
A Method to Derive Software Architectures from Quality Requirements

Azadeh Alebrahim, Denis Hatebur, Maritta Heisel
Software Engineering

Department of Computer Science and Applied Cognitive Science
University Duisburg-Essen, Germany

azadeh.alebrahim, denis.hatebur, maritta.heisel@uni-duisburg-essen.de

Abstract—We present a model- and pattern-based method that
allows software engineers to take quality requirements into
account right from the beginning of the software develop-
ment process. The method comprises requirements analysis
as well as the derivation of a software architecture from
requirements documents, in which quality requirements are
reflected explicitly. For requirements analysis, we use an
enhancement of the problem frame approach, where software
development problems are represented by problem diagrams.
The derivation of a software architecture starts from a set of
problem diagrams, annotated with functional as well as quality
requirements. First, we set up an initial software architecture,
taking into account the decomposition of the overall software
development problem into subproblems. Then, we incorporate
quality requirements into that architecture by using security
or performance patterns or mechanisms. The method is tool-
supported, which allows developers to check semantic integrity
conditions in the different models.

Keywords-Quality-driven design; quality requirements; soft-
ware architecture; performance, security 1

I. INTRODUCTION

The treatment of quality (or non-functional) requirements
in software development is not yet as well mastered as
the treatment of functional requirements. There are several
reasons for this situation. First, quality requirements must
be elicitated, analyzed, and documented as thoroughly as
functional ones, which is often not the case. Second, re-
quirements engineering and architectural design must be
integrated in such a way that the knowledge gained in
the requirements engineering phase is used in a systematic
way when developing a software architecture. Third, the
current techniques for incorporating quality requirements
into software architectures are even less developed than the
ones that concentrate on functional requirements only.
In this paper, we want to contribute to improve this situation.
We present a method that

1) provides a seamless transition from requirements anal-
ysis to architectural design,

2) takes quality requirements (in particular, security and
performance requirements) into account explicitly,

3) is model- and pattern-based, and for which
4) tool support exists.

1Part of this work is funded by the German Research Foundation (DFG)
under grant number HE3322/4-1.

We consider security and performance requirements, because
they are quite different in nature. Security requirements
can often be transformed into functional ones, whereas for
performance requirements this is hardly the case. Therefore,
these two kinds of requirements are appropriate representa-
tives of quality requirements.
As a basis for requirements analysis, we use Jackson’s
problem frame approach [14]. We have carried over problem
frames to UML [22] by defining a specific UML pro-
file, and we have implemented a tool supporting require-
ments analysis and architectural design based on problem
frames [12]. The tool, called UML4PF (available under
http://www.uml4pf.org), provides the possibility to auto-
matically check semantic integrity conditions for individual
requirements or architectural models, as well as coherence
conditions between different models. As a basis for archi-
tectural design, we use a method we developed for deriving
architectures based on functional requirements [7].
In the present paper, we extend our previous requirements
analysis and architectural design methods by explicitly tak-
ing into account quality requirements. The analysis docu-
ments are extended by quality requirements that complement
functional ones. The so enhanced problem descriptions form
the starting point for architectural design. In a first step,
we define an initial software architecture that is oriented
on the decomposition of the overall software development
problem into subproblems. In a second step, we transform
that architecture according to the quality requirements to
be considered, applying appropriate security or performance
patterns or mechanims Furthermore, we apply functional
design patterns [10], such as Facade, to obtain a clean
and modular software architecture. Finally, we have defined
quality stereotypes that serve as hints for implementers. As
compared to the short paper [4], this paper presents a further
elaborated method.
The rest of the paper is organized as follows. In Sect. II, we
introduce the case study that serves as a running example.
We then present the basics on which our method builds in
Sect. III. In Sect. IV, we present the UML profile we defined
to carry over the problem frame approach to UML, as well
as the tool UML4PF. Section V is devoted to describing our
method in detail. Related work is discussed in Sect. VI, and
conclusions and future work are given in Sect. VII.



II. CASE STUDY

We illustrate our approach by a chat application, which
allows a text-message-based communication via private I/O
devices. Users should be able to communicate with other
chat participants in a same chat room.
We focus on the functional Communicate requirement with
the description “Users can send text messages to a chat
room, which should be shown to the users in that chat room
in the current chat session in the correct temporal order on
their displays” and its corresponding quality requirements
Response Time with the description “The sent text message
should be shown on the receiver’s display in 1500 ms
maximum” and Confidentiality with the description “Text
messages should be transmitted in a confidential way”.
Note that in order to specify performance requirements
properly, more details have to be given. We use the MARTE
profile [23] for this purpose, which we describe in more
detail in Sect. V-B. Besides the confidentiality of text
messages, their integrity is also important. For reasons of
space, however, we do not address integrity in this paper.

III. BASIC CONCEPTS

Our method relies on a requirements engineering process
based on problem frames (Sect. III-A) and uses established
patterns and mechanisms to meet performance and security
requirements (Sect. III-B).

A. Requirements Description using Problem Frames
Problem frames are a means to describe software devel-
opment problems. They were proposed by Michael Jack-
son [14], who describes them as follows:
“A problem frame is a kind of pattern. It defines an intu-
itively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and require-
ment.”
A problem frame is described by a frame diagram, which
basically consists of domains, interfaces between them, and
a requirement. The task is to construct a machine (i.e.,
software) that improves the behavior of the environment (in
which it is integrated) in accordance with the requirements.
Requirements analysis with problem frames proceeds as
follows: first the environment in which the machine will
operate is represented by a context diagram. A context
diagram consists of machines, domains and interfaces. Then,
the problem is decomposed into subproblems, which are
represented by problem diagrams. A problem diagram con-
sists of a submachine of the machine given in the context
diagram, the relevant domains, the interfaces between these
domains, and a requirement. Figures 1, 3, and 4 show
problem diagrams in UML notation.

B. Mechanisms and Patterns for Performance and Security
To satisfy performance and security requirements, different
mechanisms, also called patterns, are available [9], [20],
[26]. We will use the following patterns and mechanisms:

1) Load Balancing: is a mechanism that is used to distribute
computational load evenly over two or more hardware com-
ponents. The load balancing pattern consists of a component
called Load Balancer, and multiple hardware components
that implement the same functionality. The load balancer
can be realized as a hardware or a software component.
2) Master-Worker: makes it possible to serve requests in
parallel, similarly to load balancing. In contrast to load
balancing that uses hardware components, the master-worker
pattern provides a software solution. It consists of a software
component called Master and two or more other software
components, called Worker. The task of the master is to
divide the request into parallel tasks and to forward them to
the workers, which manage the smaller tasks.
3) Single Access Point: It may be difficult and expensive to
provide security for an application, which has multiple entry
points. Protecting an application is easier when there is only
one way to access an application. The typical solution is
applying the Single Access Point pattern. An example for
this pattern is to create a login screen that collects user
information such as user name and password.
4) Encryption: is an important means to achieve confi-
dentiality. A plaintext is encrypted using a secret key and
decrypted either using the same key (symmetric encryption)
or a different key (asymmetric encryption). One advantage
of symmetric encryption is that it is faster than asymmetric
encryption. The disadvantage is that both communication
parties must know the same key, which has to be distributed
securely or negotiated. In asymmetric encryption, there is no
key distribution problem, but a trusted third party is needed
that issues the key pairs.

IV. TOOL-SUPPORTED REQUIREMENTS ENGINEERING

It is important that the results of the requirements analysis
with problem frames can be easily re-used in later phases
of the development process. Since UML is a widely used
notation to express analysis and design artifacts, we de-
fined a new UML profile [12], [7] that extends the UML
meta-model to support problem-frame-based requirements
analysis with UML. This profile can be used to create
the diagrams for the problem frame approach. To address
quality requirements in the requirement engineering process
we enhance our UML profile with annotations for quality
requirements as stereotypes. In addition, the tool UML4PF
supports the requirements engineering process as well as
architectural design using the UML profile.

A. UML Profile for Problem Frames

Using specialized stereotypes, our UML profile allows us
to express the different diagrams occurring in the problem
frame approach using UML diagrams.
A class with the stereotype �machine� represents
the software to be developed. Jackson distinguishes
the domain types biddable domains (represented by



the stereotype �BiddableDomain�) that are usu-
ally people, causal domains (�CausalDomain�) that
comply with some physical laws, and lexical domains
(�LexicalDomain�) that are data representations.
To describe the problem context, a connection domain
(�ConnectionDomain�) between two other domains
may be necessary. Connection domains establish a connec-
tion between other domains by means of technical devices.
Examples are video cameras, sensors, or networks. This kind
of modeling allows one to add further domain types, such as
�DisplayDomain� (introduced in [8]), being a special
case of a causal domain.
In problem diagrams, interfaces connect domains, and they
contain shared phenomena. Shared phenomena may e.g. be
events, operation calls or messages. They are observable by
at least two domains, but controlled by only one domain,
as indicated by “!”. In Fig. 1 the notation U !{sendTM}
(between CA communicate and User) means that the phe-
nomenon sendTM is controlled by the domain User. In-
terfaces are marked with specializations of the stereotype
�connection�, e.g., a user interface (�ui�) between
User and CA communicate machine in Fig. 1.
The stereotype �requirement� represents a functional
or quality requirement. When we state a requirement we
want to change something in the world with the machine
to be developed. Therefore, each requirement constrains
at least one domain. This is expressed by a dependency
from the requirement to a domain with the stereotype
�constrains�. A requirement may refer to several do-
mains in the environment of the machine. This is expressed
by a dependency from the requirement to a domain with the
stereotype �refersTo�.
The problem diagram in Fig. 1 describes the require-
ment Communicate in more detail. It describes that the
CA communicate machine can show to the user the Cur-
rentChatSession on its Display (CAC!{displayCCS}). The
requirement constrains the CurrentChatSession and the Dis-
play. It refers to the User and the TextMessage.
The problem frame approach substantially supports devel-
opers in analyzing problems to be solved. It points out what
domains have to be considered, and what knowledge must
be described and reasoned about when analyzing a problem
in depth. Developers must elicit, examine, and describe the
relevant properties of each domain. These descriptions form
the domain knowledge, which is represented by domain
knowledge diagrams. Domain knowledge consists of as-
sumptions and facts. Assumptions usually describe required
user behavior, whereas facts describe fixed properties of the
problem environment, regardless of how the machine is built.

B. Annotating Problem Descriptions with Quality Require-
ments

To consider quality requirements, we extended our
UML profile for problem frames to complement func-

Figure 1. Problem diagram for the requirement Communicate

tional requirements with dependability requirements [13].
Classes with stereotypes such as�confidentiality�,
�integrity� and corresponding attributes such as at-
tacker, stakeholder address security requirements. The de-
pendency from a quality requirement to a requirement is
expressed with the stereotype�complements� (Fig. 1).
To provide support for annotating problem descriptions with
performance requirements, we use the UML profile MARTE
(Modeling and Analysis of Real-time and Embedded Sys-
tems) [23]. We focus on the GQAM package (Generic Quan-
titative Analysis Modeling). To define workload and behav-
ior concerns we make use of the GQAM Workload package
by instantiating the appropriate attributes of this package.
Each BehaviorScenario is composed of Steps, each of which
can be refined as another BehaviorScenario. A behavior
scenario is triggered by the WorkloadEvent, which may be
generated by an ArrivalPattern such as the ClosedPattern
that allows us to model a number of concurrent users and
a think time (the time the user waits between two requests)
by instantiating the attributes population and extDelay. We
define a BehaviorScenario composed of one Step for the
requirement Communicate RT (see Sect. V-B), which is
refined in three BehaviorScenario instances, each of which is
composed of a single Step. The Step instances represent the
requirements Send RT, Forward RT and Receive RT that
stand in the precedence relationship Sequence (see Fig. 15.3,
p. 289 of the MARTE specification [23]).

C. Tool Support

We provide tool support for software development based on
problem frames. Our tool, called UML4PF, can be used to
create diagrams, which are mapped to a part of a global
model and a graphical representation of this part. Basis is
the Eclipse platform [1] together with its plug-ins Eclipse
Modeling Framework (EMF) [2] and OCL [21]. Our UML



profile for problem frames is conceived as an Eclipse plug-
in, extending the EMF meta-model.
The graphical representation of the different diagram types
can be manipulated by using any EMF-based editor. We
selected Papyrus [3] as it is available as an Eclipse plug-
in, open-source, and EMF-based.
To ensure the integrity and coherence of the model, we have
set up a number of OCL constraints. Based on the model
information, UML4PF can automatically detect semantic
errors in the model by evaluating the constraints. We can
also validate that the artifacts of later development steps are
consistent with the requirements engineering diagrams. For
more details, see [12], [7].

V. DERIVING QUALITY-BASED ARCHITECTURES

We first give an overview of our method illustrated in Fig. 2,
before applying it to the chat described in Sect. II.
We first decompose the overall problem into subproblems
(Problem Diagrams), each of which is related to one or
more functional requirements. Then we annotate each sub-
problem by complementing functional requirements with
related quality requirements (Quality Problem Diagrams).
In the next step we take a design decision concerning the
kind of distribution of the software architecture (Choose
Design Alternative). Then we go back to the requirements
descriptions and regarding the design decision split the
problem diagrams accordingly (Split Problem Diagrams).
Analogously to splitting the problem diagrams and so split-
ting the functional requirements, we also have to split the
corresponding quality requirements (Split Quality Require-
ments). Then we set up an initial architecture by mapping
each machine domain in a problem diagram to a component
(Initial Architecture). After that we elaborate the problem
diagrams annotated with quality requirements by introducing
domains reflecting specific solution approaches (Concretized
Quality Problem Diagrams). In the next step we derive
an architecture, which is implementable and achieves the
required level of performance and security (Implementable
Architecture). We make use of problem diagrams annotated
with quality requirements and concretized quality problem
diagrams. To obtain the implementable architecture, we first
merge related components (Merge Components). Next, we
apply appropriate design patterns (Apply Design Patterns).
Finally we make use of mechanisms and patterns and
the concretized quality problem diagrams (Apply Quality
Mechanisms/Patterns).
We now present these steps in detail.

A. Problem Diagrams

As described in Sect. III-A, the first step in the software
development process based on problem frames is to create
a context diagram, which represents the environment in

Figure 2. Method for quality-based derivation of software architectures

which the machine will operate.2 For reasons of space we
do not show the context diagram for the chat application
and continue with the problem decomposition step. We de-
compose the overall problem into subproblems represented
by problem diagrams. Each problem diagram describes one
subproblem with the corresponding requirement. We focus
on the requirement Communicate described in Sect. II.
The corresponding problem diagram using our UML profile
for problem frames is depicted in Fig. 1. It consists of
the domains User, TextMessage, CurrentChatSession and
Display. The requirement Communicate refers to the do-
mains User and TextMessage and constrains the domains
CurrentChatSession and Display.

B. Quality Problem Diagrams

In this step, we address quality requirements by annotating
problem diagrams with suitable stereotypes. In Sect. II,
we defined one security and one performance requirement
related to the functional requirement Communicate. That
requirement is complemented by the confidentiality require-
ment Communicate conf that requires confidentiality of data
transmission for TextMessage and the response time re-
quirement Communicate RT representing one BehaviorSce-
nario composed of one Step described with the stereotype
�gaCommStep� in Fig. 1. The response time requirement
is modeled by instantiating the relevant attributes of the Step
class in the MARTE GQAM Workload package described

2Woods and Rozanski also suggest a new view point, called context
view [25], in addition to their 6 view points to guide the architectural desgin
to define the environment of a system [18].



Figure 3. Problem diagram for Send, annotated with quality requirements

in Sect. IV-B. The respT attribute states that the required
response time for sending text messages should be 1500 ms
maximum. The cause attribute represents the triggering
event, which is in our case a ClosedPattern with 100
concurrent users (population), each of which needs a think
time of 1000 ms (extDelay). The msgSize attribute states that
the sending text messages should be 5 KB maximum.

C. Choose Design Alternative

We now need to take a design decision concerning the kind
of distribution of the software to be developed, e.g., client-
server, peer-to-peer, or standalone. This decision is either
taken by the stakeholder or by the software architect. In this
paper, we do not discuss how this decision is taken.
For standalone applications, we can skip two steps and con-
tinue with the step “Initial Architecture”. In the following,
we describe how to proceed for a client-server architecture
in more detail.

D. Split Problem Diagrams

After having chosen a client-server architecture for the chat
application, we go back to the requirements descriptions and
decompose the problem diagrams in such a way that each
subproblem is allocated to only one of the distributed com-
ponents. This may lead us to introduce connection domains,
e.g., networks (see Sect. IV-A). For the chat application,
the problem diagram depicted in Fig. 1 is split into three
problem diagrams, which address the problems of sending
text messages to the server that belongs to the client (see
Fig. 3), forwarding text messages from the server to the
receivers that belongs to the server (see Fig. 4), and receiving
text messages that belongs to the client (not shown). For each
of these three subproblems, we introduced the connection
domain Network to achieve the distribution.

Figure 4. Problem diagram for Forward, annotated with quality require-
ments

E. Split Quality Requirements

Analogously to splitting the problem diagrams and so split-
ting the functional requirements, we also have to split the
corresponding quality requirements. In case of a response
time requirement, the response time should be divided so
that all subproblems together satisfy the desired response
time. The Communicate requirement states a response time
of 1500 ms maximum. This must be achieved through the
three subproblems Send, Forward and Receive. We must
also consider the time that the data needs to be transported
over the network. In our case study, each of the machines
CA send and CA forward is required to send a text message
to the server or to forward the text message to the receivers,
respectively, within 200 ms. The machine CA receive may
take 300 ms to process the received text message and
display it. This leaves 800 ms to transmit data from the
client to the server and back. We cannot meet performance
and specifically response time requirements, if we have no
knowledge about the real circumstances in the environment.
Therefore we specify knowledge (see Sect. IV-A) about the
network and the computational power of clients and server
in the domain knowledge diagram for performance depicted
in Fig. 5. It contains specific knowledge about client and
server, e.g., the number of processor cores, processor speed
and memory.
To fulfill the confidentiality requirement for the problem
PD communicate (Fig. 1), we require confidentiality for
each subproblem, thus annotating each subproblem with a
corresponding refined confidentiality requirement. It con-
tains a stakeholder who is interested in preserving the con-
fidentiality of data, and an attacker that the chat application
should be protected against, as attributes. The stakeholder in
our case is the User, and the attacker is a NetworkAttacker
who is able to attack the data transported over the network.
Attributes of an attacker are specified more precisely in [13].
The refined confidentiality requirements for the Send and
Forward subproblems are shown in Figs. 3 and 4.



Figure 5. Domain knowledge diagram for performance

F. Initial Architecture

The initial architecture consists of one component
for the overall machine (e.g., chat application), with
stereotypes �machine� and �initial_archi-
tecture�. For a distributed architecture, we add the
stereotype �distributed� to the architecture compo-
nent. For client-server architectures, there are two compo-
nents representing client and server, respectively, inside the
overall machine. Then we make use of the split problem
diagrams we described in Sect. V-D. Each submachine in
the split problem diagrams becomes a component either
in the client or in the server. In the chat application, the
submachines CA send and CA receive belong to the client
component, whereas CA forward belongs to the server.

G. Concretized Quality Problem Diagrams

The goal of this step is to find solution approaches, e.g.,
the ones given in Sect. III-B, to prepare for solving the
given security and performance problems. We elaborate the
problem diagrams annotated with quality requirements by
introducing domains reflecting specific solution approaches.
We call the elaborated problem diagrams containing solution
approaches concretized quality problem diagrams.
For example, the problem diagram for the Send problem
describes the problem of sending text messages with two ad-
ditional quality requirements for security and performance,
respectively (see Fig. 3). The performance requirement states
that sending a text message should be performed within
200 ms. However, this requirement cannot be achieved
by architectural means. Instead, it must be taken care of
in the implementation. In such a case, we annotate the
corresponding machine with a stereotype that serves as a
hint to develop a particularly efficient implementation or
an implementation that does not leak information. In this
case, we annotate the CA send machine with the stereotype
�gaCommStep� (see Fig. 6).
The security requirement describes that a text message
should be transmitted confidentially over an insecure net-
work. To take this quality requirement into account, we

Figure 6. Concretized quality problem diagram for quality requirement
Send Conf

specify the concretized quality problem diagram given in
Fig. 6 that uses an encryption mechanism to solve the
problem. We decide to first apply a symmetric and then an
asymmetric encryption mechanism3. To solve the problem
using these mechanisms, we introduce a new machine En-
cryption that provides the encryption functionality as a part
of the CA send machine. The Encryption machine encrypts
the text message with a generated random number that
serves as a symmetric key. For each receiver, we encrypt
the symmetric key with its public key, using an asymmetric
encryption mechanism. Therefore, we introduce the new
domain ReceiverUserPublicKey. The sender machine sends
the message and the encrypted symmetric key to the server,
and the server forwards them to all receivers. Since encryp-
tion takes time, we annotate the Encryption machine with
the stereotype �gaCommStep� to point implementers
towards efficient algorithms and implementations. We also
need to introduce new components on the receiver side,
namely a new machine Decryption and a component Re-
ceiverUserPrivateKey.
By now we have considered the parts of the problem
Communicate that belong to the client. Now we specify
the quality problem diagram for the part that belongs to
the server, namely Forward. This problem requires to sat-
isfy both confidentiality and response time requirements as
shown in Fig. 4. The sent text message arrives at the server in
encrypted form. It will directly be forwarded to the receivers.
So the confidentiality of the text messages on the server is
preserved.
To address the performance requirements for Forward, we
consider two alternatives. Figure 7 shows the concretized
quality problem diagram that uses the load balancing mech-
anism to solve the response time problem. A new machine
LoadBalancer distributes the load from the network across
several server components, each of which contains one

3Other solutions are possible, but are not discussed here.



Figure 7. Concretized quality problem diagram for quality requirement
Forward RT

Figure 8. Alternative concretized quality problem diagram for quality
requirement Forward RT

machine for solving the Forward problem.
Figure 8 shows the concretized quality problem diagram
that results when applying the master-worker pattern to the
Forward problem. A new machine domain Master distributes
the task received from the network to several CA forward
machines. In contrast to the previous solution, this solution
consists of a single server, which contains a master and
several machines that provide the forward functionality.

H. Implementable Architecture

The purpose of this step is to derive an architecture, which
is implementable and fulfills the performance and security
requirements. We proceed in three steps.
1) Merge Components: Related components that realize a
similar functionality and contain at least one similar domain
in their problem diagrams can be merged to one component.
In the chat application, we could merge the components for
logging in and registering users (not discussed previously).
In general, the decision about the merging of components
should be taken by an experienced architect.
2) Apply Design Patterns: We introduce a Facade compo-
nent [10], if several internal components are connected to
one external interface in the initial architecture. As a Facade

component, we introduce the UserFacade component that re-
alizes the Single Access Point pattern described in Sect. III-B
(see Fig. 9). Additionally, we provide the ClientFacade
component on the client side in order to prevent each single
component from communicating with the server directly. On
the server side, we introduce the ServerFacade component.
Adding a Facade component causes only one additional
method invocation and hence does not impair the perfor-
mance of the software. If interaction restrictions have to be
taken into account, i.e., actions have to happen in a certain
order, we have to add one or more Coordinator components.
In our example, the user must first authenticate before taking
any action. Therefore, we introduce a UserCoordinator. To
obtain a clear structure of the software architecture, we
integrate the UserCoordinator in the UserFacade.
3) Apply Quality Mechanisms and Patterns: Now we
make use of the mechanisms and patterns described in
Sect. III-B and the concretized quality problem diagrams
specified in Sect. V-G. Considering solution domains (e.g.,

Figure 10. Alternative implementable architecture

Encryption) in concretized quality problem diagrams pro-
vides a seamless integration of quality mechanisms into
software architecture. We extend the existing architecture
with new domains we obtain from the concretized quality
problem diagrams. All new domains are annotated with
stereotype �component�. Additionally to this stereo-
type, the new domains retain their �gaCommStep� and
�confidentiality� stereotypes.
For example, the Encryption machine is integrated in
the CA send component and annotated with stereotypes
�gaCommStep� and �confidentiality�. The
domain ReceiverUserPublicKey is connected to the En-
cryption machine. The Decryption machine is integrated
in the CA receive component, and the domain Receiver-
UserPrivateKey is connected to the Decryption machine.
The LoadBalancer is placed before the servers. Its port
multiplicity [1..*] (see Fig. 9) means that it can be connected
with several server components.
An alternative architecture would contain a Master compo-
nent with several CA forward components. The CA forward
components are inside a single server (see Fig. 10), instead
of a LoadBalancer component with several servers.



Figure 9. Implementable architecture

VI. RELATED WORK

An approach to transform security requirements to design is
provided by Mouratidis and Jürjens [17]. It starts with the
goal-oriented security requirements engineering approach
Secure Tropos [16], and connects it with a model-based se-
curity engineering approach, namely UMLsec [15]. UMLsec
is a UML profile for representing security properties in UML
diagrams. It does not provide support for the analysis phase
of the software development process.
Schmidt and Wentzlaff [19] develop architectures from re-
quirements based on the problem frame approach, taking
into account usability and security. They show how to
balance security and usability requirements.
Hall et al. [11] present an extension of the problem frames
approach allowing design concerns. They relate software ar-
chitectures to requirements in the problem domain. However
they only consider functional requirements and not quality
requirements.
Attribute Driven Design (ADD) [24] is a method to design a
conceptual architecture. It focuses on the high-level design
of an architecture, and hence does not support detailed
design. Identifying mechanisms to achieve quality attributes
relies on the architect’s expertise.
Q-ImPrESS [5] is a project that focuses on the generation
and evaluation of architectures according to quality prop-
erties, in particular performance. The phases design and
implementation of the software development process are
particularly in focus. In contrast to our contribution, it does
not use requirements descriptions as a starting point.
The notation and evaluation of performance attributes of
an architecture is the focus of the component model Pal-
ladio [6], which is also included in the project Q-ImPrESS.
In Palladio, a set of notations, concepts and a tool are

provided, which allow its users to model and simulate
architectures for performance evaluation. The tool could be
used for simulating and thus evaluating software architecture
performance. The concepts and the included tool, however,
cannot be used to evaluate an architecture’s security.

VII. CONCLUSION

In this paper, we have presented a detailed, UML-based and
tool-supported method to derive software architectures from
requirements documents, thereby taking quality require-
ments into account. Our method addresses all the problems
we identified in the introduction:
Thorough specification of quality requirements. Problem
diagrams are a means to describe software development
problems precisely. Such diagrams can be annotated with
elaborated quality requirements, based on UML profiles.
Seamless transition from requirements analysis to ar-
chitectural design. The two phases are not separated, but
intertwined. An architectural decision drives the revision of
problem descriptions, and concretized problem descriptions
lead directly to architectural components and connections.
Explicit consideration of quality requirements. Our
method builds on established approaches to achieve quality
properties, such as encryption or load balancing. The appli-
cation of these mechanisms or patterns is directly visible in
the software architecture.
Our method builds on established techniques such as prob-
lem frames, security and performance patterns. Its novelty
lies in the fact that the different approaches are integrated
and intertwined explicitly by an underlying methodology and
a common notation. The notation as well as the methodology
are open and can be developed further to enhance the power
and breadth of the approach. Furthermore, tool support



helps software engineers to explore different architectural
alternatives and provides valuable feedback by automatic
checking of semantic integrity conditions.
A possible limitation of our approach might be the fact that
quality requirements are attached to functional requirements.
This might make it difficult to treat cross-cutting concerns.
We intend to investigate this issue.
In the present work, we have not analyzed possible conflicts
between different quality requirements. We just note that
e.g., encryption takes time and that we therefore should
pay attention to performance requirements when introducing
encryption mechanisms. In the future, we strive for a more
systematic treatment of conflicting quality requirements.
Moreover, we have concentrated on structural descriptions
of software architectures. In the future, we will extend our
method to also support deriving behavioral descriptions for
the developed architectures and automatically checking their
coherence with the structural descriptions.

REFERENCES

[1] Eclipse - An Open Development Platform, Feb 2011.
http://www.eclipse.org/.

[2] Eclipse Modeling Framework Project (EMF), Feb 2011.
http://www.eclipse.org/modeling/emf/.

[3] Papyrus UML Modelling Tool, Feb 2011.
http://www.papyrusuml.org/.

[4] A. Alebrahim, D. Hatebur, and M. Heisel. Towards systematic
integration of quality requirements into software architecture.
In I. Crnkovic and V. Gruhn, editors, Proc. ECSA 2011, LNCS
6903, pages 17–25. Springer Verlag, 2011.

[5] S. Becker, S. Dešić, J. Doppelhamer, D. Huljenić, H. Kozi-
olek, E. Kruse, M. Masetti, W. Safonov, I. Skuliber, J. Stam-
mel, M. Trifu, J. Tysiak, and R. Weiss. Q-ImPrESS Project
Deliverable D1.1 – Requirements document. final version,
Q-ImPrESS Consortium, 2009.

[6] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance prediction.
Journal of Systems and Software, 82:3 – 22, 2009.
http://dx.doi.org/10.1016/j.jss.2008.03.066.

[7] C. Choppy, D. Hatebur, and M. Heisel. Systematic archi-
tectural design based on problem patterns. In P. Avgeriou,
J. Grundy, J. Hall, P. Lago, and I. Mistrik, editors, Relating
Software Requirements and Architectures, chapter 9, pages
133–160. Springer, 2011.

[8] I. Côté, D. Hatebur, M. Heisel, H. Schmidt, and I. Wentzlaff.
A Systematic Account of Problem Frames. In Proc. of the
European Conf. on Pattern Languages of Programs (Euro-
PLoP), pages 749–767. Universitätsverlag Konstanz, 2008.

[9] C. Ford, I. Gileadi, S. Purba, and M. Moerman. Patterns for
Performance and Operability. Auerbach Publications, 2008.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Wiley & Sons, Boston, USA, 1995.

[11] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Ra-
panotti. Relating software requirements and architectures
using problem frames. In Proceedings of IEEE International
Requirements Engineering Conference (RE’02, pages 137–
144. IEEE Computer Society Press, 2002.

[12] D. Hatebur and M. Heisel. Making Pattern- and Model-
Based Software Development More Rigorous. In J. S. Dong
and H. Zhu, editors, Proc. of 12th Int. Conf. on Formal
Engineering Methods, LNCS 6447, pages 253–269. Springer,
2010.

[13] D. Hatebur and M. Heisel. A UML profile for requirements
analysis of dependable software. In E. Schoitsch, editor, Proc.
of the Int. Conf. on Computer Safety, Reliability and Security
(SAFECOMP), LNCS 6351, pages 317–331. Springer, 2010.

[14] M. Jackson. Problem Frames. Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[15] J. Jürjens. Secure Systems Development with UML. Springer,
2005.

[16] H. Mouratidis. A Security Oriented Approach in the Develop-
ment of Multiagent Systems: Applied to the Management of
the Health and Social Care Needs of Older People in England.
PhD thesis, University of Sheffield, U.K., 2004.

[17] H. Mouratidis and J. Jürjens. From goal-driven security
requirements engineering to secure design. Int. J. Intell. Syst.,
25:813–840, 2010.

[18] N. Rozanski and E. Woods. Software Systems Architecture.
Addison-Wesely, Upper Saddle River, 2005.

[19] H. Schmidt and I. Wentzlaff. Preserving Software Quality
Characteristics from Requirements Analysis to Architectural
Design. In Proc. EWSA, LNCS 4344, pages 189–203.
Springer, 2006.

[20] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad. Security Patterns: Inte-
grating Security and Systems Engineering. Wiley & Sons,
2005.

[21] ”UML Revision Task Force”. Object Constraint Language
Specification. http://www.omg.org/spec/OCL/2.0/PDF.

[22] ”UML Revision Task Force”. OMG Unified
Modeling Language (UML), Superstructure.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

[23] ”UML Revision Task Force”. UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems.
http://www.omg.org/spec/MARTE/1.0/PDF.

[24] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson,
R. Nord, and B. Wood. Attribute-Driven Design (ADD).
Version 2.0, Software Engineering Institute, 2006.

[25] E. Woods and N. Rozanski. The system context architectural
viewpoint. In WICSA/ECSA. IEEE, 2009.

[26] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen. A sys-
tem of security patterns. CW Reports CW469, K.U.Leuven,
2006.


