A UML Profile for Requirements Analysis of
Dependable Software

Denis Hatebur! 2 and Maritta Heisel®

! Universitit Duisburg-Essen, Germany, Fakultit fiir Ingenieurwissenschaften, email:
maritta.heisel @uni-due.de
2 TInstitut fiir technische Systeme GmbH, Germany, email: d.hatebur @itesys.de

Abstract. At Safecomp 2009, we presented a foundation for requirements anal-
ysis of dependable software. We defined a set of patterns for expressing and ana-
lyzing dependability requirements, such as confidentiality, integrity, availability,
and reliability. The patterns take into account random faults as well as certain
attacks and therefore support a combined safety and security engineering.

In this paper, we demonstrate how the application of our patterns can be tool sup-
ported. We present a UML profile allowing us to express the different dependabil-
ity requirements using UML diagrams. Integrity conditions are expressed using
OCL. We provide tool support based on the Eclipse development environment,
extended with an EMF-based UML tool, e.g., Papyrus UML. We illustrate how
to use the profile to model dependability requirements of a cooperative adaptive
cruise control system.

1 Introduction

Dependable systems play an increasingly important role in daily life. More and more
tasks are supported or performed by computer systems. These systems are required to
be safe, secure, available, and reliable. For such systems, it is of utmost importance to
thoroughly analyze, understand, and consolidate the requirements.

In an earlier paper [8]], we have presented a foundation for requirements analysis
of dependable systems, based on problem frames [12]. In this paper, we show how the
approach of [8] can be tool supported. To this end, we have defined a Unified Model-
ing Language (UML) profile [17] that allows us to represent problem frames in UML.
This UML profile is then augmented with stereotypes that support the expression of de-
pendability requirements. The stereotypes are complemented by constraints expressed
in the Object Constraint Language (OCL) [15]] that can be checked by existing UML
tools. These constraints express important integrity conditions, for example, that secu-
rity requirements must explicitly address a potential attacker. By checking the different
OCL constraints, we can substantially aid system and software engineers in analyzing
dependability requirements.

We work with the following definitions of dependability attributes [8]]: Safety is the
inability of the system to have an undesirable effect on its environment, and security
is the inability of environment to have an undesirable effect on the system. To achieve
safety, systematic and random faults must be handled. For security, in contrast, certain
attackers must be considered. Security can be described by confidentiality, integrity and

availability requirements. Also for safety, integrity and availability must be considered.
For safety, integrity and availability mechanisms have to protect against random (and
some systematic) faults. Reliability is a measure of continuous service accomplishment.
It describes the probability of correct functionality under stipulated environmental con-
ditions.

Dependability requirements must be described and analyzed. Problem frames [12]]
are a means to describe and analyze functional requirements, but they can be extended
to describe also dependability requirements and domain knowledge, as also shown in
earlier papers [8/10]. In Section[2] we present problem frames and the parts of the prob-
lem frames profile that extends the UML meta-model [17]. We describe the parts of our
profile relevant to model dependability features. In Section [3, we show how we build
tool support for the problem frame approach and for describing and analyzing depend-
ability requirements. Section 4] contains our profile extension to describe dependability,
and it also describes the OCL constraints for applying the elements introduced to de-
scribe dependability. Section [5]describes the process to work with our UML profile for
problem frames for dependable systems. The case study in Section [6] applies that pro-
cess to a cooperative adaptive cruise control system. Section [/| discusses related work,
and the paper closes with a summary and perspectives in Section [§]

2 UML Profile for Problem Frames

Problem frames are a means to describe software development problems. They were
introduced by Jackson [12], who describes them as follows: “A problem frame is a kind
of pattern. It defines an intuitively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and requirement.”

We describe problem frames using class diagrams extended by stereotypes (see
Fig.[I). All elements of a problem frame diagram act as placeholders, which must be in-
stantiated to represent concrete problems. Doing so, one obtains a problem description
that belongs to a specific problem class.

The class with the stereotype < <machine>>> represents the thing to be developed
(e.g., the software). The other classes with some domain stereotypes (e.g.,
<< CausalDomain>> or <<BiddableDomain>>) represent problem domains that al-
ready exist in the application environment.

In frame diagrams, interfaces connect domains, and they contain shared phenom-
ena. Shared phenomena may be events, operation calls, messages, and the like. They
are observable by at least two domains, but controlled by only one domain, as indi-
cated by an exclamation mark. For example, in Fig. [I|the notation O/E4 means that the
phenomena in the set E4 are controlled by the domain Operator. These interfaces are
represented as associations, and the name of the associations contain the phenomena
and the domains controlling the phenomena.

The associations can be replaced by interface classes in which the operations cor-
respond to phenomena. The interface classes are either controlled or observed by the
connected domains, represented by dependencies with the stereotypes <<controls>>
or <<observes>>. Each interface can be controlled by at most one domain. A con-
trolled interface must be observed by at least one domain, and an observed interface
must be controlled by exactly one domain

Problem frames substantially support developers in analyzing problems to be solved.
They show what domains have to be considered, and what knowledge must be described

asterectypes (umD
sproblemFrames Statement » Class
Commanded B ehaviour .
= id: Integer
&= text: String
«causalDomains)
CmIC1 Controlled /-?‘
t'CD!C2 Domain . N asterectypes «gerectypes
«mz-:chin:)mnec e €3~ arequirements Requirement DomainKnowledge
Control <constrainss ~ | C led
Machine B ehaviour
= refersTos _ -
) ebiddableDom...| ~ 2% > A
«connt'ctm&»H Operator = E4
: . AN asterectypes «ﬁereotvp?»
Fact Assumption
C1: contral, C2: feedbhack
C3: causal relation, E4:
operator commands

Fig.1. Commanded Behaviour problem frame using .
UML notation Fig. 2. Requirement stereo-

type inheritance structure

and reasoned about when analyzing the problem in depth. Developers must elicit, ex-
amine, and describe the relevant properties of each domain. These descriptions form
the domain knowledge. The domain knowledge consists of assumptions and facts. As-
sumptions are conditions that are needed, so that the requirements are accomplishable.
Usually, they describe required user behavior. For example, it must be assumed that a
user ensures not to be observed by a malicious user when entering a password. Facts
describe fixed properties of the problem environment regardless of how the machine is
built.

Domain knowledge and requirements are special statements. A statement is mod-
eled similarly to a Systems Modeling Language (SysML) requirement [16] as a class
with a stereotype. In this stereotype a unique identifier and the statement text are con-
tained as stereotype attributes. Fig. 2] shows that the stereotype < <Statement>> ex-
tends the metaclass Class of the UML metamodel.

When we state a requirement, we want to change something in the world with the
machine to be developed. Therefore, each requirement constrains at least one domain.
This is expressed by a dependency from the requirement to a domain with the stereotype
<<constrains>>. Such a constrained domain is the core of any problem description,
because it has to be controlled according to the requirements. Hence, a constrained
domain triggers the need for developing a new software (the machine), which provides
the desired control.

A requirement may refer to several domains in the environment of the machine. This
is expressed by a dependency from the requirement to a domain with the stereotype
<<refersTo>>. The referred domains are also given in the requirements description.

In Fig. |I|, the Controlled Domain domain is constrained, because the Control Ma-
chine has the role to change it on behalf of user commands for achieving the required
Commanded Behaviour.

Jackson distinguishes the domain types biddable domains that are usually people,
causal domains that comply with some physical laws, and lexical domains that are data

representations. The domain types are modeled by the stereotypes
<<BiddableDomain>> and << CausalDomain>>> being subclasses of the stereotype
< <Domain>>. A lexical domain (< <LexicalDomain>>) is modeled as a special case
of a causal domain. This kind of modeling allows to add further domain types, such as
<<DisplayDomain>> being also a special case of a causal domain. In Figure [I] the
stereotypes << CausalDomain>> and <<BiddableDomain>>> indicate the domain
types. To describe the problem context, a connection domain between two other do-
mains may be necessary. Connection domains establish a connection between other
domains by means of technical devices. They are modeled as classes with the stereo-
type << ConnectionDomain>>. Connection domains are, e.g., video cameras, sensors,
or networks.

Other problem frames besides the commanded behavior frame are required be-
haviour, simple workpieces, information display, and transformation. [12]

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements (see Fig. [6|for an example). Then, the problem is
decomposed into subproblems. If possible, the decomposition is done in such a way that
the subproblems fit to given problem frames. To fit a subproblem to a problem frame,
one must instantiate its frame diagram, i.e., provide instances for its domains, phenom-
ena, and interfaces. The instantiated frame diagram is called a problem diagram.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. A problem can only be fitted to a problem frame if the
involved problem domains belong to the domain types specified in the frame diagram.
For example, the Operator domain of Fig.[T|can only be instantiated by persons, but not
for example by some physical equipment like an elevator.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine. The specification
describes the machine and is the starting point for its construction.

The different diagram types make use of the same basic notational elements. As a
result, it is necessary to explicitly state the type of diagram by appropriate stereotypes.
In our case, the stereotypes are << ContextDiagram>>, <<ProblemDiagram>>, and
<<ProblemFrame>>. These stereotypes extend (some of them indirectly) the meta-
class Package in the UML meta-model.

3 Tool Support

We have developed a tool called UMLA4PF to support the requirements engineering
process sketched in Section 2] Our tool is integrated into the Eclipse development en-
vironment [3]] as a plug-in. After the developer has drawn some diagram(s) using some
EMF-based editor, for example Papyrus UML [5], UMLA4PF provides him or her with
the following functionality:
— It checks if the developed model is valid and consistent by using our OCL con-
straints.
— It returns the location of invalid parts of the model.
— It automatically generates model elements, e.g., it generates observed and con-
trolled interfaces from association names.

[c BN Re NNV, I TS I S R

We defined a set of stereotypes in a profile that extends the UML meta-model. The
most important stereotypes are presented in Section [2] This UML profile can be ex-
tended independently from our tool. Our tool is based on the Eclipse Modeling Frame-
work (EMF [4]) and should be inter-operable with other EMF-based UML development
tools being extendable using UML-profiles [[17].

Our plugin UMLAPF checks (using the Eclipse Modeling Framework) that the
stereotypes are used correctly according to integrity conditions, e.g., that each state-
ment constrains at least one domain. The tool is an open source tool under development
and is free for download from http://swe.uni-due.de/en/research/.

4 Dependability Extension

We developed a set of patterns for expressing and analyzing dependability features (re-
quirements and domain knowledge). Our patterns consist of UML classes with stereo-
types and a set of rules describing possible relations to other model elements. The
stereotype contains specific properties of the dependability feature (e.g. the probability
to be achieved), a unique identifier, and a textual description that can be derived from
the properties and the relations to other model elements. The patterns can be directly
translated into logical predicates [8]]. These predicates are helpful to analyze conflicting
requirements and the interaction of different dependability requirements, as well as to
find missing dependability requirements.

An important advantage of our patterns is that they allow dependability require-
ments to be expressed without anticipating solutions. For example, we may require data
to be kept confidential during transmission without being obliged to mention encryp-
tion, which is a means to achieve confidentiality. The benefit of considering depend-
ability requirements without reference to potential solutions is the clear separation of
problems from their solutions, which leads to a better understanding of the problems
and enhances the re-usability of the problem descriptions, since they are completely
independent of solution technologies.

The dependability features can be described independently from the functional de-
scription. This approach limits the number of patterns, and allows one to apply these
patterns to a wide range of problems. For example, the functional requirements for
data transmission or automated control can be expressed using a problem diagram. De-
pendability requirements for confidentiality, integrity, availability and reliability can be
added to that description of the functional requirement.

Class . alllnstances ()—>select(
(getAppliedStereotypes () .name—>includes (’ Confidentiality ’) or
getAppliedStereotypes () .name—>includes (’ Integrity ’) or
getAppliedStereotypes () .name—>includes (’ Availability ’) or
getAppliedStereotypes () .name—>includes (’ Reliability ’))
and getAppliedStereotypes () .name—>includes (’ Requirement ’))
—>forAll (clientDependency —>select (d |
d.oclAsType(Dependency) . getAppliedStereotypes () .name —>
includes (’supplements ’))
.oclAsType (Dependency) . target. getAppliedStereotypes () .name
—> includes (’ Requirement ’)—>count (true)>=1)

Listing 1.1. Each Dependability Statement Supplements a Requirement

http://swe.uni-due.de/en/research/

egterectypes
Statement

«stereotypes astereotypes
BiddableD omain Statement

EiS asterectypes

ssterectypes asterectypes

Attacker Integrity Availability
= Objective: String £ actionlfViolation: String E gggélﬁif;gng&fﬁflﬁn
5} Sl Sy 5 againstAttacker. Boolean = forGroup: BiddableD omain [0..1]
= Equipment: String = Probability: String [0..1] N i -
! PreparationTime: String
= AttackTime: String

Fig.4. Integrity Statement pio 5 Availability State-
Fig.3. Attacker in UML in UML Problem Frames ... in UML Problem
Problem Frames Profile Profile Frames Profile

A dependability requirement always supplements (stereotype <<supplements>>) a
functional requirement. This can be validated with the OCL expression in Listing[T.1} In
this OCL expression, all classes with a stereotype indicating a dependability statement
(e.g., <<Integrity>> or <<Availability>>) and additionally the stereotype <<Re-
quirement>>> are selected in Lines 1-6. In all of these requirement classes, it is checked
that their dependencies (Line 7) with the stereotype < <supplements>> (Line 8) point
to at least one class with the stereotype < <Requirement>>> (Line 9).

Our patterns help to structure and classify dependability requirements. For exam-
ple, requirements considering integrity can be easily distinguished from the availability
requirements. It is also possible to trace all dependability requirements that refer to a
given domain.

The patterns for integrity, reliability, and availability considering random faults are
expressed using probabilities, while for the security requirements no probabilities are
defined. We are aware of the fact that no security mechanism provides a 100 % protec-
tion and that an attacker can break the mechanism to gain data with a certain probability.
But in contrast to the random faults considered for the other requirements, no proba-
bility distribution can be assumed, because, e.g., new technologies may dramatically
increase the probability that an attacker is successful. For this reason we suggest to de-
scribe a possible attacker and ensure that this attacker is not able to be successful in a
reasonable amount of time.

In the following, we present a selection of our dependability analysis patterns. More
patterns and details are given in our technical report [9].

4.1 Confidentiality
A typical confidentiality statement is to

Preserve confidentiality of StoredData / TransmittedData for Stakeholders and

prevent disclosure by a certain Attacker.

A statement about confidentiality is modeled as a class with the stereotype
<< Confidentiality>>>> in our profile. This stereotype is a specialization of the stereo-
type <<Statement>>, described in Section 2] Three dependencies must be specified
for a confidentiality requirement:

1. A causal domain representing the StoredData or TransmittedData must be con-
strained (using <<constrains>>>). Even if data is usually modeled using lexical
domains, we derive StoredData or TransmittedData from CausalDomain, because
in some cases the storage device and not the data is modeled.

2. The statement needs to refer to the considered attacker. This attacker must be de-
scribed in detail. We suggest to describe at least the attacker’s objective, its skills,
equipment, knowledge, and the time the attacker has to prepare and to perform the
attack. A similar kind of description is suggested in the Common Methodology
for Information Technology Security Evaluation (CEM) [1]]. As shown in Fig. 3]
the stereotype <<Attacker>> is a specialized <<BiddableDomain>>>. The ref-
erence to an Attacker is necessary, because we can only ensure confidentiality with
respect to an Attacker with given properties.

3. A confidentiality statement also needs to refer to the data’s stakeholder. The Stake-
holder is referred to, because we want to allow the access only to Stakeholders with
legitimate interest. The instances of Stakeholder and Attacker must be disjoint. The
corresponding OCL expression requires that each confidentiality statement refers
to at least one biddable domain that is not the attacker.

It is possible to generate the statement text from other model information: In the
typical confidentiality statement the StoredData / TransmittedData can be obtained from
the names of the domains constrained by this statement, the Attacker can be instantiated
with the name of the domain referred to with the stereotype <<Attacker>>, and the
Stakeholder can be instantiated with the name of the referred domain with the stereo-
type <<BiddableDomain>>> (or a subtype different from <<Afttacker>>). Addition-
ally, the names of supplemented functional requirements can be added to the statement
text if they exist.

A confidentiality requirement is often used together with functional requirements
for data transmission and data storage.

4.2 Integrity
Typical integrity statements considering random faults are:

With a probability of P;, one of the following things should happen: service
(as described in the functional statement) with influence on / of the domain
constrained in the functional requirement must be correct, or a specific action
must be performed.

Typical security integrity statements are:

The influence (as described in the functional statement) on / content of domain
constrained in the functional statement must be either correct, or in case of any
modifications by some Attacker a specific action must be performed.

In contrast to the dependability statement considering random faults, this requirement
can refer to the content of a domain (instead of the functionality), because security en-
gineering usually focuses on data. For security the domain constrained in the functional
requirement is usually a display or some plain data. The specific action could be, e.g.:

— write a log entry

— switch off the actuator

— do not influence the domain constrained in the functional statement

—_

10

— perform the same action as defined in the functional statement on domain con-
strained in the functional statement. In this case we talk about reliability.
— inform User

Integrity statements are modeled as classes with the stereotype
<<Integrity>>. In our profile, this stereotype is a specialization of the stereotype
<<Statement>>>, as shown in Fig.

The domain mentioned in the specific action must be constrained by the integrity
statement. The last specific action directly refers to the User. The User is a biddable
domain and cannot be directly constrained. Therefore, the User must be informed by
some technical means that can be constrained, e.g. a display. The assumption that the
User sees the Display (being necessary to derive a specification from the requirements)
must be checked later for validity.

An integrity requirement needs to refer to the domain constrained by the supple-
mented functional requirement. The class defining the stereotype < <integrity>> also
has attributes. The attribute ActionlfViolation in Fig. [contains the textual description
of the specific action as a string. The boolean attribute againstAttacker shows that the
statement is a security statement, or if it is set to false that it is a statement consider-
ing random faults. In that case also the Probability must be specified. For all integrity
statements (Lines 1-3 of Listing @]), it is checked if the inverted value of the stereo-
type attribute againstAttacker (Lines 4-6) implies that the value Probability is set, i.e not
equal to null (Lines 8-10).

Class. alllnstances ()—>select (oe |
oe.oclAsType(Class).getAppliedStereotypes () .name —>
includes (’ Integrity ’))
—>forAll (¢ |
not c.oclAsType(Class).getValue(c.oclAsType(Class)
.getAppliedStereotypes () —> select(s |
s.oclAsType(Stereotype).name —>
includes (’ Integrity °))
—>asSequence ()—>first (), againstAttacker ’)
.oclAsType(Boolean)
implies
c.oclAsType(Class).getValue(c.oclAsType(Class)
.getAppliedStereotypes () —> select(s |
s.oclAsType(Stereotype) .name —>
includes (’ Integrity °))
—>asSequence ()—>first () ,” Probability ’) <> null)

Listing 1.2. Integrity Statements Contain Probabilities

The probability is a constant, determined by risk analysis. The standard ISO/IEC 61508
[[L1] provides a range of failure rates for each defined safety integrity level (SIL). The
probability P; could be, e.g., for SIL 3 systems operating on demand 1 — 1073 to 1 —
10~

If the stereotype attribute againstAttacker is true, it is necessary that the statement
refers to an attacker. The attacker must be described in the same way as for confiden-
tiality in Section[d.1]

4.3 Availability
A typical availability statement considering random faults is:

The service (described in the functional statement) with influence on / of the
domain constrained in the functional statement must be available (for Users)
with a probability of P,.
When we talk about availability in the context of security, it is not possible to provide
the service to everyone due to limited resources. The availability statement considering

an attacker is expressed as follows:
The service (described in the functional statement) with influence on / of the

domain constrained in the functional statement must be available for Users

even in case of an attack by Attackers.

Availability statements are modeled as classes with the stereotype
<<Availability>>>. In our profile, this stereotype is a specialization of the stereotype
< <Statement>>, shown in Fig.[5]

Availability requirements constrain the domains constrained by the supplemented
functional requirement. The stereotype class for availability contains the attributes
againstAttacker, Probability, and forGroup. If againstAttacker is false, the stereotype
attribute Probability must be specified. This can be checked in the same way as for
integrity, described in Section[4.2]

If againstAttacker is true, the stereotype attribute forGroup must be specified, and
an attacker must be referred to. Both conditions can be expressed similarly as described

in Listing

4.4 Reliability

Reliability is defined in a similar way as availability (see Section[4.3). The same failure
rates as for integrity (see Section4.2) can be used.

5 Procedure to Use the Dependability Extension

This section describes how to work with the UML profile for problem frames for de-
pendable systems. To use our profile and apply the dependability patterns, we assume
that hazards and threats are identified, and a risk analysis has been performed. The
next step is to describe the environment, because dependability requirements can only
be guaranteed for some specific intended environment. For example, a device may be
dependable for personal use, but not for military use with more powerful attackers or a
non-reliable power supply. The functional requirements are described for this intended
environment using problem frames (see Section[2). The requirements describe how the
environment should behave when the machine is in action. The requirements should
be expressed in terms of domains and phenomena of the context diagram. From haz-
ards and threats an initial set of dependability requirements can be identified. These
requirements supplement the previously described functional requirements.

For each dependability requirement, a pattern from Section 4] should be selected.
After an appropriate pattern is determined, is must be connected with the concrete do-
mains from the environment description. The connected domains must be described.
For an attacker, at least the attributes of the stereotype must be defined (objective, equip-
ment, skill, time to attack, time to prepare). Via these assumptions, threat models are
integrated into the development process using dependability patterns. The values for
probabilities can be usually extracted from the risk analysis.

Our paper [8] describes how to find missing, interacting, and related requirements
or domain knowledge by selecting generic mechanisms. New requirements and new
domain knowledge is described using the same notation as used for the initial require-
ments and analyzed in the same way.

«contextDiagrams
CACCEnv

ecausalD omainz
MotorActuator_Brake

ecausalDomains zbiddableDomains

Car . a
sglectricaly zliz Driver
Clbrake, * DIActions, CYdesired_speed,
accelerate} warn_driver, CACC_state}

‘.\znetwork_connection»
CYCAN_message}, CACCHCAN_message}

emachines scausalDomains
CACC OtherCars
zphysicals

OCHDistance}

aWirelesss
WWi{position, speed}

cattackers aconnectionDom... scausalDomains
CACCAttacker WiFi_WAVE OtherCarsWithCACC
“Wirelesss <Wirelesss
CAlposition, speed}, QCWCHposition, speed}
WWiposition, speed}
AN
aphenomenas

Actions = {break_pedal, accelarate_pedal, set_speed, increase_speed, decrease_speed, deactivate, resume’

Fig. 6. CACC Context Diagram

6 Case Study

The approach is illustrated by the same case study as presented in [8]]; the development
of a cooperative adaptive cruise control (CACC) maintaining string stability. Such a
system controls the speed of a car according to the desired speed given by the driver
and the measured distance to the car ahead. It also considers information about speed
and acceleration of the car ahead which is sent using a wireless network. The hazard
to be avoided is an unintended acceleration or deceleration (that may lead to a rear-
end collision). The considered threat is an attacker who sends wrong messages to the
car in order to influence its speedﬂ Examples for domain knowledge of the CACC
in the described environment are physical properties about acceleration, braking, and
measurement of the distance (relevant for safety). Other examples are the assumed in-
tention, knowledge and equipment of an attacker. We assume here that the attacker can
only access the connection domain WiFi_WAVE interface. The context diagram for the
CACC is shown in Fig. [6] It also contains the type of connection as stereotypes at the
associations between domains (e.g. <<wireless>> for wireless connections). These
connection types are not considered in this paper.
The functional requirement for the CACC is to maintain string stability:

R1 The CACC should accelerate the car if the desired speed set by the driver is higher
than the current speed, the CACC is activated and the measured distance and the
calculated distance to the car(s) ahead are safe.

"The risk analysis is left out here.

10

aproblemDiagramz
PD1

«causalDomainz
Car

CHeurrent_speed, position},CAl{accelerate, brake}

= current_speed: Integer
= position: String

=~

emachines
ControlAcceleration

SHdesired_speed, activated}

«hiddableDomainz
Driver

W

zcausalDomainz
OtherCars

-

QOCWCspeed, position

gcausalDomains
OtherCarsWithCACC

s

speed, position

desired speed, activated

arefersTos

distance -~ -
arefersTos . -~

o
-

.

o

"~ . _econstrainss

arequirements
R1_R2

-

A
.

-

- "speed, position

L~ arefersTos

\

arequirements
R1

larequirements
R2

Fig.7. CACC Problem Diagram for Control Acceleration and Brake

R2 The CACC should brake the car if the desired speed set by the driver is much
(30 km/h) lower as the current speed, the CACC is activated and the measured or
calculated distance to the car(s) ahead is decreasing towards the safe limit.

As an example, the problem diagram for R1 and R2 is depicted in Fig.[7} The prob-
lem diagram describes the interfaces between the machine and the environment neces-
sary to implement requirements R1 and R2, e.g., it describes that the machine (a subma-
chine of the CACC in the context diagram) can accelerate the car (CA!{accelerate}), and
it describes the relation of the requirements R1 and R2 to the domains in the environ-
ment. The requirements constrain the current speed of the car and therefore indirectly
its position. The requirements refer to the information in the domains necessary for the
described decision, e.g., the desired speed and the distance to the car ahead.

The next step is to identify an initial set of dependability requirements. For the
functional requirements R1 and R2, the following security requirement can be stated
using the textual pattern from Section &2}

The influence (as described in R1 and R2) on the car (brake, accelerate) must

be either correct, or in case of any modifications by CACCAttacker the car

(MotorActuator_Brake) should not be influenced (no brake, no accelerate).

A problem diagram including this integrity requirement is depicted in Fig. [8] It sup-
plements the requirements R1_R2. It refers to an attacker (the CACCAttacker) and also
refers to the domain constrained by R1_R2 (the Car). The Car is constrained because
the MotorActuator_Brake as part of the car should not be influenced.

All OCL constraints defined for the profile were checked. With checking these con-
straints, we detected several minor mistakes (e.g., wrong names), and we detected that
the original version of our problem diagram did not refer to the domain constrained in
the requirement.

We also defined the problem diagrams and the predicates for the other initial de-
pendability requirements (integrity considering random faults, availability, and reliabil-
ity). Details can be found in our technical report [9].

To find missing, interacting, and related requirements or domain knowledge, we
used the table with dependability predicates presented in [8]]. This analysis resulted in a

11

eproblemDiagrams
IntegrityCheckAttackerWarn

ebiddableDomains

Integrit
Driver «niegniy»

text = The influence (as described in R1 and R2) on the Car (brake, accelerate)
must be either correct, or in case of any modifications by
CACCAttacker the Car (MotorActuator_Brake) should not be influenced (no brake,
no accelerate) and the Driver must be informed (warn_driver).

DlActions, CHdesired_speed,
warn_driver, CACC_state}

ecausalDomain, displayDo.. |
=L)

Car ~ _ =ztonstrains=
T~ _ informdriver

ICA warn_driver, = - _ =tonstrainss el
brake, accelerate} Tteal) o ,lgrfke. accelerate R R
i ack erefersTos - - - - B - _ |srequirement, integritys
emachines zattackers influence R1 R2™ =~ - _ - R1 R2 int att
IntegrityCheckAttacker CACCAttacker Te-l —
= Taganst T T T TTTTTTTTTA .
arefersTos asUpplementss v

erequirements
R1_R2

Fig. 8. CACC Problem Diagram for Integrity Checks considering an Attacker

set of additional requirements and additional domain knowledge. For example, to pre-
serve integrity considering the described attacker, we need a protection of the messages
sent using a wireless interface. To protect the messages, we chose Message Authenti-
cation Codes (MAC). For creating and validating MACs, session secrets are necessary.
These secrets and the processing data in the machine itself must be kept confidential.
The pattern also requires to refer to the stakeholder (here: the Manufacturer) and the
attacker. The statement about protection of the secrets should not be realized by the
software to be built and is therefore considered to be domain knowledge.

The complete case study consists of 40 classes, 50 associations, and about 150 de-
pendencies. A total of 65 OCL constraints were checked using our tool, 15 of which
concerned dependability. The OCL constraints showed for previous versions of the
CACC case study, e.g., that our integrity requirement did not refer to an attacker. As
a final result, the CACC model has been successfully validated.

7 Related Work

This paper extends the patterns for requirements (and domain knowledge) presented in
[8] by a formal metamodel to provide tool support.

The Common Criteria [2]], Part 2 define a large set of so-called Security Functional
Requirements (SFRs) as patterns for requirements. But some of these SFRs directly an-
ticipate a solution, e.g. the SFR cryptographic operation in the class functional require-
ments for cryptographic support (FCS_COP) specifies the cryptographic algorithm, key
sizes, and the assigned standard to be used. The SFRs in the Common Criteria are lim-
ited to security issues. In a technical report [9], we relate some of the CC SFRs to our
patterns for dependability statements.

12

Lencastre et al. [13]] define a metamodel for problem frames using UML. In contrast
to our metamodel, it only consists of a UML class model. Hence, the OCL integrity
conditions of our metamodel are not considered in their metamodel.

Hall et al. [[7] provide a formal semantics for the problem frame approach. Their
model focuses on a formal specification language to describe problem frames and prob-
lem diagrams.

Seater et al. [[14] present a metamodel for problem frame instances. They formalize
requirements and specifications. Their integrity conditions focus on correctly deriving
specifications from requirements.

Charfi et al. [6]] use a modeling framework called Gaspard?2 to design high-perform-
ance embedded systems-on-chip. They use model transformations to move from one
level of abstraction to the next. To validate that their transformations have been correctly
performed, they use the OCL language to specify the properties that must be checked
in order to be considered as correct with respect to Gaspard2. We have been inspired by
this approach. However, we do not focus on high-performance embedded systems-on-
chip. Instead, we target dependable systems development.

SysML [16] also provides the stereotype <<Requirement>> for classes. It can
be used to express dependabilites between requirements and the relation to realization
and tests (e.g., with the stereotypes <<refine>>, <<trace>>, <<satisfy>>). We
relate the requirements to domains of the environment to make their pupose explicit
and provide support for requirements interaction analysis.

8 Conclusions and Future Work

In this paper, we have presented an extension to our UML profile for problem frames to
describe dependability. In this profile, we defined a set of stereotypes for dependability
requirements and domain knowledge. We set up 65 OCL constraints for requirements
engineering, 15 of which concern dependability. These constraints show how functional
requirements can be supplemented by dependability requirements.

In summary, our concept has the following advantages:

— Artifacts from the analysis development phase that are part of a model created with
our profile can be re-used in later phases in the software development process.

— The notation is based on UML. UML is commonly used in software engineering,
and many developers are able to read our models.

— The concept is not tool-specific. It can be easily adapted to other UML2 tools that
allow to specify new stereotypes.

— The dependability statements are re-usable for different projects.

— A manageable number of statement types can be used for a wide range of problems,
because they are separated from the functional requirements.

— Statements expressed using our profile refer to the environment description and
are independent from solutions. Hence, they can be easily re-used for new product
versions.

— A generic textual description of the requirement or the domain knowledge can be
generated form other model elements.

— Statements expressed using our profile help to structure and classify the depend-
ability requirements. For example, integrity statements can be easily distinguished
from availability statements. It is also possible to trace all dependability statements
that refer to one domain.

13

In the future, we plan to extend our tool to support the identification of missing and
interacting requirements. We also want to support traceability links to trace our (de-
pendability) requirements to artifacts developed later, e.g. components in the software
architecture.

Acknowledgment. We thank Isabelle C6té for her valuable comments on this work.

References

1. Common Methodology for Information Technology Security Evaluation, August 2005.

http://www.commoncriteriaportal.org/public/expert/.

2. Common Criteria for Information Technology Security Evaluation, Version 3.1, September

2006. http://www.commoncriteriaportal.org/public/expert/.

. Eclipse - An Open Development Platform, May 2008. http://www.eclipse.org/.

4. Eclipse Modeling Framework Project (EMF), May 2008.

http://www.eclipse.org/modeling/emf/.

. Papyrus UML Modelling Tool, Jan 2010. http://www.papyusuml.org/.

6. A. Charfi, A. Gamatié, A. Honoré, J.-L. Dekeyser, and M. Abid. Validation de modeles
dans un cadre d’IDM dédié a la conception de systeémes sur puce. In 4eémes Jounées sur
I’Ingénierie Dirigée par les Modéles (IDM 08), 2008.

7. J. G. Hall, L. Rapanotti, and M. Jackson. Problem frame semantics for software development.
Software and System Modeling, 4(2):189-198, 2005.

8. D. Hatebur and M. Heisel. A foundation for requirements analysis of dependable software.
In B. Buth, G. Rabe, and T. Seyfarth, editors, Proc. of the Int. Conference on Computer
Safety, Reliability and Security (SAFECOMP), LNCS 5775, pages 311-325. Springer, 2009.

9. D. Hatebur and M. Heisel. A UML profile for requirements analysis of dependable soft-
ware (technical report). Technical report, Universitidt Duisburg-Essen, 2010. http://swe.uni-
due.de/techrep/depprofile.pdf.

10. D. Hatebur, M. Heisel, and H. Schmidt. A pattern system for security requirements engi-
neering. In B. Werner, editor, Proceedings of the International Conference on Availability,
Reliability and Security (AReS), IEEE Transactions, pages 356-365. IEEE, 2007.

11. International Electrotechnical Commission IEC. Functional safety of electrical/electron-
ic/programmable electronic safty-relevant systems, 2000.

12. M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

13. M. Lencastre, J. Botelho, P. Clericuzzi, and J. Aratijo. A meta-model for the problem frames
approach. In WiSME’05: 4th Workshop in Software Modeling Engineering, 2005.

14. R. Seater, D. Jackson, and R. Gheyi. Requirement progression in problem frames: deriving
specifications from requirements. Requirements Engineering, 12(2):77-102, 2007.

15. ”UML Revision Task Force”. OMG Object Constraint Language: Reference, May 2006.
http://www.omg.org/docs/formal/06-05-01.pdf.

16. "UML Revision Task Force”. OMG Systems Modeling Language (OMG SysML), November
2008. http://www.omg.org/spec/SysML/1.1/.

17. "UML Revision Task Force”. OMG Unified Modeling Language: Superstructure, February
2009. http://www.omg.org/docs/formal/09-02-02.pdf.

W

W

14

	A UML Profile for Requirements Analysis of Dependable Software

