 i . oclAsType ( I n t e r f a c e ) . g e t R e l a t i o n s h i p s ( ) −>select ( r |
3 r . oclAsType ( Re la t i on sh ip ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) ) −>s i z e ( )=1
4 implies
5 i . oclAsType ( I n t e r f a c e ) . g e t R e l a t i o n s h i p s ( ) −>select ( r |
6 r . oclAsType ( Re la t i on sh ip ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ obse rves ’ ) ) −>s i z e ( )>=1

Listing 1.7. A controlled interface must be observed by at least one domain

Condition 6 checks for each interface in the model i (Listing 1.7, line 1) that if
this interface is constrained (lines 2 and 3) this interface is observed by at least
one domain (lines 4-6).

1 Class . a l l I n s t a n c e s ( )−>select ( c l |
2 let s t : Set ( Stereotype ) =

c l . oclAsType ( Class ) . ge tApp l i edSte reo types ( ) in
3 ( s t . name−>includes ( ’ BiddableDomain ’ ) or
4 s t . g ene ra l . name−>includes ( ’ BiddableDomain ’ )
5 ) and (
6 s t . name−>includes ( ’ CausalDomain ’ ) or
7 s t . g ene ra l . name−>includes ( ’ CausalDomain ’ ) or
8 s t . g ene ra l . g ene ra l . name−>includes ( ’ CausalDomain ’ )
9 ) )−>s i z e ( )=0

Listing 1.8. Domain cannot be Causal and Biddable
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Not all combinations of stereotypes are permitted. For example, the stereo-
types <<CausalDomain>> (or sub-types) and <<BiddableDomain>> are not
allowed to be applied together on one class (see Condition 7). Hence, we must
provide an OCL expression that checks whether this condition is fulfilled. List-
ing 1.8 depicts the corresponding OCL constraint, which expresses the following:
in line 1, all the classes of the model are selected that satisfy the condition stated
within the select-statement. In line 2, we gather the set of stereotypes for each
class cl and assign it to the variable st . However, only those classes in st should be
selected that have the stereotype <<BiddableDomain>> or a direct sub-type of
<<BiddableDomain>> and the stereotype <<CausalDomain>> or a sub-type
of <<CausalDomain>>. Unfortunately, it is not possible to iterate through the
different inheritance hierarchies of stereotypes with EMF. Therefore, we must
explicitly move to each level of inheritance (keyword general). As we currently
have three hierarchy levels, we limit our constraints to this number (lines 3-8).
Note that if new domain types are to be introduced, this limit may need to be
adapted. In line 9, we finally check by comparing the size of the set to 0 whether
st is empty.

1 I n t e r f a c e . a l l I n s t a n c e s ( ) . member
2 −>select (p |

(p . oclIsTypeOf ( Property ) ) ) . oclAsType ( Property ) . type
3 −>forAll ( oclIsTypeOf ( I n t e r f a c e ) )

Listing 1.9. Interfaces can only contain other interfaces

Condition 8 checks for each interface if it only contains other interface. In
Listing 1.9, lines 1 and 2) all contained elements are selected. We check that the
type of these elements is interface (line 3).

1 Class . a l l I n s t a n c e s ( )−>select ( oe | (
2 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) .

name−>includes ( ’ ConnectionDomain ’ ) ) ) . oclAsType ( Class ) .
c l i entDependency . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ obse rves ’ )−>count ( t rue )>=1 and

3 Class . a l l I n s t a n c e s ( )−>select ( oe | (
4 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) .

name−>includes ( ’ ConnectionDomain ’ ) ) ) . oclAsType ( Class ) .
5 c l ientDependency . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ )−>count ( t rue )>=1

Listing 1.10. Connection domains have at least one observed and exactly one
controlled interface

Condition 9 checks that all display domains and connection domains (List-
ing 1.10, lines 1, 3 and 4) have at least one observed (line 2) and exactly one
controlled interface (line 5).

1 s e l f . allOwnedElements ( )−>select ( oe | oe . oclIsTypeOf ( Class ) and
2 oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Machine ’ ) )−>forAll (
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3 oclAsType ( Class ) . c l i entDependency .
ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ c o n t r o l s ’ )−>count ( t rue )>=1)

Listing 1.11. Each machine controls at least one interface

Condition 10 checks that each machine (Listing 1.11, lines 1 and 2) controls
at least one interface (line 3).

1 Dependency . a l l I n s t a n c e s ( )−>select ( a |
2 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ obse rves ’ ) or
3 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n t r o l s ’ ) ) −>forAll (d |
4 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reo types ( ) . name

−>includes ( ’Domain ’ ) or
5 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reo types ( ) .

g ene ra l . name−>includes ( ’Domain ’ ) or
6 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reo types ( ) .

g ene ra l . g ene ra l . name−>includes ( ’Domain ’ ) )
7 and
8 Dependency . a l l I n s t a n c e s ( )−>select ( a |
9 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ obse rves ’ ) or
10 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n t r o l s ’ ) ) . t a r g e t
11 −>forAll ( oclIsTypeOf ( I n t e r f a c e ) )

Listing 1.12. Dependencies with the stereotypes observes and controls point
from domains to interfaces

Condition 11 checks that dependencies with the stereotypes <<observes>>
and <<controls>> (Listing 1.12, lines 1-3 and 8-10) point from domains or
sub-types (lines 4-6) to interfaces (line 11).
OCL-Expressions related to context diagrams:

12. Only one context diagram exists (see Listing 1.1).
13. Context diagrams do not contain requirements.

1 Package . a l l I n s t a n c e s ( )−>select (p |
2 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ContextDiagram ’ ) ) .
3 c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . ta rget−>select ( oe |
4 oe . oc lIsTypeOf ( Class ) and

oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) )−>s i z e ( )=0

Listing 1.13. Context diagrams do not contain requirements

Condition 13 checks that context diagrams (Listing 1.13, lines 1 and 2) do not
contain (line 3) requirements (line 4).
OCL-expressions related to problem diagrams/problem frames:
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14. The requirements constrain no machine.
15. The requirements constrain no biddable domain.
16. Packages with the stereotype <<ProblemDiagram>> or <<ProblemFrame>>

must contain at least one requirement.
17. Dependencies with the stereotypes <<constrains>> and <<refersTo>>

point from statements (or sub-types) to domains (or sub-types).

1 Dependency . a l l I n s t a n c e s ( )
2 −>select ( a |

a . oclAsType ( Dependency ) . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ c o n s t r a i n s ’ ) )

3 −>forAll (not ( source . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) and

4 t a r g e t . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Machine ’ )

5 ) )

Listing 1.14. Requirement constrain no machine

Listing 1.14 illustrates the constraint for Condition 14: We first select all de-
pendencies with the stereotype <<constrains>> (lines 1 and 2). We then check
that there is no dependency that starts from <<Requirement>> and points to
<<Machine>> (lines 3 and 4).

1 Dependency . a l l I n s t a n c e s ( )−>select (
2 oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) )−>forAll (
3 source . ge tApp l i edSte reotypes ( )

. name−>includes ( ’ Requirement ’ ) implies
4 not t a r g e t . ge tApp l i edSte reo types ( ) .

name−>includes ( ’ BiddableDomain ’ ) )

Listing 1.15. Requirements constrain no biddable domain

Condition 15 checks that requirements constrain no biddable domain. List-
ing 1.15 shows for all dependencies (line 1) with the stereotype <<constrains>>
(line 2) that if the the source of the dependency is a requirement (line 3), the
target is not a biddable domain (line 4).

1 Package . a l l I n s t a n c e s ( )−>select (p |
2 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ProblemDiagram ’ ) or
3 p . oclAsType ( Package ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ ProblemFrame ’ ) ) .
4 c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . ta rget−>select ( oe |
5 oe . oc lIsTypeOf ( Class ) and

oe . oclAsType ( Class ) . ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) )−>s i z e ( )>=1

Listing 1.16. Packages with the stereotype ProblemDiagram or ProblemFrame
must contain at least one requirement
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Condition 16 checks that packages with the stereotype <<ProblemDiagram>>
or <<ProblemFrame>> (Listing 1.16, lines 1-3) must contain (line 4) at least
one requirement (line 5).

1 Dependency . a l l I n s t a n c e s ( )−>select ( a |
2 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) or
3 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ r e f e r sTo ’ ) ) −>forAll (d |
4 d . oclAsType ( Dependency ) . t a r g e t . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’Domain ’ ) or
5 d . oclAsType ( Dependency ) . t a r g e t . ge tApp l i edSte reotypes ( ) .

g ene ra l . name−>includes ( ’Domain ’ ) or
6 d . oclAsType ( Dependency ) . t a r g e t . ge tApp l i edSte reotypes ( ) .

g ene ra l . g ene ra l . name−>includes ( ’Domain ’ ) )
7 and
8 Dependency . a l l I n s t a n c e s ( )−>select ( a |
9 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) or
10 a . oclAsType ( Dependency ) . ge tApp l i edSte reo types ( ) . name

−>includes ( ’ r e f e r sTo ’ ) ) −>forAll (d |
11 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Statement ’ ) or
12 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reotypes ( ) .

g ene ra l . name−>includes ( ’ Statement ’ ) or
13 d . oclAsType ( Dependency ) . source . ge tApp l i edSte reotypes ( ) .

g ene ra l . g ene ra l . name−>includes ( ’ Statement ’ ) )

Listing 1.17. Dependencies with the stereotypes constrains and refersTo point
from statements (or sub-types) to domains (or sub-types)

Condition 17 checks that dependencies with the stereotypes <<constrains>>
and <<refersTo>> (Listing 1.17, lines 1-3 and lines 8-10) point from statements
or sub-types (line 4-6) to domains or sub-types (lines 11-13).

4.2 Checking Relationships between Diagrams

In this section, OCL-constraints for checking the consistency of two different
diagram types are presented.
Relationship between context diagram and problem diagrams:
18. Each problem diagram machine is a part of the context diagram machine.
19. All subproblem diagrams are derived from the context diagram by means

of decomposition operators. To check this condition, the following aspects
must be considered:
(a) each domain in each of the problem diagrams corresponds to a domain

in the context diagram.
(b) each connection in each of the problem diagrams corresponds to a con-

nection in the context diagram.
(c) each observed interface in each of the problem diagrams corresponds to

an observed interface in the context diagram.
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(d) each controlled interface in each of the problem diagrams corresponds to
a controlled interfaces in the context diagram.

(e) each domain in the context diagram corresponds to at least one domain
in one of the problem diagrams.

(f) each controlled or observed interface of the machine in the context di-
agram corresponds to at least one interface in one of the problem dia-
grams.

Hence, it is allowed to leave out domains in one problem diagram, but each
domain in the context diagram must be considered in at least one problem
diagram.

Listings 18.1-18.3 express that each machines in the problem diagrams is a part
of a machine in the context diagram to realize Condition 18.

1 let m: Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
3 . c l ientDependency . t a r g e t
4 −>select ( ge tApp l i edSte reotypes ( ) . name −>includes ( ’ Machine ’ )

or
5 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’ Machine ’ ) )
6 . oclAsType ( Class )−>asSet ( )
7 in

Listing 18.1. Machines of Problem Diagrams are Part of the Machines in the
Context Diagram: Get Context Diagram Machines

The set of machines m is (line 1) defined by selecting the package with the
stereotype <<ContextDiagram>>. Since only one context diaram is allowed in
the model, we can access this diagram by converting the selected bag of packages
into a sequence and taking the first element (line 2). For this package containing
the context diagram, we collect the targets of all dependencies (with clientDepen-

dency and target in line 3). These dependencies include all dependencies with the
stereotype <<isPart>> as described in Section 3. To get the machines being
part of the package, we select all classes with the stereotype <<Machine>>
(lines 4 and 5) and all classes with a stereotype derived from the stereotype
<<Machine>>. The superclass can be accessed by the EMF keyword general.
The selected elements with these stereotypes are classes and we can convert the
bag of elements into a set of classes (line 6).

8 m. oclAsType ( Class ) . member
9 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type

10 −>union (
11 m. oclAsType ( Class ) . member
12 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
13 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class ) . member
14 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
15 )
16 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )
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17 −>select ( ge tApp l i edSte reotypes ( ) . name −>includes ( ’ Machine ’ )
or getApp l i edSte reotypes ( ) . g ene ra l . name
−>includes ( ’ Machine ’ ) ) −>asSet ( )

Listing 18.2. Machines of Problem Diagrams are Part of the Machines in the
Context Diagram: Get Parts of Context Diagram Machines

For all machines m we collect all members (e.g., contained classes, connections,
ports, operations, properties) (line 8). We select the properties and collect the
type of the properties (elements connected with an aggregation or composition
or attribute types) in line 9. To these elements we add the elements aggregated
or composed indirectly (lines 10-15). We select the elements being classes with
the stereotype <<Machine>> or a sub-type and remove double classes (with
asSet in lines 16 and 17).

18 −>i n c l u d e s A l l (
19 Package . a l l I n s t a n c e s ( )

−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ProblemDiagram ’ ) )

20 . c l ientDependency . t a r g e t
21 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Machine ’ ) or
getApp l i edSte reotypes ( ) . g ene ra l . name
−>includes ( ’ Machine ’ ) )

22 . oclAsType ( Class )−>asSet ( )
23 )

Listing 18.3. Machines of Problem Diagrams are Part of the Machine in the
Context Diagram: Problem Diagram Machines a are Subset of Context Diagram
Machines Parts

Listing 18.3 verifes that the machines in the problem diagram are a subset
(using includesAll in line 18) of the set of machines being part of the context
diagram machine determined in Listing 18.2. The problem diagram machines are
retrieved by selecting all packages with the stereotype <<ProblemDiagram>>
(line 19) and by using the dependencies (with the stereotype <<isPart>>)
pointing to the classes with the stereotype <<Machine>> or a sub-type (lines
20-22). All subproblem diagrams are derived from the context diagram by means
of the following decomposition operators (Condition 19):

– introduce connection domain
– remove connection domain
– combine domain
– split domain
– concretize interface
– abstract interface
– combine interface
– split interface
– leave out domain

17



1 let cd domains : Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
3 . c l ientDependency . t a r g e t
4 −>select (
5 ge tApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
6 getApp l i edSte reo types ( ) . g ene ra l . name −>includes ( ’Domain ’ )

or
7 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
8 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) )
9 . oclAsType ( Class )−>asSet ( )

10 let cd conta ined domains : Set ( Class ) =
11 cd domains . member
12 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
13 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )−>asSet ( )
14 in
15 let cd combined domains : Set ( Class ) =
16 Class . a l l I n s t a n c e s ( ) −>select ( c l |
17 let cl members : Set ( Class ) =
18 c l . member
19 −>select ( oclIsTypeOf ( Property ) )

. oclAsType ( Property ) . type
20 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class ) −>asSet ( )
21 in
22 cl members−>exists ( clm | cd domains−>includes ( clm ) )
23 )
24 in

Listing 19.1. Problem diagram domains are consistent to context diagram
domains: get context diagram domains

In the OCL-constraint for Condition 19a (given in Listing 19.1), we collect
all domains that can be found at the end of a dependency in the context diagram
and store them in the set cd domains (lines 1-9). Note that we must use the EMF-
keyword general to access the next inheritance level as the keyword is not defined
recursively. As we have 4 possible hierarchy levels, we need to apply it three
times (see line 8). We also collect the contained domains (cd contained domains,
lines 10-13). A contained domain is a class related to a context diagram domain
by aggregation, composition, or as an attribute type. Combined domains are
collected, as well (cd combined domains, lines 15-22). A combined domain is a
domain that contains at least one context diagram domain.

25 let c d c o n n e c t i o n i f s : Set ( I n t e r f a c e )=
26 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
27 . c l ientDependency . t a r g e t
28 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
29 in
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30 let c d c o n t a i n e d c o n n e c t i o n i f s : Set ( I n t e r f a c e )=
31 c d c o n n e c t i o n i f s . member
32 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
33 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
34 in

Listing 19.2. Problem diagram domains are consistent to context diagram
domains: get context diagram connections

We mentioned earlier that it is possible to introduce connection domains by con-
cretizing or refining an interface. To cover this case, it is necessary to have a look
at the connections and to identify those dependencies that have the stereotypes
<<refines>> and <<concretizes>>. To obtain these connections, we must col-
lect all the interfaces of the context diagram. Listing 19.2 contains the corre-
sponding OCL-expression. Basically, we follow the same principle as we did for
the domains in lines 1-8 of Listing 19.1: we first collect all interfaces included in
the context diagram and store them in cd connection ifs (lines 25-28). Second, we
collect the interfaces contained in other interfaces (lines 30-33) and store them
in cd contained connection ifs.

35 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ProblemDiagram ’ ) )

36 −>forAll (pd |
37 pd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

38 −>select ( oclIsTypeOf ( Class ) )
39 −>select (
40 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
41 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
42 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
43 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) ) . oclAsType ( Class )

Listing 19.3. Problem diagram domains are consistent to context diagram
domains: all domains in problem diagram

We have now selected all the relevant parts of the context diagram. Next, we
must collect the domains contained in the problem diagrams to be able to check
whether all those domains are existing in the context diagram. To get these
domains, we re-use lines 2-9 of Listing 19.1 as lines 35-43 of this expression
(see Expression 19.3) with two modifications: first, we replace ContextDiagram by
ProblemDiagram and second, we omit the −>asSet() at the end of line 9. Instead,
we start checking whether we are able to find matching pairs of domains or
concretizes/refines-relations, respectively.

44 −>forAll ( pd domain |
45 cd domains−>includes ( pd domain ) or
46 cd contained domains−>includes ( pd domain ) or
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47 cd combined domains−>includes ( pd domain ) or
48 let c o n c r i f s o f p d d o m a i n : Set ( I n t e r f a c e ) =
49 pd domain . c l ientDependency−>select (
50 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
51 getApp l i edSte reo types ( ) . name −>includes ( ’ r e f i n e s ’ )
52 ) . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
53 in
54 c o n c r i f s o f p d d o m a i n −> exists ( i f p d |
55 c d c o n n e c t i o n i f s−>includes ( i f p d ) or
56 c d c o n t a i n e d c o n n e c t i o n i f s−>includes ( i f p d )
57 ) ) )

Listing 19.4. Problem diagram domains are consistent to context diagram
domains

Listing 19.4 illustrates the corresponding OCL-expression: for each problem di-
agram domain (pd domain, line 44), we check if they are either:

– included directly in the context diagram (line 45) or
– domains contained in a context diagram domain(line 46) or
– combined domains (line 47) or
– connection domains (lines 48-56). A domain is considered to be a connection

domain if in the set of interfaces concretized or refined by problem diagram
domains (concr ifs of pd domain) an interface (if pd, line 54) with the follow-
ing property exists: the interface if pd is included in either the set of context
diagram interfaces (line 55) or in interfaces contained in context diagram
interfaces (line 56). The set of interfaces concretized or refined by problem
diagram domains (concr ifs of pd domain) is defined (line 47) using the prob-
lem diagram domains (pd domain) and their dependencies (line 48) with the
stereotype <<concretizes>> or <<refines>>.

1 let cd domains : Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
3 . c l ientDependency . t a r g e t
4 −>select (
5 ge tApp l i edSte reo types ( ) . name−>includes ( ’Domain ’ ) or
6 getApp l i edSte reo types ( ) . g ene ra l . name−>includes ( ’Domain ’ )

or
7 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
8 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) ) . oclAsType ( Class )−>asSet ( )
9 in

10 let c d i f s : Set ( I n t e r f a c e ) =
11 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) ) −>asSequence ( )−> f i r s t ( )
12 . c l ientDependency . t a r g e t
13 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
14 in
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15 let c d c o n t a i n e d i f s : Set ( I n t e r f a c e ) =
16 c d i f s . member
17 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
18 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
19 in
20 let c d c o n c r i f s : Set ( I n t e r f a c e )=
21 c d i f s . c l ientDependency−>select (
22 getApp l i edSte reo types ( ) . name−>includes ( ’ c o n c r e t i z e s ’ ) or
23 getApp l i edSte reo types ( ) . name−>includes ( ’ r e f i n e s ’ )
24 ) . t a r g e t
25 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
26 in
27 let c d c o n c r c o n c r i f s : Set ( I n t e r f a c e )=
28 c d c o n c r i f s . c l ientDependency−>select (
29 ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
30 getApp l i edSte reotypes ( ) . name−>includes ( ’ r e f i n e s ’ )
31 ) . t a r g e t
32 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
33 in
34 let cd conn doms : Set ( Class ) =
35 Class . a l l I n s t a n c e s ( )−>select ( c l |
36 c l . c l i entDependency
37 −>select (
38 ge tApp l i edSte reotypes ( ) . name−>includes ( ’ c o n c r e t i z e s ’ )

or
39 getApp l i edSte reotypes ( ) . name−>includes ( ’ r e f i n e s ’ ) )
40 −>select ( target−>asSequence ( )−> f i r s t ( ) .

oc lIsTypeOf ( I n t e r f a c e ) )
41 −>exists (
42 c d i f s−>includes ( t a r g e t . oclAsType ( I n t e r f a c e )

−>asSequence ( )−> f i r s t ( ) ) or
43 c d c o n t a i n e d i f s−>includes ( t a r g e t . oclAsType ( I n t e r f a c e )

−>asSequence ( )−> f i r s t ( ) )
44 ) )−>asSet ( )
45 in
46 let cd con dom i f : Set ( I n t e r f a c e ) =
47 cd conn doms . c l ientDependency−>select (
48 ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ obse rves ’ ) or
49 getApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ )
50 ) . t a r g e t
51 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
52 in
53 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ TechnicalContextDiagram ’ ) or
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54 getApp l i edSte reotypes ( ) . name −>includes ( ’ ProblemDiagram ’ ) )
55 −>forAll ( pd tcd |
56 pd tcd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

57 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )
−>asSet ( )

58 −>forAll ( p d i f |
59 c d i f s−>includes ( p d i f ) or
60 c d c o n t a i n e d i f s−>includes ( p d i f ) or
61 c d c o n c r i f s−>includes ( p d i f ) or
62 c d c o n c r c o n c r i f s−>includes ( p d i f ) or
63 cd con dom if−>includes ( p d i f ) or
64 let p d c o n c r i f s : Set ( I n t e r f a c e )=
65 p d i f . c l ientDependency−>select (
66 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
67 getApp l i edSte reo types ( ) . name

−>includes ( ’ r e f i n e s ’ )
68 ) . t a r g e t
69 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
70 in
71 p d c o n c r i f s −> exists ( i f p d |

c d i f s−>includes ( i f p d ) )
72 or
73 let pd concr domains : Set ( I n t e r f a c e )=
74 p d i f . c l ientDependency−>select (
75 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
76 getApp l i edSte reo types ( ) . name

−>includes ( ’ r e f i n e s ’ )
77 ) . t a r g e t
78 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
79 in
80 pd concr domains−> exists ( i f p d |

c d i f s−>includes ( i f p d ) )
81 )
82 )

Listing 20. Subproblems derived from context diagram by means of
decomposition operators: connections in problem diagram consistent to
connections in context diagram

With Condition 19b we check that each connection in each of the prob-
lem diagrams corresponds to a connection in the context diagram. We have
to consider the operators introduce connection domain, split domain, concretize
interface, abstract interface, combine interface and split interface.

To verify this condition, we define the set of domains in the context dia-
gram (cd domain, Listing 20, lines 1-9), the set of interface in the context di-
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agram (cd ifs, lines 10-13), the set of interfaces contained in these interfaces
(cd contained ifs, lines 15-18), the set of interfaces concretizing or refining in-
terfaces of the context diagram (cd concr ifs, lines 20-25), the set of interfaces
concretizing or refining these interfaces (cd concr concr ifs, lines 27-32), and the
set of interface controlled or observed by a connection domain (cd con dom if,
lines 34-44). With these definitions, we check for each interface being part of
each problem diagram and each technical context diagram7 (lines 53-58) the
following conditions:

– the context diagram includes the considered interface (line 59),
– cd contained ifs includes the considered interface (line 60),
– cd concr ifs includes the considered interface (line 61),
– cd concr concr ifs includes the considered interface (line 62),
– cd con dom if includes the considered interface (line 63),
– interfaces conretized or refined by a problem diagram interface are part of

the context diagram (lines 64-71), or
– domains conretized or refined by a problem diagram interface are part of the

context diagram (lines 73-80).

1 let cd domains : Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
3 . c l ientDependency . t a r g e t
4 −>select (
5 ge tApp l i edSte reotypes ( ) . name−>includes ( ’Domain ’ ) or
6 getApp l i edSte reotypes ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
7 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
8 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . g ene ra l .

name−>includes ( ’Domain ’ ) )
9 . oclAsType ( Class )−>asSet ( )

10 in
11 let cd doma in s ob s i f : Set ( I n t e r f a c e ) =
12 cd domains . c l ientDependency
13 −>select ( ge tApp l i edSte reotypes ( ) . name−>includes ( ’ obse rves ’ ) )
14 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
15 in
16 let cd conta ined domains : Set ( Class ) =
17 cd domains . member
18 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
19 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )−>asSet ( )
20 in
21 let c d c on t a i n ed d om a in s o b s i f : Set ( I n t e r f a c e ) =
22 cd conta ined domains . c l ientDependency
23 −>select ( ge tApp l i edSte reotypes ( ) . name−>includes ( ’ obse rves ’ ) )
24 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
25 in
26 let cd combined domains : Set ( Class ) =

7 Special context diagram.
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27 Class . a l l I n s t a n c e s ( )
28 −>select (
29 getApp l i edSte reo types ( ) . name−>includes ( ’Domain ’ ) or
30 getApp l i edSte reo types ( ) . g ene ra l . name −>includes ( ’Domain ’ )

or
31 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
32 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l .

name−>includes ( ’Domain ’ )
33 )
34 −>select ( combined domain proposal |
35 let combined domain proposa l parts : Set ( Class ) =
36 combined domain proposal . member
37 −>select ( oclIsTypeOf ( Property ) and

oclAsType ( Property ) . type . oclIsTypeOf ( Class ) ) .
oclAsType ( Property ) . type

38 . oclAsType ( Class )−>asSet ( )
39 in
40 cd domains−>i n c l u d e s A l l ( combined domain proposa l parts )

and
41 combined domain proposal parts−>s i z e (<>0
42 ) . oclAsType ( Class )−>asSet ( )
43 in
44 let cd combined domains obs i f : Set ( I n t e r f a c e ) =
45 cd combined domains . c l ientDependency
46 −>select ( ge tApp l i edSte reotypes ( ) . name−>includes ( ’ obse rves ’ ) )
47 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
48 in
49 let c d i f s : Set ( I n t e r f a c e )=
50 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
51 . c l ientDependency . t a r g e t
52 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
53 in
54 let c d c o n t a i n e d i f s : Set ( I n t e r f a c e )=
55 c d i f s . member
56 −>select ( oclIsTypeOf ( Property ) ) . oclAsType ( Property ) . type
57 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
58 in
59 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ TechnicalContextDiagram ’ ) or
60 getApp l i edSte reotypes ( ) . name−>includes ( ’ ProblemDiagram ’ ) )
61 −>forAll ( pd tcd |
62 pd tcd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

63 −>select ( oclIsTypeOf ( Class ) )
64 −>select (
65 getApp l i edSte reo types ( ) . name−>includes ( ’Domain ’ ) or
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66 getApp l i edSte reo types ( ) . g ene ra l . name
−>includes ( ’Domain ’ ) or

67 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name
−>includes ( ’Domain ’ ) or

68 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l .
name−>includes ( ’Domain ’ ) ) . oclAsType ( Class )

69 −>forAll ( pd domain |
70 let pd domain obs i f : Set ( I n t e r f a c e ) =
71 pd domain . c l ientDependency
72 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ obse rves ’ ) )
73 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
74 in
75 cd domains obs i f−>i n c l u d e s A l l ( pd domain obs i f ) or
76 cd c on t a i n ed d om a in s o b s i f

−>i n c l u d e s A l l ( pd domain obs i f ) or
77 cd combined domains obs i f

−>i n c l u d e s A l l ( pd domain obs i f ) or
78 (
79 c d i f s−>i n c l u d e s A l l (
80 pd domain . c l ientDependency−>select (
81 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
82 getApp l i edSte reo types ( ) . name

−>includes ( ’ r e f i n e s ’ ) )
83 . target−>select ( oclIsTypeOf ( I n t e r f a c e ) ) .

oclAsType ( I n t e r f a c e )
84 ) and
85 pd domain . c l ientDependency−>exists (
86 getApp l i edSte reo types ( ) . name

−>includes ( ’ obse rves ’ ) and
87 pd tcd . c l ientDependency

−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

88 −>select ( oclIsTypeOf ( I n t e r f a c e ) )
89 −>i n c l u d e s A l l ( t a r g e t

−>select ( oclIsTypeOf ( I n t e r f a c e ) )
. oclAsType ( I n t e r f a c e ) )

90 )
91 ) or (
92 c d c o n t a i n e d i f s−>i n c l u d e s A l l (
93 pd domain . c l ientDependency−>select (
94 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
95 getApp l i edSte reo types ( ) . name

−>includes ( ’ r e f i n e s ’ ) )
96 . target−>select ( oclIsTypeOf ( I n t e r f a c e ) )

. oclAsType ( I n t e r f a c e )
97 ) and
98 pd domain . c l ientDependency−>exists (
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99 getApp l i edSte reo types ( ) . name
−>includes ( ’ obse rves ’ ) and

100 pd tcd . c l ientDependency
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

101 −>select ( oclIsTypeOf ( I n t e r f a c e ) )
102 −>i n c l u d e s A l l ( t a r g e t

−>select ( oclIsTypeOf ( I n t e r f a c e ) )
. oclAsType ( I n t e r f a c e ) )

103 )
104 )
105 )
106 )

Listing 21. Subproblems derived from context diagram by means of
decomposition operators: observed interfaces in problem diagrams are consistent
with observed interfaces in context diagram

Condition 19c covers that observed interface in each of the problem diagrams
corresponds to an observed interface in the context diagram. We have to consider
the operators introduce connection domain, split domain, concretize interface, ab-
stract interface, combine interface and split interface. To verify this condition,
we define the set of domains in the context diagram (cd domains, Listing 21,
lines 1-9), the set of interfaces observed by these domains (cd domains obs if,
lines 11-14), the set of domains contained in the context diagram domains
(cd contained domains, lines 16-19), the set of interfaces observed by these do-
mains (cd contained domains obs if, lines 21-24), the set of domains combined form
context diagram domains (cd combined domains, lines 26-42), the set of interfaces
observed by these domains (cd combined domains obs if, lines 44-47), the set of
interfaces in the context diagram (cd ifs, lines 49-52), the set of interfaces be-
ing contained in these interfaces (cd ifs, lines 54-57). With these definitions, we
check for each domain being part of each problem diagram and each technical
context diagram (lines 59-69) the following conditions. First, we define the set
of observed interfaces of problem diagram domains (pd domains obs if) in lines
70-73 and second, we check that:

– the context diagram includes the same observed interfaces (cd domains obs if)
as the problem diagram (pd domains obs if) directly (line 75),

– cd contained domains obs if includes the considered interface (line 76),
– cd combined domains obs if includes the considered interface (line 77),
– interfaces concretized or refined by a problem diagram interface are part of

the context diagram (lines 79-89), or
– interfaces contained in the problem diagram interface are part of the context

diagram (lines 92-102).

1 let cd domains : Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
3 . c l ientDependency . t a r g e t
4 −>select (
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5 getApp l i edSte reotypes ( ) . name −>includes ( ’Domain ’ ) or
6 getApp l i edSte reotypes ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
7 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
8 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) )
9 . oclAsType ( Class )−>asSet ( )

10 in
11 let cd do ma i n s co n t i f : Set ( I n t e r f a c e ) =
12 cd domains . c l ientDependency
13 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) )
14 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
15 in
16 let cd conta ined domains : Set ( Class ) =
17 cd domains . member
18 −>select (p | (p . oclIsTypeOf ( Property ) and

p . oclAsType ( Property ) . i sComposite ( ) ) ) . oclAsType ( Property )
. type . oclAsType ( Class )−>asSet ( )

19 in
20 let c d c o n t a i n e d d o m a i n s c o n t i f : Set ( I n t e r f a c e ) =
21 cd conta ined domains . c l ientDependency
22 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) )
23 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
24 in
25 let cd combined domains : Set ( Class ) =
26 Class . a l l I n s t a n c e s ( )
27 −>select (
28 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
29 getApp l i edSte reo types ( ) . g ene ra l . name −>includes ( ’Domain ’ )

or
30 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
31 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ )
32 )
33 −>select ( combined domain proposal |
34 let combined domain proposa l parts : Set ( Class ) =
35 combined domain proposal . member
36 −>select (p | (p . oclIsTypeOf ( Property ) and

p . oclAsType ( Property ) . i sComposite ( ) ) )
. oclAsType ( Property ) . type

37 . oclAsType ( Class )−>asSet ( )
38 in
39 cd domains−>i n c l u d e s A l l ( combined domain proposa l parts )

and
40 combined domain proposal parts−>s i z e ( )<>0
41 ) . oclAsType ( Class )−>asSet ( )
42 in
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43 let cd combined domains cont i f : Set ( I n t e r f a c e ) =
44 cd combined domains . c l ientDependency
45 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) )
46 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
47 in
48 let c d i f s : Set ( I n t e r f a c e )=
49 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
50 . c l ientDependency . t a r g e t
51 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
52 in
53 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ TechnicalContextDiagram ’ ) or
54 getApp l i edSte reotypes ( ) . name −>includes ( ’ ProblemDiagram ’ ) )
55 −>forAll (pd |
56 pd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

57 −>select ( oclIsTypeOf ( Class ) )
58 −>select (
59 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
60 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
61 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
62 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) ) . oclAsType ( Class )
63 −>forAll ( pd domain |
64 let pd domain cont i f : Set ( I n t e r f a c e ) =
65 pd domain . c l ientDependency
66 −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) )
67 . t a r g e t . oclAsType ( I n t e r f a c e )−>asSet ( )
68 in
69 c d do ma i n s co n t i f −>i n c l u d e s A l l ( pd domain cont i f )

or
70 c d c o n t a i n e d d o m a i n s c o n t i f

−>i n c l u d e s A l l ( pd domain cont i f ) or
71 cd combined domains cont i f

−>i n c l u d e s A l l ( pd domain cont i f ) or
72 (
73 c d i f s−>i n c l u d e s A l l (
74 pd domain . c l ientDependency−>select (
75 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
76 getApp l i edSte reo types ( ) . name

−>includes ( ’ r e f i n e s ’ ) )
77 . target−>select ( oclIsTypeOf ( I n t e r f a c e ) )

. oclAsType ( I n t e r f a c e )
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78 ) and
79 pd domain . c l ientDependency−>exists (
80 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n t r o l s ’ ) and
81 pd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

82 −>select ( oclIsTypeOf ( I n t e r f a c e ) )
83 −>i n c l u d e s A l l ( t a r g e t

−>select ( oclIsTypeOf ( I n t e r f a c e ) )
. oclAsType ( I n t e r f a c e ) )

84 )
85 )
86
87 )
88 )

Listing 22. Subproblems derived from context diagram by means of
decomposition operators: controlled interfaces in problem diagrams are
consistent with controlled interfaces in context diagram

Condition 19d states that each controlled interface in each of the problem
diagrams corresponds to a controlled interface in the context diagram. This is
expressed in Listing 22 in the same way as in Listing 21.

1 let pd domains : Set ( Class ) =
2 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ProblemDiagram ’ ) )
3 . c l ientDependency . t a r g e t
4 −>select (
5 ge tApp l i edSte reotypes ( ) . name −>includes ( ’Domain ’ ) or
6 getApp l i edSte reotypes ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
7 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
8 getApp l i edSte reotypes ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) )
9 . oclAsType ( Class )−>asSet ( )

10 in
11 let pd contained domains : Set ( Class ) =
12 pd domains . member
13 −>select (p | (p . oclIsTypeOf ( Property ) and

p . oclAsType ( Property ) . i sComposite ( ) ) ) . oclAsType ( Property )
. type . oclAsType ( Class )−>asSet ( )

14 in
15 let connect ion domains : Set ( Class ) =
16 Class . a l l I n s t a n c e s ( )−>select (
17 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
18 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
19 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
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20 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name
−>includes ( ’Domain ’ ) )

21 −>select (
22 c l ientDependency . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f i n e s ’ ) or
23 c l ientDependency . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) )
24 −>select ( c l ientDependency−>exists ( t a r g e t

−>forAll ( oclIsTypeOf ( I n t e r f a c e ) ) ) )−>asSet ( )
25 in
26 Package . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ ContextDiagram ’ ) )−>asSequence ( )−> f i r s t ( )
27 −>forAll ( cd |
28 cd . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

29 −>select ( oclIsTypeOf ( Class ) )
30 −>select (
31 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
32 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
33 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
34 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) ) . oclAsType ( Class )
35 −>forAll ( cd dom |
36 pd domains−>includes ( cd dom ) or
37 pd contained domains−>includes ( cd dom ) or
38 let cd contained doms : Set ( Class ) =
39 pd domains . member
40 −>select (p | (p . oclIsTypeOf ( Property ) and

p . oclAsType ( Property ) . i sComposite ( ) ) )
. oclAsType ( Property ) . type

41 −>select ( oclIsTypeOf ( Class ) )
42 −>select (
43 getApp l i edSte reo types ( ) . name

−>includes ( ’Domain ’ ) or
44 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
45 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name

−>includes ( ’Domain ’ ) or
46 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l .

g ene ra l . name−>includes ( ’Domain ’ ) )
. oclAsType ( Class )−>asSet ( )

47 in
48 pd domains−>i n c l u d e s A l l ( cd contained doms )
49 or
50 connect ion domains−>includes ( cd dom )
51 )
52 )
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Listing 23. Subproblems derived from context diagram by means of
decomposition operators: each domain in context diagram consistent to at least
one domain in problem diagrams

Condition 19e describes that each domain in the context diagram corresponds
to at least one domain in one of the problem diagrams. We consider the operators
remove connection domain, combine domain, and split domain. To verify this
condition, we define the set of domains in all problem diagrams (pd domains,
Listing 23, lines 1-9), the set of domains contained in these domains(pd contained-

domains, lines 11-13), and the set of connection domains (domain concretizing
or refining an interface) (connection domains, lines 15-24). With these definitions,
we check for each domain being part of the context diagram (lines 26-35) the
following conditions:

– it is included in one of the problem diagrams (line 37),
– it is included in the set of domains contained in problem diagram domains

(line 38),
– it is combined from at least one problem diagram domains (line-39-49), or
– it is a connection domain (line 50).

1 let p d i f s : Set ( I n t e r f a c e )=
2 Package . a l l I n s t a n c e s ( )

−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ProblemDiagram ’ ) )

3 . c l ientDependency . t a r g e t
4 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
5 in
6 let p d c o n c r i f s : Set ( I n t e r f a c e )=
7 p d i f s . c l ientDependency−>select (
8 ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
9 getApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f i n e s ’ )
10 ) . t a r g e t
11 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
12 in
13 let p d c o n t a i n e d i f s : Set ( I n t e r f a c e ) =
14 p d i f s . member
15 −>select (p |

(p . oclIsTypeOf ( Property ) ) ) . oclAsType ( Property ) . type
16 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
17 in
18 let connect ion domains : Set ( Class ) =
19 Class . a l l I n s t a n c e s ( ) −>select (
20 getApp l i edSte reo types ( ) . name −>includes ( ’Domain ’ ) or
21 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’Domain ’ ) or
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22 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . name
−>includes ( ’Domain ’ ) or

23 getApp l i edSte reo types ( ) . g ene ra l . g ene ra l . g ene ra l . name
−>includes ( ’Domain ’ ) )

24 −>select (
25 c l ientDependency . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f i n e s ’ ) or
26 c l ientDependency . ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) )
27 −>select ( c l ientDependency−>exists ( t a r g e t

−>forAll ( oclIsTypeOf ( I n t e r f a c e ) ) ) )−>asSet ( )
28 in
29 let connec t i on doma in i f s : Set ( I n t e r f a c e ) =
30 connect ion domains . c l ientDependency
31 −>select (
32 getApp l i edSte reo types ( ) . name −>includes ( ’ r e f i n e s ’ )

or
33 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) )
34 . t a r g e t . oclAsType ( I n t e r f a c e )
35 . g e t R e l a t i o n s h i p s ( ) −>select ( oclIsTypeOf ( As soc i a t i on ) )

. oclAsType ( As soc i a t i on ) . endType
−>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )
−>asSet ( )

36 in
37 Package . a l l I n s t a n c e s ( )

−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ContextDiagram ’ ) ) −>asSequence ( ) −> f i r s t ( )

38 −>forAll ( cd |
39 cd . oclAsType ( Package ) . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

40 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )
41 −>select (
42 getApp l i edSte reo types ( ) . name −>includes ( ’ Machine ’ )

or
43 getApp l i edSte reo types ( ) . g ene ra l . name

−>includes ( ’ Machine ’ ) )
44 . c l ientDependency −> select (
45 getApp l i edSte reo types ( ) . name −>includes ( ’ obse rves ’ )

or
46 getApp l i edSte reo types ( ) . name −>includes ( ’ c o n t r o l s ’ ) )
47 . t a r g e t . oclAsType ( I n t e r f a c e ) −>asSet ( )
48 −> forAll ( cd mach ine i f |
49 p d i f s−>includes ( cd mach ine i f ) or
50 p d c o n c r i f s−>includes ( cd mach ine i f ) or
51 p d c o n t a i n e d i f s−>includes ( cd mach ine i f ) or
52 connec t i on doma in i f s−>includes ( cd mach ine i f ) or
53 let c d m a c h i n e c o n t a i n e d i f s : Set ( I n t e r f a c e ) =
54 cd mach ine i f . member
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55 −>select (p |
(p . oclIsTypeOf ( Property ) ) ) . oclAsType ( Property )
. type

56 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )
−>asSet ( )

57 in
58 p d i f s−>i n c l u d e s A l l ( c d m a c h i n e c o n t a i n e d i f s )
59 or
60 let c d m a c h i n e c o n c r i f : Set ( I n t e r f a c e ) =
61 cd mach ine i f . c l ientDependency−>select (
62 ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n c r e t i z e s ’ ) or
63 getApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f i n e s ’ )
64 ) . t a r g e t
65 −>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )

−>asSet ( )
66 in
67 cd mach ine conc r i f−>exists ( i | p d i f s−>includes ( i ) )
68 or
69 let cd machine connect ing domain : Set ( Class ) =
70 cd . oclAsType ( Package ) . c l ientDependency −>

select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) ) . t a r g e t

71 −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )
72 −>select ( c l ientDependency−>select (
73 getApp l i edSte reo types ( ) . name

−>includes ( ’ obse rves ’ ) or
74 getApp l i edSte reo types ( ) . name

−>includes ( ’ c o n t r o l s ’ )
75 ) . target−>includes ( cd mach ine i f )
76 ) . oclAsType ( Class ) −>asSet ( )
77 in
78 connect ion domains

−>i n c l u d e s A l l ( cd machine connect ing domain )
79 )
80 )

Listing 24. Subproblems derived from context diagram by means of
decomposition operators: controlled/observed interfaces of the machine in the
context diagram consistent to controlled/observed interfaces in at least one
problem

Each (observed and controlled) interface of the machines in the context dia-
gram must be considered in at least on problem diagram (Condition 19f). We
consider the operators remove connection domain, combine domain, concretize
interface, abstract interface, combine interface, and split interface. To verify this
condition, we define the set of interfaces in all problem diagrams (pd ifs, List-
ing 24, lines 1-4), the set of interfaces refining or concretizing these interfaces
(pd concr ifs, lines 6-11), the set of interfaces refining or concretizing these in-
terfaces (pd contained ifs, lines 13-16), the set of connection domains (domains
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concretizing or refining an interface) (connection domains, lines 18-27), and the
set of interfaces concretized or refined by connection domains (pd contained ifs,
lines 29-36). With these definitions, we check for each interface controlled or
observed by context diagram machines (lines 37-48) the following conditions:

– it is included in one of the problem diagrams directly (line 49),
– it is included in the set of interfaces refining or concretizing problem diagram

interfaces (line 50),
– it is included in the set of interfaces contained in problem diagram interfaces

(line 51),
– it is a connection domain (line 52),
– it is combined from at least one problem diagram interface (lines-53-58),
– it concretizes or refines a problem diagram interface (lines 60-67),
– it is an interface intoduced for a removed connection domain in the context

diagram (lines 69-78).

Relationship between problem diagram and problem frame:

20. The domain types of the constrained domains in the problem frame are the
same as in the problem diagram.

21. Each domain referred to by the requirement in the problem frame corre-
sponds to a domain in the problem diagram (same domain types).

22. Each connection in the problem frame corresponds to a connection in the
problem diagram, i.e., they connect same domain types.

23. For strict (i.e., non-weak) instances, each connection in the problem diagram
corresponds to a connection in the problem frame, i.e., they connect the
same domain types.

24. The domain types in problem diagrams and problem frames are consistent:
the number of domains of each type in the problem frame is equal to the
number of this type in the problem diagram.

25. Interfaces cannot be left out if they are controlled by the machine.

1 Dependency . a l l I n s t a n c e s ( )−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )

2 −>forAll (
3 source . oclAsType ( Package )
4 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
5 . t a r g e t −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )
6 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n s t r a i n s ’ ) ) .
7 t a r g e t . ge tApp l i edSte reotypes ( ) . name
8 =
9 t a r g e t . oclAsType ( Package )

10 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) )

11 . t a r g e t −>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )

12 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ c o n s t r a i n s ’ ) ) .
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13 t a r g e t . ge tApp l i edSte reotypes ( ) . name
14 )

Listing 25. Constrained domain type in ProblemDiagrams and ProblemFrames

Condition 20 describes that the domain types of the constrained domains
in the problem frame are the same as in the problem diagram In the OCL-
expression of Listing 25, all dependencies in the model (line 1) with the stereo-
type <<instanceOf>> (line 2) are selected. For these dependencies (line 3) the
parts of the source (the problem diagram) being requirements (lines 4 and 5) are
selected. For these requirements, the dependencies with the stereotype
<<constrains>> are selected (line 6). The target of these dependencies are the
constrained classes, and the bag of their stereotype names (line 7) must be the
same (line 8) as the bag of stereotype names of the constrained domains in the
problem frame (lines 9-13).

1 Dependency . a l l I n s t a n c e s ( )
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )

2 −>forAll (
3 source . oclAsType ( Package )
4 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
5 . t a r g e t −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )
6 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f e r sTo ’ ) ) .
7 t a r g e t . ge tApp l i edSte reotypes ( ) . name
8 −>i n c l u d e s A l l ( t a r g e t . oclAsType ( Package )
9 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
10 . t a r g e t −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )
11 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ r e f e r sTo ’ ) ) .
12 t a r g e t . ge tApp l i edSte reotypes ( ) . name
13 ) )

Listing 26. Referred to domain type in ProblemDiagrams and ProblemFrames

In Condition 21 we state that each domain referred to by the requirement in the
problem frame corresponds to a domain in the problem diagram (same domain
types). In Listing 28 we check that each referred domain in the problem frame
corresponds to a domain in the problem diagram. In this expression the string
’constrains’ is replaced by ’refersTo’. We allow additional referred domains is a
problem diagram. Therefore, the stereotype names of the referred classes in the
problem diagram (line 7) must include all (line 8) names in the bag of stereotype
names of referred domains in the problem frame (lines 9-13).

1 Dependency . a l l I n s t a n c e s ( )
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )
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2 −>forAll ( i n s t o f d e p |
3 Assoc i a t i on . a l l I n s t a n c e s ( )
4 −>select ( endType −>forAll ( oclIsTypeOf ( Class ) ) )

. oclAsType ( As soc i a t i on )
5 −>select ( a s s |
6 as s . oclAsType ( As soc i a t i on ) . endType−>forAll ( as s end |
7 i n s t o f d e p . oclAsType ( Dependency )
8 . t a r g e t . oclAsType ( Package )
9 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
10 . t a r g e t −>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )

−>asSet ( )
11 −>includes ( as s end . oclAsType ( Class ) )
12 )
13 )−>forAll ( a s s i n p f |
14 Assoc i a t i on . a l l I n s t a n c e s ( )
15 −>select ( endType −>forAll ( oclIsTypeOf ( Class ) ) )

. oclAsType ( As soc i a t i on )
16 −>select ( a s s |
17 as s . oclAsType ( As soc i a t i on ) . endType−>forAll ( as s end |
18 i n s t o f d e p . oclAsType ( Dependency )
19 . source . oclAsType ( Package )
20 . c l ientDependency

−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) )

21 . target−>select ( oclIsTypeOf ( Class ) ) . oclAsType ( Class )
−>asSet ( )

22 −>includes ( as s end . oclAsType ( Class ) )
23 )
24 )−>exists ( a s s i n p d |
25 a s s i n p d . endType . oclAsType ( Class )

. ge tApp l i edSte reotypes ( ) . name
26 −>i n c l u d e s A l l ( a s s i n p f . endType . oclAsType ( Class )

. ge tApp l i edSte reotypes ( ) . name)
27 )
28 )
29 )

Listing 27. Connections in ProblemDiagrams and ProblemFrames are
consistent

Condition 22 describes that each connection in the problem frame corresponds
to a connection in the problem diagram, i.e., they connect same domain types:
line 1 in the OCL-expression of Listing 27 selects all dependencies with the stereo-
type <<instanceOf>>. For all those dependencies (line 2), we select all associ-
ations (line 3) connecting classes (line 4) and all association whose ends (lines 5
and 6) are part of the problem frame the <<instanceOf>>-dependency points
to (lines 7-12). For all such associations in the problem frame (line 13), we select
all associations (line 14) connecting classes (line 15) and all associations whose
ends (lines 16 and 17) are part of the problem diagram the <<instanceOf>>-
dependency comes from (lines 18-23). We verify in line 24 that in the selected
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set of problem diagram associations, an association exists that connects classes
with the same stereotypes (lines 25 and 26).

1 Dependency . a l l I n s t a n c e s ( )
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )

2 −>forAll ( i n s t o f d e p |
3 not
4 i n s t o f d e p . getValue ( i n s t o f d e p . oclAsType ( Dependency )

. ge tApp l i edSte reotypes ( )
−>select (name−>includes ( ’ ins tanceOf ’ ) )
−>asSequence ( )−> f i r s t ( ) , ’ weak ’ ) . oclAsType (Boolean )

5 implies
6 Assoc i a t i on . a l l I n s t a n c e s ( )
7 −>select ( endType−>forAll ( oclIsTypeOf ( Class ) ) )

. oclAsType ( As soc i a t i on )
8 −>select ( a s s |
9 as s . oclAsType ( As soc i a t i on ) . endType −>forAll ( as s end |

i n s t o f d e p . oclAsType ( Dependency )
10 . source . oclAsType ( Package )
11 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . ta rget−>select ( oclIsTypeOf ( Class ) )
. oclAsType ( Class )−>asSet ( )

12 −>includes ( as s end . oclAsType ( Class ) ) )
13 )−>forAll ( a s s i n p d |
14 Assoc i a t i on . a l l I n s t a n c e s ( )
15 −>select ( endType−>forAll ( oclIsTypeOf ( Class ) ) )

. oclAsType ( As soc i a t i on )
16 −>select ( a s s |
17 as s . oclAsType ( As soc i a t i on ) . endType −>forAll ( as s end |

i n s t o f d e p . oclAsType ( Dependency )
18 . t a r g e t . oclAsType ( Package )
19 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . ta rget−>select ( oclIsTypeOf ( Class ) )
. oclAsType ( Class )−>asSet ( )

20 −>includes ( as s end . oclAsType ( Class ) ) )
21 )−>exists ( a s s i n p f |
22 a s s i n p d . endType . oclAsType ( Class )

. ge tApp l i edSte reotypes ( ) . name
23 −>i n c l u d e s A l l (
24 a s s i n p f . endType . oclAsType ( Class )

. ge tApp l i edSte reotypes ( ) . name
25 )
26 )
27 )
28 )

Listing 28. Connections in ProblemFrames and ProblemDiagrams are
consistent

Also the opposite direction is considered for instances stated being not weak

(Condition 23). In that case all connection in problem diagrams are checked to
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correspond to a connection in the instantiated problem frame, i.e., they connect
the same domain types. The OCL expression is similar to Listing 27; additional
the conditions is only checked if the <<instanceOf>>-dependency is not weak,
and the target and the source of the dependency are exchanged.

1 Dependency . a l l I n s t a n c e s ( )
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )

2 −>forAll ( i n s t o f d e p |
3 let weak : Boolean =
4 i n s t o f d e p . getValue ( i n s t o f d e p . oclAsType ( Dependency )

. ge tApp l i edSte reotypes ( )
−>select (name−>includes ( ’ ins tanceOf ’ ) ) −>asSequence ( )
−> f i r s t ( ) , ’ weak ’ ) . oclAsType (Boolean )

5 in
6 let pf domains : Bag( Class ) =
7 i n s t o f d e p . t a r g e t . oclAsType ( Package )
8 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . t a r g e t
−>select ( oclIsTypeOf ( Class ) )
−>r e j e c t ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )

9 in
10 let pd domains : Bag( Class ) =
11 i n s t o f d e p . source . oclAsType ( Package )
12 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) ) . t a r g e t
−>select ( oclIsTypeOf ( Class ) )
−>r e j e c t ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )

13 in
14 pf domains−>forAll ( domains |
15 domains . ge tApp l i edSte reo types ( ) . name −>forAll ( stn |
16 ( pf domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( stn ) )−>s i z e ( ) =
17 pd domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( stn ) )−>s i z e ( ) )
18 or ( weak and
19 ( pf domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( stn ) )−>s i z e ( ) <=
20 pd domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( stn ) )−>s i z e ( ) )
21 )
22 )
23 )

Listing 29. Domain Types in Problem Diagrams and Problem Frames are
Consistent

In Condition 24 the number of domains of each type in the problem frame is
equal to the number of this type in the problem diagram needs to be checked: line
1 in the OCL-expression in Listing 29 selects all dependencies with the stereotype

38



<<instanceOf>>. For these dependencies (line 2), we define the boolean variable
weak as the value of the attribute weak of the dependency (lines 3-5), we define
the bag pf domain as all domains of the problem frame the dependency points
to (lines 6-10), and we define the bag pd domains as all domains of the problem
diagram (lines 11-15).

1 Dependency . a l l I n s t a n c e s ( )
−>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ ins tanceOf ’ ) )

2 −>forAll ( i n s t o f d e p |
3 let pf domains : Bag( Class ) =
4 i n s t o f d e p . t a r g e t . oclAsType ( Package )
5 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
6 . t a r g e t −>select ( oclIsTypeOf ( Class ) )

−>r e j e c t ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )

7 in
8 let pd domains : Bag( Class ) =
9 i n s t o f d e p . source . oclAsType ( Package )

10 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ i sPa r t ’ ) )

11 . t a r g e t −>select ( oclIsTypeOf ( Class ) )
−>r e j e c t ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ Requirement ’ ) ) . oclAsType ( Class )

12 in
13 let p f i f s : Set ( I n t e r f a c e ) =
14 i n s t o f d e p . t a r g e t . oclAsType ( Package )
15 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
16 . t a r g e t

−>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )
−>asSet ( )

17 in
18 let p d i f s : Set ( I n t e r f a c e ) =
19 i n s t o f d e p . source . oclAsType ( Package )
20 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ i sPa r t ’ ) )
21 . t a r g e t

−>select ( oclIsTypeOf ( I n t e r f a c e ) ) . oclAsType ( I n t e r f a c e )
−>asSet ( )

22 in
23 pf domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Machine ’ ) )
24 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ c o n t r o l s ’ ) )
25 −>select ( p f i f s −>i n c l u d e s A l l ( t a r g e t . oclAsType ( I n t e r f a c e ) ) )

−>asSet ( ) −>s i z e ( )
26 =
27 pd domains−>select ( ge tApp l i edSte reotypes ( ) . name

−>includes ( ’ Machine ’ ) )
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28 . c l ientDependency −>select ( ge tApp l i edSte reotypes ( ) . name
−>includes ( ’ c o n t r o l s ’ ) )

29 −>select ( p d i f s−>i n c l u d e s A l l ( t a r g e t . oclAsType ( I n t e r f a c e ) ) )
−>asSet ( ) −>s i z e ( )

30 )

Listing 30. Direction of interfaces in ProblemDiagrams and ProblemFrames is
consistent

Condition 25 describes that interfaces cannot be left out if they are controlled
by the machine. Listing 30 containes the OCL-expression for this: We check that
the number of controlled interfaces of each domain in each problem frame with
the stereotype <<machine>> (lines 23-25) is equal to (line 26) the number of
controlled interfaces of each domain in each problem diagram with the stereotype
<<machine>> (lines 27-29).

In this paper, we presented a total of 30 OCL-constraints (25 plus the 5
sub-constraints). 17 are used to check the integrity of a single diagram type and
13 to check the consistency of different diagram types. We additionally defined
some constraints restricting the use of dependency stereotypes and checking
the generated model elements. Until now, we have defined about 50 constraints
covering requirements analysis.
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(R01) A staff member can make holiday offers available.
(R02) A guest can browse available holiday offers.
(R03) A guest can book available holiday offers, which then are reserved.

... . . .

(R09) A staff member can browse reserved holiday offers.
Table 1. Subset of requirements for Vacation Rentals

5 Case Study

We use a simple vacation rentals system based on a superset of the requirements
given in Tab. 1 as case study to illustrate our approach. As described in Sect. 2,
the intended environment of the vacation rentals system (VR) is described us-
ing a context diagram (see Fig. 4). It contains VacationRentals as the machine
domain. In the environment, we can find the StaffMember responsible for creat-
ing and maintaining the holiday offers contained in HolidayOffer. The Guests can
interact with the VacationRentals in the following way. They can browse available
holiday offers (browseHolidayOffers) and book a holiday offer (bookHolidayOffer).
Furthermore, StaffMembers and Guests can interact with VacationHome and Bank.

We use multiplicities to express, e.g., that several Guests can interact with
the one VacationRentals. The fact that the HolidayOffers belong to VacationRentals is
expressed by composition. The different domains are annotated with the appro-
priate stereotypes from the <<domain>> stereotype , e.g., Guest is biddable and
HolidayOffer is lexical. The connections are marked with the appropriate stereo-
type <<connection>> or specializations of this stereotype, e.g., a user interface
(<<ui>>) between Guest and VacationRentals. When we check the validation
conditions relevant for the context diagram (see Sect. 4.1), all pass.

After that, we continue and decompose the overall problem into subproblems.
One of the subproblems is given in Fig. 5. We see that we introduced the Webpage

to display the output to the guest. After completing the decomposition, we check
the validation conditions for problem diagrams (see Sect. 4.1). All conditions
pass. Subsequently, we check the conditions ensuring that the context diagram
and the problem diagrams are consistent (see Sect. 4.2). All conditions pass,
except for

– each domain in the problem diagrams corresponds to a domain in the context
diagram (Condition 19a) and

– each interface in the problem diagrams corresponds to an interface in the
context diagram (Condition 19b)

The failure is indicated at the bottom of Fig. 4. Furthermore, we can see that
in both cases the domain Webpage (and its corresponding interfaces) causes the
failure. We know that the domain Webpage was introduced during the decompo-
sition. It must therefore concretize the interface VR!{Invoice, results} between the
machine VacationRentals and the domain Guest. However, this has been forgotten
to indicate during the decomposition. In order to resolve this problem, we must
do the following:
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Fig. 4. Vacation Rentals: Context diagram and Validator (Screenshot)

– create an interface class, namely VR!{Invoice} and state that it belongs to the
interface VR!{Invoice, results} (see left-hand side of Fig. 6)
This is necessary, as the Webpage only addresses the phenomenon results of
the interface VR!{Invoice, results}

– create a concretizes-dependency between the class Webpage and the interface
VR!{results} (see right-hand side of Fig.6).

We re-check the conditions and see that now all conditions pass.

6 Related Work
Other authors have also worked on further developing the problem frame ap-
proach, mostly by providing a meta-model, defining a semantics, or adding no-
tational elements.

Lencastre et al. [?] define a meta-model for problem frames using UML. Their
meta-model considers Jackson’s whole software development approach based on
context diagrams, problem frames, and problem decomposition. In contrast to
our meta-model, it only consists of a UML class model. Hence, the OCL integrity
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Fig. 5. Vacation Rentals: Problem diagram for R02 (Browse)

Fig. 6. Vacation Rentals: Mapping of interfaces

conditions of our meta-model are not considered in their meta-model. Their
approach does not qualify for a meta-model in terms of MDA because, e.g., the
class Domain has subclasses Biddable and Given, but an object cannot belong to
two classes at the same time (c.f. Figs. 5 and 11 in [?]).

Hall et al. [?] provide a formal semantics for the problem frame approach.
They introduce a formal specification language to describe problem frames and
problem diagrams. As compared to our meta-model, their approach does not
consider integrity conditions.

Seater et al. [?] present a meta-model for problem frame instances. In ad-
dition to the diagram elements formalized in our meta-model, they formalize
requirements and specifications. Consequently, their integrity conditions (“well-
formedness predicate”) focus on correctly deriving specifications from require-
ments. In contrast, our meta-model concentrates on the structure of problem
frames and the different domain and phenomena types.
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We agree with Haley [?] on adding cardinality to standard problem frames
to enhance the detailing of shared phenomena at the interfaces. In contrast to
Haley though, we do not extend the problem frames notation by introducing
a new notational element. We adopt the means provided by UML to annotate
problem frames in our meta-model instead.

Van Lamsweerde [?] considers the relationships between problem worlds and
machine solutions. He makes a distinction between different statement subtypes.
In our profile we cover a subset of these statements. Furthermore, he introduces
Satisfaction Arguments.

Charfi et al. [?] use a modeling framework called Gaspard2 to design high-
performance embedded systems-on-chip. They use model transformations to
move from one level of abstraction to the next. To validate that their transfor-
mations have been correctly performed, they use the OCL language to specify
the properties that must be checked in order to be considered as correct with
respect to Gaspard2. We have been inspired by this approach. However, we do
not focus on high-performance embedded systems-on-chip. Instead, we target
general software development challenges.

Colombo et al. [?] model problem frames and problem diagrams with SysML.
They state that “UML is too oriented to software design; it does not support a
seamless representation of characteristics of the real world like time, phenomena
sharing [...]”. We do not agree with this statement. So far, we have been able to
model all necessary means of the requirements engineering process using UML.

We are not aware of any other tools supporting the work with problem frames
on the semantic level, as does UML4PF.

7 Conclusion and Perspectives

We have shown how to seamlessly integrate patterns (in particular, problem
frames) into a model-based software engineering process (in particular, the re-
quirements analysis phase) using UML. This combination of model- and pattern-
based development allows us to formally express numerous semantic integrity
conditions on the developed models in OCL. An accompanying tool helps to
draw the respective diagrams and allows developers to automatically check the
integrity conditions. It helps to detect errors early in the development process
and to maintain a coherent set of models at all times.

Currently, we are augmenting our process to cover also the design phase of
the software development process. We have already augmented our profile by ar-
chitectural elements, and we have defined a number of OCL constraints checking
the coherence of problem descriptions (i.e., context and problem diagrams) and
architectural diagrams. Moreover, we have taken first steps to support software
evolution. In particular, we are introducing traceability links to trace require-
ments to artifacts developed later, e.g. components in the software architecture.

In the future, we plan to extend our tool to support the identification of
missing and interacting requirements. In the long run, we aim to cover all phases
of the software development process.
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