
Chapter 7
Systematic Architectural Design based on Prob-
lem Patterns

Christine Choppy and Denis Hatebur and Maritta Heisel

C. Choppy Universite Paris 13, LIPN, CNRS UMR 7030 Christine.Choppy@lipn.univ-
paris13.fr

D. Hatebur University Duisburg-Essen Denis.Hatebur@uni-duisburg-essen.de

M. Heisel University Duisburg-Essen maritta.heisel@uni-duisburg-essen.de

Abstract We present a method to derive systematically software architectures
from problem descriptions. The problem descriptions are based on the artifacts
that are set up when following Jackson's problem frame approach. They include a
context diagram describing the overall problem situation and a set of problem
diagrams that describe subproblems of the overall software development problem.
The different subproblems should be instances of problem frames, which are
patterns for simple software development problems.
Starting from these pattern-based problem descriptions, we derive a software
architecture in three steps. An initial architecture contains one component for each
subproblem. In the second step, we apply different architectural and design
patterns and introduce coordinator and facade components. In the final step, the
components of the intermediate architecture are re-arranged to form a layered
architecture, and interface and driver components are added.
All artefacts are expressed as UML diagrams, using specific UML profiles. The
method is tool-supported. Our tool supports developers in setting up the diagrams,
and it checks different validation conditions concerning the semantic integrity and
the coherence of the different diagrams.
We illustrate the method by deriving an architecture for an automated teller
machine.

7.1 Introduction

A thorough problem analysis is of invaluable benefit for the systematic
development of high-quality software. Not only is there a considerable risk that
software development projects fail when the requirements are not properly
understood, but also the artefacts set up during requirements analysis can be used

2

as a concrete starting point for the subsequent steps of software development, in
particular, the development of software architectures.
In this chapter, we present a systematic method to derive software architectures
from problem descriptions. We give detailed guidance by elaborating concrete
steps that are equipped with validation conditions. The method works for different
types of systems, e.g., for embedded systems, web-applications, and distributed
systems as well as standalone ones. The method is based on different kinds of
patterns. On the one hand, it makes use of problem frames [20], which are patterns
to classify simple software development problems. On the other hand, it builds on
architectural and design patterns.
The starting point of the method is a set of diagrams that are set up during
requirements analysis. In particular, a context diagram describes how the software
to be developed (called machine) is embedded in its environment. Furthermore,
the overall software development problem must be decomposed into simple
subproblems, which are represented by problem diagrams. The different
subproblems should be instances of problem frames.
From these pattern-based problem descriptions, we derive a software architecture
that is suitable to solve the software development problem described by the
problem descriptions. The problem descriptions as well as the software
architectures are represented as UML diagrams, extended by stereotypes. The
stereotypes are defined in profiles that extend the UML metamodel [29].
The method to derive software architectures from problem descriptions consists of
three steps. In the first step, an initial architecture is set up. It contains one
component for each subproblem. The overall machine component has the same
interface as described in the context diagram. All connections between
components are described by stereotypes (e.g., ‹‹call_and_return››,
‹‹shared_memory››, ‹‹event››, ‹‹ui››).
In the second step, we apply different architectural and design patterns. We
introduce coordinator and facade components and specify them. A facade
component is necessary if several internal components are connected to one
external interface. A coordinator component must be added if the interactions of
the machine with its environment must be performed in a certain order. For
different problem frames, specific architectural patterns are applied.
In the final step, the components of the intermediate architecture are re-arranged
to form a layered architecture, and interface and driver components are added.
This process is driven by the stereotypes introduced in the first step. For example,
a connection stereotype ‹‹ui›› motivates to introduce a user interface component.
Of course, a layered architecture is not the only possible way to structure the
software, but a very convenient one. We have chosen it because a layered
architecture makes it possible to divide platform-dependent from platform-
independent parts, because different layered systems can be combined in a
systematic way, and because other architectural styles can be incorporated in such
an architecture. Furthermore, layered architectures have proven useful in practice.
Our method exploits the subproblem structure and the classification of
subproblems by problem frames. Additionally, most interfaces can be derived
from the problem descriptions [19]. Stereotypes guide the introduction of new
components. They also can be used to generate adapter components automatically.

3

The re-use of components is supported, as well.
The method is tool-supported. We extended an existing UML tool by providing
two new profiles for it. The first UML profile allows us to express the different
models occurring in the problem frame approach using UML diagrams. The
second one allows us to annotate composite structure diagrams with information
on components and connectors. In order to automatically validate the semantic
integrity and coherence of the different models, we provide a number of validation
conditions. The underlying tool itself, which is called UML4PF, is based on the
Eclipse development environment [1], extended by an EMF-based [2] UML tool,
in our case, Papyrus UML [3].
In the following, we first discuss the basic concepts of our method, namely
problem frames and architectural styles (Section 7.2). Subsequently, we describe
the problem descriptions that form the input to our method in Section 7.3. In
Section 7.4, we introduce the UML profile for architectural descriptions that we
have developed and which provides the notational elements for the architectures
we derive. In Section 7.5, we describe our method in detail. Not only do we give
guidance on how to perform the three steps, but we also give detailed validation
conditions that help to detect errors as early as possible. As a running example, we
apply our method to derive a software architecture for an automated teller
machine. In Section 7.6, we describe the tool that supports developers in applying
the method. Section 7.7 discusses related work, and in Section 7.8, we give a
summary of our achievements and point out directions for future work.

7.2 Basic Concepts

Our work makes use of problem frames to analyse software development
problems and architectural styles to express software architectures. These two
concepts are briefly described in the following.

7.2.1 Problem Frames

Problem frames are a means to describe software development problems. They
were proposed by Michael Jackson [20], who describes them as follows: “A
problem frame is a kind of pattern. It defines an intuitively identifiable problem
class in terms of its context and the characteristics of its domains, interfaces and
requirement.” Problem frames are described by frame diagrams, which basically
consist of rectangles, a dashed oval, and different links between them, see Figure
7.1. The task is to construct a machine that establishes the desired behaviour of the
environment (in which it is integrated) in accordance with the requirements.

4

Fig. 7.1. Commanded Information problem frame

Plain rectangles denote domains that already exist in the application environment.
Jackson [20, p. 83f] considers three main domain types:

• “A biddable domain usually consists of people. The most important
characteristic of a biddable domain is that it is physical but lacks positive
predictable internal causality. That is, in most situations it is impossible to
compel a person to initiate an event: the most that can be done is to issue
instructions to be followed.”
Biddable domains are indicated by B (e.g., Enquiry operator in Figure 7.1).

• “A causal domain is one whose properties include predictable causal
relationships among its causal phenomena.”
Often, causal domains are mechanical or electrical equipment. They are
indicated with a C in frame diagrams. (e.g., Display in Figure 7.1). Their actions
and reactions are predictable. Thus, they can be controlled by other domains.

• “A lexical domain is a physical representation of data – that is, of symbolic
phenomena. It combines causal and symbolic phenomena in a special way. The
causal properties allow the data to be written and read.” Lexical domains are
indicated by X.

A rectangle with a double vertical stripe denotes the machine to be developed, and
requirements are denoted with a dashed oval. The connecting lines between
domains represent interfaces that consist of shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as
indicated by an exclamation mark. For example, in Figure 7.1 the notation EO! E5
means that the phenomena in the set E5 are controlled by the domain Enquiry
operator and observed by the Answering machine.
To describe the problem context, a connection domain between two other domains
may be necessary. Connection domains establish a connection between other
domains by means of technical devices. Connection domains are, e.g., video
cameras, sensors, or networks.
A dashed line represents a requirement reference, and an arrow indicates that the

5

requirement constrains a domain.1 If a domain is constrained by the requirement,
we must develop a machine, which controls this domain accordingly. In Figure
7.1, the Display domain is constrained, because the Answering machine changes it on
behalf of Enquiry operator commands to satisfy the required Answer rules.

Fig. 7.2 Transformation problem frame Fig. 7.3. Simple Workpieces problem frame

The Commanded Information frame in Figure 7.1 is a variant of the Information
Display frame where there is no operator, and information about the states and
behaviour of some parts of the physical world is continuously needed. We present
in Figure 7.4 the Commanded Behaviour frame in UML notation. That frame
addresses the issue of controlling the behaviour of the controlled domain
according to the commands of the operator. The Required Behaviour frame is
similar but without an operator; the control of the behaviour has to be achieved in
accordance with some rules. Other basic problem frames are the Transformation
frame in Figure 7.2 that addresses the production of required outputs from some
inputs, and the Simple Workpieces frame in Figure 7.3 that corresponds to tools
for creating and editing of computer processable text, graphic objects etc.
Software development with problem frames proceeds as follows: first, the
environment in which the machine will operate is represented by a context
diagram. Like a frame diagram, a context diagram consists of domains and
interfaces. However, a context diagram contains no requirements. Then, the
problem is decomposed into subproblems. Whenever possible, the decomposition
is done in such a way that the subproblems fit to given problem frames. To fit a
subproblem to a problem frame, one must instantiate its frame diagram, i.e.,
provide instances for its domains, interfaces, and requirement. The instantiated
frame diagram is called a problem diagram.

Besides problem frames, there are other elaborate methods to perform
requirements engineering, such as i* [31], Tropos [7], and KAOS [6]. These
methods are goal-oriented. Each requirement is elaborated by setting up a goal
structure. Such a goal structure refines the goal into subgoals and assigns
responsibilities to actors for achieving the goal. We have chosen problem frames
and not one of the goal-oriented requirements engineering methods to derive
architectures, because the elements of problem frames, namely domains, may be
mapped to components of an architecture in a fairly straightforward way.

1 In the following, since we use UML tools to draw problem frame diagrams (see Figure 7.4), all
requirement references will be represented by dashed lines with arrows and stereotypes
‹‹refersTo››, or ‹‹constrains›› when it is constraining reference.

6

7.2.2 Architectural Styles

According to Bass, Clements, and Kazman [5],
the software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the externally visible properties of
those components, and the relationships among them.

Architectural styles are patterns for software architectures. A style is characterised
by [5]:

• a set of component types (e.g., data repository, process, procedure) that
perform some function at run-time,

• a topological layout of these components indicating their run-time
interrelationships,

• a set of semantic constraints (for example, a data repository is not allowed to
change the values stored in it),

• a set of connectors (e.g., subroutine call, remote procedure call, data streams,
sockets) that mediate communication, coordination, or cooperation among
components.

When choosing a software architecture, usually several architectural styles are
possible, which means that all of them could be used to implement the functional
requirements. In the following, we will mostly use the Layered architectural style
for the top-level architecture. The components in this layered architecture are
either Communicating Processes (active components) or used with a Call-and-
Return mechanism (passive components)2. We use UML 2 composite structure
diagrams to represent architectural patterns as well as concrete architectures.

7.3 Problem Description

To support problem analysis according to Jackson [20] with UML [29], we
created a new UML profile. In this profile stereotypes are defined. A stereotype
extends a UML meta-class from the UML meta-model, such as Association or Class
[28].
In the following subsections, we describe our extensions to the problem analysis
approach of Jackson (Section 7.3.1), we explain how the different diagrams can be
created with UML and our profile (Section 7.3.2), we describe our approach to
express connections between domains (Section 7.3.3), and we enumerate the
documents that form the starting point for our architectural design method in
Section 7.3.4. We illustrate these concepts on an ATM example in Section 7.3.5.

2 The mentioned architectural styles are described in [25].

7

7.3.1 Extensions

In contrast to Jackson, we allow more than one machine domain in a problem
diagram so that we can model distributed systems. In addition to Jackson’s
diagrams, we express technical knowledge (that we know or can acquire before
we proceed to the design phases) about the machine to be built and its
environment in a technical context diagram [19]. In a technical context diagram
we introduce connection domains describing the direct technical environment of
the machine, e.g., the platform, the operating system or mail server. Additionally,
we annotate the technical realisation of all connections as described in
Section 7.3.3. With UML it is possible to express aggregation and composition
relations between classes and to use multiplicities. Thus we can express that one
domain is part of another domain, e.g., that a lexical domain is part of the
machine. UML distinguishes between active and passive classes. Active classes
can initiate an action without being triggered before. Passive classes just react to
some external trigger. Since domains are modelled as classes, they now can also
be active or passive. Biddable domains are always active, and lexical domains are
usually passive.

7.3.2 Diagram Types

The different diagram types make use of the same basic notational elements. As a
result, it is necessary to explicitly state the type of diagram by appropriate
stereotypes. In our case, the stereotypes are ‹‹ContextDiagram››, ‹‹ProblemDia-
gram››, ‹‹ProblemFrame››, and ‹‹TechnicalContextDiagram››. These stereotypes
extend (some of them indirectly) the meta-class Package in the UML meta-model.
According to the UML superstructure specification [29], it is not possible that one
UML element is part of several packages. For example a class Customer should be
in the context diagram package and also in some problem diagrams packages.3
Nevertheless, several UML tools allow one to put the same UML element into
several packages within graphical representations. We want to make use of this
information from graphical representations and add it to the model (using
stereotypes of the profile). Thus, we have to relate the elements inside a package
explicitly to the package. This can be achieved with a dependency stereotype
‹‹isPart›› from the package to all included elements (e.g., classes, interfaces,
comments, dependencies, associations).
The context diagram (see e.g., Figure 7.8) contains the machine domain(s), the
relevant domains in the environment, and the interfaces between them. Domains
are represented by classes with the stereotype ‹‹Domain››, and the machine is
marked by the stereotype ‹‹Machine››. Instead of ‹‹Domain››, more specific
stereotypes such as ‹‹BiddableDomain››, ‹‹LexicalDomain›› or ‹‹CausalDomain››

3Alternatively, we could create several Customer classes, but these would have to have different
names.

8

can be used. Since some of the domain types are not disjoint, more than one
stereotype can be applied on one class.
In a problem diagram (see e.g., Figure 7.9), the knowledge about a sub-problem
described by a set of requirements is represented. A problem diagram consists of
sub-machines of the machines given in the context diagram, the relevant domains,
the connections between these domains and a requirement (possibly composed of
several related requirements), as well as of the relation between the requirement
and the involved domains. A requirement refers to some domains and constrains at
least one domain. This is expressed using the stereotypes ‹‹refersTo›› and
‹‹constrains››. They extend the UML meta-class Dependency. Domain knowledge
and requirements are special statements. Furthermore, any domain knowledge is
either a fact (e.g., physical law) or an assumption (usually about a user’s
behaviour).
The problem frames (patterns for problem diagrams) have the same kind of
elements as problem diagrams. To instantiate a problem frame, its domains,
requirement and connections have to be replaced by concrete ones. Figure 7.4
shows the commanded behaviour problem frame in UML notation, using our
profile.

Fig. 7.4. Commanded Behaviour problem frame

7.3.3 Associations and Interfaces

For phenomena between domains, we want to keep the notation introduced by
Jackson. Our experience is that this notation is easy to read and easy to maintain.
In Jackson’s diagrams, interfaces between domains (represented as classes) show
that there is at least one phenomenon shared by the connected classes. In UML,
associations describe that there is some relation between two classes. We decided
to use associations to describe the interfaces in Jackson’s diagrams. An example
for such an interface is depicted in Figure 7.5. The association AD! {showLog} has
the stereotype ‹‹connection›› to indicate that there are shared phenomena between
the associated domains. The AdminDisplay controls the phenomenon showLog. In
general, the name of the association contains the phenomena and the controlling

9

domain. We represent different sets of shared phenomena with a different control
direction between two domains by a second interface class.

Fig. 7.5. Interface class generation – drawn Fig. 7.6. Interface class generation –transformed

Jackson’s phenomena can be represented as operations in UML interface classes.
The interface classes support the transition from problem analysis to problem
solution. Some of the interface classes in problem diagrams become external
interfaces of the architecture. In case of lexical domains, they may also be internal
interfaces of the architecture. A ‹‹connection›› can be transformed into an
interface class controlled by a domain and observed by other domains. To this
end, the stereotypes ‹‹observes›› and ‹‹controls›› are defined to extend the meta-
class Dependency in the UML meta-model. The interface should contain all
phenomena as operations. We use the name of the association as name for the
interface class. Figure 7.6 illustrates how the connection given in Figure 7.5 can
be transformed into such an interface class.
To support a systematic architectural design, more specific connection types can
be annotated in problem descriptions. Examples of such stereotypes which can be
used instead of ‹‹connection›› are, e.g., ‹‹network_connection›› for network
connections, ‹‹physical›› or ‹‹electrical›› for physical connections, and ‹‹ui›› for
user interfaces (see e.g., Figure 7.8). Our physical connection can be specialised
into hydraulic flow or hot air flow. These flow types are defined in SysML [26].
For the control signal flow type in SysML, depending on the desired realisation,
the stereotypes ‹‹network_connection››, ‹‹event››, ‹‹call_return››, or ‹‹stream›› can
be used. Figure 7.7 shows a hierarchy of stereotypes for connections. This
hierarchy can be easily extended by new stereotypes.

Fig. 7.7. Connection Stereotypes

For these stereotypes, more specialised stereotypes (not shown in Figure 7.7) can

10

be defined that consider the technical realisation, e.g. events (indicated with the
stereotype ‹‹event››) can be implemented using Windows Message Queues
(‹‹wmq››), Java Events (‹‹java_events››), or by a number of other techniques.
Network connections (‹‹network_connection››) can be realised, e.g., by HTTP
(‹‹http››) or the low-level networking protocol TCP (‹‹tcp››).

7.3.4 Inputs and Prerequisites for Architectural Design

As a prerequisite, our approach needs a coherent set of requirements. The
architectural design starts after the specification is derived and all frame concerns
[20] have been addressed. To derive software architectures, we use the following
diagrams from requirements analysis:

• context diagram,
• problem diagrams, and
• technical context diagram

Moreover, it may be necessary to know any restrictions that apply concerning the
interaction of the machines with their environment. For example, in the automatic
teller machine, the user must first authenticate before s/he may enter a request to
withdraw a certain amount of money. In the following, we refer to this
information as interaction restrictions.

7.3.5 The Automatic Teller Machine (ATM)

As a running example, we consider an automatic teller machine (ATM) . Its
context diagram – which is identical to the technical context diagram4 – is shown
in Figure 7.8. According to this diagram, Customers can interact with the ATM in
the following way:

• withdraw money by inserting their banking card into the CardReader
(insert_card),

• enter their PIN (enter_PIN),
• enter a request to withdraw a certain amount of money (enter_request),
• remove their card from the CardReader, and
• take money from the MoneySupply_Case.

The ATM context diagram in Figure 7.8 contains the ATM as the machine to be
built. In the ATM environment, we can find the Admin responsible for checking
the logs of the ATM with the phenomenon request_log and for filling the
MoneySupply_Case with money (phenomenon insert_money).

4 The technical context diagram is identical to the context diagram, because it is not necessary to
describe new connection domains representing the platform or the operating system.

11

In some cases, it is possible that the ATM refuses a withdrawal
(refuse_withdrawal). Each ATM is connected with the AccountData of at least one
bank. We use multiplicities to express this aspect.
The different domains are annotated with appropriate specialised ‹‹domain››
stereotype, e.g., the Customer is biddable and the AccountData is lexical. The
connections are marked with specialisations of the stereotype ‹‹connection››, e.g.,
a user interface (‹‹ui››) between Customer and ATM, and a physical connection
(‹‹physical››) between Customer and CardReader.

Fig. 7.8. The ATM context diagram / technical context diagram

The card reader controller subproblem in Figure 7.9 is an instance of a variant of
Commanded Behaviour (see Figure 7.4). In this variant, we introduce a physical
connection between the Customer and the CardReader that models the fact that the
customer can physically insert a card into the card reader. Although the
phenomena of that interface are used by the CardReader to inform the
CardReaderController whether there is a card inside the card reader, they have no
interface with the machine.

12

Fig. 7.9. Problem diagram for the card reader controller in UML notation

Fig. 7.10. Problem diagram for the administrator log check

A subproblem problem diagram is given in Figure 7.10. It concerns the
BankInformationMachine and is an instance of a variant of the commanded
information frame. (see Figure 7.1).
The interfaces in context diagram are refined and split to obtain the interfaces in
the problem diagrams. For example, MSC! {case_state, banknote_state} is refined into
MSC! {case_is_open, case_is_closed, banknotes_removed}. Connection domains, e.g. a
AdminDisplay are introduced. Additionally, domains are combined or split. For
example, MoneySupplyCaseCardReader (MSCCR) combines MoneySupplyCase (MSC)
and CardReader (CR).

7.4 Architectural Description

For each machine in the context diagram, we design an architecture that is
described using composite structure diagrams [29]. In such a diagram, the

13

components with their ports and the connectors between the ports are given. The
components are another representation of UML classes. The ports are typed by a
class that uses and realises interfaces. An example is depicted in Figure 7.12. The
ports (with this class as their type) provide the implemented interfaces (depicted as
lollipops) and require the used interfaces (depicted as sockets), see Figure 7.11.
In our UML profile we introduced stereotypes to indicate which classes are
components. The stereotype ‹‹Component›› extends the UML meta-class Class.
For re-used components we use the stereotype ‹‹ReusedComponent››, which is a
specialisation of the stereotype ‹‹Component››. Reused components may also be
used in other projects. This fact must be recorded in case such a component is
changed. A machine domain may represent completely different things. It can
either be a distributed system (e.g., a network consisting of several computers), a
local system (e.g., a single computer), a process running on a certain platform, or
just a single task within a process (e.g., a clock as part of a graphical user
interface). The kind of the machine can be annotated with the stereotypes
‹‹distributed››, ‹‹local››, ‹‹process››, or ‹‹task››. They all extend the UML meta-
class Class.
For the architectural connectors, we allow the same stereotypes as for
associations, e.g. ‹‹ui›› or ‹‹tcp››, described in Section 7.3.2 . However, these
stereotypes extend the UML meta-class Connector (instead of the meta-class
Association).

7.5 Deriving Architectures from Problem Descriptions

We now present our method to derive software architectures from problem
descriptions in detail. For each of its three steps, we specify the input that is
needed, the output that is produced, and a procedure that can be followed to
produce the output from the input. Of course, these procedures are not automatic,
and a number of decisions have to be taken by the developer. Such developer
decisions introduce the possibility to make errors. To detect such errors as early as
possible, each step of the method is equipped with validation conditions. These
validation conditions must be fulfilled if the developed documents are
semantically coherent. For example, a passive component cannot contain an active
component. The validation conditions cannot be complete in a formal sense.
Instead, they constitute necessary but not sufficient conditions for the different
documents to be semantically valid. New conditions can be defined and integrated
in our tool as appropriate.
Our method leads the way from problem descriptions to software architectures in a
systematic way, which is furthermore enhanced with quality assurance measures
and tool support (see Section 7.6).

14

7.5.1 Initial Architecture

The purpose of this first step is to collect the necessary information for the
architectural design from the requirements analysis phase, to determine which
component has to be connected to which external port, to make coordination
problems explicit (e.g. several components are connected to the same external
domain), and to decide on the machine type and to verify that it is appropriate
(considering the connections). At this stage, the submachine components are not
yet coordinated.
The inputs for this step are the technical context diagram and the problem
diagrams. The output is an initial architecture, represented by a composite
structure diagram. It is set up as follows. There is one component for a machine
with stereotype ‹‹machine››, and it is equipped with ports corresponding to the
interfaces of the machine in the technical context diagram, see Figure 7.11.
Inside this component, there is one component for each submachine identified in
the problem diagrams, equipped with ports corresponding to the interfaces in the
problem diagrams, and typed with a class. This class has required and provided
interfaces. A controlled interface in a problem diagram becomes a required
interface of the corresponding component in the architecture. Usually, an observed
interface of the machine in the problem diagram will become a provided interface
of the corresponding component in the architecture. However, if the interface
connects a lexical domain, it will be a required interface containing operations
with return values (see [15, Section 3.1]). The ports of the components should be
connected to the ports of the machine, and stereotypes describing the technical
realisation of these connectors are added. A stereotype describing the type of the
machine (local, distributed, process, task) is added, as well as stereotypes
‹‹ReusedComponent›› or ‹‹Component›› to all components. If appropriate,
stereotypes describing the type of the components (local, distributed, process,
task) are also added.

15

Fig. 7.11. The ATM initial architecture

The initial architecture of the ATM is given in Figure 7.11. Starting from the
technical context diagram in Figure 7.8, and the problem diagrams (including the
ones given in Figures 7.9 and 7.10), the initial ATM architecture has one
component, ATM, with stereotype ‹‹machine, local›› and the ports (typed with
:PAdmin, :PAccount, :PCustomer, :PMS_C, :PCardReader) that correspond to the
interfaces of the machine in the technical context diagram. The components
(CardReaderController, BankInformationMachine, MoneyCaseController, and
AccountHandler) correspond to the submachines identified for this case study (e.g.,
CardReaderController in Figure 7.9, and BankInformationMachine in Figure 7.10).
Phenomena at the machine interface in the technical context diagram (e.g. CR!
{card_inside}, A! {request_log}, BIM! {display_log}) now occur in external interfaces of
the machine. Phenomena controlled by the machine are associated with provided
interfaces (e.g. BIM! {display_log}), and phenomena controlled otherwise (e.g. by the
user), are associated with required interfaces (e.g., A! {request_log}).

Fig. 7.12. Port Type of PCustomer

Note that connections in the technical context diagram in Figure 7.8 not related to
the ATM (such as the one between Admin and MoneySupply_Case) are not reflected
in this architecture.
The ports have a class as a type. This class uses and realises interfaces. For
example, as depicted in Figure 7.12, the class PCustomer uses the interface AH!
{refuse_withdrawal} and realises the class C! {enter_pin, enter_request}. The ports with

16

this class as a type provide the interface C! {enter_pin, enter_request} (depicted as a
lollipop) and requires the interface HL! {refuse_withdrawal} (depicted as a socket).
We have defined two sets of validation conditions for this first phase of our
method. The first set is common to all architectures (and hence should be checked
after each step of our method), whereas the second one is specialised for the initial
architecture. We give a selection of the validations conditions in the following.
The complete sets can be found in [11].

Validation conditions for All architectures:

VA.1 Each machine in all problem diagrams must be a component or a re-used
component in the architectural description.

VA.2 All components must be contained in a machine or another component.
VA.3 For each operation in a required interface of a port of a component, there

exists a connector to a port providing an interface with this operation, or it is
connected to a re-used component.

VA.4 The components’ interfaces must fit to the connected interfaces of the
machine, i.e., each operation in a required or provided interface of a
component port must correspond to an operation in a required or provided
interface of a connected machine port.

VA.5 Passive components cannot contain any active components.
VA.6 A class with the stereotype ‹‹Task›› cannot contain classes with the

stereotype ‹‹Process››, ‹‹Local››, or ‹‹Distributed››.
A class with the stereotype ‹‹Process›› cannot contain classes with the
stereotype ‹‹Local›› or ‹‹Distributed››.
A class with the stereotype ‹‹Local›› cannot contain classes with the
stereotype ‹‹Distributed››.

Validation conditions specific to the Initial architecture:

VI.1 For each provided or required interface of machine ports in the architecture,
there exists a corresponding interface in the technical context diagram.

VI.2 For each machine in the technical context diagram:
each stereotype name of all associations to the machine (or a specialization
of this stereotype) must be included in the set of stereotype names of the
connectors from the internal components to external interfaces inside the
machine.

VI.3 Each stereotype name of the connectors from components to external
interfaces inside an architectural machine component (or their supertypes)
must be included in the set of associations to the corresponding machine
domain in the technical context diagram.

As already noticed, these validation conditions can be checked automatically,
using the tool described in Section 7.6.

17

7.5.2 Intermediate Architecture

The purpose of this step is to introduce coordination mechanisms between the
different submachine components of the initial architecture and its external
interfaces, thus obtaining an implementable intermediate architecture. Moreover,
we exploit the fact that the subproblems are instances of problem frames by
applying architectural patterns that are particularly suited for some of the problem
frames. Finally, we decide whether the components should be implemented as
active or passive components.
The input to this step are the initial architecture, the problem diagrams as instances
of problem frames, and a specification of interaction restrictions5 (see Section
7.3.4). The output is an intermediate architecture that is already implementable. It
contains coordinator and facade components as well as architectural patterns
corresponding to the used problem frames. The intermediate architecture is
annotated with the stereotype ‹‹intermediate_architecture›› to distinguish it from
the final architecture.
The intermediate architecture is set up as follows. When several internal
components are connected to one external interface in the initial architecture, a
facade component6 is added. That component has one provided interface
containing all operations of some external port and several used interfaces as
provided by the submachine components. In our ATM example, several
components are connected with external interface :PCustomer in Figure 7.11;
therefore a CustomerFacade component is added in Figure 7.13.
If interaction restrictions have to be taken into account, we need a component to
enforce these restrictions. We call such a component an a coordinator component.
A coordinator component has one provided interface containing all operations of
some external port and one required interface containing all operations of some
internal port. To ensure the interaction restrictions, a state machine can be used
inside the component. Typically, coordinator components are needed for
interfaces connected to biddable domains (also via connection domains). This is
because often, a user must do things in a certain order. In our example, a user must
first authenticate before being allowed to enter a request to withdraw money.
Therefore, we introduce a CustomerCoordinator in Figure 7.13. Moreover, we need a
MSC_Coordinator component, because money should only be put into the money
supply case after the user has taken his or her card from the card reader.

5 Our method does not rely on how these restrictions are represented. Possible representations
are sequence diagrams, state machines, or grammars.
6 See the corresponding design pattern by Gamma et al. [16]: “Provide a unified interface to a set
of interfaces in a subsystem. Facade defines a higher-level interface that makes the subsystems
easier to use.”

18

Fig. 7.13. Screenshot of the ATM intermediate architecture

Figure 7.13 also contains a sub-architecture for the component
BankInformationMachine. This sub-architecture is an instance of the architectural
pattern associated with the commanded information problem frame. This pattern
contains components that are associated with the acquisition, the storage, and the
request for information.
Figure 7.14 shows the architectural pattern for transformation problems. It is a

19

pipe-and-filter architecture. The architectural pattern for the required behaviour
frame (not shown here) requires the machine to be an active component.

Fig. 7.14. Pattern for component realising transformation

After adding facade and coordinator components and applying architectural
patterns related to problem frames, we have to decide for each component if it has
to be active or not. In the case of the ATM, all components are reactive (even if
the CardReaderController and the MoneyCaseController use timers for timeouts). For
new connectors, their technical realisation should be added as stereotypes. For the
ATM example, we use the stereotype ‹‹call_return››. Finally, for all newly
introduced components it has to be specified if they are a ‹‹Component›› or a
‹‹ReusedComponent››. In Figure 7.13, we have no re-used components.
To validate the intermediate architecture, we have to check (among others) the
following conditions (in addition to the conditions to given in Section 7.5.1).
Validation conditions for the interMediate architecture:

VM.1 All components of the initial architecture must be contained in the
intermediate architecture.

VM.2 The connectors connected to the ports in the intermediate architecture
must have the same stereotypes or more specific ones than in the initial
architecture.

VM.3 The stereotypes ‹‹physical›› and ‹‹ui››, and their subtypes are not allowed
between components.

7.5.3 Layered Architecture

In this step, we finalise the software architecture. We make sure to handle the
external connections appropriately. For example, for a connection marked ‹‹gui››,
we need a component handling the input from the user. For ‹‹physical››
connections, we introduce appropriate driver components, which are often re-used.
We arrange the components in three layers. The highest layer is the application
layer. It implements the core functionality of the software, and its interfaces
mostly correspond to high-level phenomena, as they are used in the context
diagram. The lowest layer establishes the connection of the software to the outside
world. It consists of user interface components and hardware abstraction layer
(HAL) components, i.e., the driver components establishing the connections to
hardware components. The low-level interfaces can mostly be obtained from the
technical context diagram. The middle layer consists of adapter components that

20

translate low-level signals from the hardware drivers to high-level signals of the
application components and vice versa. If the machine sends signals to some
hardware, then these signals are contained in a required interface of the
application component, connected to an adapter component. If the machine
receives signals from some hardware, then these signals are contained in a
provided interface of the application component, connected to an adapter
component.
The input to this step are the intermediate architecture, the context diagram, the
technical context diagram, and the interaction restrictions. The output is a layered
architecture. It is annotated with the stereotype ‹‹layered_architecture›› to
distinguish it from the intermediate architecture. Note, however, that a layered
architecture can only be defined for a machine or component with the stereotype
‹‹local››, ‹‹process›› or ‹‹task››. For a distributed machine, a layered architecture
will be defined for each local component.
To obtain the layered architecture, we assign all components from the intermediate
architecture to one of the layers. The submachine components as well as the
facade components will belong to the application layer. Coordinator components
for biddable domains should be part of the corresponding (usually: user) interface
component, whereas coordinator components for physical connections belong the
the application layer. As already mentioned, connection stereotypes guide the
introduction of new components, namely user interface and driver components.
All components interfaces must be defined, where guidance is provided by the
context diagram (application layer) and the technical context diagram (external
interfaces).

Fig. 7.15. The ATM layered architecture

The final software architecture of the ATM is given in Figure 7.15. Note that we

21

have two independent application components, one for the administrator and the
other handling the interaction with the customers. This is possible, because there
are no interaction restrictions between the corresponding subproblems. However,
both applications need to access the log storage. Therefore, the component
LogStorage does not belong to one of the application components. Each of the
biddable domains Admin and Customer is equipped with a corresponding user
interface. For the physical connections to the card reader and the money supply
case, corresponding HAL and adapter components are introduced. Because the
connection to the account data was defined to be a ‹‹network_connection›› already
in the initial architecture, the final architecture contains a DB_HAL component.
The validation conditions to be checked for the layered architecture are similar to
the validation conditions for the intermediate architectures. Conditions VM.3 must
also hold for the layered architecture, and conditions VM.1 and VM.2 become

VL.1 All components of the intermediate architecture must be contained in the
layered architecture.

VL.2 The connectors connected to the ports in the layered architecture must
have the same stereotypes or more specific ones than in the intermediate
architecture.

This final step could be carried out in a different way – resulting in a different
final architecture – for other types of systems, e.g., when domain-specific
languages are used.

7.6 Tool Support

The basis of our tool called UML4PF [30] is the Eclipse platform [1] together with
its plug-ins EMF [2] and OCL [27]. Our UML-profiles described in Sections 7.3
and 7.4 are conceived as an eclipse plug-in, extending the EMF meta-model. We
store all our OCL constraints (which formalise the validation conditions given in
Section 7.5) in one file in XML-format. With these constraints, we check the
validity and consistency of the different models we set up during the requirements
analysis and architectural design phases. An overview of the context of our tool is
provided in Figure 7.16. Gray boxes denote re-used components, whereas white
boxes describe those components that we created.

Fig. 7.16. Tool Realisation Overview

The functionality of our tool UML4PF comprises the following:

22

• It checks if the developed models are valid and consistent by using our OCL
constraints.

• It returns the location of invalid parts of the model.
• It automatically generates model elements, e.g., it generates observed and

controlled interfaces from association names as well as dependencies with
stereotype ‹‹isPart›› for all domains and statements being inside a package in
the graphical representation of the model.

The graphical representation of the different diagram types can be manipulated by
using any EMF-based editor. We selected Papyrus UML [3], because it is
available as an Eclipse plug-in, open-source, and EMF-based. Papyrus stores the
model (containing requirements models and architectures) with references to the
UML-profiles in one XML-file using EMF. The XML format created by EMF
allows developers to exchange models between several UML tools. The graphical
representation of the model is stored in separate file. Since UML4PF is based on
EMF, it inherits all strengths and limitations of this platform. To use Papyrus with
UML4PF to develop an architecture, developers have to draw the context diagram
and the problem diagrams (see Section 7.3). Then they can proceed with deriving
the specification, after UML4PF has generated the necessary model elements.
Next, the requirements models are automatically checked with UML4PF.
Re-using model elements from the requirements models, developers create the
architectures as described in Section 7.5. After each step, the model can be
automatically validated. UML4PF indicates which model elements are not used
correctly or which parts of the model are not consistent. Figure 7.13 shows a
screenshot of UML4PF. As can be seen below the architectural diagram, several
kinds of diagrams are available for display. When selecting the OCL validator, the
validation conditions are checked, and the results are displayed as shown at the
bottom of the figure. Fulfilled validation conditions are displayed in green,
violated ones in red.
All in all, we have defined about 80 OCL validation conditions, including 17
conditions concerning architectural descriptions. The time needed for checking
only depends on EMF and is about half a second per validation condition. The
influence of the model size on the checking time is less than linear. About 9800
lines of code have been written to implement UML4PF.
The tool UML4PF is still under development and evaluation. Currently it is used
in a software engineering class at the University Duisburg-Essen with about 100
participants. In this class, the problem frame approach and the method for
architectural design described in this chapter are taught and applied to the
development of a web application. The experience gained from the class will be
used to assess (and possibly improve) the user-friendliness of the tool.
Moreover, UML4PF will be integrated into the tool WorkBench of the European
network of excellence NESSoS (see http://www.nessos-project.eu/). With this
integration, we will reach a wider audience in the future. Finally, the tool is
available for download at http://swe.uni-due.de/en/research/tool/index.php.

23

7.7 Related Work

Since our approach heavily relies on the use of patterns, our work is related to
research on problem frames and architectural styles. However, we are not aware of
similar methods that provide such a detailed guidance for developing software
architectures, together with the associated validation conditions.
Lencastre et al. [23] define a meta-model for problem frames using UML. Their
meta-model considers Jackson’s whole software development approach based on
context diagrams, problem frames, and problem decomposition. In contrast to our
meta-model, it only consists of a UML class model without OCL integrity
constraints. Moreover, their approach does not qualify for a meta-model in terms
of MDA because, e.g., the class Domain has subclasses Biddable and Given, but an
object cannot belong to two classes at the same time (cf. Figures 5 and 11 in [23]).
Hall et al. [17] provide a formal semantics for the problem frame approach. They
introduce a formal specification language to describe problem frames and problem
diagrams. However, their approach does not consider integrity conditions.
Seater et al. [24] present a meta-model for problem frame instances. In addition to
the diagram elements formalised in our meta-model, they formalise requirements
and specifications. Consequently, their integrity conditions (“wellformedness
predicate”) focus on correctly deriving specifications from requirements. In
contrast, our meta-model concentrates on the structure of problem frames and the
different domain and phenomena types.
Colombo et al. [14] model problem frames and problem diagrams with SysML
[26]. They state that “UML is too oriented to software design; it does not support
a seamless representation of characteristics of the real world like time,
phenomena sharing [...]”. We do not agree with this statement. So far, we have
been able to model all necessary means of the requirements engineering process
using UML.
Charfi et al. [8] use a modelling framework, Gaspard2, to design high-perform-
ance embedded systems-on-chip. They use model transformations to move from
one level of abstraction to the next. To validate that their transformations were
performed correctly, they use the OCL language to specify the properties that
must be checked in order to be considered as correct with respect to Gaspard2. We
have been inspired by this approach. However, we do not focus on high-
performance embedded systems-on-chip. Instead, we target general software
development challenges.
Choppy and Heisel give heuristics for the transition from problem frames to
architectural styles. In [12], they give criteria for choosing between architectural
styles that could be associated with a given problem frame. In [13], a proposal for
the development of information systems is given using update and query problem
frames. A component-based architecture reflecting the repository architectural
style is used for the design and integration of the different system parts. In [9], the
authors of this paper propose architectural patterns for each basic problem
frameproposed by Jackson [20]. In a follow-up paper [10], the authors show how
to merge the different sub-architectures obtained according to the patterns
presented in [9], based on the relationship between the subproblems. Hatebur and

24

Heisel [19] show how interface descriptions for layered architectures can be
derived from problem descriptions.
Barroca et al. [4] extend the problem frame approach with coordination concepts.
This leads to a description of coordination interfaces in terms of services and
events together with required properties, and the use of coordination rules to
describe the machine behaviour.
Lavazza and Del Bianco [21] also represent problem diagrams in a UML notation.
They use component diagrams (and not stereotyped class diagrams) to represent
domains. Jacksons interfaces are directly transformed into used/required classes
(and not observe and control stereotypes that are translated in the architectural
phase). In a later paper, Del Bianco and Lavazza [22] suggest enhance problem
frames with scenarios and timing.
Hall, Rapanotti, and Jackson [18] describe a formal approach for transforming
requirements into specifications. This specification is then transformed into the
detailed specifications of an architecture. We intentionally left out deriving the
specification describing the dynamic behaviour within this chapter and focus on
the static aspects of the requirements and architecture.

7.8 Conclusion and Perspectives

We have shown how software architectures can be derived in a systematic way
from problem descriptions as they are set up during the requirements analysis
phase of software development. In particular, our method builds on information
that is elicitated when applying (an extension of) the problem frame approach. The
method consists of three steps, starting with a simple initial architecture. That
architecture is gradually refined, resulting in a final layered architecture. The
refinement is guided by patterns and stereotypes. The method is independent of
system characteristics – it works e.g., for embedded systems, for web-applications,
and for distributed systems as well as for local ones. Its most important advantages
are the following:

• The method provides a systematic approach to derive software architectures
from problem descriptions. Detailed guidance is given in three concrete steps.

• Validation conditions for each step help to increase the quality of the results.
These conditions can be checked automatically.

• The subproblem structure can be exploited for setting up the architecture.
• Most interfaces can be derived from the problem descriptions.
• Only one model is constructed containing all the different development

artifacts. Therefore, traceability between the different models is achieved, and
changes propagate to all graphical views of the model.

• Frequently used technologies are taken into account by stereotypes. The
stereotype hierarchy can be extended for new developments.

• Stereotypes guide the introduction of new components.
• Adapters can be generated automatically (based on stereotypes).

25

• The application components use high-level phenomena from the application
domain. Thus, the application components are independent of the used
technology.

• Re-use of components is supported.

The method presented in this chapter can be extended to take other software
development artefacts into account. For example, sequence diagrams describing
the externally visible behaviour of machine domains can be used to derive
behavioural descriptions of the architectural components. In the future, we will
extend our approach to support the development of design alternatives according
to quality requirements, such as performance or security, and to support software
evolution. On the long run, the method can also be extended to cover further
phases of the software development lifecycle.

Acknowledgments We would like to thank our anonymous reviewers for their careful reading
and constructive comments.

References
[1] Eclipse - An Open Development Platform (2008) May 2008. http://www.eclipse.org/.
[2] Eclipse Modeling Framework Project (EMF) (2008) May 2008.

http://www.eclipse.org/modeling/emf/.
[3] Papyrus UML Modelling Tool (2010) Jan 2010. http://www.papyusuml.org/.
[4] L. Barroca, J. L. Fiadeiro, M. Jackson, R. C. Laney, and B. Nuseibeh (2004) Problem

frames: A case for coordination. In Coordination Models and Languages, Proc. 6th Inter-
national Conference COORDINATION, pages 5–19.

[5] L. Bass, P. Clements, and R. Kazman (1998) Software Architecture in Practice. Addison-
Wesley, first edition.

[6] P. Bertrand, R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde (1998)
GRAIL/KAOS: an environment for goal driven requirements engineering. In ICSE’98 -
20th International Conference on Software Engineering.

[7] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos (2004) Tropos: An
agent oriented software development methodology. Autonomous Agents and Multi-Agent
Systems, 8(3):203–236.

[8] A. Charfi, A. Gamatié, A. Honoré, J.-L. Dekeyser, and M. Abid (2008) Validation de
modèles dans un cadre d’IDM dédié à la conception de systèmes sur puce. In 4èmes
Jounées sur l’Ingénierie Dirigée par les Modèles (IDM 08.

[9] C. Choppy, D. Hatebur, and M. Heisel (2005) Architectural patterns for problem frames.
IEE Proceedings – Software, Special Issue on Relating Software Requirements and Archi-
tectures, 152(4):198–208.

[10] C. Choppy, D. Hatebur, and M. Heisel (2006) Component composition through architec-
tural patterns for problem frames. In Proc. XIII Asia Pacific Software Engineering Con-
ference (APSEC), pages 27–34. IEEE.

[11] C. Choppy, D. Hatebur, and M. Heisel (2010) Systematic architectural design based on
problem patterns (technical report). Universität Duisburg-Essen.

[12] C. Choppy and M. Heisel (2003) Use of patterns in formal development: Systematic tran-
sition from problems to architectural designs. In Recent Trends in Algebraic Development
Techniques, 16th WADT, Selected Papers, LNCS 2755, pages 205–220. Springer Verlag.

[13] C. Choppy and M. Heisel (2004) Une approache à base de “patrons” pour la spécification
et le développement de systèmes d’information. In Proceedings Approches Formelles dans
l’Assistance au Développement de Logiciels - AFADL’2004, pages 61–76.

26

[14] P. Colombo, V. del Bianco, and L. Lavazza (2008) Towards the integration of SysML and
problem frames. In IWAAPF ’08: Proceedings of the 3rd international workshop on Ap-
plications and advances of problem frames, pages 1–8, New York, NY, USA, ACM.

[15] I. Côté, D. Hatebur, M. Heisel, H. Schmidt, and I. Wentzlaff (2008) A systematic account
of problem frames. In Proceedings of the European Conference on Pattern Languages of
Programs (EuroPLoP), pages 749–767. Universitätsverlag Konstanz.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides (1995) Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading.

[17] J. G. Hall, L. Rapanotti, and M. Jackson (2005) Problem frame semantics for software de-
velopment. Software and System Modeling, 4(2):189–198.

[18] J. G. Hall, L. Rapanotti, and Michael A. Jackson (2008) Problem oriented software engi-
neering: Solving the package router control problem. volume 34, April 2008.

[19] D. Hatebur and M. Heisel (2009) Deriving software architectures from problem descrip-
tions. In Software Engineering 2009 - Workshopband, pages 383–302. GI.

[20] M. Jackson (2001) Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley,.

[21] L. Lavazza and V. D. Bianco (2006) Combining Problem Frames and UML in the De-
scription of Software Requirements. Fundamental Approaches to Software Engineering.

[22] L. Lavazza and V. D. Bianco (2008) Enhancing Problem Frames with Scenarios and His-
tories in UML-based software development. Expert Systems - The Journal of Knowledge
Engineering, 25(1).

[23] M. Lencastre, J. Botelho, P. Clericuzzi, and J. Araújo (2005) A meta-model for the prob-
lem frames approach. In WiSME’05: 4th Workshop in Software Modeling Engineering.

[24] R. Seater, D. Jackson, and R. Gheyi (2007) Requirement progression in problem frames:
deriving specifications from requirements. Requirements Engineering, 12(2):77–102.

[25] M. Shaw and D. Garlan (1996) Software Architecture. Perspectives on an Emerging Dis-
cipline. Prentice-Hall.

[26] SysML Partners. (2005) Systems Modeling Language (SysML) Specification. see
http://www.sysml.org.

[27] "UML Revision Task Force"(2006) OMG Object Constraint Language: Reference.
http://www.omg.org/docs/formal/06-05-01.pdf.

[28] "UML Revision Task Force" (2009) OMG Unified Modeling Language: Infrastructure.
available at http://www.omg.org/docs/formal/09-02-04.pdf.

[29] "UML Revision Task Force". (2009) OMG Unified Modeling Language: Superstructure,
available at http://www.omg.org/docs/formal/09-02-02.pdf.

[30] UML4PF (2010)
http://swe.uni-due.de/en/research/tool/index.php.

[31] E. Yu. (1997) Towards modelling and reasoning support for early-phase requirements en-
gineering. In Proceedings of the 3rd IEEE Intern. Symposium on RE, pages 226 – 235.

