
UML4PF – A Tool for Problem-Oriented Requirements Analysis

Isabelle Côté, Maritta Heisel, and Holger Schmidt
Software Engineering Group, University Duisburg-Essen

Duisburg, Germany
{isabelle.cote,maritta.heisel,holger.schmidt}@uni-due.de

Denis Hatebur
ITESYS Inst. f. tech. Sys. GmbH

Dortmund, Germany
d.hatebur@itesys.de

Keywords-Problem frames, UML profile, Tool support

I. INTRODUCTION

We present a tool called UML4PF. This tool supports
requirements analysis according to an enhanced version
of Michael Jackson’s problem frame approach [1]. Prob-
lem frames are patterns classifying software development
problems. They pay special attention to the environment
in which the software (called machine) will operate. That
environment is represented by means of a context diagram
that shows how the environment is structured in terms of
problem domains and how the machine can interact with
its environment. Interaction between domains is modeled
by considering shared phenomena, which are controlled by
only one domain and can be observed by other domains.
Requirements are optative statements that refer to one or
more problem domains and constrain at least one prob-
lem domain. Annotating (parts of) context diagrams with
requirements yields problem diagrams. Problem frames are
abstracted versions of problem diagrams. A simple sub-
problem of a more complex software development problem
can be fitted to a problem frame by instantiating the frame
diagram accordingly. Problem frames substantially support
developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge
must be described and reasoned about when analyzing a
problem in depth.

To provide tool support for frame-based problem analysis,
we first have carried over Jackson’s original notation to UML
by defining a corresponding profile, see [2]. We developed
an Eclipse-plugin that allows software engineers to work
with the defined profile. Furthermore, we developed a large
number of validation conditions that make it possible to
perform semantic checks on the developed diagrams. These
validations conditions either refer to single diagrams (e.g.,
requirements are not allowed to constrain the machine), or
they allow one to check the coherence between different
diagrams (e.g., the messages of a sequence diagram must
be phenomena of the corresponding problem diagram).

In this way, UML4PF supports software engineers in
developing a coherent and complete set of requirements
documents. Moreover, it supports the systematic develop-
ment of an appropriate software architecture, see [3]. Next,
we describe the technical realization of UML4PF. Then, we

sdgenEditor e.g.
Papyrus

OCL expressions
− Interactive Model−

Transformer

Eclipse incl. EMF & OCL

UML Profile

for Problem Frames

− OCL Validator

− sdgen Editor

− Model Generator 
− Requirements EditorUML4PF

Figure 1: Tool Realization Overview

illustrate how to work with the tool, and finally, we discuss
related work.

II. UML4PF REALIZATION

UML4PF1 consists of a UML2 profile with formal val-
idation conditions expressed in OCL3 and an Eclipse4

plugin. Figure 1 provides an overview of the context of
our tool. Gray boxes denote re-used components, whereas
white boxes describe those components that we created. The
functionality of our tool comprises the following:

• The UML Profile for Problem Frames defines
the relevant stereotypes for our approach, e.g.,
�ProblemDiagram� (see Fig. 3).

• The Requirements Editor allows one to add new re-
quirements.

• The Model Generator automatically generates model
elements, e.g., it generates observed and controlled
interfaces from association names.

• The OCL Validator checks if the model is valid and
consistent by evaluating our OCL expressions. It also
returns the location of invalid parts of the model.
All in all, we have defined about 50 OCL validation
conditions for the analysis phase. The time needed
for checking only depends on EMF5 and is about 0.5
seconds per validation condition. The influence of the
model size on the checking time is less than linear.

• The sdgen Editor is used to edit sequence diagrams.
• The Interactive ModelTransformer serves to create soft-

ware architectures through interactive model transfor-
mations.

The tool UML4PF is still under development and evaluation.

1http://swe.uni-duisburg-essen.de/en/research/tool
2http://www.uml.org/
3http://www.omg.org/spec/OCL/2.0/
4http://www.eclipse.org/
5http://www.eclipse.org/emf/

http://swe.uni-duisburg-essen.de/en/research/tool
http://www.uml.org/
http://www.omg.org/spec/OCL/2.0/
http://www.eclipse.org/
http://www.eclipse.org/emf/


III. WORKING WITH UML4PF

To illustrate how to work with the tool, we consider a
simple software development subproblem that is part of the
larger task of developing an online vacation rentals system.
The vacation rentals system shall allow a potential guest to
browse and book available holiday offers. Staff members are
responsible for recording the incoming payments. Further-
more, they make new holiday offers available (req. R01).

We create a new project with a new model both named
VacationRentals and apply our UML profile for Problem
Frames to the model using a EMF-compatible UML editor
such as Papyrus6.

Problem elicitation and description: We describe the
intended environment of our vacation rentals system by a
context diagram. This is achieved by using the graphical
elements provided by Papyrus’ editor: first we place a
package in a class diagram tab, which we name “Vaca-
tionRentals env”. All other necessary domains and asso-
ciations are then placed within this package. The result-
ing context diagram is depicted in Fig. 2. Domains are
represented as classes, and interfaces between domains –
containing sets of shared phenomena – are represented as
associations. The package is annotated with the stereotype
�ContextDiagram�.

Next, we execute the model generator. This can be
done by right-clicking on the uml-file and selecting the
entry “Model Generator” in the context menu. After the
generation, all interfaces corresponding to connections in
the context diagram exist.

To check the consistency of the context diagram, we right-
click on the uml-file, this time selecting the entry “Validate
now”. The conditions are grouped by the process step they
can be applied to. It is possible to select, which step(s)
shall be executed. The validation conditions are checked,
and the results are displayed (see Fig. 5). Fulfilled validation
conditions are displayed in green, violated ones in red. For
the violated conditions, we provide further expressions that
indicate which elements cause the condition to fail. These
conditions are displayed in light-gray. All checks concerning
the context diagram pass.

Problem decomposition and classification: We now
decompose the overall problem into subproblems. For
each subproblem, we create a package with the stereo-
type �ProblemDiagram�. We re-use the classes of
the context diagram where applicable. Furthermore, we add
classes with the stereotype �Requirement� and assign
the appropriate stereotype to the dependencies originating
from this class. One of the resulting subproblems is given
in Fig. 3.

After completing the decomposition, we again execute the
model generator and the validator. One condition has been
violated (see bottom of Fig. 5). The error diagram causing
this violation is the dependency between the requirement

6http://www.papyrusuml.org

and the domain guest has the stereotype�constrains�.
This is not allowed, as we cannot constrain actions of
users. Therefore, we must replace the �constrains�-
dependency by a �refersTo�-dependency. Addition-
ally, UML4PF allows us to check if a described problem
diagram is an instance of a pattern (see [2]).

Derive Software Specification: In this step, we draw
sequence diagrams. The sdgen editor can be accessed by
right-clicking on the uml-file containing the EMF-model and
selecting the menu entry “open with” followed by “sdgen
Editor”. For each problem diagram we create sequence dia-
grams capturing the normal as well as exceptional behavior.
The domains in the problem diagram are directly linked
to the machine become lifelines in the respective sequence
diagram. The operations in the interfaces are transferred to
messages between the corresponding lifelines. Fig. 4 shows
the sequence diagram for the subproblem Make.

In the subsequent steps we
• derive the technical context diagram. This is a special

context diagram showing the technical details of the
machine environment, e.g., the used web servers. We
can check the consistency of context diagram and
technical context diagram.

• Specify operations and data structures. The operations
are specified using OCL-expressions. The syntax of
these expressions is checked via the built-in OCL
parser. Furthermore, UML4PF can check for complete-
ness of the operations against the sequence diagrams.

IV. RELATED WORK

Charfi et al. [4] use a modeling framework called Gas-
pard2 to design high-performance embedded systems-on-
chip. We have been inspired by this approach. However,
their approach does not support problem frames. Other
important UML profiles are SysML7 for system engineering
and MARTE8 for model-driven development of real time and
embedded systems. The UML profile for MARTE supports
specification, design, and verification/validation stages.

We are not aware of other tools supporting the work with
problem frames on the semantic level, as does UML4PF.

REFERENCES

[1] M. Jackson, Problem Frames. Analyzing and structuring soft-
ware development problems. Addison-Wesley, 2001.

[2] D. Hatebur and M. Heisel, “Making Pattern- and Model-Based
Software Development More Rigorous,” in Proc. of 12th Int.
Conf. on Formal Engineering Methods (ICFEM), J. S. Dong
and H. Zhu, Eds. Springer, 2010.

[3] C. Choppy, D. Hatebur, and M. Heisel, “Systematic architec-
tural design based on problem patterns,” in Relating Software
Requirements and Architectures. Springer-Verlag, 2011.

[4] A. Charfi, A. Gamatié, A. Honoré, J.-L. Dekeyser, and
M. Abid, “Validation de modèles dans un cadre d’IDM dédié
à la conception de systèmes sur puce,” in 4èmes Jounées sur
l’Ingénierie Dirigée par les Modèles (IDM 08), 2008.

7http://www.omgsysml.org/
8http://www.omgmarte.org/

2

http://www.papyrusuml.org
http://www.omgsysml.org/
http://www.omgmarte.org/


APPENDIX

Figure 2: Screenshot Vacation Rentals: Context Diagram

Figure 3: Screenshot Vacation Rentals: Problem Diagram for R01

3



Figure 4: Screenshot Vacation Rentals Sequence Diagram for Subproblem Make (R01)

Figure 5: Screenshot of OCLValidator

4


	I Introduction
	II UML4PF Realization
	III Working With UML4PF
	IV Related Work
	References
	Appendix

